1
|
Arruda AC, Santos RB, Freitas-Lima LC, Budu A, Perilhão MS, Wasinski F, Arthur GM, Guzmán RR, Gomes G, Pesquero JB, Mecawi AS, Bader M, Keller AC, Donato Junior J, Festuccia WT, Mori MA, Araujo RC. 16/8 intermittent fasting in mice protects from diet-induced obesity by increasing leptin sensitivity and postprandial thermogenesis. Acta Physiol (Oxf) 2025; 241:e70036. [PMID: 40186359 DOI: 10.1111/apha.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
AIMS To evaluate the molecular mechanisms involved in intermittent fasting 16/8 (16/8 IF), a widespread dietary practice adopted worldwide that consists of 16 h of fasting and 8 h of feeding. METHODS Obese mice were fasted daily from 6 am to 10 pm. Food intake, body weight, and energy expenditure were measured. Molecular mechanisms were investigated using ELISA, western blot, and qPCR of white and brown adipose tissues. Glucose homeostasis was also evaluated. Ucp1 knockout and ob/ob mice were utilized. RESULTS The 16/8 IF regimen improved glucose homeostasis and reduced body weight, food intake, and overall adiposity. Postprandial VO2, heat production, brown adipose tissue (BAT) temperature, and ketone bodies increased with 16/8 IF. Postprandial thermogenesis induced by 16/8 IF was abolished in mice after BAT denervation or Ucp1 deletion. Serum leptin levels were elevated, and most metabolic effects of 16/8 IF were absent in leptin-deficient ob/ob mice. Additionally, leptin sensitivity increased in mice exposed to 16/8 IF. CONCLUSION The 16/8 IF regimen can improve metabolism, with findings underscoring the role of enhanced leptin action in inhibiting food intake and promoting postprandial thermogenesis during 16/8 IF.
Collapse
Affiliation(s)
- Adriano Cleis Arruda
- Laboratory of Genetics and Exercise Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Raisa Brito Santos
- Laboratory of Genetics and Exercise Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leandro Ceotto Freitas-Lima
- Laboratory of Genetics and Exercise Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alexandre Budu
- Laboratory of Genetics and Exercise Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mauro Sergio Perilhão
- Laboratory of Genetics and Exercise Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriel Melo Arthur
- Laboratory of Genetics and Exercise Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Roger Rodrigues Guzmán
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme Gomes
- Department of Science and Innovation, Predikta - Scientific Solutions, São Paulo University, São Paulo, São Paulo, Brazil
| | - Joao Bosco Pesquero
- Departament of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité University Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Alexandre Castro Keller
- Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - José Donato Junior
- Department of Physiology and Biophysics, Institute of Biomedical Science, Sao Paulo University, São Paulo, São Paulo, Brazil
| | - Willian Tadeu Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Science, Sao Paulo University, São Paulo, São Paulo, Brazil
| | - Marcelo A Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, de Biology Institute, UNICAMP, São Paulo, São Paulo, Brazil
| | - Ronaldo Carvalho Araujo
- Laboratory of Genetics and Exercise Metabolism, Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Brown TK, Dang C, Del Carmen A, Alharbi S, Chao CL, Xiong L, John NW, Smires A, Ho KJ, Jiang B. Mice Models for Peripheral Denervation to Enhance Vascular Regeneration. Tissue Eng Part C Methods 2025; 31:119-129. [PMID: 40062562 DOI: 10.1089/ten.tec.2025.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Sympathetic innervation plays a critical role in regulating vascular function, yet its influence on vascular regeneration and reinnervation following ischemic injury remains poorly understood. This study develops and validates murine models of localized sympathetic denervation using 6-hydroxydopamine (6-OHDA) to enable study of the sympathetic nervous system's impact on vascular systems during tissue repair. Two methods of 6-OHDA administration were employed: a single topical application during open surgery and minimally invasive weekly subcutaneous injections. The topical application model achieved temporary denervation lasting 1 week without causing vascular damage, while the subcutaneous injection model provided sustained denervation for up to 4 weeks with minimal inflammation and no significant changes to vascular architecture. To investigate the effects of denervation in an ischemic context, these models were combined with a hindlimb ischemia model. Ischemia induced persistent denervation in both 6-OHDA-treated and control limbs, with limited sympathetic nerve regeneration observed over 4 weeks. Despite persistent denervation, microvascular density and perfusion recovery in ischemic muscles were comparable between denervated and control groups. This suggests that ischemia governs vascular regeneration independently of sympathetic input. These results demonstrate that localized 6-OHDA administration provides a versatile tool for achieving controlled sympathetic denervation in peripheral arteries. These models provide a novel platform for studying vascular regeneration and reinnervation under both normal and ischemic conditions, offering novel insights into the interactions between neural regulation and vascular repair processes. This work lays the foundation for future research into neural-vascular crosstalk and new possibilities for developing regenerative therapies targeting the autonomic regulation of vascular health.
Collapse
Affiliation(s)
- Taylor K Brown
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Caitlyn Dang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aurea Del Carmen
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sara Alharbi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Calvin L Chao
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Liqun Xiong
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nikita Wilson John
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Aidan Smires
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Karen J Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Honeycutt MK, Slattery JD, Rambousek JR, Tsui E, Wolden-Hanson T, Wietecha TA, Graham JL, Tapia GP, Sikkema CL, O'Brien KD, Mundinger TO, Peskind ER, Ryu V, Havel PJ, Khan AM, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of Oxytocin (OT)-elicited reductions of body weight gain and adiposity in male diet-induced obese rats. FRONTIERS IN DRUG DELIVERY 2024; 4:1497746. [PMID: 39866535 PMCID: PMC11759500 DOI: 10.3389/fddev.2024.1497746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (TIBAT) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats. To test this, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of BW in DIO rats. We first confirmed that bilateral surgical SNS denervation to IBAT was successful based on having achieved ≥ 60% reduction in IBAT norepinephrine (NE) content from DIO rats. NE content was selectively reduced in IBAT by 94.7 ± 2.7, 96.8 ± 1.8 and 85.9 ± 6.1% (P<0.05) at 1, 6 and 7-weeks post-denervation, respectively, and was unchanged in liver or inguinal white adipose tissue. We then measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (1, 5 μg) to stimulate TIBAT in DIO rats. We found that the high dose of 4V OT (5 μg) stimulated TIBAT similarly between sham and denervated rats (P=NS) and that the effects of 4V OT to stimulate TIBAT did not require beta-3 adrenergic receptor signaling. We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day) or vehicle infusion to reduce BW, adiposity, and energy intake in DIO rats. Chronic 4V OT reduced BW gain by -7.2 ± 9.6 g and -14.1 ± 8.8 g in sham and denervated rats (P<0.05 vs vehicle treatment), respectively, and this effect was similar between groups (P=NS). These effects were associated with reductions in adiposity and energy intake (P<0.05). Collectively, these findings support the hypothesis that sympathetic innervation of IBAT is not required for central OT to increase BAT thermogenesis and reduce BW gain and adiposity in male DIO rats.
Collapse
Affiliation(s)
- Melise M Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ha K Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Andrew D Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Adam J Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Geronimo P Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carl L Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Gerald J Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Miyamori H, Yokokawa T, Miyakita M, Ozaki K, Goto T, Inoue K, Matsumura S. CRTC1 in Mc4r-Expressing Cells Is Required for Peripheral Metabolism and Systemic Energy Homeostasis. Diabetes 2024; 73:1976-1989. [PMID: 39264819 DOI: 10.2337/db24-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Melanocortin-4 receptor (Mc4r) is a G protein-coupled receptor that controls systemic energy balance by regulating food intake and energy expenditure. Although the detailed molecular mechanism remains unclear, the activation of cAMP signaling in Mc4r-expressing cells reportedly suppresses food intake and increases energy expenditure. CREBP-regulated transcriptional coactivator-1 (CRTC1) is selectively expressed in neuronal cells and participates in transcriptional control, thereby contributing to neuronal plasticity and energy homeostasis. Considering the cAMP-dependent regulation of CRTC1 activity, CRTC1 in Mc4r-expressing cells may contribute to energy balance regulation through the melanocortin pathway. In this context, we examined the physiological contribution of CRTC1 in Mc4r-expressing cells to energy metabolism. In this study, mice with CRTC1 deficiency in Mc4r-expressing cells exhibited 1) modest obesity, glucose intolerance, insulin resistance, hyperinsulinemia, and hyperlipidemia; 2) decreased systemic energy expenditure and thermogenesis; 3) suppression of melanocortin agonist-induced adaptation of energy expenditure and food intake; 4) impaired thermogenic programs and oxidative pathway in brown adipose tissue and skeletal muscle; and 5) enhanced lipogenic programs in the liver and white adipose tissue. These results provide novel insights into the molecular mechanisms underlying the regulation of energy balance by the melanocortin system. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Haruka Miyamori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Motoki Miyakita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuki Ozaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
5
|
Omoto ACM, do Carmo JM, Mouton AJ, Wang Z, Li X, Spitz R, Hall JE, da Silva AA. Targeting the Brain Leptin-Melanocortin Pathway to Treat Heart Failure. Curr Hypertens Rep 2024; 27:2. [PMID: 39612121 PMCID: PMC11607000 DOI: 10.1007/s11906-024-01318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE OF THE REVIEW The role of leptin in regulating cardiac function is still controversial with conflicting results in clinical and preclinical studies. However, most previous studies have not considered leptin's powerful cardiac effects that are mediated via activation of central nervous system (CNS) leptin receptors (LepRs) which, in turn, elicit major improvements in cardiac metabolism. In this review, we focus mainly on the role of leptin in regulating cardiac function via its CNS LepRs and downstream signaling pathways, such as the brain melanocortin system. RECENT FINDINGS Studies from our laboratory showed that CNS LepR activation, without raising plasma leptin levels, has remarkable beneficial effects on cardiac metabolism and function that protect the heart during pathological conditions, including heart failure (HF) induced by myocardial infarction (MI). These cardioprotective effects of leptin appear to be mediated by stimulation of CNS proopiomelanocortin neurons and subsequent activation of melanocortin 4 receptors (MC4R) in the brain. Chronic activation of the brain leptin-melanocortin pathway improves cardiac function and metabolism following myocardial infarction. However, the mechanism underlying this brain-heart crosstalk remains unclear and may have important implications for the development of new therapies for MI and HF.
Collapse
Affiliation(s)
- Ana C M Omoto
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Alan J Mouton
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Zhen Wang
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Xuan Li
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Robert Spitz
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - John E Hall
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| |
Collapse
|
6
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Honeycutt MK, Slattery JD, Rambousek JR, Tsui E, Wolden-Hanson T, Wietecha TA, Graham JL, Tapia GP, Sikkema CL, O'Brien KD, Mundinger TO, Peskind ER, Ryu V, Havel PJ, Khan AM, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of OT-elicited reductions of body weight gain and adiposity in male diet-induced obese rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612710. [PMID: 39345420 PMCID: PMC11430106 DOI: 10.1101/2024.09.12.612710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (TIBAT) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats. To test this, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of BW in DIO rats. We first confirmed that bilateral surgical SNS denervation to IBAT was successful based on having achieved ≥ 60% reduction in IBAT norepinephrine (NE) content from DIO rats. NE content was selectively reduced in IBAT by 94.7 ± 2.7, 96.8 ± 1.8 and 85.9 ± 6.1% (P<0.05) at 1, 6 and 7-weeks post-denervation, respectively, and was unchanged in liver or inguinal white adipose tissue. We then measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (1, 5 μg) to stimulate TIBAT in DIO rats. We found that the high dose of 4V OT (5 μg) stimulated TIBAT similarly between sham and denervated rats (P=NS) and that the effects of 4V OT to stimulate TIBAT did not require beta-3 adrenergic receptor signaling. We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day) or vehicle infusion to reduce BW, adiposity, and energy intake in DIO rats. Chronic 4V OT reduced BW gain by -7.2 ± 9.6 g and -14.1 ± 8.8 g in sham and denervated rats (P<0.05 vs vehicle treatment), respectively, and this effect was similar between groups (P=NS). These effects were associated with reductions in adiposity and energy intake (P<0.05). Collectively, these findings support the hypothesis that sympathetic innervation of IBAT is not required for central OT to increase BAT thermogenesis and reduce BW gain and adiposity in male DIO rats.
Collapse
Affiliation(s)
- Melise M Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ha K Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Andrew D Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Adam J Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Geronimo P Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carl L Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Gerald J Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Dodson AD, Herbertson AJ, Honeycutt MK, Vered R, Slattery JD, Goldberg M, Tsui E, Wolden-Hanson T, Graham JL, Wietecha TA, O’Brien KD, Havel PJ, Sikkema CL, Peskind ER, Mundinger TO, Taborsky GJ, Blevins JE. Sympathetic Innervation of Interscapular Brown Adipose Tissue Is Not a Predominant Mediator of Oxytocin-Induced Brown Adipose Tissue Thermogenesis in Female High Fat Diet-Fed Rats. Curr Issues Mol Biol 2024; 46:11394-11424. [PMID: 39451559 PMCID: PMC11506511 DOI: 10.3390/cimb46100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have indicated that hindbrain [fourth ventricle (4V)] administration of the neurohypophyseal hormone, oxytocin (OT), reduces body weight, energy intake and stimulates interscapular brown adipose tissue temperature (TIBAT) in male diet-induced obese (DIO) rats. What remains unclear is whether chronic hindbrain (4V) OT can impact body weight in female high fat diet-fed (HFD) rodents and whether this involves activation of brown adipose tissue (BAT). We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of interscapular brown adipose tissue (IBAT) contributes to its ability to activate BAT and reduce body weight in female high HFD-fed rats. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of body weight in DIO rats. We first measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (0.5, 1, and 5 µg ≈ 0.5, 0.99, and 4.96 nmol) to stimulate TIBAT in female HFD-fed rats. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) stimulated TIBAT similarly between sham rats and denervated rats (p = NS). We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day ≈ 16.1 μg/day) or vehicle infusion to reduce body weight, adiposity and energy intake in female HFD-fed rats (N = 7-8/group). Chronic 4V OT reduced body weight gain (sham: -18.0 ± 4.9 g; denervation: -15.9 ± 3.7 g) and adiposity (sham: -13.9 ± 3.7 g; denervation: -13.6 ± 2.4 g) relative to vehicle treatment (p < 0.05) and these effects were similar between groups (p = NS). These effects were attributed, in part, to reduced energy intake evident during weeks 2 (p < 0.05) and 3 (p < 0.05). To test whether these results translate to other female rodent species, we also examined the effect of chronic 4V infusion of OT on body weight and adiposity in two strains of female HFD-fed mice. Similar to what we found in the HFD-fed rat model, we also found that chronic 4V OT (16 nmol/day) infusion resulted in reduced body weight gain, adiposity and energy intake in female DIO C57BL/6J and DBA/2J mice (p < 0.05 vs. vehicle). Together, these findings suggest that (1) sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and weight loss in female HFD-fed rats and (2) the effects of OT to reduce weight gain and adiposity translate to other female mouse models of diet-induced obesity (DIO).
Collapse
Affiliation(s)
- Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Ron Vered
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - James L. Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Carl L. Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas O. Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| | - Gerald J. Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| |
Collapse
|
8
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha TA, Honeycutt MK, Slattery JD, O’Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema CL, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. Front Endocrinol (Lausanne) 2024; 15:1440070. [PMID: 39145314 PMCID: PMC11321955 DOI: 10.3389/fendo.2024.1440070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (TIBAT, a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase TIBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9 ± 2.0, 77.4 ± 12.7 and 93.6 ± 4.6% (P<0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on TIBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated TIBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7 ± 2.23% and 6.6 ± 1.4% in sham and denervated mice (P<0.05), respectively, and this effect was similar between groups (P=NS). OT produced corresponding reductions in whole body fat mass (P<0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Thomas O. Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Carl L. Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Vitaly Ryu
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gerald J. Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
9
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha T, Honeycutt MK, Slattery JD, O'Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema C, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596425. [PMID: 38854021 PMCID: PMC11160755 DOI: 10.1101/2024.05.29.596425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (T IBAT , a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase T IBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9±2.0, 77.4±12.7 and 93.6±4.6% ( P <0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on T IBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated T IBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7±2.23% and 6.6±1.4% in sham and denervated mice ( P <0.05), respectively, and this effect was similar between groups ( P =NS). OT produced corresponding reductions in whole body fat mass ( P <0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
|
10
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Speakman JR, Elmquist JK. Obesity: an evolutionary context. LIFE METABOLISM 2022; 1:10-24. [PMID: 36394061 PMCID: PMC9642988 DOI: 10.1093/lifemeta/loac002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
People completely lacking body fat (lipodystrophy/lipoatrophy) and those with severe obesity both show profound metabolic and other health issues. Regulating levels of body fat somewhere between these limits would, therefore, appear to be adaptive. Two different models might be contemplated. More traditional is a set point (SP) where the levels are regulated around a fixed level. Alternatively, dual-intervention point (DIP) is a system that tolerates fairly wide variation but is activated when critically high or low levels are breached. The DIP system seems to fit our experience much better than an SP, and models suggest that it is more likely to have evolved. A DIP system may have evolved because of two contrasting selection pressures. At the lower end, we may have been selected to avoid low levels of fat as a buffer against starvation, to avoid disease-induced anorexia, and to support reproduction. At the upper end, we may have been selected to avoid excess storage because of the elevated risks of predation. This upper limit of control seems to have malfunctioned because some of us deposit large fat stores, with important negative health effects. Why has evolution not protected us against this problem? One possibility is that the protective system slowly fell apart due to random mutations after we dramatically reduced the risk of being predated during our evolutionary history. By chance, it fell apart more in some people than others, and these people are now unable to effectively manage their weight in the face of the modern food glut. To understand the evolutionary context of obesity, it is important to separate the adaptive reason for storing some fat (i.e. the lower intervention point), from the nonadaptive reason for storing lots of fat (a broken upper intervention point). The DIP model has several consequences, showing how we understand the obesity problem and what happens when we attempt to treat it.
Collapse
Affiliation(s)
- John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental biology, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
| | - Joel K Elmquist
- Departments of Internal Medicine and Pharmacology, Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
12
|
McMillan TR, Forster MAM, Short LI, Rudecki AP, Cline DL, Gray SL. Melanotan II, a melanocortin agonist, partially rescues the impaired thermogenic capacity of pituitary adenylate cyclase-activating polypeptide deficient mice. Exp Physiol 2020; 106:427-437. [PMID: 33332767 DOI: 10.1113/ep088838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can chronic treatment of pituitary adenylate cyclase-activating polypeptide (PACAP) deficient mice with the melanocortin agonist melanotan II during cold acclimation rescue the impaired thermogenic capacity previously observed in PACAP deficient mice? What is the main finding and its importance? Using a genetic model of PACAP deficiency, this study provides evidence that PACAP acts upstream of the melanocortin system in regulating sympathetic nerve activity to brown adipose tissue in mice. ABSTRACT Impaired adipose tissue function in obesity, including reduced thermogenic potential, has detrimental consequences for metabolic health. Hormonal regulation of adaptive thermogenesis is being explored as a potential therapeutic target for human obesity. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide expressed in nuclei of the hypothalamus known to regulate energy expenditure, and functional studies reveal a role for PACAP in the central regulation of thermogenesis, although mechanisms are not well understood. We hypothesized that PACAP acts upstream of the melanocortin system to regulate sympathetic nerve activity to stimulate thermogenesis. To assess this, female PACAP-/- and PACAP+/+ mice were given daily peripheral injections of a melanocortin receptor agonist, melanotan II (MTII), for 3 weeks during cold acclimation, and the effect of MTII on thermogenic capacity and adipose tissue remodelling was examined by physiological and histological analyses. MTII partially rescued the impaired thermogenic capacity in PACAP-/- mice as compared to PACAP+/+ mice as determined by measuring noradrenaline-induced metabolic rate. In addition, MTII treatment during cold acclimation corrected the previously identified deficit in lipid utilization in response to adrenergic stimulation in PACAP-/- null mice, suggesting impaired lipid mobilization may contribute to the impaired thermogenic capacity of PACAP-/- mice. Results presented here provide physiological evidence to suggest that PACAP acts upstream of melanocortin receptors to facilitate sympathetically induced mechanisms of adaptive thermogenesis in response to cold acclimation.
Collapse
Affiliation(s)
- Thecla Rae McMillan
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Alexander P Rudecki
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
13
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
14
|
Seoane-Collazo P, Martínez-Sánchez N, Milbank E, Contreras C. Incendiary Leptin. Nutrients 2020; 12:nu12020472. [PMID: 32069871 PMCID: PMC7071158 DOI: 10.3390/nu12020472] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 02/08/2023] Open
Abstract
Leptin is a hormone released by adipose tissue that plays a key role in the control of energy homeostasis through its binding to leptin receptors (LepR), mainly expressed in the hypothalamus. Most scientific evidence points to leptin’s satiating effect being due to its dual capacity to promote the expression of anorexigenic neuropeptides and to reduce orexigenic expression in the hypothalamus. However, it has also been demonstrated that leptin can stimulate (i) thermogenesis in brown adipose tissue (BAT) and (ii) the browning of white adipose tissue (WAT). Since the demonstration of the importance of BAT in humans 10 years ago, its study has aroused great interest, mainly in the improvement of obesity-associated metabolic disorders through the induction of thermogenesis. Consequently, several strategies targeting BAT activation (mainly in rodent models) have demonstrated great potential to improve hyperlipidemias, hepatic steatosis, insulin resistance and weight gain, leading to an overall healthier metabolic profile. Here, we review the potential therapeutic ability of leptin to correct obesity and other metabolic disorders, not only through its satiating effect, but by also utilizing its thermogenic properties.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Noelia Martínez-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| |
Collapse
|
15
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
16
|
Derghal A, Djelloul M, Azzarelli M, Degonon S, Tourniaire F, Landrier JF, Mounien L. MicroRNAs are involved in the hypothalamic leptin sensitivity. Epigenetics 2018; 13:1127-1140. [PMID: 30395773 DOI: 10.1080/15592294.2018.1543507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The central nervous system monitors modifications in metabolic parameters or hormone levels (leptin) and elicits adaptive responses such as food intake and glucose homeostasis regulation. Particularly, within the hypothalamus, pro-opiomelanocortin (POMC) neurons are crucial regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the Pomc gene causes hyperphagia and obesity. Pomc gene expression is tightly controlled by different mechanisms. Interestingly, recent studies pointed to a key role for micro ribonucleic acid (miRNAs) in the regulation of gene expression. However, the role of miRNAs in the leptin sensitivity in hypothalamic melanocortin system has never been assessed. We developed a transgenic mouse model (PDKO) with a partial deletion of the miRNA processing enzyme DICER specifically in POMC neurons. PDKO mice exhibited a normal body weight but a decrease of food intake. Interestingly, PDKO mice had decreased metabolic rate by reduction of VO2 consumption and CO2 production which could explain that PDKO mice have normal weight while eating less. Interestingly, we observed an increase of leptin sensitivity in the POMC neurons of PDKO mice which could explain the decrease of food intake in this model. We also observed an increase in the expression of genes involved in the function of brown adipose tissue that is in polysynaptic contact with the POMC neurons. In summary, these results support the hypothesis that Dicer-derived miRNAs may be involved in the effect of leptin on POMC neurons activity.
Collapse
Affiliation(s)
- Adel Derghal
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| | - Mehdi Djelloul
- b Department of Cell and Molecular Biology , Karolinska Institute , Stockholm , Sweden
| | | | | | - Franck Tourniaire
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Jean-François Landrier
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Lourdes Mounien
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| |
Collapse
|
17
|
Podyma B, Sun H, Wilson EA, Carlson B, Pritikin E, Gavrilova O, Weinstein LS, Chen M. The stimulatory G protein G sα is required in melanocortin 4 receptor-expressing cells for normal energy balance, thermogenesis, and glucose metabolism. J Biol Chem 2018; 293:10993-11005. [PMID: 29794140 DOI: 10.1074/jbc.ra118.003450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Central melanocortin 4 receptors (MC4Rs) stimulate energy expenditure and inhibit food intake. MC4Rs activate the G protein Gsα, but whether Gsα mediates all MC4R actions has not been established. Individuals with Albright hereditary osteodystrophy (AHO), who have heterozygous Gsα-inactivating mutations, only develop obesity when the Gsα mutation is present on the maternal allele because of tissue-specific genomic imprinting. Furthermore, evidence in mice implicates Gsα imprinting within the central nervous system (CNS) in this disorder. In this study, we examined the effects of Gsα in MC4R-expressing cells on metabolic regulation. Mice with homozygous Gsα deficiency in MC4R-expressing cells (MC4RGsKO) developed significant obesity with increased food intake and decreased energy expenditure, along with impaired insulin sensitivity and cold-induced thermogenesis. Moreover, the ability of the MC4R agonist melanotan-II (MTII) to stimulate energy expenditure and to inhibit food intake was impaired in MC4RGsKO mice. MTII failed to stimulate the secretion of the anorexigenic hormone peptide YY (PYY) from enteroendocrine L cells, a physiological response mediated by MC4R-Gsα signaling, even though baseline PYY levels were elevated in these mice. In Gsα heterozygotes, mild obesity and reduced energy expenditure were present only in mice with a Gsα deletion on the maternal allele in MC4R-expressing cells, whereas food intake was unaffected. These results demonstrate that Gsα signaling in MC4R-expressing cells is required for controlling energy balance, thermogenesis, and peripheral glucose metabolism. They further indicate that Gsα imprinting in MC4R-expressing cells contributes to obesity in Gsα knockout mice and probably in individuals with Albright hereditary osteodystrophy as well.
Collapse
Affiliation(s)
| | - Hui Sun
- From the Metabolic Diseases Branch and
| | | | | | | | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Min Chen
- From the Metabolic Diseases Branch and
| |
Collapse
|
18
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Morrison SF. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:281-303. [PMID: 30454595 DOI: 10.1016/b978-0-444-63912-7.00017-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fundamental central neural circuits for thermoregulation orchestrate behavioral and autonomic repertoires that maintain body core temperature during thermal challenges that arise from either the ambient or the internal environment. This review summarizes our understanding of the neural pathways within the fundamental thermoregulatory reflex circuitry that comprise the efferent (i.e., beyond thermosensory) control of brown adipose tissue (BAT) and shivering thermogenesis: the motor neuron systems consisting of the BAT sympathetic preganglionic neurons and BAT sympathetic ganglion cells, and the alpha- and gamma-motoneurons; the premotor neurons in the region of the rostral raphe pallidus, and the thermogenesis-promoting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area. Also included are inputs to, and neurochemical modulators of, these efferent neuronal populations that could influence their activity during thermoregulatory responses. Signals of metabolic status can be particularly significant for the energy-hungry thermoeffectors for heat production.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
20
|
Dore R, Levata L, Gachkar S, Jöhren O, Mittag J, Lehnert H, Schulz C. The thermogenic effect of nesfatin-1 requires recruitment of the melanocortin system. J Endocrinol 2017; 235:111-122. [PMID: 28851749 DOI: 10.1530/joe-17-0151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Nesfatin-1 is a bioactive polypeptide expressed both in the brain and peripheral tissues and involved in the control of energy balance by reducing food intake. Central administration of nesfatin-1 significantly increases energy expenditure, as demonstrated by a higher dry heat loss; yet, the mechanisms underlying the thermogenic effect of central nesfatin-1 remain unknown. Therefore, in this study, we sought to investigate whether the increase in energy expenditure induced by nesfatin-1 is mediated by the central melanocortin pathway, which was previously reported to mediate central nesfatin-1´s effects on feeding and numerous other physiological functions. With the application of direct calorimetry, we found that intracerebroventricular nesfatin-1 (25 pmol) treatment increased dry heat loss and that this effect was fully blocked by simultaneous administration of an equimolar dose of the melanocortin 3/4 receptor antagonist, SHU9119. Interestingly, the nesfatin-1-induced increase in dry heat loss was positively correlated with body weight loss. In addition, as assessed with thermal imaging, intracerebroventricular nesfatin-1 (100 pmol) increased interscapular brown adipose tissue (iBAT) as well as tail temperature, suggesting increased heat production in the iBAT and heat dissipation over the tail surface. Finally, nesfatin-1 upregulated pro-opiomelanocortin and melanocortin 3 receptor mRNA expression in the hypothalamus, accompanied by a significant increase in iodothyronine deiodinase 2 and by a nonsignificant increase in uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha mRNA in the iBAT. Overall, we clearly demonstrate that nesfatin-1 requires the activation of the central melanocortin system to increase iBAT thermogenesis and, in turn, overall energy expenditure.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Sogol Gachkar
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of BrainBehavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Yuan JH, Chen X, Dong J, Zhang D, Song K, Zhang Y, Wu GB, Hu XH, Jiang ZY, Chen P. Nesfatin-1 in the Lateral Parabrachial Nucleus Inhibits Food Intake, Modulates Excitability of Glucosensing Neurons, and Enhances UCP1 Expression in Brown Adipose Tissue. Front Physiol 2017; 8:235. [PMID: 28484396 PMCID: PMC5401881 DOI: 10.3389/fphys.2017.00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 01/11/2023] Open
Abstract
Nesfatin-1, an 82-amino acid neuropeptide, has been shown to induce anorexia and energy expenditure. Food intake is decreased in ad libitum-fed rats following injections of nesfatin-1 into the lateral, third, or fourth ventricles of the brain. Although the lateral parabrachial nucleus (LPBN) is a key regulator of feeding behavior and thermogenesis, the role of nesfatin-1 in this structure has not yet been delineated. We found that intra-LPBN microinjections of nesfatin-1 significantly reduced nocturnal cumulative food intake and average meal sizes without affecting meal numbers in rats. Because glucose sensitive neurons are involved in glucoprivic feeding and glucose homeostasis, we examined the effect of nesfatin-1 on the excitability of LPBN glucosensing neurons. In vivo electrophysiological recordings from LPBN glucose sensitive neurons showed that nesfatin-1 (1.5 × 10-8 M) excited most of the glucose-inhibited neurons. Chronic administration of nesfatin-1 into the LPBN of rats reduced body weight gain and enhanced the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) over a 10-day period. Furthermore, the effects of nesfatin-1 on food intake, body weight, and BAT were attenuated by treatment with the melanocortin antagonist SHU9119. These results demonstrate that nesfatin-1 in LPBN inhibited food intake, modulated excitability of glucosensing neurons and enhanced UCP1 expression in BAT via the melanocortin system.
Collapse
Affiliation(s)
- Jun-hua Yuan
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Xi Chen
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Jing Dong
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Di Zhang
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Kun Song
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Yue Zhang
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Guang-bo Wu
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Xi-hao Hu
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Zheng-yao Jiang
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, Qingdao UniversityQingdao, China
| |
Collapse
|
22
|
Cinti S, Garretson JT, Grill HJ, Levine AS, Trayhurn P. Tim Bartness, Ph.D. (1953-2015). Temperature (Austin) 2016; 3:31-8. [PMID: 27227091 PMCID: PMC4861213 DOI: 10.1080/23328940.2016.1150699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Saverio Cinti
- University of Ancona, School of Medicine , Ancona, Italy
| | - John T Garretson
- Georgia State University Neuroscience InstituteCenter for Obesity Reversal , Atlanta, GA, USA
| | - Harvey J Grill
- University of Pennsylvania, Department of Psychology , Philadelphia, PA, USA
| | - Allen S Levine
- University of Minnesota , Morrill Hall (Room 110) 100 Church Street , Minneapolis, MN 55455, USA
| | - Paul Trayhurn
- University of Liverpool, Obesity Biology Research Unit, Liverpool, UK & University of BuckinghamBuckingham Institute for Translational Medicine , Buckingham, UK
| |
Collapse
|
23
|
Møller CL, Pedersen SB, Richelsen B, Conde-Frieboes KW, Raun K, Grove KL, Wulff BS. Melanocortin agonists stimulate lipolysis in human adipose tissue explants but not in adipocytes. BMC Res Notes 2015; 8:559. [PMID: 26459134 PMCID: PMC4604100 DOI: 10.1186/s13104-015-1539-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/02/2015] [Indexed: 01/12/2023] Open
Abstract
Background The central melanocortin system is broadly involved in the regulation of mammalian nutrient utilization. However, the function of melanocortin receptors (MCRs) expressed directly in peripheral metabolic tissues is still unclear. The objective of this study was to investigate the lipolytic capacity of MC1-5R in differentiated adipocytes versus intact white adipose tissue. Results Non-selective MCR agonist α-MSH, MC5R-selective agonist PG-901 and MC4R-selective agonist LY2112688 significantly stimulated lipolysis in intact white adipose tissue, whereas stimulation of MCRs in differentiated adipocytes failed to do so. The lipolytic response of MC5R was decreased in intact human white adipose tissue when co-treating with β-adrenergic antagonist propranolol, suggesting that the effect may be dependent on neuronal innervation via noradrenalin release. Conclusion When developing an anti-obesity therapeutic drug with selective MC4R/MC5R properties, effects on lipolysis in white adipose tissue may be physiologically relevant.
Collapse
Affiliation(s)
- Cathrine Laustrup Møller
- Diabetes and Obesity Biology, Novo Nordisk A/S, 2760, Maaloev, Denmark. .,Steno Diabetes Center, Niels Steensensvej 2-4, 2820, Gentofte, Denmark.
| | - Steen B Pedersen
- Department of Endocrinology MEA, Aarhus University Hospital, 8000, Aarhus, Denmark.
| | - Bjørn Richelsen
- Department of Endocrinology MEA, Aarhus University Hospital, 8000, Aarhus, Denmark.
| | | | - Kirsten Raun
- Type 2 Diabetes, Novo Nordisk A/S, 2760, Maaloev, Denmark.
| | - Kevin L Grove
- Diabetes, Obesity and Metabolism, Oregon National Primate Research Centre, Oregon Health & Science University, Portland, OR, 97006, USA. .,Obesity Research, Novo Nordisk A/S, Seattle, WA, 98109, USA.
| | | |
Collapse
|
24
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
25
|
Monge-Roffarello B, Labbe SM, Roy MC, Lemay ML, Coneggo E, Samson P, Lanfray D, Richard D. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats. Endocrinology 2014; 155:3448-58. [PMID: 24949658 DOI: 10.1210/en.2013-2092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study was designed to investigate the involvement of the cannabinoid receptor 1 (CB1) in the stimulating effects of the melanocortin-4 receptor (MC4R) agonism on whole-body and brown adipose tissue (BAT) thermogenesis. In a first series of experiments, whole-body and BAT thermogenesis were investigated in rats infused in the third ventricle of the brain with the MC4R agonist melanotan II (MTII) and the CB1 agonist δ9-tetrahydrocannabinol (δ(9)-THC) or the CB1 antagonist AM251. Whole-body thermogenesis was measured by indirect calorimetry and BAT thermogenesis assessed from interscapular BAT (iBAT) temperature. δ(9)-THC blunted the effects of MTII on energy expenditure and iBAT temperature, whereas AM251 tended to potentiate the MTII effects. δ(9)-THC also blocked the stimulating effect of MTII on (14)C-bromopalmitate and (3)H-deoxyglucose uptakes in iBAT. Additionally, δ(9)-THC attenuated the stimulating effect of MTII on the expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1α), type II iodothyronine deiodinase (Dio2), carnitine palmitoyltransferase 1B (Cpt1b), and uncoupling protein 1 (Ucp1). In a second series of experiments, we addressed the involvement of the paraventricular hypothalamic nucleus (PVH) in the CB1-mediated effects of MTII on iBAT thermogenesis, which were assessed following the infusion of MTII in the PVH and δ(9)-THC or AM251 in the fourth ventricle of the brain. We demonstrated the ability of δ(9)-THC to blunt MTII-induced iBAT temperature elevation. δ(9)-THC also blocked the PVH effect of MTII on (14)C-bromopalmitate uptake as well as on Pgc1α and Dio2 expression in iBAT. Altogether the results of this study demonstrate the involvement of the PVH in the CB1-mediated stimulating effects of the MC4R agonist MTII on whole-body and BAT thermogenesis.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Animals
- Male
- Paraventricular Hypothalamic Nucleus/metabolism
- Peptides, Cyclic/metabolism
- Piperidines
- Pyrazoles
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Thermogenesis
- alpha-MSH/analogs & derivatives
- alpha-MSH/metabolism
Collapse
Affiliation(s)
- Boris Monge-Roffarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada G1V 4G5
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Monge-Roffarello B, Labbe SM, Lenglos C, Caron A, Lanfray D, Samson P, Richard D. The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. Am J Physiol Regul Integr Comp Physiol 2014; 307:R158-66. [DOI: 10.1152/ajpregu.00059.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was designed to investigate the role of the medial preoptic nucleus (MPO) as a site of the thermogenic and metabolic effects of the α-melanocyte-stimulating hormone analog melanotan II (MTII). We also assessed the involvement of the dorsomedial hypothalamic nucleus (DMH) by investigating the effects of the MPO infusion of MTII in rats with DMH lesions produced by kainic acid. Infusion of MTII in the MPO led to increases in interscapular brown adipose tissue (iBAT) temperature and iBAT uptake of 14C-bromopalmitate. Both increases were blocked by DMH lesions. iBAT temperature increase (area under curve) and 14C-bromopalmitate uptake emerged as two correlated variables ( r = 0.63, P < 0.001). DMH lesions also blocked MTII-induced expression of mRNAs coding for proteins involved in 1) thermogenesis [type II iodothyronine deiodinase ( Dio2) and peroxisome proliferator-activated receptor gamma coactivator 1-α ( Pgc1α)], 2) lipolysis [hormone-sensitive lipase ( Hsl)], and 3) lipogenesis [diacylglycerol-O-acyltransferase 2 ( Dgat2), fatty acid synthase ( Fas)], in iBAT of rats killed 1 h after MPO infusion of MTII. MTII also stimulated expression of genes in iWAT but only in rats with DMH lesions. These genes included glucose transporter member 4 ( Glut4), glycerol-3-phosphate acyltransferase 3 ( Gpat3), Dgat1, Dgat2, triglyceride lipase ( Atgl), Hsl, and carnitine palmitoyltransferase 1β ( Cpt1β). Altogether, the present results reveal the MPO as a site of the thermogenic and metabolic actions of MTII. They also contribute to establish the MPO-DMH duet as a significant target for melanocortins to modulate energy homeostasis.
Collapse
Affiliation(s)
- Boris Monge-Roffarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Sebastien M. Labbe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Christophe Lenglos
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Pierre Samson
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
27
|
Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 2014; 19:741-756. [PMID: 24630813 PMCID: PMC4016184 DOI: 10.1016/j.cmet.2014.02.007] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermogenesis, the production of heat energy, is the specific, neurally regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| | - Christopher J Madden
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| | - Domenico Tupone
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| |
Collapse
|
28
|
Geerling JJ, Boon MR, Kooijman S, Parlevliet ET, Havekes LM, Romijn JA, Meurs IM, Rensen PCN. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res 2014; 55:180-9. [PMID: 24285857 PMCID: PMC3886657 DOI: 10.1194/jlr.r045013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels. Interestingly, recent evidence points to a prominent role of the hypothalamus in TG metabolism through innervating the liver, WAT, and BAT mainly via sympathetic branches of the autonomic nervous system. Here, we review the recent findings in the area of sympathetic control of TG metabolism. Various neuronal populations, such as neuropeptide Y (NPY)-expressing neurons and melanocortin-expressing neurons, as well as peripherally produced hormones (i.e., GLP-1, leptin, and insulin), modulate sympathetic outflow from the hypothalamus toward target organs and thereby influence peripheral TG metabolism. We conclude that sympathetic stimulation in general increases lipolysis in WAT, enhances VLDL-TG production by the liver, and increases the activity of BAT with respect to lipolysis of TG, followed by combustion of fatty acids toward heat. Moreover, the increased knowledge about the involvement of the neuroendocrine system in TG metabolism presented in this review offers new therapeutic options to fight hypertriglyceridemia by specifically modulating sympathetic nervous system outflow toward liver, BAT, or WAT.
Collapse
Affiliation(s)
- Janine J. Geerling
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R. Boon
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin T. Parlevliet
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Louis M. Havekes
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Gaubius Laboratory, Netherlands Organization for Applied Scientific Research - Metabolic Health Research, Leiden, The Netherlands
| | - Johannes A. Romijn
- Department of Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Illiana M. Meurs
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Chechi K, Nedergaard J, Richard D. Brown adipose tissue as an anti-obesity tissue in humans. Obes Rev 2014; 15:92-106. [PMID: 24165204 DOI: 10.1111/obr.12116] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 12/27/2022]
Abstract
During the 11th Stock Conference held in Montreal, Quebec, Canada, world-leading experts came together to present and discuss recent developments made in the field of brown adipose tissue biology. Owing to the vast capacity of brown adipose tissue for burning food energy in the process of thermogenesis, and due to demonstrations of its presence in adult humans, there is tremendous interest in targeting brown adipose tissue as an anti-obesity tissue in humans. However, the future of such therapeutic approaches relies on our understanding of the origin, development, recruitment, activation and regulation of brown adipose tissue in humans. As reviewed here, the 11th Stock Conference was organized around these themes to discuss the recent progress made in each aspect, to identify gaps in our current understanding and to further provide a common groundwork that could support collaborative efforts aimed at a future therapy for obesity, based on brown adipose tissue thermogenesis.
Collapse
Affiliation(s)
- K Chechi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | | | | |
Collapse
|
30
|
Abstract
The central melanocortin system plays an essential role in the regulation of energy metabolism. Key to this regulation are the responses of neurons expressing proopiomelanocortin (POMC) and agouti-related protein (AgRP) to blood-borne metabolic signals. Recent evidence has demonstrated that POMC and AgRP neurons are not simply mirror opposites of each other in function and responsiveness to metabolic signals, nor are they exclusively first-order neurons. These neurons act as central transceivers, integrating both hormonal and neural signals, and then transmitting this information to peripheral tissues via the autonomic nervous system to coordinate whole-body energy metabolism. This review focuses on most recent developments obtained from rodent studies on the function, metabolic regulation, and circuitry of the central melanocortin system.
Collapse
Affiliation(s)
- James P. Warne
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison W. Xu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Kievit P, Halem H, Marks DL, Dong JZ, Glavas MM, Sinnayah P, Pranger L, Cowley MA, Grove KL, Culler MD. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 2013; 62:490-7. [PMID: 23048186 PMCID: PMC3554387 DOI: 10.2337/db12-0598] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The melanocortin-4 receptor (MC4R) is well recognized as an important mediator of body weight homeostasis. Activation of MC4R causes dramatic weight loss in rodent models, and mutations in human are associated with obesity. This makes MC4R a logical target for pharmacological therapy for the treatment of obesity. However, previous studies in rodents and humans have observed a broad array of side effects caused by acute treatment with MC4R agonists, including increased heart rate and blood pressure. We demonstrate that treatment with a highly-selective novel MC4R agonist (BIM-22493 or RM-493) resulted in transient decreases in food intake (35%), with persistent weight loss over 8 weeks of treatment (13.5%) in a diet-induced obese nonhuman primate model. Consistent with weight loss, these animals significantly decreased adiposity and improved glucose tolerance. Importantly, we observed no increases in blood pressure or heart rate with BIM-22493 treatment. In contrast, treatment with LY2112688, an MC4R agonist previously shown to increase blood pressure and heart rate in humans, caused increases in blood pressure and heart rate, while modestly decreasing food intake. These studies demonstrate that distinct melanocortin peptide drugs can have widely different efficacies and side effects.
Collapse
Affiliation(s)
- Paul Kievit
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Heather Halem
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
| | - Daniel L. Marks
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Jesse Z. Dong
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
| | - Maria M. Glavas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Puspha Sinnayah
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Lindsay Pranger
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Michael A. Cowley
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
- Corresponding authors: Michael D. Culler, , and Kevin L. Grove,
| | - Michael D. Culler
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
- Corresponding authors: Michael D. Culler, , and Kevin L. Grove,
| |
Collapse
|
32
|
Panickar KS. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol Nutr Food Res 2012; 57:34-47. [DOI: 10.1002/mnfr.201200431] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Kiran S. Panickar
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore MD USA
- Diet, Genomics, & Immunology Laboratory; Beltsville Human Nutrition Research Center; Agricultural Research Service; United States Department of Agriculture; Beltsville MD USA
| |
Collapse
|
33
|
De Jonghe BC, Hayes MR, Zimmer DJ, Kanoski SE, Grill HJ, Bence KK. Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency. Am J Physiol Endocrinol Metab 2012; 303:E644-51. [PMID: 22761160 PMCID: PMC3468506 DOI: 10.1152/ajpendo.00009.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.
Collapse
MESH Headings
- Animals
- Appetite Depressants/administration & dosage
- Appetite Depressants/pharmacology
- Appetite Regulation/drug effects
- Dose-Response Relationship, Drug
- Energy Metabolism/drug effects
- Female
- Gene Expression Regulation/drug effects
- Injections, Intraventricular
- Leptin/administration & dosage
- Leptin/metabolism
- Male
- Mice
- Mice, Knockout
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Organ Specificity
- Peptides, Cyclic/administration & dosage
- Peptides, Cyclic/pharmacology
- Pro-Opiomelanocortin/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- RNA, Messenger/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Rhombencephalon/drug effects
- Rhombencephalon/metabolism
- alpha-MSH/administration & dosage
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Bart C De Jonghe
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Birerdinc A, Jarrar M, Stotish T, Randhawa M, Baranova A. Manipulating molecular switches in brown adipocytes and their precursors: a therapeutic potential. Prog Lipid Res 2012; 52:51-61. [PMID: 22960032 DOI: 10.1016/j.plipres.2012.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 03/28/2012] [Accepted: 08/11/2012] [Indexed: 01/07/2023]
Abstract
Brown adipocytes constitute a metabolically active tissue responsible for non-shivering thermogenesis and the depletion of excess calories. Differentiation of brown fat adipocytes de novo or stimulation of pre-existing brown adipocytes within white adipose depots could provide a novel method for reducing the obesity and alleviating the consequences of type II diabetes worldwide. In this review, we addressed several molecular mechanisms involved in the control of brown fat activity, namely, the β₃-adrenergic stimulation of thermogenesis during exposure to cold or by catecholamines; the augmentation of thyroid function; the modulation of peroxisome proliferator-activated receptor gamma (PPARγ), transcription factors of the C/EBP family, and the PPARγ co-activator PRDM16; the COX-2-driven expression of UCP1; the stimulation of the vanilloid subfamily receptor TRPV1 by capsaicin and monoacylglycerols; the effects of BMP7 or its analogs; the cannabinoid receptor antagonists and melanogenesis modulating agents. Manipulating one or more of these pathways may provide a solution to the problem of harnessing brown fat's thermogenic potential. However, a better understanding of their interplay and other homeostatic mechanisms is required for the development of novel therapies for millions of obese and/or diabetic individuals.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Fairfax, VA, USA
| | | | | | | | | |
Collapse
|
35
|
Schneider JE, Klingerman CM, Abdulhay A. Sense and nonsense in metabolic control of reproduction. Front Endocrinol (Lausanne) 2012; 3:26. [PMID: 22649413 PMCID: PMC3355988 DOI: 10.3389/fendo.2012.00026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/04/2012] [Indexed: 12/16/2022] Open
Abstract
An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University Bethlehem, PA, USA.
| | | | | |
Collapse
|
36
|
Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci 2011; 31:12189-97. [PMID: 21865462 DOI: 10.1523/jneurosci.2336-11.2011] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leptin regulates body weight in mice by decreasing appetite and increasing sympathetic nerve activity (SNA), which increases energy expenditure in interscapular brown adipose tissue (iBAT). Diet-induced obese mice (DIO) are resistant to the anorectic actions of leptin. We evaluated whether leptin still stimulated sympathetic outflow in DIO mice. We measured iBAT temperature as a marker of SNA. We found that obese hyperleptinemic mice have higher iBAT temperature than mice on regular diet. Conversely, obese leptin-deficient ob/ob mice have lower iBAT temperature. Additionally, leptin increased SNA in obese (DIO and ob/ob) and control mice, despite DIO mice being resistant to anorectic action of leptin. We demonstrated that neurons in the dorsomedial hypothalamus (DMH) of DIO mice mediate the thermogenic responses to hyperleptinemia in obese mammals because blockade of leptin receptors in the DMH prevented the thermogenic effects of leptin. Peripheral Melotan II (MTII) injection increased iBAT temperature, but it was blunted by blockade of DMH melanocortin receptors (MC4Rs) by injecting agouti-related peptide (AgRP) directly into the DMH, suggesting a physiological role of the DMH on temperature regulation in animals with normal body weight. Nevertheless, obese mice without a functional melanocortin system (MC4R KO mice) have an increased sympathetic outflow to iBAT compared with their littermates, suggesting that higher leptin levels drive sympathoexcitation to iBAT by a melanocortin-independent pathway. Because the sympathetic nervous system contributes in regulating blood pressure, heart rate, and hepatic glucose production, selective leptin resistance may be a crucial mechanism linking adiposity and metabolic syndrome.
Collapse
|
37
|
De Jonghe BC, Hayes MR, Bence KK. Melanocortin control of energy balance: evidence from rodent models. Cell Mol Life Sci 2011; 68:2569-88. [PMID: 21553232 PMCID: PMC3135719 DOI: 10.1007/s00018-011-0707-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 01/18/2023]
Abstract
Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of longterm energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed.
Collapse
Affiliation(s)
- Bart C. De Jonghe
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matthew R. Hayes
- Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kendra K. Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
38
|
Vaughan CH, Shrestha YB, Bartness TJ. Characterization of a novel melanocortin receptor-containing node in the SNS outflow circuitry to brown adipose tissue involved in thermogenesis. Brain Res 2011; 1411:17-27. [PMID: 21802070 DOI: 10.1016/j.brainres.2011.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/01/2011] [Indexed: 11/19/2022]
Abstract
The melanocortins (MC) can affect interscapular brown adipose tissue (IBAT) thermogenesis via its sympathetic nervous system (SNS) innervation. We chose a site of high MC4-receptor (MC4-R) mRNA co-localization with SNS outflow neurons to IBAT, the subzona incerta (subZI) to test whether IBAT thermogenesis could be increased or decreased. We first performed immunohistochemical characterization of the subZI and found neurons and/or fibers in this area positive for melanin concentrating hormone, oxytocin, arginine vasopressin, agouti-related protein and alpha-melanocyte stimulating hormone. Functional characterization of the subZI was tested via site-specific microinjections. The MC3/4-R agonist, melanotan II [MTII (0.025, 0.05 and 0.075nmol)], and specific MC4-R agonist (cyclo [ß-Ala-His-D-Phe-Arg-Trp-Glu]-NH2; 0.024nmol) both significantly increased IBAT temperature (T(IBAT)) and pretreatment with the MC4R antagonist, HS024 (0.072nmol) blocked the MC4-R agonist-induced increased T(IBAT) in conscious, freely-moving Siberian hamsters. Injection of the MC4-R antagonist alone significantly decreased T(IBAT) up to 3h post injection. Collectively, these results highlight the identification of a brain area that possesses high concentrations of MC4-R mRNA and SNS outflow neurons to IBAT that has not been previously reported to be involved in the control of T(IBAT). These results add to previously identified neural nodes that are components of the central circuits controlling thermogenesis.
Collapse
MESH Headings
- Adipose Tissue, Brown/innervation
- Adipose Tissue, Brown/physiology
- Animals
- Arginine Vasopressin/pharmacology
- Cricetinae
- Dose-Response Relationship, Drug
- Immunohistochemistry
- Male
- Microinjections
- Phenotype
- Phodopus
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptors, Melanocortin/agonists
- Receptors, Melanocortin/antagonists & inhibitors
- Receptors, Melanocortin/physiology
- Stereotaxic Techniques
- Sympathetic Nervous System/metabolism
- Telemetry
- Thermogenesis/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- C H Vaughan
- Department of Biology, Center for Obesity Reversal, Georgia State University,Atlanta, GA, 30302-4010, USA
| | | | | |
Collapse
|
39
|
De Jonghe BC, Hayes MR, Banno R, Skibicka KP, Zimmer DJ, Bowen KA, Leichner TM, Alhadeff AL, Kanoski SE, Cyr NE, Nillni EA, Grill HJ, Bence KK. Deficiency of PTP1B in POMC neurons leads to alterations in energy balance and homeostatic response to cold exposure. Am J Physiol Endocrinol Metab 2011; 300:E1002-11. [PMID: 21406615 PMCID: PMC3118594 DOI: 10.1152/ajpendo.00639.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.
Collapse
Affiliation(s)
- Bart C De Jonghe
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Rodrigues E, Li G, Gao Y, King M, Carter CS, Tumer N, Cheng KY, Scarpace PJ. Simultaneous POMC gene transfer to hypothalamus and brainstem increases physical activity, lipolysis and reduces adult-onset obesity. Eur J Neurosci 2011; 33:1541-50. [PMID: 21366729 PMCID: PMC3079048 DOI: 10.1111/j.1460-9568.2011.07633.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pro-opiomelanocortin (POMC) neurons are identified in two brain sites, the arcuate nucleus of the hypothalamus and nucleus of the solitary tract (NTS) in brainstem. Earlier pharmacological and POMC gene transfer studies demonstrate that melanocortin activation in either site alone improves insulin sensitivity and reduces obesity. The present study, for the first time, investigated the long-term efficacy of POMC gene transfer concurrently into both sites in the regulation of energy metabolism in aged F344xBN rats bearing adult-onset obesity. Pair feeding was included to reveal food-independent POMC impact on energy expenditure. We introduced adeno-associated virus encoding either POMC or green fluorescence protein to the two brain areas in 22-month-old rats, then recorded food intake and body weight, assessed oxygen consumption, serum leptin, insulin and glucose, tested voluntary wheel running, analysed POMC expression, and examined fat metabolism in brown and white adipose tissues. POMC mRNA was significantly increased in both the hypothalamus and NTS region at termination. Relative to pair feeding, POMC caused sustained weight reduction and additional fat loss, lowered fasting insulin and glucose, and augmented white fat hormone-sensitive lipase activity and brown fat uncoupling protein 1 level. By wheel running assessment, the POMC animals ran twice the distance as the Control or pair-fed rats. Thus, the dual-site POMC treatment ameliorated adult-onset obesity effectively, involving a moderate hypophagia lasting ∼60 days, enhanced lipolysis and thermogenesis, and increased physical activity in the form of voluntary wheel running. The latter finding provides a clue for countering age-related decline in physical activity.
Collapse
Affiliation(s)
- Yi Zhang
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2011; 34 Suppl 1:S36-42. [PMID: 20935665 DOI: 10.1038/ijo.2010.182] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade of intracellular events ending in activation of uncoupling protein-1 (UCP-1). BAT also has sensory innervation that may function to monitor BAT lipolysis, a response necessary for activation of UCP-1 by fatty acids, or perhaps responding in a feedback manner to BAT temperature changes. The central sympathetic outflow circuits ultimately terminating in BAT have been revealed by injecting the retrograde viral transneuronal tract tracer, pseudorabies virus, into the tissue; moreover, there is a high degree of colocalization of melanocortin 4-receptor mRNA on these neurons across the neural axis. The necessary and sufficient central BAT SNS outflow sites that are activated by various thermogenic stimuli are not precisely known. In a chronic decerebration procedure, IBAT UCP-1 gene expression can be triggered by fourth ventricular injections of melanotan II, the melanocortin 3/4 receptor agonist, suggesting that there is sufficient hindbrain neural circuitry to generate thermogenic responses with this stimulation. The recent recognition of BAT in normal adult humans suggests a potential target for stimulation of energy expenditure by BAT to help mitigate increased body fat storage.
Collapse
Affiliation(s)
- T J Bartness
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
| | | | | |
Collapse
|
42
|
Tanida M, Shintani N, Hashimoto H. The melanocortin system is involved in regulating autonomic nerve activity through central pituitary adenylate cyclase-activating polypeptide. Neurosci Res 2011; 70:55-61. [PMID: 21291921 DOI: 10.1016/j.neures.2011.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a peptidergic neurotransmitter that is highly expressed in the nervous system. We have previously reported that a central injection of PACAP leads to changes in the autonomic nervous system tones including sympathetic excitation and parasympathetic inhibition. An anatomical study revealed that melanocortin and PACAP are colocalized in some hypothalamic nuclei. Here, we investigated the possible role of the melanocortin system in autonomic control by PACAP using SHU9119, an antagonist of the melanocortin receptors (MC3-R/MC4-R). Pretreatment with SHU-9119 did not affect the activating neural responses of adrenal, renal, and lumbar sympathetic nerves following a PACAP injection However, SHU9119 significantly eliminated the suppressing effect of a PACAP injection on gastric vagal nerve activity and excitation effects on liver and brown adipose tissue sympathetic nerve activities. These results suggest that the brain melanocortin system might play a key role in the control of thermogenic sympathetic outflows and digestive parasympathetic outflow by PACAP, but this system does not participate in the central effects of PACAP on cardiovascular function and neural activities of renal, adrenal, and lumbar sympathetic nerves.
Collapse
Affiliation(s)
- Mamoru Tanida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | | | | |
Collapse
|
43
|
Verty ANA, Allen AM, Oldfield BJ. The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinology 2010; 151:4236-46. [PMID: 20685882 DOI: 10.1210/en.2009-1235] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the neuronal pathways within the hypothalamus critical in controlling feeding and energy expenditure and projecting to brown adipose tissue (BAT) have been identified and their peptidergic content characterized, endogenous action of such peptides in the control of BAT activity has not been elucidated. Here male Sprague Dawley rats received infusions of either melanin-concentrating hormone antagonist (SNAP-7941) (1 microg/microl x h), orexin A receptor antagonist (SB-334867-A; 1 microg/microl x h), combined SB-334867-A (1 microg/microl x h), and SNAP-7941 (1 microg/microl x h), or melanocortin-3/4 receptor antagonist (SHU9119) (1 microg/microl x h) via an indwelling cannula in the lateral ventricle attached to s.c. implanted osmotic minipump. BAT temperature, physical activity, body weight, food intake, and changes in uncoupling protein (UCP)-1 were measured. SB-334867-A and SNAP-7941 significantly increased BAT temperature and UCP1 expression and reduced food intake and body weight. Combined infusion of SB-334867-A and SNAP-7941 produced a pronounced response that was greater than the addition of the individual effects in all parameters measured. SHU9119 significantly decreased BAT temperature and UCP1 expression and increased feeding and body weight. In a second series of experiments, the effect of SB-334867-A and SNAP-7941 alone or combination on the expression of the Fos protein was determined. SB-334867-A and SNAP-7941 increased Fos expression in key hypothalamic and brainstem feeding-related regions. In combination, these antagonists produced a greater than additive elevation of Fos expression in most of the regions evaluated. These findings support a role for endogenous orexigenic and anorexigenic hypothalamic peptides acting in concert to create a thermogenic tone via BAT activity.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiology
- Animals
- Benzoxazoles/pharmacology
- Blotting, Western
- Body Weight/drug effects
- Eating/drug effects
- Energy Metabolism/physiology
- Hypothalamic Hormones/antagonists & inhibitors
- Hypothalamic Hormones/metabolism
- Hypothalamic Hormones/physiology
- Ion Channels/metabolism
- Male
- Melanins/antagonists & inhibitors
- Melanins/metabolism
- Melanins/physiology
- Melanocyte-Stimulating Hormones/pharmacology
- Mitochondrial Proteins/metabolism
- Naphthyridines
- Orexin Receptors
- Piperidines/pharmacology
- Pituitary Hormones/antagonists & inhibitors
- Pituitary Hormones/metabolism
- Pituitary Hormones/physiology
- Pyrimidines/pharmacology
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, Neuropeptide/antagonists & inhibitors
- Thermogenesis/drug effects
- Thermogenesis/physiology
- Uncoupling Protein 1
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
- Aaron N A Verty
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
44
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
45
|
Abstract
Melanocortin peptides, derived from POMC (pro-opiomelanocortin) are produced in the ARH (arcuate nucleus of the hypothalamus) neurons and the neurons in the commissural NTS (nucleus of the solitary tract) of the brainstem, in anterior and intermediate lobes of the pituitary, skin and a wide range of peripheral tissues, including reproductive organs. A hypothetical model for functional roles of melanocortin receptors in maintaining energy balance was proposed in 1997. Since this time, there has been an extraordinary amount of knowledge gained about POMC-derived peptides in relation to energy homoeostasis. Development of a Pomc-null mouse provided definitive proof that POMC-derived peptides are critical for the regulation of energy homoeostasis. The melanocortin system consists of endogenous agonists and antagonists, five melanocortin receptor subtypes and receptor accessory proteins. The melanocortin system, as is now known, is far more complex than most of us could have imagined in 1997, and, similarly, the importance of this system for regulating energy homoeostasis in the general human population is much greater than we would have predicted. Of the known factors that can cause human obesity, or protect against it, the melanocortin system is by far the most significant. The present review is a discussion of the current understanding of the roles and mechanism of action of POMC, melanocortin receptors and AgRP (agouti-related peptide) in obesity and Type 2 diabetes and how the central and/or peripheral melanocortin systems mediate nutrient, leptin, insulin, gut hormone and cytokine regulation of energy homoeostasis.
Collapse
|
46
|
Shrestha YB, Vaughan CH, Smith BJ, Song CK, Baro DJ, Bartness TJ. Central melanocortin stimulation increases phosphorylated perilipin A and hormone-sensitive lipase in adipose tissues. Am J Physiol Regul Integr Comp Physiol 2010; 299:R140-9. [PMID: 20410474 DOI: 10.1152/ajpregu.00535.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norepinephrine (NE) released from the sympathetic nerves innervating white adipose tissue (WAT) is the principal initiator of lipolysis in mammals. Central WAT sympathetic outflow neurons express melanocortin 4-receptor (MC4-R) mRNA. Single central injection of melanotan II (MTII; MC3/4-R agonist) nonuniformly increases WAT NE turnover (NETO), increases interscapular brown adipose tissue (IBAT) NETO, and increases the circulating lipolytic products glycerol and free fatty acid. The WAT pads that contributed to this lipolysis were inferred from the increases in NETO. Because phosphorylation of perilipin A (p-perilipin A) and hormone-sensitive lipase are necessary for NE-triggered lipolysis, we tested whether MTII would increase these intracellular markers of lipolysis. Male Siberian hamsters received a single 3rd ventricular injection of MTII or saline. Trunk blood was collected at 0.5, 1.0, and 2.0 h postinjection from excised inguinal, retroperitoneal, and epididymal WAT (IWAT, RWAT, and EWAT, respectively) and IBAT pads. MTII increased circulating glycerol concentrations at 0.5 and 1.0 h, whereas free fatty acid concentrations were increased at 1.0 and 2.0 h. Western blot analysis showed that MTII specifically increased p-perilipin A and hormone-sensitive lipase only in fat pads that previously had MTII-induced increases in NETO. Phosphorylation increased in IWAT at all time points and IBAT at 0.5 h, but not RWAT or EWAT at any time point. These results show for the first time in rodents that p-perilipin A can serve as an in vivo, fat pad-specific indictor of lipolysis and extend our previous findings showing that central melanocortin stimulation increases WAT lipolysis.
Collapse
Affiliation(s)
- Y B Shrestha
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Collazo R, Gao Y, Li G, Scarpace PJ. Intermittent MTII application evokes repeated anorexia and robust fat and weight loss. Peptides 2010; 31:639-43. [PMID: 20034526 PMCID: PMC2860181 DOI: 10.1016/j.peptides.2009.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/12/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
Central melanocortins (MC) evoke potent but transient anorectic responses with tachyphylaxis developing within days. We hypothesized that intermittent therapy using the MC analog, melanotan II (MTII), would minimize the tachyphylaxis and enhance the long-term efficacy of MTII treatment. F344/BN rats were infused with MTII or vehicle into the lateral ventricle by mini pump for 14 days. Half the MTII-infused rats were then given vehicle (MTII-On/Off), while the remaining received fresh MTII (MTII-On) for 10 days. Finally, pumps in both groups were replaced with ones containing fresh MTII for an additional 6 days. The first MTII application induced a 30% food reduction that attenuated within 5 days. Reapplication of MTII in MTII-On/Off rats, after the off period, invoked a new and equally robust anorectic response while continuation of MTII supplement in the MTII-On group did not change food intake from the control level. Body weights decreased similarly in both MTII groups at termination (day 30). Hypothalamic MC3 receptor, AgRP, and POMC expressions were unchanged, but MC4 receptor expression was diminished by 25%, and adiposity reduced by 80% in both MTII groups. Acetyl-CoA carboxylase 1 phosphorylation was elevated in perirenal fat by over 10 fold with either MTII treatment. In conclusion, intermittent MTII treatment preserves anorectic responses but does not prevent tachyphylaxis, whereas constant MTII application blunts further food response after the initial tachyphylaxis. Either form of MTII administration results in significant weight and adiposity reductions, involving perhaps fatty acid oxidation within specific adipose tissues.
Collapse
Affiliation(s)
- Yi Zhang
- Research Department, Malcom Randall Veterans Affairs Medical Center-NF/SG HSC, Rm E585-1, 1601 SW Archer Road, Gainesville, FL 32608, USA.
| | | | | | | | | |
Collapse
|
48
|
Mountjoy KG. Distribution and function of melanocortin receptors within the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:29-48. [PMID: 21222258 DOI: 10.1007/978-1-4419-6354-3_3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological responses to pro-opiomelanocortin (POMC)-derived peptides administered in the brain were documented in the 1950s but their molecular mechanisms of action only began to be resolved with the mapping of melanocortin receptor subtypes to specific brain regions in the 1990s. Out of the five melanocortin receptor subtypes, MC3R and MC4R are widely recognised as 'neural' melanocortin receptors. In situ hybridization anatomical mapping of these receptor subtypes to distinct hypothalamic nuclei first indicated their roles in energy homeostasis, roles that were later confirmed with the obese phenotypes exhibited by Mc3R and Mc4R knockout mice. It is perhaps less well known however, that all five melanocortin receptor subtypes have been detected in developing and/or adult brains of various species. This chapter provides a comprehensive summary of the detection and mapping of each melanocortin receptor subtype in mammalian, chicken and fish brains and relates the sites of expression to functions that are either known or proposed for each receptor subtype.
Collapse
Affiliation(s)
- Kathleen G Mountjoy
- Departments of Physiology and Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|
49
|
Grill HJ. Leptin and the systems neuroscience of meal size control. Front Neuroendocrinol 2010; 31:61-78. [PMID: 19836413 PMCID: PMC2813996 DOI: 10.1016/j.yfrne.2009.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 12/14/2022]
Abstract
The development of effective pharmacotherapy for obesity will benefit from a more complete understanding of the neural pathways and the neurochemical signals whose actions result in the reduction of the size of meals. This review examines the neural control of meal size and the integration of two principal sources of that control--satiation signals arising from the gastrointestinal tract and CNS leptin signaling. Four types of integrations that are central to the control of meal size are described and each involves the neurons of the nucleus tractus solitarius (NTS) in the dorsal hindbrain. Data discussed show that NTS neurons integrate information arising from: (1) ascending GI-derived vagal afferent projections, (2) descending neuropeptidergic projections from leptin-activated arcuate and paraventricular nucleus neurons, (3) leptin signaling in NTS neurons themselves and (4) melanocortinergic projections from NTS and hypothalamic POMC neurons to NTS neurons and melanocortinergic modulation of vagal afferent nerve terminals that are presynaptic to NTS neurons.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Skibicka KP, Grill HJ. Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology 2009; 150:5351-61. [PMID: 19854868 PMCID: PMC2795709 DOI: 10.1210/en.2009-0804] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Forebrain ventricular delivery of melanocortin receptor (MC3/4R) agonist increases energy expenditure and decreases food intake (FI). Because forebrain ventricular delivery provides ligand to various anatomically distributed MC3/4R-bearing nuclei, it is unclear which of the receptor subpopulations contributes to the feeding suppression and the sympathetic-thermogenic effects observed. The literature indicates that reexpression of MC4R in the paraventricular nucleus (PVH) affects the feeding but not the energetic phenotype of the MC4R knockout, suggesting that divergent MC4R populations mediate energy expenditure (hindbrain) and FI (hypothalamus) effects of stimulation. Not consistent with this view are data indicating that PVH sympathetic projection neurons express MC4Rs and that feeding effects are induced from hindbrain MC4R sites. Therefore, we hypothesize an opposing perspective: that stimulation of anatomically diverse MC3/4R-bearing nuclei triggers energetic as well as feeding effects. To test this hypothesis, ventricle subthreshold doses of MC3/4R agonist (5 and 10 pmol) were applied in separate experiments to six hindbrain and hypothalamic sites; core temperature (Tc), heart rate (HR), spontaneous activity (SPA), and FI were measured in behaving rats. Nucleus tractus solitarius and PVH stimulation increased Tc, HR, and SPA and decreased FI. Rostral ventrolateral medulla, parabrachial nucleus, and retrochiasmatic area stimulation increased Tc, HR, but not SPA, and decreased FI. The response profile differed to some extent for each nucleus tested, suggesting differential output circuitries for the measured parameters. Data are consistent with the view that energetic and feeding responses are not controlled by regionally divergent MC3/4Rs and can be elicited from multiple, anatomically distributed MC3/4R populations.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Graduate Group of Psychology and Graduate Group of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|