1
|
Beers JL, Hebert MF, Wang J. Transporters and drug secretion into human breast milk. Expert Opin Drug Metab Toxicol 2025:1-20. [PMID: 39893560 DOI: 10.1080/17425255.2025.2461479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Medication use is highly prevalent in breastfeeding persons, posing potential risks for drug exposure to nursing infants. Transporters in the lactating mammary gland carry pharmacological and toxicological significance, as they can mediate the active transfer of drugs and nutrients into breastmilk. AREAS COVERED In this narrative review, we searched and compiled current knowledge on the transport of drugs in the human mammary gland from literature indexed in PubMed (current as of 25 October 2024), and clinical evidence demonstrating active transport of drugs into milk is provided. In vitro and in vivo models of the mammary gland are outlined in brief and known drug transporters at the blood-milk barrier and their potential relevance to drug concentrations in milk are described in detail. EXPERT OPINION Although clinical data show that membrane transporters mediate the transfer of multiple drugs into breast milk, our ability to predict milk concentrations for these drugs is limited. Improving our understanding of the transporter biology and pharmacology in the mammary gland is crucial for developing models to predict drug concentrations in human milk, which will support clinicians and lactating individuals in making rational decisions to balance the benefits of breastfeeding and the risks of drug exposure to infants.
Collapse
Affiliation(s)
- Jessica L Beers
- Department of Pharmacy, University of Washington, Seattle, WA, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Mary F Hebert
- Department of Pharmacy, University of Washington, Seattle, WA, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Gatz AE, Xiong C, Chen Y, Jiang S, Nguyen CM, Song Q, Li X, Zhang P, Eadon MT, Su J. Health disparities in the risk of severe acidosis: real-world evidence from the All of Us cohort. J Am Med Inform Assoc 2024; 31:2932-2939. [PMID: 39401251 PMCID: PMC11631078 DOI: 10.1093/jamia/ocae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE To assess the health disparities across social determinants of health (SDoH) domains for the risk of severe acidosis independent of demographical and clinical factors. MATERIALS AND METHODS A retrospective case-control study (n = 13 310, 1:4 matching) is performed using electronic health records (EHRs), SDoH surveys, and genomics data from the All of Us participants. The propensity score matching controls confounding effects due to EHR data availability. Conditional logistic regressions are used to estimate odds ratios describing associations between SDoHs and the risk of acidosis events, adjusted for demographic features, and clinical conditions. RESULTS Those with employer-provided insurance and those with Medicaid plans show dramatically different risks [adjusted odds ratio (AOR): 0.761 vs 1.41]. Low-income groups demonstrate higher risk (household income less than $25k, AOR: 1.3-1.57) than high-income groups ($100-$200k, AOR: 0.597-0.867). Other high-risk factors include impaired mobility (AOR: 1.32), unemployment (AOR: 1.32), renters (AOR: 1.41), other non-house-owners (AOR: 1.7), and house instability (AOR: 1.25). Education was negatively associated with acidosis risk. DISCUSSION Our work provides real-world evidence of the comprehensive health disparities due to socioeconomic and behavioral contributors in a cohort enriched in minority groups or underrepresented populations. CONCLUSIONS SDoHs are strongly associated with systematic health disparities in the risk of severe metabolic acidosis. Types of health insurance, household income levels, housing status and stability, employment status, educational level, and mobility disability play significant roles after being adjusted for demographic features and clinical conditions. Comprehensive solutions are needed to improve equity in healthcare and reduce the risk of severe acidosis.
Collapse
Affiliation(s)
- Allison E Gatz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Chenxi Xiong
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, United States
| | - Yao Chen
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shihui Jiang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Chi Mai Nguyen
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, United States
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
3
|
Hosooka A, Yasujima T, Murata A, Yamashiro T, Yuasa H. Identification of human-specific amino acid residues governing atenolol transport via organic cation transporter 2. Biochem Pharmacol 2024; 229:116514. [PMID: 39236937 DOI: 10.1016/j.bcp.2024.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Organic cation transporter 2 (OCT2/SLC22A2) is predominantly localized on the basolateral membranes of renal tubular epithelial cells and plays a crucial role in the renal secretion of various cationic drugs. Although variations in substrate selectivity among renal organic cation transport systems across species have been reported, the characteristics of OCT2 remain unclear. In this study, we demonstrated that atenolol, a β1-selective adrenergic antagonist, is transported almost exclusively by human OCT2, contrasting with OCT2s from other selected species. Using chimeric constructs between human OCT2 (hOCT2) and the highly homologous monkey OCT2 (monOCT2), along with site-directed mutagenesis, we identified non-conserved amino acids Val8, Ala31, Ala34, Tyr222, Tyr245, Ala270, Ile394, and Leu503 as pivotal for hOCT2-mediated atenolol transport. Kinetic analysis revealed that atenolol was transported by hOCT2 with a 12-fold lower affinity than MPP+, a typical OCT2 substrate. The inhibitory effect of atenolol on MPP+ transport was 6200-fold lower than that observed for MPP+ on atenolol transport. Additionally, we observed weaker inhibitory effects on MPP+ transport compared to atenolol transport with ten different OCT2 substrates. Altogether, this study suggests that eight hOCT2-specific amino acids constitute the low-affinity recognition site for atenolol transport, indicating differences in OCT2-mediated drug elimination between humans and highly homologous monkeys. Our findings underscore the importance of understanding species-specific differences in drug transport mechanisms, shedding light on potential variations in drug disposition and aiding in drug development.
Collapse
Affiliation(s)
- Akira Hosooka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tomoya Yasujima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Ayano Murata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Yamashiro
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiroaki Yuasa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
4
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
5
|
Pradana AD, Kristin E, Nugrahaningsih DAA, Nugroho AK, Pinzon RT. Influence of Solute Carrier Family 22 Member 1 ( SLC22A1) Gene Polymorphism on Metformin Pharmacokinetics and HbA1c Levels: A Systematic Review. Curr Diabetes Rev 2024; 20:e070823219470. [PMID: 37550919 DOI: 10.2174/1573399820666230807145202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Solute Carrier Family 22 Member 1 (SLC22A1, also known as OCT1) protein has a vital role in the metabolism of metformin, a first-line anti-diabetes medication. Genetic poly-morphism in SLC22A1 influences individual response to metformin. OBJECTIVE This review aims to compile the current knowledge about the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c levels. METHODS We followed the PRISMA 2020 standards to conduct a systematic review. We searched the publications for all appropriate evidence on the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c from January 2002 to December 2022. RESULTS Initial database searches identified 7,171 relevant studies. We reviewed 155 titles and abstracts after deleting duplicates. After applying inclusion and exclusion criteria, 23 studies remained. CONCLUSION Three studies found that rs12208357, rs34059508, and G465R had a considerable impact (p < 0.05) on metformin pharmacokinetics, resulting in increased metformin plasma (Cmax), a higher active amount of drug in the blood (AUC), and lower volume of distribution (Vd) (p<0.05). SLC22A1 polymorphisms with effects on HbA1c include rs628031 (four of seven studies), rs622342 (four of six studies), rs594709 (one study), rs2297374, and rs1867351 (one of two studies), rs34130495 (one study), and rs11212617 (one study) (p < 0.05).
Collapse
Affiliation(s)
- A D Pradana
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - E Kristin
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - D A A Nugrahaningsih
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - A K Nugroho
- Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| | - R T Pinzon
- Medical Faculty, Duta Wacana Christian University, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Yi Y, Zhang H, Chen M, Chen B, Chen Y, Li P, Zhou H, Ma Z, Jiang H. Inhibition of multiple uptake transporters in cardiomyocytes/mitochondria alleviates doxorubicin-induced cardiotoxicity. Chem Biol Interact 2023; 382:110627. [PMID: 37453608 DOI: 10.1016/j.cbi.2023.110627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Doxorubicin (DOX) has been widely used to treat various tumors; however, DOX-induced cardiotoxicity limits its utilization. Since high accumulation of DOX in cardiomyocytes/mitochondria is the key reason, we aimed to clarify the mechanisms of DOX uptake and explore whether selectively inhibiting DOX uptake transporters would attenuate DOX accumulation and cardiotoxicity. Our results demonstrated that OCTN1/OCTN2/PMAT (organic cation/carnitine transporter 1/2 or plasma membrane monoamine transporter), especially OCTN2, played crucial roles in DOX uptake in cardiomyocytes, while OCTN2 and OCTN1 contributed to DOX transmembrane transport in mitochondria. Metformin (1-100 μM) concentration-dependently reduced DOX (5 μM for accumulation, 500 nM for cytotoxicity) concentration and toxicity in cardiomyocytes/mitochondria via inhibition of OCTN1-, OCTN2- and PMAT-mediated DOX uptake but did not affect its efflux. Furthermore, metformin (iv: 250 and 500 mg/kg or ig: 50, 100 and 200 mg/kg) could dose-dependently reduce DOX (8 mg/kg) accumulation in mouse myocardium and attenuated its cardiotoxicity. In addition, metformin (1-100 μM) did not impair DOX efficacy in breast cancer or leukemia cells. In conclusion, our study clarified the role of multiple transporters, especially OCTN2, in DOX uptake in cardiomyocytes/mitochondria; metformin alleviated DOX-induced cardiotoxicity without compromising its antitumor efficacy by selective inhibition of multiple transporters mediated DOX accumulation in myocardium/mitochondria.
Collapse
Affiliation(s)
- Yaodong Yi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Binxin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yingchun Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China.
| |
Collapse
|
7
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
8
|
Research Progress of Population Pharmacokinetic of Metformin. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4071111. [PMID: 36578804 PMCID: PMC9792241 DOI: 10.1155/2022/4071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Metformin is commonly used as first-line treatment for T2DM (type2 diabetes mellitus). Owing to the high pharmacokinetic (PK) variability, several population pharmacokinetic (PPK) models have been developed for metformin to explore potential covariates that affect its pharmacokinetic variation. This comprehensive review summarized the published PPK studies of metformin, aimed to summarize PPK models of metformin. Most studies described metformin pharmacokinetics as a 2-compartment (2-CMT) model with 4 study describing its pharmacokinetics as 1-compartment (1-CMT). Studies on metformin PPK have shown that obesity, creatinine clearance (CLCr), gene polymorphism, degree of renal function damage, and pathological conditions all have a certain impact on the PK parameters of metformin. It is particularly important to formulate individualized dosing regimens. For future PPK studies of metformin, we believe that more attention should be paid to special populations.
Collapse
|
9
|
Abrahams-October Z, Johnson R, Benjeddou M, Cloete R. The determination of the effect(s) of solute carrier family 22-member 2 (SLC22A2) haplotype variants on drug binding via molecular dynamic simulation systems. Sci Rep 2022; 12:16936. [PMID: 36209293 PMCID: PMC9547889 DOI: 10.1038/s41598-022-21291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Single nucleotide polymorphisms detected in the solute carrier member family-22 has been shown to result in a variable response in the treatment of type 2 diabetes mellitus with Metformin. This study predicted a three-dimensional protein structure for the SLC22A2 protein sequence using AlphaFold 2 and modelled five haplotypes within SLC22A2 protein structure observed in the Xhosa population of South Africa. The protein models were used to determine the effect(s) of haplotype variations on the transport function of Metformin and 10 other drugs by the SLC22A2 protein. Molecular dynamic simulation studies, molecular docking and interaction analysis of the five SLC22A2 haplotypes were performed in complex with the ligand 5RE in a POPC lipid bilayer to understand the mechanism of drug binding. Weakest binding free energy was found between 5RE and haplotype 1. Molecular docking studies indicated the top binding ligands as well as Metformin to bind inside the transport channel in all haplotypes increasing the probability of Metformin inhibition during co-administration of drugs. Metformin showed reduced binding affinity and number of interactions compared to the top four binding molecules. Molecular dynamic simulation analysis indicated that haplotypes 1, 3 and 4 were less stable than 2 and 5. The findings suggest haplotypes 4 and 5 having stronger preference for large inhibitor molecule binding in the active site and this could result in haplotypes 4 and 5 demonstrating reduced Metformin clearance via the SLC22A2 transporter during co-administration of drugs. The current study is the first to investigate the potential effect(s) of haplotype variation on the protein structure of SLC22A2 to assess its ability to transport Metformin in an indigenous South African population.
Collapse
Affiliation(s)
- Zainonesa Abrahams-October
- grid.8974.20000 0001 2156 8226Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 South Africa
| | - Rabia Johnson
- grid.415021.30000 0000 9155 0024Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505 South Africa ,grid.11956.3a0000 0001 2214 904XDivision of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Mongi Benjeddou
- grid.8974.20000 0001 2156 8226Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 South Africa
| | - Ruben Cloete
- grid.8974.20000 0001 2156 8226South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| |
Collapse
|
10
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
11
|
Li S, Xu B, Fan S, Kang B, Deng L, Chen D, Yang B, Tang F, He Z, Xue Y, Zhou JC. Effects of single-nucleotide polymorphism on the pharmacokinetics and pharmacodynamics of metformin. Expert Rev Clin Pharmacol 2022; 15:1107-1117. [PMID: 36065506 DOI: 10.1080/17512433.2022.2118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Metformin has been recognized as the first-choice drug for type 2 diabetes mellitus (T2DM). The potency of metformin in the treatment of type 2 diabetes has always been in the spotlight and shown significant individual differences. Based on previous studies, the efficacy of metformin is related to the single-nucleotide polymorphisms of transporter genes carried by patients, amongst which a variety of gene polymorphisms of transporter and target protein genes affect the effectiveness and adverse repercussion of metformin. AREAS COVERED Here, we reviewed the current knowledge about gene polymorphisms impacting metformin efficacy based on transporter and drug target proteins. EXPERT OPINION The reason for the difference in clinical drug potency of metformin can be attributed to the gene polymorphism of drug transporters and drug target proteins in the human body. Substantial evidence shows that genetic polymorphisms in transporters such as organic cation transporter 1 (OCT1) and organic cation transporter 2 (OCT2) affect the glucose-lowering effectiveness of metformin. However, optimization of individualized dosing regimens of metformin is necessary to clarify the role of several polymorphisms.
Collapse
Affiliation(s)
- Shaoqian Li
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Xu
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shangzhi Fan
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Yang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Tang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zunbo He
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong Xue
- The Second Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie-Can Zhou
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Mohammadi Jouabadi S, Nekouei Shahraki M, Peymani P, Stricker BH, Ahmadizar F. Utilization of Pharmacokinetic/Pharmacodynamic Modeling in Pharmacoepidemiological Studies: A Systematic Review on Antiarrhythmic and Glucose-Lowering Medicines. Front Pharmacol 2022; 13:908538. [PMID: 35795566 PMCID: PMC9251370 DOI: 10.3389/fphar.2022.908538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction: In human pharmacology, there are two important scientific branches: clinical pharmacology and pharmacoepidemiology. Pharmacokinetic/pharmacodynamic (PK/PD) modeling is important in preclinical studies and randomized control trials. However, it is rarely used in pharmacoepidemiological studies on the effectiveness and medication safety where the target population is heterogeneous and followed for longer periods. The objective of this literature review was to investigate how far PK/PD modeling is utilized in observational studies on glucose-lowering and antiarrhythmic drugs. Method: A systematic literature search of MEDLINE, Embase, and Web of Science was conducted from January 2010 to 21 February 2020. To calculate the utilization of PK/PD modeling in observational studies, we followed two search strategies. In the first strategy, we screened a 1% random set from 95,672 studies on glucose-lowering and antiarrhythmic drugs on inclusion criteria. In the second strategy, we evaluated the percentage of studies in which PK/PD modeling techniques were utilized. Subsequently, we divided the total number of included studies in the second search strategy by the total number of eligible studies in the first search strategy. Results: The comprehensive search of databases and the manual search of included references yielded a total of 29 studies included in the qualitative synthesis of our systematic review. Nearly all 29 studies had utilized a PK model, whereas only two studies developed a PD model to evaluate the effectiveness of medications. In total, 16 out of 29 studies (55.1%) used a PK/PD model in the observational setting to study effect modification. The utilization of PK/PD modeling in observational studies was calculated as 0.42%. Conclusion: PK/PD modeling techniques were substantially underutilized in observational studies of antiarrhythmic and glucose-lowering drugs during the past decade.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mitra Nekouei Shahraki
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Payam Peymani
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Bruno H. Stricker
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
- *Correspondence: Bruno H. Stricker,
| | - Fariba Ahmadizar
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Julius Global Health, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
13
|
Shaheen A, Alam SM, Azam F, Saleem SA, Khan M, Hasan SS, Liaquat A. Lack of impact of OCTN1 gene polymorphisms on clinical outcomes of gabapentinoids in Pakistani patients with neuropathic pain. PLoS One 2022; 17:e0266559. [PMID: 35559956 PMCID: PMC9106170 DOI: 10.1371/journal.pone.0266559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background and objective Gabapentinoids are the first-line drugs for neuropathic pain. These drugs are the substrate of organic cation transporter (OCTN1) for renal excretion and absorption across the intestinal epithelium. Gabapentinoids exhibit wide interindividual variability in daily dosage and therapeutic efficacy which makes titration regimens prolonged for optimal efficacy. The present study aimed to investigate the possible influence of the single nucleotide polymorphism (SNP) of OCTN1 on therapeutic efficacy and safety of gabapentinoids in neuropathic pain patients of the Pakistani population. Methods Four hundred and twenty-six patients were enrolled in the study. All participants were genotyped for OCTN1 rs1050152 and rs3792876 by PCR-RFLP method and followed up for eight weeks. The therapeutic outcomes of gabapentinoids, reduction in pain score, inadequate or complete lack of response, adverse events (AEs) in responders and discontinuation of treatment on account of AEs were recorded for all patients. Results There was no significant association of genotypes and alleles of both SNPs on the clinical response of gabapentinoids (P ˃ 0.05). Similarly, significant differences were not found in the reduction of pain scores and AEs among different genotypes in the responders. The present study has reported the association of OCTN1 rs1050152 and rs3792876 polymorphisms with clinical outcomes of gabapentinoids for the first time in the real-world clinical setting. Conclusion Our results suggest a lack of influence of OCTN1 genetic variants in the determination of clinical response to gabapentinoids in patients with neuropathic pain in the Pakistani population. These findings signify the role of renal functions in predicting the interindividual variability to therapeutic responsiveness of gabapentinoids.
Collapse
Affiliation(s)
- Abida Shaheen
- Department of Pharmacology & Therapeutics, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- * E-mail:
| | - Syed Mahboob Alam
- Department of Pharmacology & Therapeutics, Basic Medical Sciences Institute, JPMC, Karachi, Pakistan
| | - Fahad Azam
- Department of Pharmacology & Therapeutics, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Salman Ahmad Saleem
- Department of Pain Clinic, Shifa International Hospital, Islamabad, Pakistan
| | - Moosa Khan
- Department of Pharmacology & Therapeutics, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Syed Saud Hasan
- Department of Pharmacology & Therapeutics, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Afrose Liaquat
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
14
|
Liu YJ, McIntyre RL, Janssens GE. Considerations Regarding Public Use of Longevity Interventions. FRONTIERS IN AGING 2022; 3:903049. [PMID: 35821857 PMCID: PMC9261328 DOI: 10.3389/fragi.2022.903049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Public attention and interest for longevity interventions are growing. These can include dietary interventions such as intermittent fasting, physical interventions such as various exercise regimens, or through supplementation of nutraceuticals or administration of pharmaceutics. However, it is unlikely that most interventions identified in model organisms will translate to humans, or that every intervention will benefit each person equally. In the worst case, even detrimental health effects may occur. Therefore, identifying longevity interventions using human data and tracking the aging process in people is of paramount importance as we look towards longevity interventions for the public. In this work, we illustrate how to identify candidate longevity interventions using population data in humans, an approach we have recently employed. We consider metformin as a case-study for potential confounders that influence effectiveness of a longevity intervention, such as lifestyle, sex, genetics, age of administration and the microbiome. Indeed, metformin, like most other longevity interventions, may end up only benefitting a subgroup of individuals. Fortunately, technologies have emerged for tracking the rate of 'biological' aging in individuals, which greatly aids in assessing effectiveness. Recently, we have demonstrated that even wearable devices, accessible to everyone, can be used for this purpose. We therefore propose how to use such approaches to test interventions in the general population. In summary, we advocate that 1) not all interventions will be beneficial for each individual and therefore 2) it is imperative that individuals track their own aging rates to assess healthy aging interventions.
Collapse
Affiliation(s)
| | | | - Georges E. Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
16
|
Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int J Mol Sci 2022; 23:ijms23020914. [PMID: 35055100 PMCID: PMC8776198 DOI: 10.3390/ijms23020914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.
Collapse
Affiliation(s)
- Lorena Pochini
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Michele Galluccio
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Lara Console
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Gilda Pappacoda
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Cesare Indiveri
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council—CNR, Via Amendola 122/O, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
17
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
18
|
Morales-Rivera MI, Alemón-Medina R, Martínez-Hernández A, Gómez-Garduño J, Mirzaeicheshmeh E, Altamirano-Bustamante NF, Ilizaliturri-Flores I, Mendoza-Caamal EC, Pérez-Guillé MG, García-Álvarez R, Contreras-Cubas C, Centeno-Cruz F, Revilla-Monsalve C, García-Ortiz H, Barajas-Olmos F, Orozco L. The L125F MATE1 variant enriched in populations of Amerindian origin is associated with increased plasma levels of metformin and lactate. Biomed Pharmacother 2021; 142:112009. [PMID: 34388523 DOI: 10.1016/j.biopha.2021.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
Genetic factors that affect variability in metformin response have been poorly studied in the Latin American population, despite its being the initial drug therapy for type 2 diabetes, one of the most prevalent diseases in that region. Metformin pharmacokinetics is carried out by members of the membrane transporters superfamily (SLCs), being the multidrug and toxin extrusion protein 1 (MATE1), one of the most studied. Some genetic variants in MATE1 have been associated with reduced in vitro metformin transport. They include rs77474263 p.[L125F], a variant present at a frequency of 13.8% in Latin Americans, but rare worldwide (less than 1%). Using exome sequence data and TaqMan genotyping, we revealed that the Mexican population has the highest frequency of this variant: 16% in Mestizos and 27% in Amerindians, suggesting a possible Amerindian origin. To elucidate the metformin pharmacogenetics, a children cohort was genotyped, allowing us to describe, for the first time, a MATE1 rs77474263 TT homozygous individual. An additive effect of the L125F variant was observed on blood metformin accumulation, revealing the highest metformin and lactate serum levels in the TT homozygote, and intermediate metformin values in the heterozygotes. Moreover, a molecular dynamics analysis suggested that the genetic variant effect on metformin efflux could be due to a decreased protein permeability. We conclude that pharmacogenetics could be useful in enhancing metformin pharmacovigilance in populations having a high frequency of the risk genotype, especially considering that these populations also have a higher susceptibility to the diseases for which metformin is the first-choice drug.
Collapse
Affiliation(s)
- Monserrat I Morales-Rivera
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | | | | | | | - Elaheh Mirzaeicheshmeh
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico
| | | | | | - Elvia C Mendoza-Caamal
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico
| | | | | | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico
| | - Cristina Revilla-Monsalve
- Medical Research Unit in Metabolic Diseases, UMAE Hospital de Cardiología, Centro Médico Nacional Siglo XXI, IMSS, CDMX, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, CDMX, Mexico.
| |
Collapse
|
19
|
Font-Porterias N, Giménez A, Carballo-Mesa A, Calafell F, Comas D. Admixture Has Shaped Romani Genetic Diversity in Clinically Relevant Variants. Front Genet 2021; 12:683880. [PMID: 34220960 PMCID: PMC8244592 DOI: 10.3389/fgene.2021.683880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023] Open
Abstract
Genetic patterns of inter-population variation are a result of different demographic and adaptive histories, which gradually shape the frequency distribution of the variants. However, the study of clinically relevant mutations has a Eurocentric bias. The Romani, the largest transnational minority ethnic group in Europe, originated in South Asia and received extensive gene flow from West Eurasia. Most medical genetic studies have only explored founder mutations related to Mendelian disorders in this population. Here we analyze exome sequences and genome-wide array data of 89 healthy Spanish Roma individuals to study complex traits and disease. We apply a different framework and focus on variants with both increased and decreased allele frequencies, taking into account their local ancestry. We report several OMIM traits enriched for genes with deleterious variants showing increased frequencies in Roma or in non-Roma (e.g., obesity is enriched in Roma, with an associated variant linked to South Asian ancestry; while non-insulin dependent diabetes is enriched in non-Roma Europeans). In addition, previously reported pathogenic variants also show differences among populations, where some variants segregating at low frequency in non-Roma are virtually absent in the Roma. Lastly, we describe frequency changes in drug-response variation, where many of the variants increased in Roma are clinically associated with metabolic and cardiovascular-related drugs. These results suggest that clinically relevant variation in Roma cannot only be characterized in terms of founder mutations. Instead, we observe frequency differences compared to non-Roma: some variants are absent, while other have drifted to higher frequencies. As a result of the admixture events, these clinically damaging variants can be traced back to both European and South Asian-related ancestries. This can be attributed to a different prevalence of some genetic disorders or to the fact that genetic susceptibility variants are mostly studied in populations of European descent, and can differ in individuals with different ancestries.
Collapse
Affiliation(s)
- Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Aaron Giménez
- Facultat de Sociologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
20
|
Wenzel C, Drozdzik M, Oswald S. Organic Cation Transporter 1 an Intestinal Uptake Transporter: Fact or Fiction? Front Pharmacol 2021; 12:648388. [PMID: 33935750 PMCID: PMC8080103 DOI: 10.3389/fphar.2021.648388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Intestinal transporter proteins are known to affect the pharmacokinetics and in turn the efficacy and safety of many orally administered drugs in a clinically relevant manner. This knowledge is especially well-established for intestinal ATP-binding cassette transporters such as P-gp and BCRP. In contrast to this, information about intestinal uptake carriers is much more limited although many hydrophilic or ionic drugs are not expected to undergo passive diffusion but probably require specific uptake transporters. A transporter which is controversially discussed with respect to its expression, localization and function in the human intestine is the organic cation transporter 1 (OCT1). This review article provides an up-to-date summary on the available data from expression analysis as well as functional studies in vitro, animal findings and clinical observations. The current evidence suggests that OCT1 is expressed in the human intestine in small amounts (on gene and protein levels), while its cellular localization in the apical or basolateral membrane of the enterocytes remains to be finally defined, but functional data point to a secretory function of the transporter at the basolateral membrane. Thus, OCT1 should not be considered as a classical uptake transporter in the intestine but rather as an intestinal elimination pathway for cationic compounds from the systemic circulation.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
21
|
Cano L, Soto-Ospina A, Araque P, Caro-Gomez MA, Parra-Marin MV, Bedoya G, Duque C. Diffusion Mechanism Modeling of Metformin in Human Organic Cationic Amino Acid Transporter one and Functional Impact of S189L, R206C, and G401S Mutation. Front Pharmacol 2021; 11:587590. [PMID: 33658930 PMCID: PMC7917475 DOI: 10.3389/fphar.2020.587590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Metformin used as a first-line drug to treat Type 2 Diabetes Mellitus is transported via organic cation channels to soft tissues. Mutations in the SLC22A1 gene, such as Gly401Ser, Ser189Leu, and Arg206Cys, may affect the drug's therapeutic effect on these patients. This study aims at proposing a potential structural model for drug interactions with the hOCT1 transporter, as well as the impact of these mutations at both topological and electronic structure levels on the channel's surface, from a chemical point of view with, in addition to exploring the frequency distribution. To chemically understand metformin diffusion, we used an open model from the protein model database, with ID PM0080367, viewed through UCSF Chimera. The effect of the mutations was assessed using computational hybrid Quantum Mechanics/Molecular Mechanics, based on the Austin Model 1 semi-empirical method using Spartan 18' software. The results demonstrate coupling energy for metformin with amino acids F, W, H and Y, because of the interaction between the metformin dication and the electron cloud of π orbitals. The mutations analyzed showed changes in the chemical polarity and topology of the structure. The proposed diffusion model is a possible approach to the interaction mechanism between metformin and its transporter, as well as the impacts of variants, suggesting structural changes in the action of the drug. Metformin efficacy considerably varies from one patient to another; this may be largely attributed to the presence of mutations on the SLC22A1 gene. This study aims at proposing a potential structural model for metformin-hOCT1 (SLC22A1) transporter interaction, as well as the identification of the effect of mutations G401S (rs34130495), S189L (rs34104736), and R206C (616C > T) of the SLC22A1 gene at the topological and electronic structure levels on the channel surfaces, from a chemical viewpoint. Our results demonstrated that the coupling energies for metformin with aromatic amino acids F, W, H and Y, because of the interaction between the metformin dication and the electron cloud of π orbitals. Changes in the chemical environment's polarity and the structure's topology were reported in the mutations assessed. The diffusion model proposed is a potential approach for the mechanism of interaction of metformin with its transporter and the effects of variants on the efficacy of the drug in the treatment of type 2 diabetes. The assessment of the frequency of these mutations in a sample of Colombian type 2 diabetes patients suggests that different SLC22A1 gene variants might be involved in reduced OCT1 activity in the Colombian population since none of these mutations were detected.
Collapse
Affiliation(s)
- Leydy Cano
- Universidad de Antioquia, Medellín, Colombia
| | | | - Pedronel Araque
- Universidad EIA, Envigado, Colombia
- Cecoltec, Medellin, Colombia
| | | | | | | | - Constanza Duque
- Universidad de Antioquia, Medellín, Colombia
- Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
22
|
Tan FCJH, Ang SB, Bee YM. Metformin use in patients with type 2 diabetes mellitus and chronic kidney disease: An evidence-based review. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2021. [PMID: 33733259 DOI: 10.47102/annals-acadmedsg.2020464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Practice guidelines advise caution on the use of metformin in patients with type 2 diabetes mellitus with chronic kidney disease (CKD). This review aims to examine the evidence for the benefits and risks of metformin use in patients with T2DM and CKD. METHODS The Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials and PubMed were searched; the references of selected papers were hand searched. Systematic reviews, randomised controlled trials, cohort studies, case series and case-control studies were included. The full text of selected articles was reviewed. The outcomes studied were all-cause mortality, cardiovascular complications, lactic acidosis and worsening of renal function. Recommendations were graded according to the Scottish Intercollegiate Guidelines Network system. RESULTS A total of 139 unique articles were identified, 14 of which met the inclusion criteria and were selected for full-text review. Four cohort studies reported an association between metformin use and improved all-cause mortality in CKD stage 4 and better. Two cohort studies reported improved cardiovascular outcomes with metformin use. Four cohort studies, 1 case series and 1 case-control study reported no significant association between metformin use and an increased risk of lactic acidosis in CKD. There is a moderate level of evidence to support reduced mortality, improved cardiovascular outcomes and a low risk of lactic acidosis with metformin use in patients with T2DM and with CKD stage 4 and above. CONCLUSION Existing recommendations to restrict metformin use in diabetes patients with CKD need to be reviewed in light of emerging evidence supporting its overall benefits in these patients.
Collapse
|
23
|
Li L, Guan Z, Li R, Zhao W, Hao G, Yan Y, Xu Y, Liao L, Wang H, Gao L, Wu K, Gao Y, Li Y. Population pharmacokinetics and dosing optimization of metformin in Chinese patients with type 2 diabetes mellitus. Medicine (Baltimore) 2020; 99:e23212. [PMID: 33181704 PMCID: PMC7668473 DOI: 10.1097/md.0000000000023212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Approximately 35% of patients fail to attain ideal initial blood glucose control under metformin monotherapy. The objective of this observational study is to simulate the optimal protocol of metformin according to the different renal function.The population pharmacokinetics of metformin was performed in 125 subjects with type 2 diabetes mellitus. Plasma concentrations of metformin were quantified by high-performance liquid chromatography. A population pharmacokinetic model of metformin was developed using NONMEN (version 7.2, Icon Development Solutions, USA). Monte Carlo simulation was used to simulate the concentration-time profiles for doses of metformin for 1000 times at different stages of renal function.The mean population pharmacokinetic parameters were apparent clearance 53.0 L/h, apparent volume of distribution 438 L, absorption rate constant 1.4 hour and lag-time 0.91 hour. Covariate analyses revealed that estimated glomerular filtration rate (eGFR) and bodyweight as individual factors influencing the apparent oral clearance: CL/F = 53.0 × ( bodyweight/75) × (eGFR/102.5)EXP(0.1797). The results of the simulation showed that patients should be prescribed metformin 2550 mg/d (t.i.d.) vs 3000 mg/d (b.i.d.) as the minimum doses for patients with augmented renal clearance.eGFR had a significant impact on metformin pharmacokinetics. Patients administered metformin twice a day require higher total daily doses than those with a regimen of 3 times a day at each stage of kidney function.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical Sciences, Shandong University
| | - Ziwan Guan
- School of Pharmaceutical Sciences, Shandong University
| | - Rui Li
- School of Pharmaceutical Sciences, Shandong University
| | - Wei Zhao
- School of Pharmaceutical Sciences, Shandong University
| | - Guoxiang Hao
- School of Pharmaceutical Sciences, Shandong University
| | - Yan Yan
- School of Pharmaceutical Sciences, Shandong University
| | - Yuedong Xu
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan
| | - Lin Liao
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan
| | - Huanjun Wang
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan
| | - Li Gao
- School of Pharmaceutical Sciences, Shandong University
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan
| | - Kunrong Wu
- School of Pharmaceutical Sciences, Shandong University
| | - Yuxia Gao
- Department of Pharmacy, Shengli Hospital of Shengli Oilfield, Dongying, Shandong, China
| | - Yan Li
- School of Pharmaceutical Sciences, Shandong University
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan
| |
Collapse
|
24
|
Kuhlmann I, Arnspang Pedersen S, Skov Esbech P, Bjerregaard Stage T, Hougaard Christensen MM, Brøsen K. Using a limited sampling strategy to investigate the interindividual pharmacokinetic variability in metformin: A large prospective trial. Br J Clin Pharmacol 2020; 87:1963-1969. [PMID: 33118168 DOI: 10.1111/bcp.14591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 01/26/2023] Open
Abstract
AIMS Recently a limited sampling strategy (LSS) for determination of metformin' pharmacokinetics was developed. The LSS utilizes the plasma concentration of metformin 3 and 10 hours after oral intake of a single dose to estimate the area under the concentration-time curve up to 24 hours (AUC0-24h ). The main purpose of this study was to support the feasibility of this strategy in a large prospective trial. METHODS Volunteers orally ingested two 500-mg tablets of metformin hydrochloride. A blood sample was drawn three and ten hours after the ingestion. Urine was collected for 0-10 and 10-24 hours and urine volumes recorded. The AUC0-24h was calculated using the equation AUC0-24h = 4.779 * C3 + 13.174 * C10 . Additionally, all participants were genotyped for the single-nucleotide polymorphism A270S in OCT2, g.-66 T > C in MATE1, R61C, G465R, G401S and the deletion M420del in OCT1. RESULTS In total, 212 healthy volunteers participated. The median (25th - 75th interquartile range) AUC0 - 24h , CLrenal , C3 and C10 , were 10 600 (8470-12 500) ng* hr* mL-1 , 29 (24-34) L* hour-1 , 1460 (1180-1770) and 260 (200-330) ng* mL-1 , respectively, which is in agreement with our previous results. GFRi was correlated with metformin AUC and CLrenal (P < .001). As expected, we found a great pharmacokinetic interindividual variability among the volunteers and no effect of the OCT1 genotype on the AUC0 - 24h . We were unable to reproduce our previous finding of a gene-gene interaction (OCT2 and MATE1) effect on CLrenal in this cohort. CONCLUSION This study further supports the use of the 2-point LSS algorithm in large pharmacokinetic trials.
Collapse
Affiliation(s)
- Ida Kuhlmann
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Peter Skov Esbech
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Tore Bjerregaard Stage
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mette Marie Hougaard Christensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kim Brøsen
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
25
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
26
|
Nasykhova YA, Tonyan ZN, Mikhailova AA, Danilova MM, Glotov AS. Pharmacogenetics of Type 2 Diabetes-Progress and Prospects. Int J Mol Sci 2020; 21:ijms21186842. [PMID: 32961860 PMCID: PMC7555942 DOI: 10.3390/ijms21186842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a chronic metabolic disease resulting from insulin resistance and progressively reduced insulin secretion, which leads to impaired glucose utilization, dyslipidemia and hyperinsulinemia and progressive pancreatic beta cell dysfunction. The incidence of type 2 diabetes mellitus is increasing worldwide and nowadays T2D already became a global epidemic. The well-known interindividual variability of T2D drug actions such as biguanides, sulfonylureas/meglitinides, DPP-4 inhibitors/GLP1R agonists and SGLT-2 inhibitors may be caused, among other things, by genetic factors. Pharmacogenetic findings may aid in identifying new drug targets and obtaining in-depth knowledge of the causes of disease and its physiological processes, thereby, providing an opportunity to elaborate an algorithm for tailor or precision treatment. The aim of this article is to summarize recent progress and discoveries for T2D pharmacogenetics and to discuss the factors which limit the furthering accumulation of genetic variability knowledge in patient response to therapy that will allow improvement the personalized treatment of T2D.
Collapse
Affiliation(s)
- Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
- Laboratory of Biobanking and Genomic Medicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Ziravard N. Tonyan
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
| | - Anastasiia A. Mikhailova
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
- Laboratory of Biobanking and Genomic Medicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Maria M. Danilova
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
- Laboratory of Biobanking and Genomic Medicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-9117832003
| |
Collapse
|
27
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Shuster DL, Shireman LM, Ma X, Shen DD, Flood Nichols SK, Ahmed MS, Clark S, Caritis S, Venkataramanan R, Haas DM, Quinney SK, Haneline LS, Tita AT, Manuck TA, Thummel KE, Brown LM, Ren Z, Brown Z, Easterling TR, Hebert MF. Pharmacodynamics of Glyburide, Metformin, and Glyburide/Metformin Combination Therapy in the Treatment of Gestational Diabetes Mellitus. Clin Pharmacol Ther 2020; 107:1362-1372. [PMID: 31869430 DOI: 10.1002/cpt.1749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
In gestational diabetes mellitus (GDM), women are unable to compensate for the increased insulin resistance during pregnancy. Data are limited regarding the pharmacodynamic effects of metformin and glyburide during pregnancy. This study characterized insulin sensitivity (SI), β-cell responsivity, and disposition index (DI) in women with GDM utilizing a mixed-meal tolerance test (MMTT) before and during treatment with glyburide monotherapy (GLY, n = 38), metformin monotherapy (MET, n = 34), or GLY and MET combination therapy (COMBO; n = 36). GLY significantly decreased dynamic β-cell responsivity (31%). MET and COMBO significantly increased SI (121% and 83%, respectively). Whereas GLY, MET, and COMBO improved DI, metformin (MET and COMBO) demonstrated a larger increase in DI (P = 0.05) and a larger decrease in MMTT peak glucose concentrations (P = 0.03) than subjects taking only GLY. Maximizing SI with MET followed by increasing β-cell responsivity with GLY or supplementing with insulin might be a more optimal strategy for GDM management than monotherapy.
Collapse
Affiliation(s)
- Diana L Shuster
- Clinical Pharmacology - Scientific Affairs, PRA Health Sciences, Lenexa, Kansas, USA
| | - Laura M Shireman
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Xiaosu Ma
- Global PK/PD & Pharmacometrics, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Danny D Shen
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Shannon K Flood Nichols
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Mahmoud S Ahmed
- Department of Obstetrics & Gynecology, University of Texas Medical Branch in Galveston, Galveston, Texas, USA
| | - Shannon Clark
- Department of Obstetrics & Gynecology, University of Texas Medical Branch in Galveston, Galveston, Texas, USA
| | - Steve Caritis
- Departments of Obstetrics & Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raman Venkataramanan
- Departments of Obstetrics & Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacy, Pharmaceutical Sciences and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David M Haas
- Departments of Obstetrics & Gynecology, Indiana University, Indianapolis, Indiana, USA
| | - Sara K Quinney
- Departments of Obstetrics & Gynecology, Indiana University, Indianapolis, Indiana, USA
| | - Laura S Haneline
- Department of Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | - Alan T Tita
- Department of Obstetrics & Gynecology, Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tracy A Manuck
- Department of Obstetrics & Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kenneth E Thummel
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Linda Morris Brown
- RTI International, Environmental, and Health Science Unit, Biostatistics and Epidemiology Division, Rockville, Maryland, USA
| | - Zhaoxia Ren
- Obstetric and Pediatric Pharmacology and Therapeutic Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Zane Brown
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Thomas R Easterling
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA.,Department of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mary F Hebert
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA.,Department of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet 2019; 138:1359-1377. [PMID: 31679053 PMCID: PMC6874521 DOI: 10.1007/s00439-019-02081-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
Abstract
The human solute carrier (SLC) superfamily of transporters is comprised of over 400 membrane-bound proteins, and plays essential roles in a multitude of physiological and pharmacological processes. In addition, perturbation of SLC transporter function underlies numerous human diseases, which renders SLC transporters attractive drug targets. Common genetic polymorphisms in SLC genes have been associated with inter-individual differences in drug efficacy and toxicity. However, despite their tremendous clinical relevance, epidemiological data of these variants are mostly derived from heterogeneous cohorts of small sample size and the genetic SLC landscape beyond these common variants has not been comprehensively assessed. In this study, we analyzed Next-Generation Sequencing data from 141,456 individuals from seven major human populations to evaluate genetic variability, its functional consequences, and ethnogeographic patterns across the entire SLC superfamily of transporters. Importantly, of the 204,287 exonic single-nucleotide variants (SNVs) which we identified, 99.8% were present in less than 1% of analyzed alleles. Comprehensive computational analyses using 13 partially orthogonal algorithms that predict the functional impact of genetic variations based on sequence information, evolutionary conservation, structural considerations, and functional genomics data revealed that each individual genome harbors 29.7 variants with putative functional effects, of which rare variants account for 18%. Inter-ethnic variability was found to be extensive, and 83% of deleterious SLC variants were only identified in a single population. Interestingly, population-specific carrier frequencies of loss-of-function variants in SLC genes associated with recessive Mendelian disease recapitulated the ethnogeographic variation of the corresponding disorders, including cystinuria in Jewish individuals, type II citrullinemia in East Asians, and lysinuric protein intolerance in Finns, thus providing a powerful resource for clinical geneticists to inform about population-specific prevalence and allelic composition of Mendelian SLC diseases. In summary, we present the most comprehensive data set of SLC variability published to date, which can provide insights into inter-individual differences in SLC transporter function and guide the optimization of population-specific genotyping strategies in the bourgeoning fields of personalized medicine and precision public health.
Collapse
|
30
|
Miyake T, Mizuno T, Takehara I, Mochizuki T, Kimura M, Matsuki S, Irie S, Watanabe N, Kato Y, Ieiri I, Maeda K, Ando O, Kusuhara H. Elucidation of N 1-methyladenosine as a Potential Surrogate Biomarker for Drug Interaction Studies Involving Renal Organic Cation Transporters. Drug Metab Dispos 2019; 47:1270-1280. [PMID: 31511257 DOI: 10.1124/dmd.119.087262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/07/2019] [Indexed: 11/22/2022] Open
Abstract
Endogenous substrates are emerging biomarkers for drug transporters, which serve as surrogate probes in drug-drug interaction (DDI) studies. In this study, the results of metabolome analysis using wild-type and Oct1/2 double knockout mice suggested that N 1-methyladenosine (m1A) was a novel organic cation transporter (OCT) 2 substrate. An in vitro transport study revealed that m1A is a substrate of mouse Oct1, Oct2, Mate1, human OCT1, OCT2, and multidrug and toxin exclusion protein (MATE) 2-K, but not human MATE1. Urinary excretion accounted for 77% of the systemic elimination of m1A in mice. The renal clearance (46.9 ± 4.9 ml/min per kilogram) of exogenously given m1A was decreased to near the glomerular filtration rates by Oct1/2 double knockout or Mate1 inhibition by pyrimethamine (16.6 ± 2.6 and 24.3 ± 0.6 ml/min per kilogram, respectively), accompanied by significantly higher plasma concentrations. In vivo inhibition of OCT2/MATE2-K by a single dose of 7-[(3R)-3-(1-aminocyclopropyl)pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-methoxy-4-oxoquinoline-3-carboxylic acid in cynomolgus monkeys resulted in the elevation of the area under the curve of m1A (1.72-fold) as well as metformin (2.18-fold). The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. The renal clearance of m1A in younger (21-45 year old) and older (65-79 year old) volunteers (244 ± 58 and 169 ± 22 ml/min per kilogram, respectively) was about 2-fold higher than the creatinine clearance. The renal clearances of m1A and creatinine were 31% and 17% smaller in older than in younger volunteers. Thus, m1A could be a surrogate probe for the evaluation of DDIs involving OCT2/MATE2-K. SIGNIFICANCE STATEMENT: Endogenous substrates can serve as surrogate probes for clinical drug-drug interaction studies involving drug transporters or enzymes. In this study, m1A was found to be a novel substrate of renal cationic drug transporters OCT2 and MATE2-K. N 1-methyladenosine was revealed to have some advantages compared to other OCT2/MATE substrates (creatinine and N 1-methylnicotinamide). The genetic or chemical impairment of OCT2 or MATE2-K caused a significant increase in the plasma m1A concentration in mice and cynomolgus monkeys due to the high contribution of tubular secretion to the net elimination of m1A. The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. Thus, m1A could be a better biomarker of variations in OCT2/MATE2-K activity caused by inhibitory drugs.
Collapse
Affiliation(s)
- Takeshi Miyake
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Issey Takehara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Miyuki Kimura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Shunji Matsuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Shin Irie
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Nobuaki Watanabe
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Yukio Kato
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Ichiro Ieiri
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Osamu Ando
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| |
Collapse
|
31
|
Smit C, Wasmann RE, Wiezer MJ, van Dongen HPA, Mouton JW, Brüggemann RJM, Knibbe CAJ. Tobramycin Clearance Is Best Described by Renal Function Estimates in Obese and Non-obese Individuals: Results of a Prospective Rich Sampling Pharmacokinetic Study. Pharm Res 2019; 36:112. [PMID: 31147853 PMCID: PMC6542779 DOI: 10.1007/s11095-019-2651-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023]
Abstract
Purpose Tobramycin is an aminoglycoside antibiotic of which the 24 h exposure correlates with efficacy. Recently, we found that clearance of the aminoglycoside gentamicin correlates with total body weight (TBW). In this study, we investigate the full pharmacokinetic profile of tobramycin in obese and non-obese individuals with normal renal function. Methods Morbidly obese individuals (n = 20) undergoing bariatric surgery and non-obese healthy volunteers (n = 8), with TBW ranging 57–194 kg, received an IV dose of tobramycin with plasma concentrations measured over 24 h (n = 10 per individual). Statistical analysis, modelling and simulations were performed using NONMEM. Results In a two-compartment model, TBW was the best predictor for central volume of distribution (p < 0.001). For clearance, MDRD (de-indexed for body surface area) was identified as best covariate (p < 0.001), and was superior over TBW ((p < 0.05). Other renal function estimates (24 h urine GFR and de-indexed CKD-EPI) led to similar results as MDRD (all p < 0.001)). Conclusions In obese and non-obese individuals with normal renal function, renal function estimates such as MDRD were identified as best predictors for tobramycin clearance, which may imply that other processes are involved in clearance of tobramycin versus gentamicin. To ensure similar exposure across body weights, we propose a MDRD-based dosing nomogram for obese patients. Electronic supplementary material The online version of this article (10.1007/s11095-019-2651-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cornelis Smit
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435, CM, Nieuwegein, The Netherlands.,Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Roeland E Wasmann
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marinus J Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Catherijne A J Knibbe
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435, CM, Nieuwegein, The Netherlands. .,Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
32
|
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35:e3109. [PMID: 30515958 PMCID: PMC6590177 DOI: 10.1002/dmrr.3109] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient's characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Francesco Andreozzi
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Giorgio Sesti
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| |
Collapse
|
33
|
Sajib AA, Islam T, Paul N, Yeasmin S. Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis. J Genet Eng Biotechnol 2018; 16:769-775. [PMID: 30733798 PMCID: PMC6353654 DOI: 10.1016/j.jgeb.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 02/08/2023]
Abstract
Metformin is one of the first-line and most widely prescribed drugs to treat type 2 diabetes (T2D). Its clearance from circulation is mostly facilitated by SLC22A2 (OCT2) in the renal cells. SLC22A2 is a polyspecific organic cation transporter and mediate transport of structurally unrelated endogenous and exogenous compounds including many drugs. rs316019 (p.270A > S) is the most common variant of SLC22A2 with a frequency as high as 15% or more in many populations. The 270S form of SLC22A2 clears metformin from circulation at much reduced level compared to the 270A form. If accumulated, metformin increases plasma lactate level in a concentration-dependent manner which can lead to a condition known as metformin-associated lactic acidosis (MALA). MALA is a potentially life-threatening complication with a mortality rate of 30-50%. Pre-existing clinical conditions, such as renal impairment, sepsis, anoxia, etc may make individuals more prone to MALA. In this study, we used computational approaches to investigate the effect of 270A > S change in SLC22A2 on interaction with metformin and other drugs. Based on the structural models, all substrates bind to the same pocket of SLC22A2. The substrates fit better to the binding site of 270A form of SLC22A2. The binding site has a few core interacting residues, among which SER358 appears to be the most important. It is an in silico prediction that the T2D patients, who are under metformin regimen, should be cautious in taking ranitidine (an over-the-counter sold drug) on a regular basis as it may lead to metformin associated lactate accumulation in blood.
Collapse
Affiliation(s)
- Abu Ashfaqur Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | | |
Collapse
|
34
|
Chan P, Shao L, Tomlinson B, Zhang Y, Liu ZM. Metformin transporter pharmacogenomics: insights into drug disposition-where are we now? Expert Opin Drug Metab Toxicol 2018; 14:1149-1159. [PMID: 30375241 DOI: 10.1080/17425255.2018.1541981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Metformin is recommended as first-line treatment for type 2 diabetes (T2D) by all major diabetes guidelines. With appropriate usage it is safe and effective overall, but its efficacy and tolerability show considerable variation between individuals. It is a substrate for several drug transporters and polymorphisms in these transporter genes have shown effects on metformin pharmacokinetics and pharmacodynamics. Areas covered: This article provides a review of the current status of the influence of transporter pharmacogenomics on metformin efficacy and tolerability. The transporter variants identified to have an important influence on the absorption, distribution, and elimination of metformin, particularly those in organic cation transporter 1 (OCT1, gene SLC22A1), are reviewed. Expert opinion: Candidate gene studies have shown that genetic variations in SLC22A1 and other drug transporters influence the pharmacokinetics, glycemic responses, and gastrointestinal intolerance to metformin, although results are somewhat discordant. Conversely, genome-wide association studies of metformin response have identified signals in the pharmacodynamic pathways rather than the transporters involved in metformin disposition. Currently, pharmacogenomic testing to predict metformin response and tolerability may not have a clinical role, but with additional data from larger studies and availability of safe and effective alternative antidiabetic agents, this is likely to change.
Collapse
Affiliation(s)
- Paul Chan
- a Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Li Shao
- b The VIP Department, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China
| | - Brian Tomlinson
- c Research Center for Translational Medicine , Shanghai East Hospital Affiliated to Tongji University School of Medicine , Shanghai , China.,d Department of Medicine & Therapeutics , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Yuzhen Zhang
- c Research Center for Translational Medicine , Shanghai East Hospital Affiliated to Tongji University School of Medicine , Shanghai , China
| | - Zhong-Min Liu
- e Department of Cardiac Surgery, Shanghai East Hospital , Tongji University , Shanghai , China
| |
Collapse
|
35
|
Stage TB, Wellhagen G, Christensen MMH, Guiastrennec B, Brøsen K, Kjellsson MC. Using a semi-mechanistic model to identify the main sources of variability of metformin pharmacokinetics. Basic Clin Pharmacol Toxicol 2018; 124:105-114. [DOI: 10.1111/bcpt.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Tore Bjerregaard Stage
- Clinical Pharmacology and Pharmacy; Department of Public Health; University of Southern Denmark; Odense Denmark
- Pharmacometrics Group; Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | - Gustaf Wellhagen
- Pharmacometrics Group; Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | | | - Benjamin Guiastrennec
- Pharmacometrics Group; Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | - Kim Brøsen
- Clinical Pharmacology and Pharmacy; Department of Public Health; University of Southern Denmark; Odense Denmark
| | - Maria C. Kjellsson
- Pharmacometrics Group; Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| |
Collapse
|
36
|
Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic Effects of Metformin in the Failing Heart. Int J Mol Sci 2018; 19:ijms19102869. [PMID: 30248910 PMCID: PMC6213955 DOI: 10.3390/ijms19102869] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence shows that metformin is an insulin-sensitizing antidiabetic drug widely used in the treatment of type 2 diabetes mellitus (T2DM), which can exert favorable effects on cardiovascular risk and may be safely used in patients with heart failure (HF), and even able to reduce the incidence of HF and to reduce HF mortality. In failing hearts, metformin improves myocardial energy metabolic status through the activation of AMP (adenosine monophosphate)-activated protein kinase (AMPK) and the regulation of lipid and glucose metabolism. By increasing nitric oxide (NO) bioavailability, limiting interstitial fibrosis, reducing the deposition of advanced glycation end-products (AGEs), and inhibiting myocardial cell apoptosis metformin reduces cardiac remodeling and hypertrophy, and thereby preserves left ventricular systolic and diastolic functions. While a lot of preclinical and clinical studies showed the cardiovascular safety of metformin therapy in diabetic patients and HF, to confirm observed benefits, the specific large-scale trials configured for HF development in diabetic patients as a primary endpoints are necessary.
Collapse
Affiliation(s)
- Aleksandra Dziubak
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Grażyna Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Andrzej Wojtak
- Department of Vascular Surgery, Medical University of Lubin, 20-090 Lublin, Poland.
| | - Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
37
|
Hakooz N, Jarrar YB, Zihlif M, Imraish A, Hamed S, Arafat T. Effects of the genetic variants of organic cation transporters 1 and 3 on the pharmacokinetics of metformin in Jordanians. Drug Metab Pers Ther 2018; 32:157-162. [PMID: 28862982 DOI: 10.1515/dmpt-2017-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human response to the antidiabetic metformin is influenced by some factors, such as genetic variants in the SLC22A genes. This study aimed to determine the frequency of main SLC22A1 and SLC22A3 genetic variants and their influence on metformin pharmacokinetics among healthy unrelated Arab Jordanians. PATIENTS AND METHODS The SLC22A1 and SLC22A3 genes were genotyped by DNA sequencing of exons 1, 3, 7, and 9 in the SLC22A1 gene and exons 6, 7, and 9 in the SLC22A3 gene. Then, a clinical pharmacokinetic study was conducted on 26 healthy volunteers. The pharmacokinetic parameters were calculated using non-compartmental model analysis. The study was an open-label, randomized study with single 1000 mg metformin administration. RESULTS Results showed that volunteers with SLC22A3 rs8187722 variant had higher (χ2, p<0.05) metformin Cmax and AUC values than the wild SLC22A3 volunteers, whereas T½ and Kel were not affected. In addition, volunteers with the heterozygote SLC22A3 rs2292334 variant had significantly higher (χ2, p<0.05) metformin Cmax and AUC and lower Kel values than the wild-type SLC22A3 genotype. CONCLUSIONS The SLC22A3 rs8187722 and rs2292334 genetic variants affected metformin pharmacokinetics among a clinical sample of Jordanians. The findings may increase our understanding of the inter-individual and inter-ethnic variations in metformin response.
Collapse
|
38
|
Benzi JRDL, Yamamoto PA, Stevens JH, Baviera AM, de Moraes NV. The role of organic cation transporter 2 inhibitor cimetidine, experimental diabetes mellitus and metformin on gabapentin pharmacokinetics in rats. Life Sci 2018; 200:63-68. [DOI: 10.1016/j.lfs.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
|
39
|
A reappraisal on metformin. Regul Toxicol Pharmacol 2018; 92:324-332. [DOI: 10.1016/j.yrtph.2017.12.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
|
40
|
Chung H, Oh J, Yoon SH, Yu KS, Cho JY, Chung JY. A non-linear pharmacokinetic-pharmacodynamic relationship of metformin in healthy volunteers: An open-label, parallel group, randomized clinical study. PLoS One 2018; 13:e0191258. [PMID: 29342199 PMCID: PMC5771593 DOI: 10.1371/journal.pone.0191258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/26/2017] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this study was to explore the pharmacokinetic-pharmacodynamic (PK-PD) relationship of metformin on glucose levels after the administration of 250 mg and 1000 mg of metformin in healthy volunteers. Methods A total of 20 healthy male volunteers were randomized to receive two doses of either a low dose (375 mg followed by 250 mg) or a high dose (1000 mg followed by 1000 mg) of metformin at 12-h intervals. The pharmacodynamics of metformin was assessed using oral glucose tolerance tests before and after metformin administration. The PK parameters after the second dose were evaluated through noncompartmental analyses. Four single nucleotide polymorphisms in MATE1, MATE2-K, and OCT2 were genotyped, and their effects on PK characteristics were additionally evaluated. Results The plasma exposure of metformin increased as the metformin dose increased. The mean values for the area under the concentration-time curve from dosing to 12 hours post-dose (AUC0-12h) were 3160.4 and 8808.2 h·μg/L for the low- and high-dose groups, respectively. Non-linear relationships were found between the glucose-lowering effect and PK parameters with a significant inverse trend at high metformin exposure. The PK parameters were comparable among subjects with the genetic polymorphisms. Conclusions This study showed a non-linear PK-PD relationship on plasma glucose levels after the administration of metformin. The inverse relationship between systemic exposure and the glucose-lowering effect at a high exposure indicates a possible role for the intestines as an action site for metformin. Trial registration ClinicalTrials.gov NCT02712619
Collapse
Affiliation(s)
- Hyewon Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul, Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, Korea
- * E-mail:
| |
Collapse
|
41
|
Adegbola AJ, Awobusuyi OJ, Adeagbo BA, Oladokun BS, Owolabi AR, Soyinka JO. Bioequivalence Study of Generic Metformin Hydrochloride in Healthy Nigerian Volunteers. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:75-81. [DOI: 10.14218/jerp.2017.00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
43
|
Dujic T, Zhou K, Yee SW, van Leeuwen N, de Keyser CE, Javorský M, Goswami S, Zaharenko L, Hougaard Christensen MM, Out M, Tavendale R, Kubo M, Hedderson MM, van der Heijden AA, Klimčáková L, Pirags V, Kooy A, Brøsen K, Klovins J, Semiz S, Tkáč I, Stricker BH, Palmer C, 't Hart LM, Giacomini KM, Pearson ER. Variants in Pharmacokinetic Transporters and Glycemic Response to Metformin: A Metgen Meta-Analysis. Clin Pharmacol Ther 2017; 101:763-772. [PMID: 27859023 PMCID: PMC5425333 DOI: 10.1002/cpt.567] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/26/2016] [Accepted: 11/06/2016] [Indexed: 12/25/2022]
Abstract
Therapeutic response to metformin, a first-line drug for type 2 diabetes (T2D), is highly variable, in part likely due to genetic factors. To date, metformin pharmacogenetic studies have mainly focused on the impact of variants in metformin transporter genes, with inconsistent results. To clarify the significance of these variants in glycemic response to metformin in T2D, we performed a large-scale meta-analysis across the cohorts of the Metformin Genetics Consortium (MetGen). Nine candidate polymorphisms in five transporter genes (organic cation transporter [OCT]1, OCT2, multidrug and toxin extrusion transporter [MATE]1, MATE2-K, and OCTN1) were analyzed in up to 7,968 individuals. None of the variants showed a significant effect on metformin response in the primary analysis, or in the exploratory secondary analyses, when patients were stratified according to possible confounding genotypes or prescribed a daily dose of metformin. Our results suggest that candidate transporter gene variants have little contribution to variability in glycemic response to metformin in T2D.
Collapse
Affiliation(s)
- T Dujic
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.,Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - K Zhou
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - S W Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - N van Leeuwen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - C E de Keyser
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Inspectorate of Healthcare, Utrecht, The Netherlands
| | - M Javorský
- Department of Internal Medicine 4, Faculty of Medicine, Šafárik University, Košice, Slovakia.,Pasteur University Hospital, Košice, Slovakia
| | - S Goswami
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - L Zaharenko
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - M Out
- Treant Zorggroep, Location Bethesda, Hoogeveen, The Netherlands.,Bethesda Diabetes Research Centre, Hoogeveen, The Netherlands
| | - R Tavendale
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - M Kubo
- Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - M M Hedderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - A A van der Heijden
- Department of General Practice, EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - L Klimčáková
- Department of Medical Biology, Faculty of Medicine, Šafárik University, Košice, Slovakia
| | - V Pirags
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - A Kooy
- Treant Zorggroep, Location Bethesda, Hoogeveen, The Netherlands.,Bethesda Diabetes Research Centre, Hoogeveen, The Netherlands
| | - K Brøsen
- Department of Public Health, Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - J Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - S Semiz
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.,International University of Sarajevo, Faculty of Engineering and Natural Sciences, Sarajevo, Bosnia and Herzegovina
| | - I Tkáč
- Department of Internal Medicine 4, Faculty of Medicine, Šafárik University, Košice, Slovakia.,Pasteur University Hospital, Košice, Slovakia
| | - B H Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Inspectorate of Healthcare, Utrecht, The Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cna Palmer
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - L M 't Hart
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Epidemiology and Biostatistics, EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - K M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - E R Pearson
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
44
|
Chowdhury S, Yung E, Pintilie M, Muaddi H, Chaib S, Yeung M, Fusciello M, Sykes J, Pitcher B, Hagenkort A, McKee T, Vellanki R, Chen E, Bristow RG, Wouters BG, Koritzinsky M. MATE2 Expression Is Associated with Cancer Cell Response to Metformin. PLoS One 2016; 11:e0165214. [PMID: 27959931 PMCID: PMC5154501 DOI: 10.1371/journal.pone.0165214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/16/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is great interest in repurposing the commonly prescribed anti-diabetic drug metformin for cancer therapy. Intracellular uptake and retention of metformin is affected by the expression of organic cation transporters (OCT) 1-3 and by multidrug and toxic compound extrusion (MATE) 1-2. Inside cells, metformin inhibits mitochondrial function, which leads to reduced oxygen consumption and inhibition of proliferation. Reduced oxygen consumption can lead to improved tumor oxygenation and radiation response. PURPOSE Here we sought to determine if there is an association between the effects of metformin on inhibiting oxygen consumption, proliferation and expression of OCTs and MATEs in a panel of 19 cancer cell lines. RESULTS There was relatively large variability in the anti-proliferative response of different cell lines to metformin, with a subset of cell lines being very resistant. In contrast, all cell lines demonstrated sensitivity to the inhibition of oxygen consumption by metformin, with relatively small variation. The expression of OCT1 correlated with expression of both OCT2 and OCT3. OCT1 and OCT2 were relatively uniformly expressed, whereas expression of OCT3, MATE1 and MATE2 showed substantial variation across lines. There were statistically significant associations between resistance to inhibition of proliferation and MATE2 expression, as well as between sensitivity to inhibition of oxygen consumption and OCT3 expression. One cell line (LNCaP) with high OCT3 and low MATE2 expression in concert, had substantially higher intracellular metformin concentration than other cell lines, and was exquisitely sensitive to both anti-proliferative and anti-respiratory effects. In all other cell lines, the concentration of metformin required to inhibit oxygen consumption acutely in vitro was substantially higher than that achieved in the plasma of diabetic patients. However, administering anti-diabetic doses of metformin to tumor-bearing mice resulted in intratumoral accumulation of metformin and reduced hypoxic tumor fractions. CONCLUSIONS All cancer cells are susceptible to inhibition of oxygen consumption by metformin, which results in reduced hypoxic tumor fractions beneficial for the response to radiotherapy. High MATE2 expression may result in resistance to the anti-proliferative effect of metformin and should be considered as a negative predictive biomarker in clinical trials.
Collapse
Affiliation(s)
- Sanjana Chowdhury
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Eric Yung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Melania Pintilie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hala Muaddi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Selim Chaib
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
| | - ManTek Yeung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Manlio Fusciello
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
| | - Jenna Sykes
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Bethany Pitcher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anna Hagenkort
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
| | - Trevor McKee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ravi Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Eric Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Robert G. Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
45
|
Santoro AB, Stage TB, Struchiner CJ, Christensen MMH, Brosen K, Suarez-Kurtz G. Limited sampling strategy for determining metformin area under the plasma concentration-time curve. Br J Clin Pharmacol 2016; 82:1002-10. [PMID: 27324407 DOI: 10.1111/bcp.13049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Abstract
AIM The aim was to develop and validate limited sampling strategy (LSS) models to predict the area under the plasma concentration-time curve (AUC) for metformin. METHODS Metformin plasma concentrations (n = 627) at 0-24 h after a single 500 mg dose were used for LSS development, based on all subsets linear regression analysis. The LSS-derived AUC(0,24 h) was compared with the parameter 'best estimate' obtained by non-compartmental analysis using all plasma concentration data points. Correlation between the LSS-derived and the best estimated AUC(0,24 h) (r(2) ), bias and precision of the LSS estimates were quantified. The LSS models were validated in independent cohorts. RESULTS A two-point (3 h and 10 h) regression equation with no intercept estimated accurately the individual AUC(0,24 h) in the development cohort: r(2) = 0.927, bias (mean, 95% CI) -0.5, -2.7-1.8% and precision 6.3, 4.9-7.7%. The accuracy of the two point LSS model was verified in study cohorts of individuals receiving single 500 or 1000 mg (r(2) = -0.933-0.934) or seven 1000 mg daily doses (r(2) = 0.918), as well as using data from 16 published studies covering a wide range of metformin doses, demographics, clinical and experimental conditions (r(2) = 0.976). The LSS model reproduced previously reported results for effects of polymorphisms in OCT2 and MATE1 genes on AUC(0,24 h) and renal clearance of metformin. CONCLUSIONS The two point LSS algorithm may be used to assess the systemic exposure to metformin under diverse conditions, with reduced costs of sampling and analysis, and saving time for both subjects and investigators.
Collapse
Affiliation(s)
- Ana Beatriz Santoro
- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro.,Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Brazil
| | - Tore Bjerregaard Stage
- Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | | | | - Kim Brosen
- Clinical Pharmacology, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
46
|
Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y. L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol 2016; 68:1160-9. [DOI: 10.1111/jphp.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 12/26/2022]
Abstract
Abstract
Objectives
Carnitine/organic cation transporter 1 (OCTN1) is involved in gastrointestinal absorption and mitochondrial toxicity of biguanides in rodents, but its pharmacokinetic roles in humans are largely unknown. The purpose of this study was to clarify the transport activities of two major OCTN1 variants, L503F and I306T, for gabapentin and three biguanide drugs, metformin, buformin and phenformin.
Methods
HEK293 cells were transfected with OCTN1 gene, its variants, or vector alone, and the uptake and cytotoxicity of each drug were examined.
Key findings
Buformin was identified to be an OCTN1 substrate. Uptake of biguanides, especially metformin, mediated by OCTN1 variant L503F, which is commonly found in Caucasians, was much higher than that by the wild-type transporter (WT-OCTN1). Cytotoxicity of metformin was also greater in HEK293 cells expressing the L503F variant, compared with WT-OCTN1. Uptake of gabapentin mediated by OCTN1 variant I306T, which is commonly found in both Asians and Caucasians, was lower than that by WT-OCTN1, although uptake of the typical OCTN1 substrate ergothioneine was similar.
Conclusion
Organic cation transporter 1 variant L503F transports biguanides, especially metformin, more efficiently than WT-OCTN1, whereas the I306T variant transports gabapentin less efficiently than WT-OCTN1, suggesting that the common OCTN1 variants may alter pharmacokinetics of these drugs.
Collapse
Affiliation(s)
- Azusa Futatsugi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiori Kawabata
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
47
|
Wagner DJ, Hu T, Wang J. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol Res 2016; 111:237-246. [PMID: 27317943 DOI: 10.1016/j.phrs.2016.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/02/2016] [Indexed: 01/11/2023]
Abstract
Most drugs are intended to act on molecular targets residing within a specific tissue or cell type. Therefore, the drug concentration within the target tissue or cells is most relevant to its pharmacological effect. Increasing evidences suggest that drug transporters not only play a significant role in governing systemic drug levels, but are also an important gate keeper for intra-tissue and intracellular drug concentrations. This review focuses on polyspecific organic cation transporters, which include the organic cation transporters 1-3 (OCT1-3), the multidrug and toxin extrusion proteins 1-2 (MATE1-2) and the plasma membrane monoamine transporter (PMAT). Following an overview of the tissue distribution, transport mechanisms, and functional characteristics of these transporters, we highlight the studies demonstrating the ability of locally expressed OCTs to impact intracellular drug concentrations and directly influence their pharmacological and toxicological activities. Specifically, OCT1-mediated metformin access to its site of action in the liver is impacted by genetic polymorphisms and chemical inhibition of OCT1. The impact of renal OCT2 and MATE1/2-K in cisplatin intrarenal accumulation and nephrotoxicity is reviewed. New data demonstrating the role of OCT3 in salivary drug accumulation and secretion is discussed. Whenever possible, the pharmacodynamic response and toxicological effects is presented and discussed in light of intra-tissue and intracellular drug exposure. Current challenges, knowledge gaps, and future research directions are discussed. Understanding the impact of transporters on intra-tissue and intracellular drug concentrations has important implications for rational-based optimization of drug efficacy and safety.
Collapse
Affiliation(s)
- David J Wagner
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| | - Tao Hu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
48
|
Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 2016; 90:1555-84. [PMID: 27165417 DOI: 10.1007/s00204-016-1728-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Multidrug and toxin extrusion (MATE; SLC47A) proteins are membrane transporters mediating the excretion of organic cations and zwitterions into bile and urine and thereby contributing to the hepatic and renal elimination of many xenobiotics. Transported substrates include creatinine as endogenous substrate, the vitamin thiamine and a number of drug agents with in part chemically different structures such as the antidiabetic metformin, the antiviral agents acyclovir and ganciclovir as well as the antibiotics cephalexin and cephradine. This review summarizes current knowledge on the structural and molecular features of human MATE transporters including data on expression and localization in different tissues, important aspects on regulation and their functional role in drug transport. The role of genetic variation of MATE proteins for drug pharmacokinetics and drug response will be discussed with consequences for personalized medicine.
Collapse
|
49
|
Liu G, Wen J, Guo D, Wang Z, Hu X, Tang J, Liu Z, Zhou H, Zhang W. The effects of rabeprazole on metformin pharmacokinetics and pharmacodynamics in Chinese healthy volunteers. J Pharmacol Sci 2016; 132:244-248. [PMID: 27245553 DOI: 10.1016/j.jphs.2016.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/03/2016] [Accepted: 04/12/2016] [Indexed: 12/30/2022] Open
Abstract
The aim was to investigate the role of rabeprazole on the pharmacokinetics (PK) and pharmacodynamics (PD) of metformin. The in vitro inhibition assays on metformin transport were carried out and showed that the half maximal inhibitory concentration (IC50) of rabeprazole on OCT2-mediated metformin transport was 26.0 μM, whereas the IC50 on MATE1-mediated metformin transport inhibition was 4.6 μM. Fifteen healthy Chinese male volunteers were enrolled and given two different doses of metformin plus the co-administration of placebo or rabeprazole. Plasma concentrations of metformin were measured up to 12 h after the second dose. The glucose-lowering effects and the variation of insulin concentrations were evaluated during the oral glucose tolerance test (OGTT). The AUC0-12 of metformin plus rabeprazole were 28,276 ± 5187 ng/ml·h, which was significantly higher than AUC0-12 of metformin plus placebo (24,691 ± 3129 ng/ml·h). Thus, rabeprazole can modestly influence the PK of metformin, suggesting the precaution of using the two drugs together. In OGTTs, rabeprazole decreased the values of AUCinsulin and the maximum insulin concentration. Although rabeprazole showed inhibition effect on OCT2-mediated metformin transport, the glucose-lowering effect of metformin remained the same regardless of its PK changes. Further studies are needed to warrant the effect of rabeprazole on metformin.
Collapse
Affiliation(s)
- Guojing Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Dong Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhenmin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaolei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| |
Collapse
|
50
|
Xiao D, Guo Y, Li X, Yin JY, Zheng W, Qiu XW, Xiao L, Liu RR, Wang SY, Gong WJ, Zhou HH, Liu ZQ. The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 Polymorphisms on Metformin Therapeutic Efficacy in Chinese Type 2 Diabetes Patients. Int J Endocrinol 2016; 2016:4350712. [PMID: 26977146 PMCID: PMC4764723 DOI: 10.1155/2016/4350712] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Background. We aimed to investigate the distributive characteristics of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms and their influence on metformin efficacy in Chinese T2DM patients. Methods. The distributions of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms were determined in 267 T2DM patients and 182 healthy subjects. Subsequently, 53 newly diagnosed patients who received metformin monotherapy were recruited to evaluate metformin efficacy. Results. No significant difference was found between T2DM patients and healthy subjects in SLC22A1 rs594709 and SLC47A1 rs2289669 allele frequencies and genotype frequencies. After metformin treatment, SLC22A1 rs594709 GG genotype patients showed a higher increase in FINS (p = 0.015) and decrease in HOMA-IS (p = 0.001) and QUICKI (p = 0.002) than A allele carriers. SLC47A1 rs2289669 GG genotype patients had a higher decrease in TChol (p = 0.030) and LDL-C (p = 0.049) than A allele carriers. Among SLC22A1 rs594709 AA genotype, patients with SLC47A1 rs2289669 AA genotype showed a higher decrease in FBG (p = 0.015), PINS (p = 0.041), and HOMA-IR (p = 0.014) than G allele carriers. However, among SLC22A1 rs594709 G allele carriers, SLC47A1 rs2289669 AA genotype patients showed a higher decrease in TChol (p = 0.013) than G allele carriers. Conclusion. Our data suggest that SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms may influence metformin efficacy together in Chinese T2DM patients.
Collapse
Affiliation(s)
- Di Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Yu Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Wei Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Xin-Wen Qiu
- Changsha Medical University Teaching Hospital, The People's Hospital of Liuyang, Liuyang 410300, China
| | - Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Rang-Ru Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Sai-Ying Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Wei-Jing Gong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
- *Zhao-Qian Liu:
| |
Collapse
|