1
|
Harman RM, Sipka A, Oxford KA, Oliveira L, Huntimer L, Nydam DV, Van de Walle GR. The mammosphere-derived epithelial cell secretome modulates neutrophil functions in the bovine model. Front Immunol 2024; 15:1367432. [PMID: 38994364 PMCID: PMC11236729 DOI: 10.3389/fimmu.2024.1367432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Background Innovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells. Methods The immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions. Results Neutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions. Conclusion The MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Anja Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kelly A. Oxford
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | | | | - Daryl V. Nydam
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, United States
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Song F, Hu Y, Hong Y, Sun H, Han Y, Mao Y, Wu W, Li G, Wang Y. Deletion of endothelial IGFBP5 protects against ischaemic hindlimb injury by promoting angiogenesis. Clin Transl Med 2024; 14:e1725. [PMID: 38886900 PMCID: PMC11182737 DOI: 10.1002/ctm2.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Angiogenesis is critical for forming new blood vessels from antedating vascular vessels. The endothelium is essential for angiogenesis, vascular remodelling and minimisation of functional deficits following ischaemia. The insulin-like growth factor (IGF) family is crucial for angiogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5), a binding protein of the IGF family, may have places in angiogenesis, but the mechanisms are not yet completely understood. We sought to probe whether IGFBP5 is involved in pathological angiogenesis and uncover the molecular mechanisms behind it. METHODS AND RESULTS IGFBP5 expression was elevated in the vascular endothelium of gastrocnemius muscle from critical limb ischaemia patients and hindlimb ischaemic (HLI) mice and hypoxic human umbilical vein endothelial cells (HUVECs). In vivo, loss of endothelial IGFBP5 (IGFBP5EKO) facilitated the recovery of blood vessel function and limb necrosis in HLI mice. Moreover, skin damage healing and aortic ring sprouting were faster in IGFBP5EKO mice than in control mice. In vitro, the genetic inhibition of IGFBP5 in HUVECs significantly promoted tube formation, cell proliferation and migration by mediating the phosphorylation of IGF1R, Erk1/2 and Akt. Intriguingly, pharmacological treatment of HUVECs with recombinant human IGFBP5 ensued a contrasting effect on angiogenesis by inhibiting the IGF1 or IGF2 function. Genetic inhibition of IGFBP5 promoted cellular oxygen consumption and extracellular acidification rates via IGF1R-mediated glycolytic adenosine triphosphate (ATP) metabolism. Mechanistically, IGFBP5 exerted its role via E3 ubiquitin ligase Von Hippel-Lindau (VHL)-regulated HIF1α stability. Furthermore, the knockdown of the endothelial IGF1R partially abolished the reformative effect of IGFBP5EKO mice post-HLI. CONCLUSION Our findings demonstrate that IGFBP5 ablation enhances angiogenesis by promoting ATP metabolism and stabilising HIF1α, implying IGFBP5 is a novel therapeutic target for treating abnormal angiogenesis-related conditions.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hu Sun
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Jie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wei‐Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| |
Collapse
|
3
|
Elemam NM, Hotait HY, Saleh MA, El-Huneidi W, Talaat IM. Insulin-like growth factor family and prostate cancer: new insights and emerging opportunities. Front Endocrinol (Lausanne) 2024; 15:1396192. [PMID: 38872970 PMCID: PMC11169579 DOI: 10.3389/fendo.2024.1396192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men. The mammalian insulin-like growth factor (IGF) family is made up of three ligands (IGF-I, IGF-II, and insulin), three receptors (IGF-I receptor (IGF-1R), insulin receptor (IR), and IGF-II receptor (IGF-2R)), and six IGF-binding proteins (IGFBPs). IGF-I and IGF-II were identified as potent mitogens and were previously associated with an increased risk of cancer development including prostate cancer. Several reports showed controversy about the expression of the IGF family and their connection to prostate cancer risk due to the high degree of heterogeneity among prostate tumors, sampling bias, and evaluation techniques. Despite that, it is clear that several IGF family members play a role in prostate cancer development, metastasis, and androgen-independent progression. In this review, we aim to expand our understanding of prostate tumorigenesis and regulation through the IGF system. Further understanding of the role of IGF signaling in PCa shows promise and needs to be considered in the context of a comprehensive treatment strategy.
Collapse
Affiliation(s)
- Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Mohamed A. Saleh
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Qing W, Ren B, Lou C, Zhong H, Zhou Y, Liu S. Gene expression analyses of GH/IGF axis in triploid crucian carp with growth heterosis. Front Endocrinol (Lausanne) 2024; 15:1373623. [PMID: 38596226 PMCID: PMC11002129 DOI: 10.3389/fendo.2024.1373623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.
Collapse
Affiliation(s)
| | | | | | | | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Lodjak J, Boonekamp J, Lendvai ÁZ, Verhulst S. Short- and long-term effects of nutritional state on IGF-1 levels in nestlings of a wild passerine. Oecologia 2023; 203:27-35. [PMID: 37676486 PMCID: PMC10615909 DOI: 10.1007/s00442-023-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Growth trajectories of young animals are intimately connected to their fitness prospects, but we have little knowledge of growth regulation mechanisms, particularly in the wild. Insulin-like growth factor 1 (IGF-1) is a central hormone in regulating resource allocation, with higher IGF-1 levels resulting in more growth. IGF-1 levels generally increase in conjunction with nutritional state, but whether IGF-1 levels are adjusted in response to current nutrient availability or to the nutrient availability integrated over a longer term is not well known. We tested for such effects by supplementary feeding the jackdaw (Corvus monedula) nestlings in experimentally reduced or enlarged broods with either water (control) or a food solution; these manipulations have long- and short-term effects on the nutritional state, respectively. Baseline plasma IGF-1 levels were higher in reduced broods. Food supplementation induced an increase in plasma IGF-1 levels measured one hour later, and this effect was significantly more substantial in nestlings in reduced broods. Changes in plasma IGF-1 levels increased with increased retention of the supplementary food, which was higher in reduced broods, explaining the stronger IGF-1 response. Thus, IGF-1 levels respond to short-term variations in the nutritional state, but this effect is amplified by longer-term variations in the nutritional state. We discuss our findings using a graphical model that integrates the results of the two treatments.
Collapse
Affiliation(s)
- Jaanis Lodjak
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 2 Juhan Liivi Street, 50409, Tartu, Estonia.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| | - Jelle Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
6
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
7
|
Torres G, Lancaster AC, Yang J, Griffiths M, Brandal S, Damico R, Vaidya D, Simpson CE, Martin LJ, Pauciulo MW, Nichols WC, Ivy DD, Austin ED, Hassoun PM, Everett AD. Low-affinity insulin-like growth factor binding protein 7 and its association with pulmonary arterial hypertension severity and survival. Pulm Circ 2023; 13:e12284. [PMID: 37674873 PMCID: PMC10477418 DOI: 10.1002/pul2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Insulin-like growth factor (IGF) binding proteins (IGFBPs) are a family of growth factor modifiers, some of which are known to be independently associated with pulmonary arterial hypertension (PAH) survival. IGF factor binding protein 7 (IGFBP7) is a unique low-affinity IGFBP that, independent of IGF, stimulates prostacyclin production. This study proposed to establish associations between IGFBP7 and PAH severity and survival, using enrollment and longitudinal samples. Serum IGFBP7 levels were significantly elevated in patients with PAH compared to controls. After adjusting for age and sex, logarithmic increases in IGFBP7 were associated with a 20 m shorter six-minute walk distance (6MWD; p < 0.001), a 2-3 mmHg higher mean right atrial pressure (p < 0.001 and 0.02), and a higher likelihood of a greater REVEAL 2.0 risk category placement (p < 0.001). Kaplan-Meier analysis demonstrated significantly decreased survival with IGFBP7 above the median and Cox multivariable analysis adjusted for age and sex, demonstrated higher serum IGFBP7 was an independent predictor of survival. Though the exact mechanism is still unknown, given IGFBP7's role as a prostacyclin stimulant, it has potential use as a therapeutic target for disease modulation.
Collapse
Affiliation(s)
- Guillermo Torres
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jun Yang
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Megan Griffiths
- Department of Pediatrics, Division of Pediatric CardiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stephanie Brandal
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rachel Damico
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dhananjay Vaidya
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of General Internal MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Catherine E. Simpson
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Lisa J. Martin
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Michael W. Pauciulo
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - William C. Nichols
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - David D. Ivy
- Department of Pediatric CardiologyChildren's Hospital ColoradoDenverColoradoUSA
| | - Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Paul M. Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Allen D. Everett
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
8
|
Tran TTH, Tran HS, Le BTN, Van Nguyen S, Vu HA, Kim OTP. Novel single nucleotide polymorphisms of insulin-like growth factor-binding protein 7 (IGFBP7) gene significantly associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878). Mol Genet Genomics 2023; 298:883-893. [PMID: 37097322 DOI: 10.1007/s00438-023-02016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Breeding program to improve economically important growth traits in striped catfish (Pangasianodon hypophthalmus) requires effective molecular markers. This study was conducted to identify single nucleotide polymorphisms (SNPs) of Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) gene which plays multiple roles in regulating growth, energy metabolism and development. The association between SNPs in IGFBP7 gene and growth traits in striped catfish was analyzed in order to uncover the SNPs that have potential to be valuable markers for improving growth traits. Firstly, fragments of IGFBP7 gene from ten fast-growing fish and ten slow-growing fish were sequenced in order to discover SNPs. After filtering the detected SNPs, an intronic SNP (2060A > G) and two non-synonymous SNPs (344 T > C and 4559C > A) causing Leu78Pro and Leu189Met in protein, respectively, were subjected to further validated by individual genotyping in 70 fast-growing fish and 70 slow-growing fish using single base extension method. Our results showed that two SNPs (2060A > G and 4559 C > A (p. Leu189Met)) were significantly associated with the growth in P. hypophthalmus (p < 0.001), thus being candidate SNP markers for the growth traits of this fish. Moreover, linkage disequilibrium and association analysis with growth traits of haplotypes generated from the 3 filtered SNPs (344 T > C, 2060 A > G and 4559 C > A) were examined. These revealed that the non-coding SNP locus (2060A > G) had higher genetic diversity at which the G allele was predominant over the A allele in the fast-growing fish. Furthermore, the results of qPCR showed that expression of IGFBP7 gene with genotype GG (at locus 2060) in fast-growing group was significantly higher than that with genotype AA in slow-growing group (p < 0.05). Our study provides insights into the genetic variants of IGFBP7 gene and useful data source for development molecular marker for growth traits in breeding of the striped catfish.
Collapse
Affiliation(s)
- Trang Thi Huyen Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Hoang Son Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Binh Thi Nguyen Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Sang Van Nguyen
- Research Institute of Aquaculture, No.2, 116 Nguyen Dinh Chieu Str, District 1, Ho Chi Minh City, Vietnam
| | - Hai-Anh Vu
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Oanh Thi Phuong Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
9
|
Leal-Orta E, Ramirez-Ricardo J, Garcia-Hernandez A, Cortes-Reynosa P, Salazar EP. Extracellular vesicles from MDA-MB-231 breast cancer cells stimulated with insulin-like growth factor 1 mediate an epithelial-mesenchymal transition process in MCF10A mammary epithelial cells. J Cell Commun Signal 2022; 16:531-546. [PMID: 34309795 PMCID: PMC9733745 DOI: 10.1007/s12079-021-00638-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays an important role in function and development of the mammary gland. However, high levels of IGF-1 has been associated with an increased risk of breast cancer development. Epithelial-mesenchymal transition (EMT) is a process where epithelial cells lose their epithelial characteristics and acquire a mesenchymal phenotype, which is considered one of the most important mechanisms in cancer initiation and promotion of metastasis. Extracellular vesicles (EVs) are released into the extracellular space by different cell types, which mediate intercellular communication and play an important role in different physiological and pathological processes, such as cancer. In this study, we demonstrate that EVs from MDA-MB-231 breast cancer cells stimulated with IGF-1 (IGF-1 EVs) decrease the levels of E-cadherin, increase the expression of vimentin and N-cadherin and stimulate the secretion of metalloproteinase-9 in mammary non-tumorigenic epithelial cells MCF10A. IGF-1 EVs also induce the expression of Snail1, Twist1 and Sip1, which are transcription factors involved in EMT. Moreover, IGF-1 EVs induce activation of ERK1/2, Akt1 and Akt2, migration and invasion. In summary, we demonstrate, for the first time, that IGF-1 EVs induce an EMT process in mammary non-tumorigenic epithelial cells MCF10A.
Collapse
Affiliation(s)
- Elizabeth Leal-Orta
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| | | | | | - Pedro Cortes-Reynosa
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Eduardo Perez Salazar
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| |
Collapse
|
10
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
11
|
Laselva O, Criscione ML, Allegretta C, Di Gioia S, Liso A, Conese M. Insulin-Like Growth Factor Binding Protein (IGFBP-6) as a Novel Regulator of Inflammatory Response in Cystic Fibrosis Airway Cells. Front Mol Biosci 2022; 9:905468. [PMID: 35903151 PMCID: PMC9322660 DOI: 10.3389/fmolb.2022.905468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic Fibrosis (CF) patients are prone to contracting bacterial lung infections with opportunistic pathogens, especially Pseudomonas aeruginosa. Prolonged P. aeruginosa infections have been linked to chronic inflammation in the CF lung, whose hallmarks are increased levels of cytokines (i.e., TNF-α, IL-1β, IL-6) and neutrophil attraction by chemokines, like IL-8. Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system and was found at higher levels in the sera and synovial tissue of rheumatoid arthritis patients. Moreover, it has been demonstrated that IGFBP-6 has chemoattractant properties towards cells of the innate (neutrophils, monocytes) and adaptive (T cells) immunity. However, it is not known whether IGFBP-6 expression is dysregulated in airway epithelial cells under infection/inflammatory conditions. Therefore, we first measured the basal IGFBP-6 mRNA and protein levels in bronchial epithelial cells lines (Wt and F508del-CFTR CFBE), finding they both are upregulated in F508del-CFTR CFBE cells. Interestingly, LPS and IL-1β+TNFα treatments increased the IGFBP-6 mRNA level, that was reduced after treatment with an anti-inflammatory (Dimethyl Fumarate) in CFBE cell line and in patient-derived nasal epithelial cultures. Lastly, we demonstrated that IGFBP-6 reduced the level of pro-inflammatory cytokines in both CFBE and primary nasal epithelial cells, without affecting rescued CFTR expression and function. The addition of a neutralizing antibody to IGFBP-6 increased pro-inflammatory cytokines expression under challenge with LPS. Together, these data suggest that IGFBP-6 may play a direct role in the CF-associated inflammation.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| | - Maria Laura Criscione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Onofrio Laselva, ; Massimo Conese,
| |
Collapse
|
12
|
Mazziotti G, Lania AG, Canalis E. Skeletal disorders associated with the growth hormone-insulin-like growth factor 1 axis. Nat Rev Endocrinol 2022; 18:353-365. [PMID: 35288658 DOI: 10.1038/s41574-022-00649-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are important regulators of bone remodelling and metabolism and have an essential role in the achievement and maintenance of bone mass throughout life. Evidence from animal models and human diseases shows that both GH deficiency (GHD) and excess are associated with changes in bone remodelling and cause profound alterations in bone microstructure. The consequence is an increased risk of fractures in individuals with GHD or acromegaly, a condition of GH excess. In addition, functional perturbations of the GH-IGF1 axis, encountered in individuals with anorexia nervosa and during ageing, result in skeletal fragility and osteoporosis. The effect of interventions used to treat GHD and acromegaly on the skeleton is variable and dependent on the duration of the disease, the pre-existing skeletal state, coexistent hormone alterations (such as those occurring in hypogonadism) and length of therapy. This variability could also reflect the irreversibility of the skeletal structural defect occurring during alterations of the GH-IGF1 axis. Moreover, the effects of the treatment of GHD and acromegaly on locally produced IGF1 and IGF binding proteins are uncertain and in need of further study. This Review highlights the pathophysiological, clinical and therapeutic aspects of skeletal fragility associated with perturbations in the GH-IGF1 axis.
Collapse
Affiliation(s)
- Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
13
|
Zhu YN, Gan XW, Pan F, Ni XT, Myatt L, Wang WS, Sun K. Role of EZH2-mediated H3K27me3 in placental ADAM12-S expression: implications for fetoplacental growth. BMC Med 2022; 20:189. [PMID: 35610640 PMCID: PMC9131539 DOI: 10.1186/s12916-022-02391-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2)-mediated histone 3 lysine 27 trimethylation (H3K27me3) is a transcription silencing mark, which is indispensable for cell lineage specification at the early blastocyst stage. This epigenetic repression is maintained in placental cytotrophoblasts but is lifted when cytotrophoblasts differentiate into syncytiotrophoblasts. However, the physiological impact of this lift remains elusive. Here, we investigated whether lifting EZH2-mediated H3K27me3 during syncytialization upregulates the expression of a short secretory isoform of a disintegrin and metalloprotease 12 (ADAM12-S), a well-recognized placenta-derived protease that cleaves insulin-like growth factor binding protein 3 to increase insulin-like growth factor (IGF) bioavailability for the stimulation of fetoplacental growth. The transcription factor and the upstream signal involved were also explored. METHODS Human placenta tissue and cultured primary human placental cytotrophoblasts were utilized to investigate the role of EZH2-mediated H3K27me3 in ADAM12-S expression and the associated transcription factor and upstream signal during syncytialization. A mouse model was used to examine whether inhibition of EZH2-mediated H3K27me3 regulates placental ADAM12-S expression and fetoplacental growth. RESULTS EZH2 and ADAM12 are distributed primarily in villous cytotrophoblasts and syncytiotrophoblasts, respectively. Increased ADAM12-S expression, decreased EZH2 expression, and decreased EZH2/H3K27me3 enrichment at the ADAM12 promoter were observed during syncytialization. Knock-down of EZH2 further increased ADAM12-S expression in trophoblasts. Syncytialization was also accompanied by increased STAT5B expression and phosphorylation as well as its enrichment at the ADAM12 promoter. Knock-down of STAT5B attenuated ADAM12-S expression during syncytialization. Epidermal growth factor (EGF) was capable of inducing ADAM12-S expression via stimulation of STAT5B expression and phosphorylation during syncytialization. Mouse studies revealed that administration of an EZH2 inhibitor significantly increased ADAM12-S levels in maternal blood and fetoplacental weights along with decreased H3K27me3 abundance and increased ADAM12-S expression in the placenta. CONCLUSIONS Lifting EZH2-mediated H3K27me3 increases ADAM12-S expression during syncytialization with the participation of EGF-activated STAT5B, which may lead to elevation of ADAM12-S level in maternal blood resulting in increased IGF bioavailability for the stimulation of fetoplacental growth in pregnancy. Our studies suggest that the role of EZH2-mediated H3K27me3 may switch from cell lineage specification at the early blastocyst stage to regulation of fetoplacental growth in later gestation.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Xiao-Tian Ni
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Xiang J, Li X, Li F. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol 2022; 20:113. [PMID: 35562825 PMCID: PMC9107163 DOI: 10.1186/s12915-022-01302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Kou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin, 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xinzheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
15
|
Almalki A, Thomas JT, Khan ARA, Almulhim B, Alassaf A, Alghamdi SA, Joseph B, Alqerban A, Alotaibi S. Correlation between Salivary Levels of IGF-1, IGFBP-3, IGF-1/IGFBP3 Ratio with Skeletal Maturity Using Hand-Wrist Radiographs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063723. [PMID: 35329407 PMCID: PMC8953114 DOI: 10.3390/ijerph19063723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
Abstract
Objective: The relevance of growth determination in orthodontics is driving the search for the most precise and least invasive way of tracking the pubertal growth spurt. Our aim was to explore whether minimally invasive salivary estimation of biomarkers Insulin-like growth factor (IGF-1) and Insulin-like growth factor binding protein-3 (IGFBP-3) could be used to estimate skeletal maturity for clinical convenience, especially in children and adolescent age groups. Materials and Method: The cross-sectional study was conducted on 90 participants (56 girls and 34 males) with ages ranging from 6 to 25 years. Each subject’s hand-wrist radiograph was categorized based on skeletal maturity, and saliva samples were estimated for IGF-1 and IGFBP-3 using the respective ELISA kits. Kruskal−Wallis nonparametric ANOVA was applied to compare different skeletal stages. Results: The study demonstrated low salivary IGF-1 levels at the prepubertal stage, with increase during pubertal onset and peak pubertal stage followed by a decline during pubertal deceleration to growth completion. Spearman’s correlation coefficient demonstrated a strong positive association (r = 0.98 p < 0.01) between salivary IGF/IGFBP-3 ratio and different stages of skeletal maturity. Conclusion: Salivary IGF-1, IGFBP-3, and IGF/IGFBP-3 ratio could serve as a potential biochemical marker for predicting the completion of skeletal maturity.
Collapse
Affiliation(s)
- Abdullah Almalki
- Department of Preventive Dental Sciences (Orthodontics), College of Dentistry, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (A.A.); (A.R.A.K.); (S.A.)
| | - Julie Toby Thomas
- Department of Preventive Dental Sciences (Periodontics), College of Dentistry, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Correspondence: ; Tel.: +966-55-014-3598
| | - Abdul Rehman Ahmed Khan
- Department of Preventive Dental Sciences (Orthodontics), College of Dentistry, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (A.A.); (A.R.A.K.); (S.A.)
| | - Basim Almulhim
- Department of Preventive Dental Sciences (Pedodontics), College of Dentistry, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (B.A.); (A.A.); (S.A.A.)
| | - Abdullah Alassaf
- Department of Preventive Dental Sciences (Pedodontics), College of Dentistry, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (B.A.); (A.A.); (S.A.A.)
| | - Sara Ayid Alghamdi
- Department of Preventive Dental Sciences (Pedodontics), College of Dentistry, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (B.A.); (A.A.); (S.A.A.)
| | - Betsy Joseph
- Department of Periodontics, Saveetha Institute of Medical Sciences, Chennai 600077, India;
| | - Ali Alqerban
- Department of Preventive Dental Sciences (Orthodontics), College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
- Department of Preventive Dental Sciences, College of Dentistry, Dar al Uloom University, Riyadh 45142, Saudi Arabia
| | - Saud Alotaibi
- Department of Preventive Dental Sciences (Orthodontics), College of Dentistry, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (A.A.); (A.R.A.K.); (S.A.)
| |
Collapse
|
16
|
Baumrucker CR, Macrina AL, Bruckmaier RM. Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). J Mammary Gland Biol Neoplasia 2021; 26:419-453. [PMID: 35080749 DOI: 10.1007/s10911-021-09506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Colostrogenesis is a separate and unique phase of mammary epithelial cell activity occurring in the weeks before parturition and rather abruptly ending after birth in the bovine. It has been the focus of research to define what controls this process and how it produces high concentrations of specific biologically active components important for the neonate. In this review we consider colostrum composition and focus upon components that appear in first milked colostrum in concentrations exceeding that in blood serum. The Fc Receptor of the Neonate (FcRn) is recognized as the major immunoglobulin G (IgG) and albumin binding protein that accounts for the proteins' long half-lives. We integrate the action of the pinocytotic (fluid phase) uptake of extracellular components and merge them with FcRn in sorting endosomes. We define and explore the means of binding, sorting, and the transcytotic delivery of IgG1 while recycling IgG2 and albumin. We consider the means of releasing the ligands from the receptor within the endosome and describe a new secretion mechanism of cargo release into colostrum without the appearance of FcRn itself in colostrum. We integrate the insulin-like growth factor family, some of which are highly concentrated bioactive components of colostrum, with the mechanisms related to FcRn endosome action. In addition to secretion, we highlight the recent findings of a role of the FcRn in phagocytosis and antigen presentation and relate its significant and abrupt change in cellular location after parturition to a role in the prevention and resistance to mastitis infections.
Collapse
Affiliation(s)
- Craig R Baumrucker
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA.
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
| | - Ann L Macrina
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
17
|
PCOS and Depression: Common Links and Potential Targets. Reprod Sci 2021; 29:3106-3123. [PMID: 34642910 DOI: 10.1007/s43032-021-00765-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
PCOS or polycystic ovary syndrome is a common endocrine disorder that occurs during the reproductive age in females. It manifests in the form of a wide range of symptoms including (but not limited to) hirsutism, amenorrhea, oligomenorrhea, obesity, acne vulgaris, infertility, alopecia, and insulin resistance. The incidence of depression in PCOS population is increasing as compared to the general population. Increased depression in PCOS significantly alters the quality of life (QOL) of affected females. Also, self-esteem is found to be low in both depression and PCOS. The loss in self-esteem in such patients can be largely attributed to the associated factors including (but not limited to) obesity, acne, androgenic alopecia, and hirsutism. The reason behind the occurrence of depression in PCOS remains elusive to date. Literature suggests that there is an overlap of clinical symptoms between depression and PCOS. As the symptoms overlap, there is a possibility of common associations between depression, PCOS, and PCOS-associated abnormalities including insulin resistance (IR), obesity, CVD, and androgen excess. Studies demonstrate that depression is an inflammatory disorder marked with increased levels of inflammatory markers. On the other hand, PCOS is also regarded as a pro-inflammatory state that is characterized by increased levels of pro-inflammatory markers. Thus, there is a possibility of an inflammatory relationship existing between depression and PCOS. It is also possible that the inflammatory markers in PCOS can cross the blood-brain barrier (BBB) leading to the development of depression. Through the present review, we have attempted to shed light on common associations/shared links between depression and PCOS with respect to the levels of cortisol, androgen, vitamin D, neurotransmitters, monoaminoxidase (MAO), and insulin-like growth factor-1 (IGF-1). Tracking down common associations between depression and PCOS will help find potential drug therapies and improve the QOL of females with depression in PCOS.
Collapse
|
18
|
Wu T, Wang S, Jin Q, Lv X, Sun W. PAPPA2 Promote the Proliferation of Dermal Papilla Cells in Hu Sheep ( Ovis aries) by Regulating IGFBP5. Genes (Basel) 2021; 12:genes12101490. [PMID: 34680885 PMCID: PMC8535430 DOI: 10.3390/genes12101490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 02/02/2023] Open
Abstract
Hu sheep (Ovis aries) is a rare white sheep breed, with four different types of lambskin patterns that have different values. However, the genetic mechanisms underlying different types of pattern formation remains unclear. This research aimed to characterize the molecular mechanism of differentially expressed gene PAPPA2 affecting the pattern type of Hu sheep's lambskin at the cellular level. Thus, RT-qPCR, EdU and Cell Cycle detection were used to explore the effect of PAPPA2 and IGFBP5 (a protein that can be hydrolyzed by PAPPA2) on the proliferation of dermal papilla cells (DPCs) after overexpression or interference with PAPPA2 and IGFBP5. The expression level of PAPPA2 in straight DPCs was 4.79 ± 1.84 times higher than curved. Overexpression of PAPPA2 promoted the proliferation of DPCs and also increased the expression of IGFBP5. Conversely, overexpression of IGFBP5 reduced the proliferation of DPCs. However, the proliferation of DPCs was restored by co-overexpression of PAPPA2 and IGFBP5 compared with overexpression of IGFBP5 alone. Thus, PAPPA2 can affect the proliferation of DPCs through regulating IGFBP5 and then participate in lambskin pattern determination. Overall, we preliminarily clarified the critical role played by PAPPA2 during the formation of different pattern in Hu sheep lambskin.
Collapse
Affiliation(s)
- Tianyi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Qiunan Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
19
|
Ranke MB. Short and Long-Term Effects of Growth Hormone in Children and Adolescents With GH Deficiency. Front Endocrinol (Lausanne) 2021; 12:720419. [PMID: 34539573 PMCID: PMC8440916 DOI: 10.3389/fendo.2021.720419] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
The syndrome of impaired GH secretion (GH deficiency) in childhood and adolescence had been identified at the end of the 19th century. Its non-acquired variant (naGHD) is, at childhood onset, a rare syndrome of multiple etiologies, predominantly characterized by severe and permanent growth failure culminating in short stature. It is still difficult to diagnose GHD and, in particular, to ascertain impaired GH secretion in comparison to levels in normally-growing children. The debate on what constitutes an optimal diagnostic process continues. Treatment of the GH deficit via replacement with cadaveric pituitary human GH (pit-hGH) had first been demonstrated in 1958, and opened an era of therapeutic possibilities, albeit for a limited number of patients. In 1985, the era of recombinant hGH (r-hGH) began: unlimited supply meant that substantial long-term experience could be gained, with greater focus on efficacy, safety and costs. However, even today, the results of current treatment regimes indicate that there is still a substantial fraction of children who do not achieve adult height within the normal range. Renewed evaluation of height outcomes in childhood-onset naGHD is required for a better understanding of the underlying causes, whereby the role of various factors - diagnostics, treatment modalities, mode of treatment evaluation - during the important phases of child growth - infancy, childhood and puberty - are further explored.
Collapse
Affiliation(s)
- Michael B. Ranke
- Children’s Hospital, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
20
|
Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat Commun 2021; 12:5012. [PMID: 34408142 PMCID: PMC8373964 DOI: 10.1038/s41467-021-25328-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Tendon self-renewal is a rare occurrence because of the poor vascularization of this tissue; therefore, reconstructive surgery using autologous tendon is often performed in severe injury cases. However, the post-surgery re-injury rate is relatively high, and the collection of autologous tendons leads to muscle weakness, resulting in prolonged rehabilitation. Here, we introduce an induced pluripotent stem cell (iPSC)-based technology to develop a therapeutic option for tendon injury. First, we derived tenocytes from human iPSCs by recapitulating the normal progression of step-wise narrowing fate decisions in vertebrate embryos. We used single-cell RNA sequencing to analyze the developmental trajectory of iPSC-derived tenocytes. We demonstrated that iPSC-tenocyte grafting contributed to motor function recovery after Achilles tendon injury in rats via engraftment and paracrine effects. The biomechanical strength of regenerated tendons was comparable to that of healthy tendons. We suggest that iPSC-tenocytes will provide a therapeutic option for tendon injury.
Collapse
|
21
|
Kumric M, Ticinovic Kurir T, Borovac JA, Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J Diabetes 2021; 12:685-705. [PMID: 34168722 PMCID: PMC8192249 DOI: 10.4239/wjd.v12.i6.685] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension. As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate, various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM, with little success so far. Hence, we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM. Among the array of biomarkers we thoroughly analyzed, long noncoding ribonucleic acids, soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection, as their plasma/serum levels accurately correlate with the early stages of DCM. The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients. The purpose of the screening test would be to direct affected patients to more specific confirmation tests. This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Department of Endocrinology, University Hospital of Split, Split 21000, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Emergency Medicine, Institute of Emergency Medicine of Split-Dalmatia County, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
22
|
SNORD116 and growth hormone therapy impact IGFBP7 in Prader-Willi syndrome. Genet Med 2021; 23:1664-1672. [PMID: 34040195 PMCID: PMC8460435 DOI: 10.1038/s41436-021-01185-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose Prader–Willi syndrome (PWS) is a neurodevelopmental disorder with hypothalamic dysfunction due to deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene appears critical for the expression of the PWS phenotype. We aimed to clarify the role of SNORD116 in cellular and animal models with regard to growth hormone therapy (GHT), the main approved treatment for PWS. Methods We collected serum and induced pluripotent stem cells (iPSCs) from GH-treated PWS patients to differentiate into dopaminergic neurons, and in parallel used a Snord116 knockout mouse model. We analyzed the expression of factors potentially linked to GH responsiveness. Results We found elevated levels of circulating IGFBP7 in naive PWS patients, with IGFBP7 levels normalizing under GHT. We found elevated IGFBP7 levels in the brains of Snord116 knockout mice and in iPSC-derived neurons from a SNORD116-deleted PWS patient. High circulating levels of IGFBP7 in PWS patients may result from both increased IGFBP7 expression and decreased IGFBP7 cleavage, by downregulation of the proconvertase PC1. Conclusion SNORD116 deletion affects IGFBP7 levels, while IGFBP7 decreases under GHT in PWS patients. Modulation of the IGFBP7 level, which interacts with IGF1, has implications in the pathophysiology and management of PWS under GHT. Graphical Abstract ![]()
Collapse
|
23
|
Saini J, Faroni A, Reid AJ, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. Cross-talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors. Physiol Rep 2021; 9:e14791. [PMID: 33931983 PMCID: PMC8087923 DOI: 10.14814/phy2.14791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular patho‐physiology and development of novel therapies for diseases associated with NM dysfunction. In vivo, the micro‐environment surrounding the NMJ has a significant impact on NMJ formation and maintenance via neurotrophic and differentiation factors that are secreted as a result of cross‐talk between muscle fibers and motor neurons. Recently we showed the formation of functional NMJs in vitro in a co‐culture of immortalized human myoblasts and motor neurons from rat‐embryo spinal‐cord explants, using a culture medium free from serum and neurotrophic or growth factors. The aim of this study was to assess how functional NMJs were established in this co‐culture devoid of exogenous neural growth factors. To investigate this, an ELISA‐based microarray was used to compare the composition of soluble endogenously secreted growth factors in this co‐culture with an a‐neural muscle culture. The levels of seven neurotrophic factors brain‐derived neurotrophic factor (BDNF), glial‐cell‐line‐derived neurotrophic factor (GDNF), insulin‐like growth factor‐binding protein‐3 (IGFBP‐3), insulin‐like growth factor‐1 (IGF‐1), neurotrophin‐3 (NT‐3), neurotrophin‐4 (NT‐4), and vascular endothelial growth factor (VEGF) were higher (p < 0.05) in the supernatant of NMJ culture compared to those in the supernatant of the a‐neural muscle culture. This indicates that the cross‐talk between muscle and motor neurons promotes the secretion of soluble growth factors contributing to the local microenvironment thereby providing a favourable regenerative niche for NMJs formation and maturation.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | | | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Institute of Sport Science and Innovations, Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
24
|
Alassaf M, Halloran MC. Pregnancy-associated plasma protein-aa regulates endoplasmic reticulum-mitochondria associations. eLife 2021; 10:59687. [PMID: 33759764 PMCID: PMC8024009 DOI: 10.7554/elife.59687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondria form close physical associations to facilitate calcium transfer, thereby regulating mitochondrial function. Neurons with high metabolic demands, such as sensory hair cells, are especially dependent on precisely regulated ER-mitochondria associations. We previously showed that the secreted metalloprotease pregnancy-associated plasma protein-aa (Pappaa) regulates mitochondrial function in zebrafish lateral line hair cells (Alassaf et al., 2019). Here, we show that pappaa mutant hair cells exhibit excessive and abnormally close ER-mitochondria associations, suggesting increased ER-mitochondria calcium transfer. pappaa mutant hair cells are more vulnerable to pharmacological induction of ER-calcium transfer. Additionally, pappaa mutant hair cells display ER stress and dysfunctional downstream processes of the ER-mitochondria axis including altered mitochondrial morphology and reduced autophagy. We further show that Pappaa influences ER-calcium transfer and autophagy via its ability to stimulate insulin-like growth factor-1 bioavailability. Together our results identify Pappaa as a novel regulator of the ER-mitochondria axis.
Collapse
Affiliation(s)
- Mroj Alassaf
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Department of Neuroscience, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Department of Neuroscience, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| |
Collapse
|
25
|
Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR, Mulenga A. Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics 2021; 22:152. [PMID: 33663385 PMCID: PMC7930271 DOI: 10.1186/s12864-021-07429-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Diagnostic Medicine and Veterinary Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Tae Heung Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America.
| |
Collapse
|
26
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
28
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
29
|
Bailes J, Soloviev M. Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules 2021; 11:biom11020217. [PMID: 33557137 PMCID: PMC7913862 DOI: 10.3390/biom11020217] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is the principal mediator of growth hormone (GH), plays a crucial role in promoting cell growth and differentiation in childhood and continues to have an anabolic effect in adults. IGF-1 is part of a wide network of growth factors, receptors and binding proteins involved in mediating cellular proliferation, differentiation and apoptosis. Bioavailability of IGF-1 is affected by insulin-like growth factor binding proteins (IGFBPs) which bind IGF-1 in circulation with an affinity equal to or greater than that of the IGF-1 receptor (IGF-1R). The six IGFBPs serve as carrier proteins and bind approximately 98% of all circulating IGF-1. Other proteins known to bind IGF-1 include ten IGFBP-related proteins (IGFBP-rPs), albeit with lower affinities than the IGFBPs. IGF-1 expression levels vary in a number of clinical conditions suggesting it has the potential to provide crucial information as to the state of an individual’s health. IGF-1 is also a popular doping agent in sport and has featured in many high-profile doping cases in recent years. However, the existence of IGFBPs significantly reduces the levels of immunoreactive IGF-1 in samples, requiring multiple pre-treatment steps that reduce reproducibility and complicates interpretation of IGF-1 assay results. Here we provide an overview of the IGF network of growth factors, their receptors and the entirety of the extended family of IGFBPs, IGFBP-rPs, E peptides as well as recombinant IGF-1 and their derivatives. We also discuss issues related to the detection and quantification of bioavailable IGF-1.
Collapse
|
30
|
The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther 2021; 38:885-903. [PMID: 33331986 DOI: 10.1007/s12325-020-01581-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF) system comprises ligands of IGF-I/II, IGF receptors (IGFR), IGF binding proteins (IGFBPs), and IGFBP hydrolases. The IGF system plays multiple roles during various disease development as IGFs are widely involved in cell proliferation and differentiation through regulating DNA transcription. Meanwhile, IGFBPs, which are mainly synthesized in the liver, can bind to IGFs and perform two different functions: either inhibition of IGFs by forming inactive compounds with IGF or enhancement of the function of IGFs by strengthening the IGF-IGFR interaction. Interestingly, IGFBPs may have wider functions through IGF-independent mechanisms. Studies have shown that IGFBPs play important roles in cardiovascular disease, tumor progression, fetal growth, and neuro-nutrition. In this review, we emphasize that different IGFBP family members have common or unique functions in numerous diseases; moreover, IGFBPs may serve as biomarkers for disease diagnosis and prediction.
Collapse
|
31
|
Stanley TL, Fourman LT, Zheng I, McClure CM, Feldpausch MN, Torriani M, Corey KE, Chung RT, Lee H, Kleiner DE, Hadigan CM, Grinspoon SK. Relationship of IGF-1 and IGF-Binding Proteins to Disease Severity and Glycemia in Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2021; 106:e520-e533. [PMID: 33125080 PMCID: PMC7823253 DOI: 10.1210/clinem/dgaa792] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Growth hormone (GH) and IGF-1 help regulate hepatic glucose and lipid metabolism, and reductions in these hormones may contribute to development of nonalcoholic fatty liver disease (NAFLD). OBJECTIVE To assess relationships between hepatic expression of IGF1 and IGF-binding proteins (IGFBPs) and measures of glycemia and liver disease in adults with NAFLD. Secondarily to assess effects of GH-releasing hormone (GHRH) on circulating IGFBPs. DESIGN Analysis of data from a randomized clinical trial of GHRH. SETTING Two US academic medical centers. PARTICIPANTS Participants were 61 men and women 18 to 70 years of age with HIV-infection, ≥5% hepatic fat fraction, including 39 with RNA-Seq data from liver biopsy. MAIN OUTCOME MEASURES Hepatic steatosis, inflammation, and fibrosis by histopathology and measures of glucose homeostasis. RESULTS Hepatic IGF1 mRNA was significantly lower in individuals with higher steatosis and NAFLD Activity Score (NAS) and was inversely related to glucose parameters, independent of circulating IGF-1. Among the IGFBPs, IGFBP2 and IGFBP4 were lower and IGFBP6 and IGFBP7 (also known as IGFBP-related protein 1) were higher with increasing steatosis. Hepatic IGFBP6 and IGFBP7 mRNA levels were positively associated with NAS. IGFBP7 mRNA increased with increasing fibrosis. Hepatic IGFBP1 mRNA was inversely associated with glycemia and insulin resistance, with opposite relationships present for IGFBP3 and IGFBP7. GHRH increased circulating IGFBP-1 and IGFBP-3, but decreased IGFBP-2 and IGFBP-6. CONCLUSIONS These data demonstrate novel relationships of IGF-1 and IGFBPs with NAFLD severity and glucose control, with divergent roles seen for different IGFBPs. Moreover, the data provide new information on the complex effects of GHRH on IGFBPs.
Collapse
Affiliation(s)
- Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Isabel Zheng
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Colin M McClure
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meghan N Feldpausch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin Torriani
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathleen E Corey
- Liver Center, Gastroenterology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raymond T Chung
- Liver Center, Gastroenterology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Colleen M Hadigan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence and Reprint Requests: Steven K. Grinspoon, MD, Professor of Medicine, Harvard Medical School, MGH Endowed Chair in Neuroendocrinology and Metabolism, Chief, Metabolism Unit, Massachusetts General Hospital, 55 Fruit Street 5LON207, Boston, MA 02114, United States. E-mail:
| |
Collapse
|
32
|
Pang Y, Zhang X, Yuan J, Zhang X, Xiang J, Li F. Characterization and Expression Analysis of Insulin Growth Factor Binding Proteins (IGFBPs) in Pacific White Shrimp Litopenaeus vannamei. Int J Mol Sci 2021; 22:ijms22031056. [PMID: 33494370 PMCID: PMC7866140 DOI: 10.3390/ijms22031056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
The insulin signaling (IIS) pathway plays an important role in the metabolism, growth, development, reproduction, and longevity of an organism. As a key member of the IIS pathway, insulin-like growth factor binding proteins (IGFBPs) are widely distributed a family in invertebrates and vertebrates that are critical in various aspects of physiology. As an important mariculture species, the growth of Pacific white shrimp, Litopenaeus vannamei, is one of the most concerning characteristics in this area of study. In this study, we identified three IGFBP genes in the genome of L. vannamei and analyzed their gene structures, phylogenetics, and expression profiles. LvIGFBP1 was found to contain three domains (the insulin growth factor binding (IB) domain, the Kazal-type serine proteinase inhibitor (Kazal) domain, and the immunoglobulin C-2 (IGc2) domain), while LvIGFBP2 and LvIGFBP3 only contained a single IB domain. LvIGFBP1 exhibited high expression in most tissues and different developmental stages, while LvIGFBP2 and LvIGFBP3 were only slightly expressed in hemocytes. The RNA interference of LvIGFBP1 resulted in a significantly smaller increment of body weight than that of control groups. These results will improve our understanding of the conservative structure and function of IGFBPs and show potential applications for the growth of shrimp.
Collapse
Affiliation(s)
- Ying Pang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence:
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoxi Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
33
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Abstract
The insulin-like growth factor (IGF) pathway comprises two activating ligands (IGF-I and IGF-II), two cell-surface receptors (IGF-IR and IGF-IIR), six IGF binding proteins (IGFBP) and nine IGFBP related proteins. IGF-I and the IGF-IR share substantial structural and functional similarities to those of insulin and its receptor. IGF-I plays important regulatory roles in the development, growth, and function of many human tissues. Its pathway intersects with those mediating the actions of many cytokines, growth factors and hormones. Among these, IGFs impact the thyroid and the hormones that it generates. Further, thyroid hormones and thyrotropin (TSH) can influence the biological effects of growth hormone and IGF-I on target tissues. The consequences of this two-way interplay can be far-reaching on many metabolic and immunologic processes. Specifically, IGF-I supports normal function, volume and hormone synthesis of the thyroid gland. Some of these effects are mediated through enhancement of sensitivity to the actions of TSH while others may be independent of pituitary function. IGF-I also participates in pathological conditions of the thyroid, including benign enlargement and tumorigenesis, such as those occurring in acromegaly. With regard to Graves' disease (GD) and the periocular process frequently associated with it, namely thyroid-associated ophthalmopathy (TAO), IGF-IR has been found overexpressed in orbital connective tissues, T and B cells in GD and TAO. Autoantibodies of the IgG class are generated in patients with GD that bind to IGF-IR and initiate the signaling from the TSHR/IGF-IR physical and functional protein complex. Further, inhibition of IGF-IR with monoclonal antibody inhibitors can attenuate signaling from either TSHR or IGF-IR. Based on those findings, the development of teprotumumab, a β-arrestin biased agonist as a therapeutic has resulted in the first medication approved by the US FDA for the treatment of TAO. Teprotumumab is now in wide clinical use in North America.
Collapse
|
35
|
Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X, Sun T. IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 2020; 22:4837-4847. [PMID: 33173998 PMCID: PMC7646924 DOI: 10.3892/mmr.2020.11578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has been reported to have various functions in different cellular contexts. Our previous investigation discovered that IGFBP-rP1 inhibited retinal angiogenesis in vitro and in vivo by inhibiting the pro-angiogenic effect of VEGF and downregulating VEGF expression. Recently, IGFBP-rP1 was confirmed to be downregulated in the aqueous humor of patients with neovascular age-related macular degeneration compared with controls; however, its specific role remains unknown. The present study applied the technique of gene silencing, reverse transcription-quantitative PCR, western blotting, cell viability assays, cell motility assays and tube formation assays. Chemical hypoxic conditions and choroidal endothelial (RF/6A) cells were used to explore the effect of IGFBP-rP1-silencing on the phenotype activation of RF/6A cells under hypoxic conditions and to elucidate the underlying mechanisms. siRNA achieved IGFBP-rP1-silencing in RF/6A cells without cytotoxicity. IGFBP-rP1-silencing significantly restored the viability of RF/6A cells in hypoxia and enhanced hypoxia-induced migration and capillary-like tube formation of RF/6A cells. Furthermore, IGFBP-rP1-silencing significantly upregulated the expression of B-RAF, phosphorylated (p)-MEK, p-ERK and VEGF in RF/6A cells under hypoxic conditions; however, these upregulations were inhibited by exogenous IGFBP-rP1. These data indicated that silencing IGFBP-rP1 expression in RF/6A cells effectively promoted the hypoxia-induced angiogenic potential of choroidal endothelial cells by upregulating RAF/MEK/ERK signaling pathway activation and VEGF expression.
Collapse
Affiliation(s)
- Shuting Zhu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Hong Wang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhihua Zhang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Mingming Ma
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhi Zheng
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xun Xu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Tao Sun
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
36
|
The Contributive Role of IGFBP-3 and Mitochondria in Synoviocyte-Induced Osteoarthritis through Hypoxia/Reoxygenation Injury: A Pathogenesis-Focused Literature Review. Int J Chronic Dis 2020. [DOI: 10.1155/2020/5143712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA), one of the most common joint disorders, is characterized by chronic progressive cartilage degradation, osteophyte formation, and synovial inflammation. OA lesions are not only located in articular cartilage but also in the entire synovial joint. Nevertheless, most of the early studies done mostly focused on the important role of chondrocyte apoptosis and cartilage degeneration in the pathogenesis and progress of OA. The increased expression of hypoxia-inducible factors (HIF-1α and HIF-2α) is known to be the cellular and biochemical signal that mediates the response of chondrocytes to hypoxia. The role of the synovium in OA pathogenesis had been poorly evaluated. Being sensitive to hypoxia/reoxygeneration (H/R) injury, fibroblast-like synoviocytes (FLS) play an essential role in cartilage degradation during the course of this pathology. Insulin-like growth factor binding protein 3 (IGFBP-3) acts as the main carrier of insulin-like growth factor I (IGF-I) in the circulation and remains the most abundant among the six IGFBPs. Synovial fluids of OA patients have markedly increased levels of IGFBP-3. We aim to discuss the interconnected behavior of IGFBP-3 and synoviocytes during the course of osteoarthritis pathogenesis, especially under the influence of hypoxia-inducible factors. In this review, we present information related to the essential role that is played by IGFBP-3 and mitochondria in synoviocyte-induced osteoarthritis through H/R injury. Little research has been done in this area. However, strong evidences show that the level of IGFBP-3 in synovial fluid significantly increased in OA, inhibiting the binding of IGF-1 to IGFR 1 (IGF receptor-1) and therefore the inhibition of cell proliferation. To the best of our knowledge, this is the first paper providing a comprehensive explanatory contribution of IGFBP-3 and mitochondria in synovial cell-induced osteoarthritis through hypoxia/reoxygenation mechanism.
Collapse
|
37
|
Kim JY, Park S, Lee HJ, Lew H, Kim GJ. Functionally enhanced placenta-derived mesenchymal stem cells inhibit adipogenesis in orbital fibroblasts with Graves' ophthalmopathy. Stem Cell Res Ther 2020; 11:469. [PMID: 33153489 PMCID: PMC7643360 DOI: 10.1186/s13287-020-01982-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Placenta-derived mesenchymal stem cells (PD-MSCs) have unique immunomodulatory properties. Phosphatase of regenerating liver-1 (PRL-1) regulates the self-renewal ability of stem cells and promotes proliferation. Graves' ophthalmopathy (GO) is an autoimmune inflammatory disease of the orbit and is characterized by increased orbital levels of adipose tissue. Here, we evaluated the therapeutic mechanism for regulation of adipogenesis by PRL-1-overexpressing PD-MSCs (PD-MSCsPRL-1, PRL-1+) in orbital fibroblast (OF) with GO patients. METHODS PD-MSCs isolated from human placenta were transfected with the PRL-1 gene using nonviral transfection method. Primary OFs were isolated from orbital adipose tissue specimens from GO patients. After maturation as adipogenic differentiation, normal and GO-derived OFs were cocultured with naïve and PD-MSCsPRL-1. We analyzed the protein levels of adipogenesis markers and their signaling pathways in OFs from GO patients. RESULTS The characteristics of PD-MSCsPRL-1 were similar to those of naïve cells. OFs from GO patients induced adipocyte differentiation and had significantly decreased a lipid accumulation after coculture with PD-MSCsPRL-1 compared to naïve cells. The mRNA and protein expression of adipogenic markers was decreased in PD-MSCsPRL-1. Insulin-like growth factor-binding proteins (IGFBPs) secreting PD-MSCsPRL-1 downregulated the phosphorylated PI3K/AKT/mTOR expression in OFs from GO patients. Interestingly, IGFBP2, - 4, - 6, and - 7 expression in PD-MSCsPRL-1, which was mediated by integrin alpha 4 (ITGA4) and beta 7 (ITGB7), was higher than that in naïve cells and upregulated phosphorylated FAK downstream factor. CONCLUSION In summary, IGFBPs secreting PD-MSCPRL-1 inhibit adipogenesis in OFs from GO patients by upregulating phosphorylated FAK and downregulating PI3K/AKT/mTOR signaling pathway. The functional enhancement of PD-MSCs by nonviral gene modification provides a novel therapeutic strategy for the treatment of degenerative diseases.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Hyun-Jung Lee
- Center for Non-Clinical Development, CHA Advanced Research Institute CHA University, Seongnam, 13488, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center CHA University, Seongnam, 13496, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
38
|
Ahmed A, Ahmed S, Arvidsson M, Bouzina H, Lundgren J, Rådegran G. Elevated plasma sRAGE and IGFBP7 in heart failure decrease after heart transplantation in association with haemodynamics. ESC Heart Fail 2020; 7:2340-2353. [PMID: 32548968 PMCID: PMC7524060 DOI: 10.1002/ehf2.12772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS Metabolic derangement is implicated in the pathophysiology of heart failure (HF) and pulmonary hypertension (PH). We aimed to identify the dynamics of metabolic plasma proteins linked to end-stage HF and associated PH in relation to haemodynamics, before and after heart transplantation (HT). METHODS AND RESULTS Twenty-one metabolic plasma proteins were analysed with proximity extension assay in 20 controls and 26 patients before and 1 year after HT. Right heart catheterizations were performed in the HF patients pre-operatively and 1 year after HT. Plasma levels of soluble receptor for advanced glycation end products (sRAGE) and insulin-like growth factor-binding protein 7 (IGFBP7) were higher in HF patients compared with controls (P < 0.0001) and decreased after HT (P < 0.0001), matching controls' levels. The decrease in sRAGE after HT correlated with improved mean pulmonary arterial pressure (rs = 0.7; P < 0.0001), pulmonary arterial wedge pressure (rs = 0.73; P < 0.0001), pulmonary vascular resistance (rs = 0.65; P = 0.00062), and pulmonary arterial compliance (rs = -0.52; P = 0.0074). The change in plasma IGFBP7 after HT correlated with improved mean right atrial pressure (rs = 0.71; P = 0.00011) and N-terminal pro-brain natriuretic peptide (rs = 0.71; P < 0.0001). CONCLUSIONS Our results indicate that plasma sRAGE may reflect passive pulmonary vascular congestion and the 'mechanical' state of the pulmonary vasculature in HF patients with or without related PH. Furthermore, sRAGE and IGFBP7 may provide additional insight into the pathophysiological mechanisms in HF and associated PH. Their potential clinical and therapeutic relevance in HF and associated PH need further investigation.
Collapse
Affiliation(s)
- Abdulla Ahmed
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Salaheldin Ahmed
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Mattias Arvidsson
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Habib Bouzina
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Jakob Lundgren
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Göran Rådegran
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| |
Collapse
|
39
|
Fermented Oyster Extract Promotes Insulin-Like Growth Factor-1-Mediated Osteogenesis and Growth Rate. Mar Drugs 2020; 18:md18090472. [PMID: 32962034 PMCID: PMC7551862 DOI: 10.3390/md18090472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Fermented oyster (Crassostrea gigas) extract (FO) prevents ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis and activating osteogenesis. However, the molecular mechanisms underlying FO-mediated bone formation and growth rate are unclear. In the current study, we found that FO significantly upregulated the expression of growth-promoting genes in zebrafish larvae including insulin-like growth factor 1 (zigf-1), insulin-like growth factor binding protein 3 (zigfbp-3), growth hormone-1 (zgh-1), growth hormone receptor-1 (zghr-1), growth hormone receptor alpha (zghra), glucokinase (zgck), and cholecystokinin (zccka). In addition, zebrafish larvae treated with 100 μg/mL FO increased in total body length (3.89 ± 0.13 mm) at 12 days post fertilization (dpf) compared to untreated larvae (3.69 ± 0.02 mm); this effect was comparable to that of the β-glycerophosphate-treated zebrafish larvae (4.00 ± 0.02 mm). Furthermore, FO time- and dose-dependently increased the extracellular release of IGF-1 from preosteoblast MC3T3-E1 cells, which was accompanied by high expression of IGF-1. Pharmacological inhibition of IGF-1 receptor (IGF-1R) using picropodophyllin (PPP) significantly reduced FO-mediated vertebrae formation (from 9.19 ± 0.31 to 5.53 ± 0.35) and growth performance (from 3.91 ± 0.02 to 3.69 ± 0.01 mm) in zebrafish larvae at 9 dpf. Similarly, PPP significantly decreased FO-induced calcium deposition in MC3T3-E1 cells by inhibiting GSK-3β phosphorylation at Ser9. Additionally, DOI hydrochloride, a potent stabilizer of GSK-3β, reduced FO-induced nuclear translocation of RUNX2. Transient knockdown of IGF-1Rα/β using specific silencing RNA also resulted in a significant decrease in calcium deposition and reduction in GSK-3β phosphorylation at Ser9 in MC3T3-E1 cells. Altogether, these results indicate that FO increased phosphorylated GSK-3β at Ser9 by activating the autocrine IGF-1-mediated IGF-1R signaling pathway, thereby promoting osteogenesis and growth performance. Therefore, FO is a potential nutritional supplement for bone formation and growth.
Collapse
|
40
|
Sharker MR, Hossen S, Nou IS, Kho KH. Characterization of Insulin-Like Growth Factor Binding Protein 7 (Igfbp7) and Its Potential Involvement in Shell Formation and Metamorphosis of Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2020; 21:ijms21186529. [PMID: 32906674 PMCID: PMC7555818 DOI: 10.3390/ijms21186529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are secreted proteins that play an important role in IGF regulation of growth and development of vertebrate and invertebrates. In this study, the IGFBP7 gene was cloned and characterized from mantle tissues of H. discus hannai, and designated as Hdh IGFBP7. The full-length cDNA sequence transcribed from the Hdh IGFBP7 gene was 1519-bp long with an open reading frame of 720-bp corresponding to a putative polypeptide of 239 amino acids. The molecular mass of its mature protein was approximately 23.44 KDa with an estimated isoelectric point (pI) of 5.35, and it shared significant homology with IGFBP7 gene of H. madaka. Hdh IGFBP7 has a characteristic IGFBP N-terminal domain (22–89 aa), a kazal-type serine proteinase inhibitor domain (77–128), and an immunoglobulin-like C2 domain (144–223). Furthermore, twelve cysteine residues and a signature motif of IGFBPs (XCGCCXXC) were found in its N-terminal domain. Phylogenetic analysis revealed that Hdh IGFBP7 was aligned with IGFBP7 of H. madaka. Tissue distribution analysis showed that the mRNA of Hdh IGFBP7 was expressed in all examined tissues, with the highest expression level observed in the mantle and gill tissues. The expression level of Hdh IGFBP7 mRNA was relatively higher at the juvenile stage during its metamorphosis period. In situ hybridization showed that Hdh IGFBP7 transcript was expressed in epithelial cells of the dorsal mantle pallial and mucus cells of the branchial epithelium in gill. These results provide basic information for future studies on the role of IGFBP7 in IGF regulation of shell growth, development and metamorphosis of abalone.
Collapse
Affiliation(s)
- Md. Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626, Korea; (M.R.S.); (S.H.)
| | - Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626, Korea; (M.R.S.); (S.H.)
| | - Ill-Sup Nou
- Department of Horticulture, College of Life Science and Natural Resources, Sunchon National University, 255, Jungang-ro, Suncheon-Si, Jeollanam-do 57922, Korea;
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626, Korea; (M.R.S.); (S.H.)
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
41
|
Beatty AE, Schwartz TS. Gene expression of the IGF hormones and IGF binding proteins across time and tissues in a model reptile. Physiol Genomics 2020; 52:423-434. [PMID: 32776803 PMCID: PMC7509249 DOI: 10.1152/physiolgenomics.00059.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) network regulates cellular processes including pre- and postnatal growth, cellular development, wound healing, reproduction, and longevity. Despite their importance in the physiology of vertebrates, the study of the specific functions of the top regulators of the IIS network, insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs), has been mostly limited to a few model organisms. To expand our understanding of this network, we performed quantitative gene expression of IGF hormones in liver and qualitative expression of IGFBPs across tissues and developmental stages in a model reptile, the brown anole lizard (Anolis sagrei). We found that lizards express IGF2 across all life stages (preoviposition embryos to adulthood) and at a higher level than IGF1, which is opposite to patterns seen in laboratory rodents but similar to those seen in humans and other vertebrate models. IGFBP expression was ubiquitous across tissues (brain, gonad, heart, liver, skeletal muscle, tail, and regenerating tail) in adults, apart from IGFBP5, which was variable. These findings provide an essential foundation for further developing the anole lizard as a physiological and biomedical reptile model, as well as expanding our understanding of the function of the IIS network across species.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
42
|
Sharker MR, Kim SC, Hossen S, Kho KH. Characterization of Insulin-Like Growth Factor Binding Protein-5 (IGFBP-5) Gene and Its Potential Roles in Ontogenesis in the Pacific Abalone, Haliotis discus hannai. BIOLOGY 2020; 9:biology9080216. [PMID: 32784850 PMCID: PMC7465962 DOI: 10.3390/biology9080216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor binding protein family is known to be involved in regulating biological actions of insulin-like growth factors (IGFs). In the present study, a full-length cDNA encoding the IGFBP-5 gene was cloned and characterized from the cerebral ganglion of Haliotis discus hannai. The 921-bp full-length sequence of Hdh IGFBP-5 cDNA transcript had an open reading frame of 411 bp encoding a predicted polypeptide of 136 amino acids, sharing high sequence identities with IGFBP-5 of H. diversicolor. The deduced Hdh IGFBP-5 protein contained a putative transmembrane domain (13-35 aa) in the N-terminal region. It also possessed a signature domain of IGFBP protein family (IB domain, 45-120 aa). Six cysteine residues (Cys-47, Cys-55, Cys-73, Cys-85, Cys-98, and Cys-118) in this cloned sequence could potentially form an intrachain disulfide bond. Phylogenetic analysis indicated that the Hdh IGFBP-5 gene was robustly clustered with IGFBP-5 of H. diversicolor. Tissue distribution analysis based on qPCR assay showed that Hdh IGFBP-5 was widely expressed in all examined tissues, with significantly (p < 0.05) higher expression in the cerebral ganglion. In male and female gametogenetic cycles, Hdh IGFBP-5 mRNA was expressed at all stages, showing significantly higher level at ripening stage. The expression level of Hdh IGFBP-5 mRNA was significantly higher in the polar body stage than in other ontogenic stages. In situ hybridization revealed that Hdh IGFBP-5 mRNA was present in the neurosecretory cells of the cerebral ganglion. This is the first study describing IGFBP-5 in H. discus hannai that might be synthesized in the neural ganglia. Our results demonstrate Hdh IGFBP-5 is involved in regulating ontogenic development and reproductive regulation of H. discus hannai.
Collapse
Affiliation(s)
| | | | | | - Kang Hee Kho
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
43
|
Glucose-Regulated Protein 94 (GRP94): A Novel Regulator of Insulin-Like Growth Factor Production. Cells 2020; 9:cells9081844. [PMID: 32781621 PMCID: PMC7465916 DOI: 10.3390/cells9081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023] Open
Abstract
Mammals have two insulin-like growth factors (IGF) that are key mediators of somatic growth, tissue differentiation, and cellular responses to stress. Thus, the mechanisms that regulate the bioavailability of IGFs are important in both normal and aberrant development. IGF-I levels are primarily controlled via the growth hormone-IGF axis, in response to nutritional status, and also reflect metabolic diseases and cancer. One mechanism that controls IGF bioavailablity is the binding of circulating IGF to a number of binding proteins that keep IGF in a stable, but receptor non-binding state. However, even before IGF is released from the cells that produce it, it undergoes an obligatory association with a ubiquitous chaperone protein, GRP94. This binding is required for secretion of a properly folded, mature IGF. This chapter reviews the known aspects of the interaction and highlights the specificity issues yet to be determined. The IGF–GRP94 interaction provides a potential novel mechanism of idiopathic short stature, involving the obligatory chaperone and not just IGF gene expression. It also provides a novel target for cancer treatment, as GRP94 activity can be either inhibited or enhanced.
Collapse
|
44
|
Somri-Gannam L, Meisel-Sharon S, Hantisteanu S, Groisman G, Limonad O, Hallak M, Bruchim I. IGF1R Axis Inhibition Restores Dendritic Cell Antitumor Response in Ovarian Cancer. Transl Oncol 2020; 13:100790. [PMID: 32428851 PMCID: PMC7232112 DOI: 10.1016/j.tranon.2020.100790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. The insulin-like growth factor (IGF) system plays a key role in regulating growth and invasiveness in several malignancies, including ovarian cancer. IGF1R targeting showed antiproliferative activity of EOC cells. However, clinical studies failed to show significant benefit. EOC cells suppress antitumor immune responses by inducing dendritic cell (DC) dysfunction. The IGF1 axis can regulate DC maturation. The current study evaluated involvement of the IGF1 axis in DC differentiation in EOC. Studies were conducted on EOC and on a human monocyte cell line. Tissue microarray analysis (TMA) was performed on 36 paraffin blocks from EOC patients. Expression of IGF1R, p53, Ki67, BRCA1, and DC markers was evaluated using immunohistochemistry. Co-culture of EOC cells with DC pretreated with IGF1R inhibitor blocked cancer cell migration. TMA demonstrated higher rate of IGF1R protein expression in patients with advanced (76.9%) as compared to early (40%) EOC. A negative correlation between IGF1R protein expression and the CD1c marker was found. These findings provide evidence that IGF1R axis inhibition could be a therapeutic strategy for ovarian cancer by restoring DC-mediated antitumor immunity.
Collapse
Affiliation(s)
- Lina Somri-Gannam
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Shilhav Meisel-Sharon
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel
| | - Shay Hantisteanu
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel
| | - Gabriel Groisman
- Institute of Pathology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ofer Limonad
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mordechai Hallak
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ilan Bruchim
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
45
|
Dorandish S, Devos J, Clegg B, Price D, Muterspaugh R, Guthrie J, Heyl DL, Evans HG. Biochemical determinants of the IGFBP-3-hyaluronan interaction. FEBS Open Bio 2020; 10:1668-1684. [PMID: 32592613 PMCID: PMC7396449 DOI: 10.1002/2211-5463.12919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022] Open
Abstract
IGFBP-3, the most abundant IGFBP and the main carrier of insulin-like growth factor I (IGF-I) in the circulation, can bind IGF-1 with high affinity, which attenuates IGF/IGF-IR interactions, thereby resulting in antiproliferative effects. The C-terminal domain of insulin-like growth factor-binding protein-3 (IGFBP-3) is known to contain an 18-basic amino acid motif capable of interacting with either humanin (HN) or hyaluronan (HA). We previously showed that the 18-amino acid IGFBP-3 peptide is capable of binding either HA or HN with comparable affinities to the full-length IGFBP-3 protein and that IGFBP-3 can compete with the HA receptor, CD44, for binding HA. Blocking the interaction between HA and CD44 reduced viability of A549 human lung cancer cells. In this study, we set out to better characterize IGFBP-3-HA interactions. We show that both stereochemistry and amino acid identity are important determinants of the interaction between the IGFBP-3 peptide and HA and for the peptide's ability to exert its cytotoxic effects. Binding of IGFBP-3 to either HA or HN was unaffected by glycosylation or reduction of IGFBP-3, suggesting that the basic 18-amino acid residue sequence of IGFBP-3 remains accessible for interaction with either HN or HA upon glycosylation or reduction of the full-length protein. Removing N-linked oligosaccharides from CD44 increased its ability to compete with IGFBP-3 for binding HA, while reduction of CD44 rendered the protein relatively ineffective at blocking IGFBP-3-HA interactions. We conclude that both deglycosylation and disulfide bond formation are important for CD44 to compete with IGFBP-3 for binding HA.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Jonathan Devos
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Bradley Clegg
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Deanna Price
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | | | - Jeffrey Guthrie
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Deborah L. Heyl
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Hedeel Guy Evans
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| |
Collapse
|
46
|
Chen X, Yu Q, Pan H, Li P, Wang X, Fu S. Overexpression of IGFBP5 Enhances Radiosensitivity Through PI3K-AKT Pathway in Prostate Cancer. Cancer Manag Res 2020; 12:5409-5418. [PMID: 32753958 PMCID: PMC7351625 DOI: 10.2147/cmar.s257701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background Radiotherapy is the main treatment for localized prostate cancer. The therapeutic effects of radiotherapy are highly dependent on radiosensitivity of target tumors. Here, we investigated the impact of insulin-like growth factor-binding protein 5 (IGFBP5) on irradiation therapy in prostate cancer. Methods IGFBP5 gene was overexpressed in human prostate cancer cell lines, PC3 and DU145, with transfection of lentivirus expression vector. Radiosensitivity of the cell lines was assessed with colony formation, cell cycle and cell proliferation assays. The expression of proteins associated with the PI3K-AKT pathway was determined by Western blotting. The effect of IGFBP5 knockdown on PI3K-AKT pathway was tested using PI3K inhibitor. Results Higher expression of IGFBP5 improved the efficacy of radiotherapy for prostate cancer patients. The effects of IGFBP5 were linked to the PI3K-AKT signaling pathway. Overexpression of IGFBP5 enhanced radiosensitivity and induced G2/M phase arrest in prostate cancer cells. In contrast, it decreased PI3K, p-AKT expression and cell viability. These effects were reversed by IGFBP5 knockdown. Conclusion Our results reveal that IGFBP5 regulates radiosensitivity in prostate cancer via the PI3K-AKT pathway. It is, therefore, a potential biomarker of tumors that influences the therapeutic effect of radiotherapy.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hailun Pan
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.,Institute of Modern Physics, Fudan University, Shanghai, People's Republic of China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People's Republic of China
| | - Xufei Wang
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.,Institute of Modern Physics, Fudan University, Shanghai, People's Republic of China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, People's Republic of China.,Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Kashyap S, Zeidler JD, Chini CCS, Chini EN. Implications of the PAPP-A-IGFBP-IGF-1 pathway in the pathogenesis and treatment of polycystic kidney disease. Cell Signal 2020; 73:109698. [PMID: 32569826 DOI: 10.1016/j.cellsig.2020.109698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic diseases implicated in the development of end stage renal disease (ESRD). Although FDA has recently approved a drug against ADPKD, there is still a great need for development of alternative management strategies for ADPKD. Understanding the different mechanisms that lead to cystogenesis and cyst expansion in ADPKD is imperative to develop new therapies against ADPKD. Recently, we demonstrated that caloric restriction can prevent the development of cystic disease in animal models of ADPKD and through these studies identified a new role for pregnancy associated plasma protein-A (PAPP-A), a component of the insulin-like growth factors (IGF) pathway, in the pathogenesis of this disease. The PAPP-A-IGF pathway plays an important role in regulation of cell growth, differentiation, and transformation and dysregulation of this pathway has been implicated in many diseases. Several indirect studies support the involvement of IGF-1 in the pathogenesis of ADPKD. However, it was only recently that we described a direct role for a component of this pathway in pathogenesis of ADPKD, opening a new avenue for the therapeutic approaches for this cystic disease. The present literature review will critically discuss the evidence that supports the role of components of IGF pathway in the pathogenesis of ADPKD and discuss the pharmacological implications of PAPP-A-IGF axis in this disease.
Collapse
Affiliation(s)
- Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
48
|
Insight into the Regulatory Relationships between the Insulin-Like Androgenic Gland Hormone Gene and the Insulin-Like Androgenic Gland Hormone-binding Protein Gene in Giant Freshwater Prawns ( Macrobrachium rosenbergii). Int J Mol Sci 2020; 21:ijms21124207. [PMID: 32545658 PMCID: PMC7352508 DOI: 10.3390/ijms21124207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
Giant freshwater prawns (Macrobrachium rosenbergii) are commonly found throughout the world. The size of the male giant freshwater prawn is much larger than that of the female. Therefore, understanding the molecular mechanism that underlies the sexual differentiation of M. rosenbergii is of both commercial and scientific importance. Insulin-like androgenic gland hormone (IAG) plays a key role in the differentiation of sex in M. rosenbergii. Although IAG has been investigated, the regulatory relationship between IAG and its binding protein partner, the insulin-like androgenic gland hormone-binding protein (IAGBP), has not been studied in M. rosenbergii. Here, we cloned and characterized the IAGBP from M. rosenbergii (Mr-IAGBP) for the very first time. Transcriptomic analysis showed that Mr-IAGBP mRNA was detected in a wide array of tissues with the highest expression found in the androgenic gland. The importance of IAG in male development was further demonstrated by an increase in IAG transcripts during the development of the androgenic gland and Mr-IAG was only highly transcribed in the androgenic gland of M. rosenbergii. Interestingly, we found that the Mr-IAG gene expression started during the 20th-day larva after hatching stage (LH20), followed (20th-day post-larval stage, PL20) by a gradual elevation of Mr-IAGBP levels. The levels of both genes peaked at the adult stage. The relationship between Mr-IAGBP and Mr-IAG was further analyzed using RNA interference. The injection of Mr-IAGBP double-stranded RNA (dsRNA) significantly reduced the transcription of Mr-IAG, while the amount of Mr-IAGBP mRNA and the translation of IAGBP protein was significantly reduced by the injection of Mr-IAG dsRNA. These results revealed that IAGBP is involved in IAG signaling. Furthermore, our data supports the hypothesis that (IAG and IAGBP)-IAG receptor signaling schemes exist in M. rosenbergii. Our results will provide important information for the further study of determining the sex of M. rosenbergii.
Collapse
|
49
|
Polidori N, Castorani V, Mohn A, Chiarelli F. Deciphering short stature in children. Ann Pediatr Endocrinol Metab 2020; 25:69-79. [PMID: 32615685 PMCID: PMC7336267 DOI: 10.6065/apem.2040064.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/16/2020] [Indexed: 01/15/2023] Open
Abstract
Short stature is a common reason for referral to pediatric endocrinologists. Multiple factors, including genetic, prenatal, postnatal, and local environmental factors, can impair growth. The majority of children with short stature, which can be defined as a height less than 2 standard deviation score below the mean, are healthy. However, in some cases, they may have an underlying relevant disease; thus, the aim of clinical evaluation is to identify the subset of children with pathologic conditions, for example growth hormone deficiency or other hormonal abnormalities, Turner syndrome, inflammatory bowel disease, or celiac disease. Prompt identification and management of these children can prevent excessive short stature in adulthood. In addition, a thorough clinical assessment may allow evaluation of the severity of short stature and likely growth trajectory to identify the most effective interventions. Consequently, appropriate diagnosis of short stature should be performed as early as possible and personalized treatment should be started in a timely manner. An increase in knowledge and widespread availability of genetic and epigenetic testing in clinical practice in recent years has empowered the diagnostic process and appropriate treatment for short stature. Furthermore, novel treatment approaches that can be used both as diagnostic tools and as therapeutic agents have been developed. This article reviews the diagnostic approach to children with short stature, discusses the main causes of short stature in children, and reports current therapeutic approaches and possible future treatments.
Collapse
Affiliation(s)
- Nella Polidori
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | - Angelika Mohn
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy,Address for correspondence: Francesco Chiarelli, MD, PhD Department of Pediatrics, University of Chieti, Via dei Vestini, 5, I-66100 Chieti, Italy Tel: +39-0871-358015 Fax: +39-0871-574538 E-mail:
| |
Collapse
|
50
|
Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells 2020; 9:cells9051261. [PMID: 32443727 PMCID: PMC7290346 DOI: 10.3390/cells9051261] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a p53 tumor suppressor-regulated protein and a major carrier for IGFs in circulation. Among six high-affinity IGFBPs, which are IGFBP-1 through 6, IGFBP-3 is the most extensively investigated IGFBP species with respect to its IGF/IGF-I receptor (IGF-IR)-independent biological actions beyond its endocrine/paracrine/autocrine role in modulating IGF action in cancer. Disruption of IGFBP-3 at transcriptional and post-translational levels has been implicated in the pathophysiology of many different types of cancer including breast, prostate, and lung cancer. Over the past two decades, a wealth of evidence has revealed both tumor suppressing and tumor promoting effects of IGF/IGF-IR-independent actions of IGFBP-3 depending upon cell types, post-translational modifications, and assay methods. However, IGFBP-3′s anti-tumor function has been well accepted due to identification of functional IGFBP-3-interacting proteins, putative receptors, or crosstalk with other signaling cascades. This review mainly focuses on transmembrane protein 219 (TMEM219), which represents a novel IGFBP-3 receptor mediating antitumor effect of IGFBP-3. Furthermore, this review delineates the potential underlying mechanisms involved and the subsequent biological significance, emphasizing the clinical significance of the IGFBP-3/TMEM219 axis in assessing both the diagnosis and the prognosis of cancer as well as the therapeutic potential of TMEM219 agonists for cancer treatment.
Collapse
Affiliation(s)
- Qing Cai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
| | - Mikhail Dozmorov
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Correspondence: ; Tel.: +1-804-827-1324
| |
Collapse
|