1
|
Lewis GF, Mulvihill EE. The Complexities of Intestinal Lipoprotein Production in Insulin Resistance and Diabetes: Revisiting a 2010 Diabetes Classic by Pavlic et al. Diabetes 2024; 73:335-337. [PMID: 38377446 DOI: 10.2337/dbi23-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024]
Affiliation(s)
- Gary F Lewis
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Cook JR, Kohan AB, Haeusler RA. An Updated Perspective on the Dual-Track Model of Enterocyte Fat Metabolism. J Lipid Res 2022; 63:100278. [PMID: 36100090 PMCID: PMC9593242 DOI: 10.1016/j.jlr.2022.100278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
The small intestinal epithelium has classically been envisioned as a conduit for nutrient absorption, but appreciation is growing for a larger and more dynamic role for enterocytes in lipid metabolism. Considerable gaps remain in our knowledge of this physiology, but it appears that the enterocyte's structural polarization dictates its behavior in fat partitioning, treating fat differently based on its absorption across the apical versus the basolateral membrane. In this review, we synthesize existing data and thought on this dual-track model of enterocyte fat metabolism through the lens of human integrative physiology. The apical track includes the canonical pathway of dietary lipid absorption across the apical brush-border membrane, leading to packaging and secretion of those lipids as chylomicrons. However, this track also reserves a portion of dietary lipid within cytoplasmic lipid droplets for later uses, including the "second-meal effect," which remains poorly understood. At the same time, the enterocyte takes up circulating fats across the basolateral membrane by mechanisms that may include receptor-mediated import of triglyceride-rich lipoproteins or their remnants, local hydrolysis and internalization of free fatty acids, or enterocyte de novo lipogenesis using basolaterally absorbed substrates. The ultimate destinations of basolateral-track fat may include fatty acid oxidation, structural lipid synthesis, storage in cytoplasmic lipid droplets, or ultimate resecretion, although the regulation and purposes of this basolateral track remain mysterious. We propose that the enterocyte integrates lipid flux along both of these tracks in order to calibrate its overall program of lipid metabolism.
Collapse
Affiliation(s)
- Joshua R. Cook
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Alison B. Kohan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Department of Pathology and Cell Biology; Columbia University College of Physicians and Surgeons, New York, NY, USA,For correspondence: Rebecca A. Haeusler
| |
Collapse
|
3
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Lo CC, Coschigano KT. ApoB48 as an Efficient Regulator of Intestinal Lipid Transport. Front Physiol 2020; 11:796. [PMID: 32733283 PMCID: PMC7360825 DOI: 10.3389/fphys.2020.00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Fatty meals induce intestinal secretion of chylomicrons (CMs) containing apolipoprotein (Apo) B48. These CMs travel via the lymphatic system before entering the circulation. ApoB48 is produced after post-transcriptional RNA modification by Apobec-1 editing enzyme, exclusively in the small intestine of humans and most other mammals. In contrast, in the liver where Apobec-1 editing enzyme is not expressed (except in rats and mice), the unedited transcript encodes a larger protein, ApoB100, which is used in the formation of very low-density lipoproteins (VLDL) to transport liver-synthesized fat to peripheral tissues. Apobec-1 knockout (KO) mice lack the ability to perform ApoB RNA editing, and thus, express ApoB100 in the intestine. These mice, maintained on either a chow diet or high fat diet, have body weight gain and food intake comparable to their wildtype (WT) counterparts on the respective diet; however, they secrete larger triglyceride (TG)-rich lipoprotein particles and at a slower rate than the WT mice. Using a lymph fistula model, we demonstrated that Apobec-1 KO mice also produced fewer CMs and exhibited reduced lymphatic transport of TG in response to duodenal infusion of TG at a moderate dose; in contrast, the Apobec-1 KO and WT mice had similar lymphatic transport of TG when they received a high dose of TG. Thus, the smaller, energy-saving ApoB48 appears to play a superior role in comparison with ApoB100 in the control of intestinal lipid transport in response to dietary lipid intake, at least at low to moderate lipid levels.
Collapse
Affiliation(s)
- Chunmin C Lo
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Karen T Coschigano
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
5
|
Higgins V, Adeli K. Postprandial dyslipidemia in insulin resistant states in adolescent populations. J Biomed Res 2020; 34:328-342. [PMID: 32934193 PMCID: PMC7540238 DOI: 10.7555/jbr.34.20190094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity and the metabolic syndrome are becoming increasingly prevalent not only in adults, but also in adolescents. The metabolic syndrome, a complex cluster of metabolic abnormalities, increases one's risk of developing type 2 diabetes and cardiovascular disease (CVD). Dyslipidemia, a key component of the metabolic syndrome, is highly associated with insulin resistance and contributes to increased CVD risk. Dyslipidemia has traditionally been assessed using a fasting lipid profile [i.e. fasting triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C)]. However, the postprandial state predominates over the course of a day and non-fasting triglycerides independently predict CVD risk. In insulin resistant states, the intestine overproduces triglyceride-rich lipoprotein (TRL) particles, termed chylomicrons (CMs), following ingestion of a fat-containing meal, as well as in the fasting state. Along with elevated hepatic TRLs (i.e. very-low density lipoproteins), CMs contribute to remnant lipoprotein accumulation, small dense LDL particles, and reduced HDL-C, which collectively increase CVD risk. Given the early genesis of atherosclerosis and physiological metabolic changes during adolescence, studying postprandial dyslipidemia in the adolescent population is an important area of study. Postprandial dyslipidemia in the pediatric population poses a significant public health concern, warranting a better understanding of its pathogenesis and association with insulin resistance and CVD. This review discusses the metabolic syndrome, focusing on the link between insulin resistance, postprandial dyslipidemia, and CVD risk. Furthermore, the clinical significance and functional assessment of postprandial dyslipidemia, specifically in the adolescent population, is discussed in more detail.
Collapse
Affiliation(s)
- Victoria Higgins
- Molecular Medicine and Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Khosrow Adeli
- Molecular Medicine and Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
6
|
Ye G, Chen G, Gao H, Lin Y, Liao X, Zhang H, Liu X, Chi Y, Huang Q, Zhu H, Fan Y, Dong S. Resveratrol inhibits lipid accumulation in the intestine of atherosclerotic mice and macrophages. J Cell Mol Med 2019; 23:4313-4325. [PMID: 30957417 PMCID: PMC6533483 DOI: 10.1111/jcmm.14323] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Disordered intestinal metabolism is highly correlated with atherosclerotic diseases. Resveratrol protects against atherosclerotic diseases. Accordingly, this study aims to discover novel intestinal proatherosclerotic metabolites and potential therapeutic targets related to the anti‐atherosclerotic effects of resveratrol. An untargeted metabolomics approach was employed to discover novel intestinal metabolic disturbances during atherosclerosis and resveratrol intervention. We found that multiple intestinal metabolic pathways were significantly disturbed during atherosclerosis and responsive to resveratrol intervention. Notably, resveratrol abolished intestinal fatty acid and monoglyceride accumulation in atherosclerotic mice. Meanwhile, oleate accumulation was one of the most prominent alterations in intestinal metabolism. Moreover, resveratrol attenuated oleate‐triggered accumulation of total cholesterol, esterified cholesterol and neutral lipids in mouse RAW 264.7 macrophages by activating ABC transporter A1/G1‐mediated cholesterol efflux through PPAR (peroxisome proliferator‐activated receptor) α/γ activation. Furthermore, we confirmed that PPARα and PPARγ activation by WY14643 and pioglitazone, respectively, alleviated oleate‐induced accumulation of total cholesterol, esterified cholesterol and neutral lipids by accelerating ABC transporter A1/G1‐mediated cholesterol efflux. This study provides the first evidence that resveratrol abolishes intestinal fatty acid and monoglyceride accumulation in atherosclerotic mice, and that resveratrol suppresses oleate‐induced accumulation of total cholesterol, esterified cholesterol and neutral lipids in macrophages by activating PPARα/γ signalling.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Guoyou Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yulang Chi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huimin Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yuhua Fan
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
7
|
Xiao C, Dash S, Morgantini C, Lewis GF. Intravenous Glucose Acutely Stimulates Intestinal Lipoprotein Secretion in Healthy Humans. Arterioscler Thromb Vasc Biol 2016; 36:1457-63. [PMID: 27150393 DOI: 10.1161/atvbaha.115.307044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/20/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Increased production of intestinal triglyceride-rich lipoproteins (TRLs) contributes to dyslipidemia and increased risk of atherosclerotic cardiovascular disease in insulin resistance and type 2 diabetes. We have previously demonstrated that enteral glucose enhances lipid-stimulated intestinal lipoprotein particle secretion. Here, we assessed whether glucose delivered systemically by intravenous infusion also enhances intestinal lipoprotein particle secretion in humans. APPROACH AND RESULTS On 2 occasions, 4 to 6 weeks apart and in random order, 10 healthy men received a constant 15-hour intravenous infusion of either 20% glucose to induce hyperglycemia or normal saline as control. Production of TRL-apolipoprotein B48 (apoB48, primary outcomes) and apoB100 (secondary outcomes) was assessed during hourly liquid-mixed macronutrient formula ingestion with stable isotope enrichment and multicompartmental modeling, under pancreatic clamp conditions to limit perturbations in pancreatic hormones (insulin and glucagon) and growth hormone. Compared with saline infusion, glucose infusion induced both hyperglycemia and hyperinsulinemia, increased plasma triglyceride levels, and increased TRL-apoB48 concentration and production rate (P<0.05), without affecting TRL-apoB48 fractional catabolic rate. No significant effect of hyperglycemia on TRL-apoB100 concentration and kinetic parameters was observed. CONCLUSIONS Short-term intravenous infusion of glucose stimulates intestinal lipoprotein production. Hyperglycemia may contribute to intestinal lipoprotein overproduction in type 2 diabetes. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02607839.
Collapse
Affiliation(s)
- Changting Xiao
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Satya Dash
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Cecilia Morgantini
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Gary F Lewis
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Hsieh J, Trajcevski KE, Farr SL, Baker CL, Lake EJ, Taher J, Iqbal J, Hussain MM, Adeli K. Glucagon-Like Peptide 2 (GLP-2) Stimulates Postprandial Chylomicron Production and Postabsorptive Release of Intestinal Triglyceride Storage Pools via Induction of Nitric Oxide Signaling in Male Hamsters and Mice. Endocrinology 2015; 156:3538-47. [PMID: 26132919 DOI: 10.1210/en.2015-1110] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intestinal overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles is a common feature of diabetic dyslipidemia and contributes to cardiovascular risk in insulin resistant states. We previously reported that glucagon-like peptide-2 (GLP-2) is a key endocrine stimulator of enterocyte fat absorption and chylomicron output in the postprandial state. GLP-2's stimulatory effect on chylomicron production in the postabsorptive state has been confirmed in human studies. The mechanism by which GLP-2 regulates chylomicron production is unclear, because its receptor is not expressed on enterocytes. We provide evidence for a key role of nitric oxide (NO) in mediating the stimulatory effects of GLP-2 during the postprandial and postabsorptive periods. Intestinal chylomicron production was assessed in GLP-2-treated hamsters administered the pan-specific NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester (L-NAME), and in GLP-2-treated endothelial NOS knockout mice. L-NAME blocked GLP-2-stimulated apoB48 secretion and reduced triglycerides (TGs) in the TG-rich lipoprotein (TRL) fraction of the plasma in the postprandial state. Endothelial NOS-deficient mice were resistant to GLP-2 stimulation and secreted fewer large apoB48-particles. When TG storage pools were allowed to accumulate, L-NAME mitigated the GLP-2-mediated increase in TRL-TG, suggesting that NO is required for early mobilization and secretion of stored TG and preformed chylomicrons. Importantly, the NO donor S-nitroso-L-glutathione was able to elicit an increase in TRL-TG in vivo and stimulate chylomicron release in vitro in primary enterocytes. We describe a novel role for GLP-2-mediated NO-signaling as a critical regulator of intestinal lipid handling and a potential contributor to postprandial dyslipidemia.
Collapse
Affiliation(s)
- Joanne Hsieh
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Karin E Trajcevski
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Sarah L Farr
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Christopher L Baker
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Elizabeth J Lake
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Jennifer Taher
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Jahangir Iqbal
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Mahmood M Hussain
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| | - Khosrow Adeli
- Molecular Structure and Function (J.H., K.E.T., S.L.F., C.L.B., E.J.L., J.T., K.A.), Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8; Departments of Biochemistry (J.H., K.E.T., K.A.) and Laboratory Medicine and Pathobiology (S.L.F., J.T., K.A.), University of Toronto, Toronto, Ontario, Canada, M5S 1A8; and State University of New York Downstate Medical Center (J.I., M.H.H.), Brooklyn, New York 11203
| |
Collapse
|
9
|
Veilleux A, Mayeur S, Bérubé JC, Beaulieu JF, Tremblay E, Hould FS, Bossé Y, Richard D, Levy E. Altered intestinal functions and increased local inflammation in insulin-resistant obese subjects: a gene-expression profile analysis. BMC Gastroenterol 2015; 15:119. [PMID: 26376914 PMCID: PMC4574092 DOI: 10.1186/s12876-015-0342-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/25/2015] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Metabolic alterations relevant to postprandial dyslipidemia were previously identified in the intestine of obese insulin-resistant subjects. The aim of the study was to identify the genes deregulated by systemic insulin resistance in the intestine of severely obese subjects. METHODS Transcripts from duodenal samples of insulin-sensitive (HOMA-IR < 3, n = 9) and insulin-resistant (HOMA-IR > 7, n = 9) obese subjects were assayed by microarray (Illumina HumanHT-12). RESULTS A total of 195 annotated genes were identified as differentially expressed between these two groups (Fold change > 1.2). Of these genes, 36 were found to be directly involved in known intestinal functions, including digestion, extracellular matrix, endocrine system, immunity and cholesterol metabolism. Interestingly, all differentially expressed genes (n = 8) implicated in inflammation and oxidative stress were found to be upregulated in the intestine of insulin-resistant compared to insulin-sensitive subjects. Metabolic pathway analysis revealed that several signaling pathways involved in immunity and inflammation were significantly enriched in differently expressed genes and were predicted to be activated in the intestine of insulin-resistant subjects. Using stringent criteria (Fold change > 1.5; FDR < 0.05), three genes were found to be significantly and differently expressed in the intestine of insulin-resistant compared to insulin-sensitive subjects: the transcripts of the insulinotropic glucose-dependant peptide (GIP) and of the β-microseminoprotein (MSMB) were significantly reduced, but that of the humanin like-1 (MTRNR2L1) was significantly increased. CONCLUSION These results underline that systemic insulin resistance is associated with remodeling of key intestinal functions. Moreover, these data indicate that small intestine metabolic dysfunction is accompanied with a local amplification of low-grade inflammatory process implicating several pathways. Genes identified in this study are potentially triggered throughout the development of intestinal metabolic abnormalities, which could contribute to dyslipidemia, a component of metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Alain Veilleux
- Department of Nutrition, Université de Montréal and Research center of CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Qc, Canada.
| | - Sylvain Mayeur
- Department of Nutrition, Université de Montréal and Research center of CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Qc, Canada.
| | - Jean-Christophe Bérubé
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada.
| | - Jean-François Beaulieu
- Departement of Anatomy and cellular biology, Université de Sherbrooke, Sherbrooke, Qc, Canada. .,Canada Research Chair in Intestinal Physiopathology, Sherbrooke, Québec, Canada.
| | - Eric Tremblay
- Departement of Anatomy and cellular biology, Université de Sherbrooke, Sherbrooke, Qc, Canada.
| | - Frédéric-Simon Hould
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada. .,Departement of surgery, Université Laval, Québec, Qc, Canada.
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada. .,Department of Molecular Medicine, Université Laval, Quebec, Qc, Canada.
| | - Denis Richard
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada. .,Department of Molecular Medicine, Université Laval, Quebec, Qc, Canada. .,Chaire de Recherche Merck Frosst/IRSC Research Chair on Obesity, Québec, Qc, Canada.
| | - Emile Levy
- Department of Nutrition, Université de Montréal and Research center of CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Qc, Canada. .,JA. deSève Research Chair in nutrition, Montréal, Qc, Canada.
| |
Collapse
|
10
|
Abstract
Dietary lipids are efficiently absorbed by the small intestine, incorporated into triglyceride-rich lipoproteins (chylomicrons), and transported in the circulation to various tissues. Intestinal lipid absorption and mobilization and chylomicron synthesis and secretion are highly regulated processes. Elevated chylomicron production rate contributes to the dyslipidemia seen in common metabolic disorders such as insulin-resistant states and type 2 diabetes and likely increases the risk for atherosclerosis seen in these conditions. An in-depth understanding of the regulation of chylomicron production may provide leads for the development of drugs that could be of therapeutic utility in the prevention of dyslipidemia and atherosclerosis. Chylomicron secretion is subject to regulation by various factors, including diet, body weight, genetic variants, hormones, nutraceuticals, medications, and emerging interventions such as bariatric surgical procedures. In this review we discuss the regulation of chylomicron production, mechanisms that underlie chylomicron dysregulation, and potential avenues for future research.
Collapse
Affiliation(s)
- Satya Dash
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, M5G 2C4 Canada;
| | | | | | | |
Collapse
|
11
|
Tremblay AJ, Lamarche B, Kelly I, Charest A, Lépine MC, Droit A, Couture P. Effect of sitagliptin therapy on triglyceride-rich lipoprotein kinetics in patients with type 2 diabetes. Diabetes Obes Metab 2014; 16:1223-9. [PMID: 25059982 DOI: 10.1111/dom.12359] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 02/06/2023]
Abstract
AIM To investigate the effects of sitagliptin therapy on the kinetics of triglyceride-rich lipoprotein (TRL) apolipoprotein (apo)B-48, VLDL apoB-100, apoE and apoC-III in patients with type 2 diabetes. METHODS Twenty-two subjects with type 2 diabetes were recruited in this double-blind crossover study, during which the subjects received sitagliptin (100 mg/day) or placebo for a 6-week period each. At the end of each phase of treatment, the in vivo kinetics of the different apolipoproteins were assessed using a primed-constant infusion of l-[5,5,5-D3]leucine for 12 h, with the participants in a constantly fed state. RESULTS Sitagliptin therapy significantly reduced fasting plasma triglyceride (-15.4%, p = 0.03), apoB-48 (-16.3%, p = 0.03) and free fatty acid concentrations (-9.5%, p = 0.04), as well as plasma HbA1c (placebo: 7.0% ± 0.8 vs. sitagliptin: 6.6% ± 0.7, p < 0.0001) and plasma glucose levels (-13.5%, p = 0.001), without any significant effect on insulin levels. Kinetic results showed that treatment with sitagliptin significantly reduced the pool size of TRL apoB-48 by -20.8% (p = 0.03), paralleled by a reduction in the production rate of these particles (-16.0%, p = 0.03). The VLDL apoB-100 pool size was also significantly decreased by sitagliptin therapy (-9.3%, p = 0.03), mainly because of a reduction in the hepatic secretion of these lipoproteins, although this difference did not reach statistical significance (-9.2%, p = 0.06). CONCLUSIONS Treatment with sitagliptin for 6 weeks reduced triglyceride-rich apoB-containing lipoprotein levels by reducing the synthesis of these particles.
Collapse
Affiliation(s)
- A J Tremblay
- Lipid Research Centre, Centre Hospitalier de l'Université Laval (CHUL) Research Centre, Quebec City, QC, Canada; Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Veilleux A, Grenier É, Marceau P, Carpentier AC, Richard D, Levy E. Intestinal Lipid Handling. Arterioscler Thromb Vasc Biol 2014; 34:644-53. [DOI: 10.1161/atvbaha.113.302993] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Veilleux
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Émilie Grenier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Picard Marceau
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - André C. Carpentier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Denis Richard
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Emile Levy
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| |
Collapse
|
13
|
Shojaee-Moradie F, Ma Y, Lou S, Hovorka R, Umpleby AM. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Diabetes 2013; 62:4063-9. [PMID: 23990358 PMCID: PMC3837057 DOI: 10.2337/db13-0935] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim was to determine whether fed VLDL and chylomicron (CM) triacylglycerol (TAG) production rates are elevated in metabolic syndrome (MetS). Eight men with MetS (BMI 29.7 ± 1.1) and eight lean age-matched healthy men (BMI 23.1 ± 0.4) were studied using a frequent feeding protocol. After 4 h of feeding, an intravenous bolus of (2)H5-glycerol was administered to label VLDL1, VLDL2, and TAG. (13)C-glycerol tripalmitin was administered orally as an independent measure of CM TAG metabolism. Hepatic and intestinal lipoproteins were separated by an immunoaffinity method. In MetS, fed TAG and the increment in TAG from fasting to feeding were higher (P = 0.03 and P = 0.04, respectively) than in lean men. Fed CM, VLDL1, and VLDL2 TAG pool sizes were higher (P = 0.006, P = 0.03, and P < 0.02, respectively), and CM, VLDL1, and VLDL2 TAG production rates were higher (P < 0.002, P < 0.05, and P = 0.06, respectively) than in lean men. VLDL1, VLDL2, and CM TAG clearance rates were not different between groups. In conclusion, prandial hypertriglyceridemia in men with MetS was due to an increased production rate of both VLDL and CM TAG. Since both groups received identical meals, this suggests that in MetS the intestine is synthesizing more TAG de novo for export in CMs.
Collapse
Affiliation(s)
- Fariba Shojaee-Moradie
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Yuying Ma
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Shaoying Lou
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
| | - Roman Hovorka
- Diabetes Modelling Group, Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - A. Margot Umpleby
- Diabetes and Metabolic Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, U.K
- Corresponding author: A. Margot Umpleby,
| |
Collapse
|
14
|
Qin B, Dawson HD, Schoene NW, Polansky MM, Anderson RA. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes. Nutrition 2012; 28:1172-9. [DOI: 10.1016/j.nut.2012.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/19/2022]
|
15
|
Yamazaki T, Kishimoto K, Ezaki O. The ddY mouse: a model of postprandial hypertriglyceridemia in response to dietary fat. J Lipid Res 2012; 53:2024-2037. [PMID: 22735545 DOI: 10.1194/jlr.m023713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Postprandial hyperlipidemia (lipemia) is a risk factor for atherosclerosis. However, mouse models of postprandial hyperlipidemia have not been reported. Here, we report that ddY mice display marked postprandial hypertriglyceridemia in response to dietary fat. In ddY mice, the fasting serum total triacylglyceride (TG) concentration was 134 mg/dl, which increased to 571 mg/dl after an intragastric safflower oil load (0.4 ml/mouse). In C57BL/6J mice, these concentrations were 57 and 106 mg/dl, respectively. By lipoprotein analysis, ddY mice showed increases in chylomicron- and VLDL-sized TG fractions (remnants and VLDL) after fat load. In C57BL/6J mice, post-heparin plasma LPL activity after fat load was increased 4.8-fold relative to fasting. However, in ddY mice, the increase of LPL activity after fat load was very small (1.2-fold) and not significant. High fat feeding for 10 weeks led to obesity in ddY mice. A difference in LPL amino acid composition between C57BL/6J and ddY mice was detected but was deemed unlikely to cause hypertriglyceridemia because hypertriglyceridemia was not evident in other strains harboring the ddY-type LPL sequence. These findings indicate that postprandial hypertriglyceridemia in ddY mice is induced by decreased LPL activity after fat load and is associated with obesity induced by a high-fat diet.
Collapse
Affiliation(s)
- Tomomi Yamazaki
- Department of Nutritional Science, National Institute of Health and Nutrition, Tokyo, Japan.
| | - Kyoko Kishimoto
- Department of Nutritional Science, National Institute of Health and Nutrition, Tokyo, Japan
| | - Osamu Ezaki
- Department of Nutritional Science, National Institute of Health and Nutrition, Tokyo, Japan.
| |
Collapse
|
16
|
Xiao C, Bandsma RHJ, Dash S, Szeto L, Lewis GF. Exenatide, a Glucagon-like Peptide-1 Receptor Agonist, Acutely Inhibits Intestinal Lipoprotein Production in Healthy Humans. Arterioscler Thromb Vasc Biol 2012; 32:1513-9. [DOI: 10.1161/atvbaha.112.246207] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objectives—
Incretin-based therapies for the treatment of type 2 diabetes mellitus improve plasma lipid profiles and postprandial lipemia, but their exact mechanism of action remains unclear. Here, we examined the acute effect of the glucagon-like peptide-1 receptor agonist, exenatide, on intestinal and hepatic triglyceride-rich lipoprotein production and clearance in healthy humans.
Methods and Results—
Fifteen normolipidemic, normoglycemic men underwent 2 studies each (SC 10 μg exenatide versus placebo), 4 to 6 weeks apart, in random order, in which triglyceride-rich lipoprotein particle kinetics were examined with a primed, constant infusion of deuterated leucine and analyzed by multicompartmental modeling under pancreatic clamp conditions. A fed state was maintained during each study by infusing a high-fat, mixed macronutrient, liquid formula at a constant rate directly into the duodenum via a nasoduodenal tube. Exenatide significantly suppressed the plasma concentration and production rate of triglyceride-rich lipoprotein-apolipoprotein B-48, but not of triglyceride-rich lipoprotein-apolipoprotein B-100.
Conclusions—
These results suggest a possible direct effect of exenatide on intestinal lipoprotein particle production, independent of changes in weight gain and satiety as seen in long-term studies and independent of changes in gastric emptying. This finding expands our understanding of the effects of exenatide in metabolic regulation beyond its primary therapeutic role in regulation of glucose homeostasis.
Clinical Trial Registration—
URL:
http://www.clinicaltrials.gov
, NCT01056549.
Collapse
Affiliation(s)
- Changting Xiao
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Robert H. J. Bandsma
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Satya Dash
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Linda Szeto
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Gary F. Lewis
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| |
Collapse
|
17
|
Naples M, Baker C, Lino M, Iqbal J, Hussain MM, Adeli K. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1043-52. [PMID: 22345552 PMCID: PMC4380478 DOI: 10.1152/ajpgi.00250.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis.
Collapse
Affiliation(s)
- Mark Naples
- 1Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Canada;
| | - Chris Baker
- 1Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Canada;
| | - Marsel Lino
- 1Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Canada;
| | | | | | - Khosrow Adeli
- 1Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Canada;
| |
Collapse
|
18
|
Xiao C, Lewis GF. Regulation of chylomicron production in humans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:736-46. [DOI: 10.1016/j.bbalip.2011.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/18/2022]
|
19
|
Nogueira JP, Maraninchi M, Béliard S, Padilla N, Duvillard L, Mancini J, Nicolay A, Xiao C, Vialettes B, Lewis GF, Valéro R. Absence of acute inhibitory effect of insulin on chylomicron production in type 2 diabetes. Arterioscler Thromb Vasc Biol 2012; 32:1039-44. [PMID: 22308041 DOI: 10.1161/atvbaha.111.242073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Overproduction of intestinally derived apoB-48-containing triglyceride-rich lipoproteins (TRLs) (chylomicrons) has recently been described in type 2 diabetes, as is known for hepatic TRL-apoB-100 (very-low-density lipoprotein) production. Furthermore, insulin acutely inhibits both intestinal and hepatic TRL production, whereas this acute inhibitory effect on very-low-density lipoprotein production is blunted in type 2 diabetes. It is not currently known whether this acute effect on chylomicron production is similarly blunted in humans with type 2 diabetes. METHODS AND RESULTS We investigated the effect of acute hyperinsulinemia on TRL metabolism in 18 type 2 diabetic men using stable isotope methodology. Each subject underwent 1 control (saline infusion [SAL]) lipoprotein turnover study followed by a second study, under 1 of the 3 following clamp conditions: (1) hyperinsulinemic-euglycemic, (2) hyperinsulinemic-hyperglycemic, or (3) hyperinsulinemic-euglycemic plus intralipid and heparin. TRL-apoB-48 and TRL-apoB-100 production and clearance rates were not different between SAL and clamp and between the different clamp conditions, except for significantly lower TRL-apoB-100 clearance and production rates in hyperinsulinemic-euglycemic plus intralipid and heparin clamp compared with SAL. CONCLUSIONS This is the first demonstration in individuals with type 2 diabetes that chylomicron production is resistant to the normal acute suppressive effect of insulin. This phenomenon may contribute to the highly prevalent dyslipidemia of type 2 diabetes and potentially to atherosclerosis. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00950209.
Collapse
Affiliation(s)
- Juan-Patricio Nogueira
- Unité Mixte de Recherche Institut National de la Recherche Agronomique, University of la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xiao C, Hsieh J, Adeli K, Lewis GF. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 2011; 301:E429-46. [PMID: 21693689 DOI: 10.1152/ajpendo.00178.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver and intestine have complementary and coordinated roles in lipoprotein metabolism. Despite their highly specialized functions, assembly and secretion of triglyceride-rich lipoproteins (TRL; apoB-100-containing VLDL in the liver and apoB-48-containing chylomicrons in the intestine) are regulated by many of the same hormonal, inflammatory, nutritional, and metabolic factors. Furthermore, lipoprotein metabolism in these two organs may be affected in a similar fashion by certain disorders. In insulin resistance, for example, overproduction of TRL by both liver and intestine is a prominent component of and underlies other features of a complex dyslipidemia and increased risk of atherosclerosis. The intestine is gaining increasing recognition for its importance in affecting whole body lipid homeostasis, in part through its interaction with the liver. This review aims to integrate recent advances in our understanding of these processes and attempts to provide insight into the factors that coordinate lipid homeostasis in these two organs in health and disease.
Collapse
|
21
|
Trevaskis NL, Charman WN, Porter CJH. Acute hypertriglyceridemia promotes intestinal lymphatic lipid and drug transport: a positive feedback mechanism in lipid and drug absorption. Mol Pharm 2011; 8:1132-9. [PMID: 21604764 DOI: 10.1021/mp100462d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated systemic levels of triglyceride-rich lipoproteins (TRL) are a risk factor for the development of atherosclerosis. In patients with metabolic syndrome (MetS), intestinal TRL overproduction contributes to high systemic TRL levels, and recent studies suggest that systemic changes in MetS such as increases in plasma fatty acids and insulin resistance stimulate intestinal TRL production. The current study has examined whether increases in systemic TRL influence intestinal lipid transport and lipoprotein assembly pathways and evaluates the impact of these changes on the absorption and lymphatic transport of lipids and a model lipophilic drug (halofantrine). Mesenteric lymph-duct or bile-duct cannulated rats were administered IV saline or (14)C-labeled chylomicron (CM) (to increase systemic TRL) and intraduodenal (3)H lipids and drug. Changes to biliary lipid output and lymphatic lipid and drug transport were subsequently examined. Increasing systemic TRL concentrations stimulated a significant increase in lymphatic lipid and drug transport. The increased lipids in lymph were not derived from bile or the intestinal blood supply (fatty acid or IV infused (14)C-CM). Rather, an increase in lymphatic transport of duodenally sourced lipids was evident. Increasing plasma levels of TRL therefore stimulated lipid absorption and lymphatic transport via a positive feedback process. The data also suggest that the changes to intestinal TRL formation that result from raised systemic TRL levels may impact on the absorption of highly lipophilic drugs and therefore the reproducibility of drug treatments.
Collapse
Affiliation(s)
- Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Royal Parade, Parkville, Victoria, Australia 3052
| | | | | |
Collapse
|
22
|
Tremblay AJ, Lamarche B, Deacon CF, Weisnagel SJ, Couture P. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes Metab 2011; 13:366-73. [PMID: 21226820 DOI: 10.1111/j.1463-1326.2011.01362.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Recent studies indicate that type 2 diabetes is associated with an increased secretion of both hepatic and intestinal lipoproteins, leading to the accumulation of atherogenic triglyceride (TG)-rich lipoproteins. Sitagliptin is a selective inhibitor of dipeptidyl peptidase-4 that has been shown to reduce fasting and postprandial glucose levels in patients with type 2 diabetes presumably through incretin hormone-mediated improvements in islet function. The objective of the present study is to examine the effects of treatment with sitagliptin on postprandial lipid and incretin hormone levels as well as glucose homeostasis in patients with type 2 diabetes. METHODS Thirty-six subjects with type 2 diabetes (30 men/6 postmenopausal women with a mean age of 58.1 ± 6.4 years and a body mass index of 30.7 ± 4.9 kg/m(2) ) were recruited in this double-blind cross-over study using sitagliptin 100 mg/day or placebo for a 6-week period each, with a 4-week washout period between the two phases. At the end of each phase of treatment, patients underwent an oral lipid tolerance test providing 35 g of fat per m(2) of body surface area and blood samples were taken over an 8-h period. RESULTS Sitagliptin therapy significantly decreased the postprandial area under the curves (AUCs) for plasma apolipoprotein (apo)B (-5.1%, p = 0.002), apoB-48 (-7.8%, p = 0.03), TG (-9.4%, p = 0.006), very low-density lipoprotein (VLDL)-cholesterol (-9.3%, p = 0.001), free fatty acids (FFAs) (-7.6%, p = 0.005) and glucose (-9.7%, p < 0.0001). Furthermore, the postprandial AUCs for plasma intact glucagon-like peptide-1 (+67.8%, p < 0.0001) and glucose-dependent insulinotropic polypeptide (+67.3%, p < 0.0001) were significantly increased following treatment with sitagliptin, whereas the AUC for plasma glucagon was reduced by -9.7% (p = 0.001) with no significant changes in the AUCs for plasma insulin and C-peptide. Sitagliptin therapy also improved homeostasis model assessment (HOMA) index for insulin resistance (-14.6%, p = 0.01) and β-cell function (+32.3%, p = 0.007). CONCLUSIONS Treatment with sitagliptin for 6 weeks reduced postprandial plasma levels of TG-rich lipoproteins of both intestinal and hepatic origin, most likely by increasing incretin hormone levels, reducing circulating plasma FFA concentrations and improving insulin sensitivity and β-cell function.
Collapse
Affiliation(s)
- A J Tremblay
- Department of Food Sciences, Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Québec, Canada
| | | | | | | | | |
Collapse
|
23
|
Soriguer F, García-Serrano S, Garrido-Sánchez L, Gutierrez-Repiso C, Rojo-Martínez G, Garcia-Escobar E, García-Arnés J, Gallego-Perales JL, Delgado V, García-Fuentes E. Jejunal wall triglyceride concentration of morbidly obese persons is lower in those with type 2 diabetes mellitus. J Lipid Res 2010; 51:3516-23. [PMID: 20855567 DOI: 10.1194/jlr.m007815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The overproduction of intestinal lipoproteins may contribute to the dyslipidemia found in diabetes. We studied the influence of diabetes on the fasting jejunal lipid content and its association with plasma lipids and the expression of genes involved in the synthesis and secretion of these lipoproteins. The study was undertaken in 27 morbidly obese persons, 12 of whom had type 2 diabetes mellitus (T2DM). The morbidly obese persons with diabetes had higher levels of chylomicron (CM) triglycerides (P < 0.001) and apolipoprotein (apo)B48 (P = 0.012). The jejunum samples obtained from the subjects with diabetes had a lower jejunal triglyceride content (P = 0.012) and angiopoietin-like protein 4 (ANGPTL4) mRNA expression (P = 0.043). However, the apoA-IV mRNA expression was significantly greater (P = 0.036). The jejunal triglyceride content correlated negatively with apoA-IV mRNA expression (r = -0.587, P = 0.027). The variables that explained the jejunal triglyceride content in a multiple linear regression model were the insulin resistance state and the apoA-IV mRNA expression. Our results show that the morbidly obese subjects with diabetes had lower jejunal lipid content and that this correlated negatively with apoA-IV mRNA expression. These findings show that the jejunum appears to play an active role in lipid homeostasis in the fasting state.
Collapse
Affiliation(s)
- F Soriguer
- Servicios de Endocrinología y Nutrición y Cirugía General, Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Levy E, Lalonde G, Delvin E, Elchebly M, Précourt LP, Seidah NG, Spahis S, Rabasa-Lhoret R, Ziv E. Intestinal and hepatic cholesterol carriers in diabetic Psammomys obesus. Endocrinology 2010; 151:958-70. [PMID: 20130116 DOI: 10.1210/en.2009-0866] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance and type 2 diabetes (T2D) are characterized by hyperlipidemia. The aim of the present study was to elucidate whether T2D contributes to abnormal cholesterol (CHOL) homeostasis. Experiments were carried out in the small intestine and liver of Psammomys obesus, a model of nutritionally induced T2D. Our results show that diabetic animals exhibited a lower intestinal CHOL uptake, which was associated with a decrease in 1) the gene and protein expression of Niemann-Pick C1 like 1 that plays a pivotal role in CHOL incorporation in the enterocytes; and 2) mRNA of ATP-binding cassette transporters (ABC)A1 that mediates CHOL efflux from intestinal cells to apolipoprotein A-I and high-density lipoprotein. No changes were observed in the other intestinal transporters scavenger receptor-class B type I (SR-BI) and annexin 2. On the other hand, in diabetic animals, a significant mRNA decrease was noticed in intestinal ABCG5 and ABCG8 responsible for the secretion of absorbed CHOL back into the lumen. Furthermore, jejunal PCSK9 protein was diminished and low-density lipoprotein receptor was raised, along with a significant down-regulation in jejunal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in P. obesus with T2D. Finally, among the transcription factors tested, only an increase in liver X receptors alpha and a decrease in peroxisome proliferator-activated receptors delta/beta mRNAs were detected in the intestine. In the liver, there was 1) an augmentation in the protein mass of Niemann-Pick C1 like 1, SR-BI, and annexin 2; 2) an up-regulation of SR-BI mRNA; 3) a fall in ABCG8 protein content as well as in ABCG5 and ABCA1 mRNA; and 4) an augmentation in liver X receptors alpha and peroxisome proliferator-activated receptors beta/delta mRNA, together with a drop in sterol regulatory element binding protein-2 protein. Our findings show that the development in P. obesus with T2D modifies the whole intraenterocyte and hepatocyte machinery responsible for CHOL homeostasis.
Collapse
Affiliation(s)
- Emile Levy
- Gastroenterology, Hepatology, and Nutrition Unit, Research Centre, Sainte-Justine Hospital, 3175 Sainte-Catherine Road, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. J Nutr Biochem 2009; 20:901-8. [DOI: 10.1016/j.jnutbio.2008.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 11/23/2022]
|
26
|
Wong DM, Webb JP, Malinowski PM, Macri J, Adeli K. Proteomic profiling of the prechylomicron transport vesicle involved in the assembly and secretion of apoB-48-containing chylomicrons in the intestinal enterocytes. Proteomics 2009; 9:3698-711. [PMID: 19639588 DOI: 10.1002/pmic.200800914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracellular assembly of chylomicrons (CM) occurs in intestinal enterocytes through a series of complex vesicular interactions. CM are transported from the ER to the Golgi using a specialized vesicular compartment called the prechylomicron transport vesicle (PCTV). In this study, PCTVs were isolated from the enteric ER of the Syrian Golden hamster, and characterized using 2-DE and MS. Proteomic profiles of PCTV-associated proteins were developed with the intention of identifying proteins involved in the formation, transport, lipidation, and assembly of CM particles. Positively identified proteins included those involved in lipoprotein assembly, namely microsomal triglyceride transfer protein and apolipoprotein B-48, as well as proteins involved in vesicular transport, such as Sar1 and vesicle-associated membrane protein 7. Other groups of proteins found were chaperones, intracellular vesicular trafficking proteins, fatty acid-binding proteins, and lipid-related proteins. These findings have increased our understanding of the transport vesicle involved in the intracellular assembly and transport of CM and can provide insight into potential cellular factors responsible for dysregulation of intestinal CM production.
Collapse
Affiliation(s)
- Diana M Wong
- Molecular Structure and Function, Division of Clinical Biochemistry, Department of Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
27
|
Basciano H, Miller AE, Naples M, Baker C, Kohen R, Xu E, Su Q, Allister EM, Wheeler MB, Adeli K. Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am J Physiol Endocrinol Metab 2009; 297:E462-73. [PMID: 19509184 DOI: 10.1152/ajpendo.90764.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the atherogenic role of dietary cholesterol has been well established, its diabetogenic potential and associated metabolic disturbances have not been reported. Diet-induced hamster models of insulin resistance and dyslipidemia were employed to determine lipogenic and diabetogenic effects of dietary cholesterol. Metabolic studies were conducted in hamsters fed diets rich in fructose (40%), fat (30%), and cholesterol (0.05-0.25%) (FFC) and other test diets. Short-term feeding of the FFC diet induced insulin resistance, glucose intolerance, hypertriglyceridemia, and hypercholesterolemia. Prolonged feeding (6-22 wk) of the FFC diet led to severe hepatic steatosis, glucose intolerance, and mild increases in fasting blood glucose, suggesting progression toward type 2 diabetes, but did not induce beta-cell dysfunction. Metabolic changes induced by the diet, including dyslipidemia and insulin resistance, were cholesterol concentration dependent and were only markedly induced on a high-fructose and high-fat dietary background. There were significant increases in hepatic and plasma triglyceride with FFC feeding, likely due to a 10- to 15-fold induction of hepatic stearoyl-CoA desaturase compared with chow levels (P < 0.03). Hepatic insulin resistance was evident based on reduced tyrosine phosphorylation of the insulin receptor-beta, IRS-1, and IRS-2 as well as increased protein mass of protein tyrosine phosphatase 1B. Interestingly, nuclear liver X receptor (LXR) target genes such as ABCA1 were upregulated on the FFC diet, and dietary supplementation with an LXR agonist (instead of dietary cholesterol) worsened dyslipidemia, glucose intolerance, and upregulation of target mRNA and proteins similar to that of dietary cholesterol. In summary, these data clearly implicate dietary cholesterol, synergistically acting with dietary fat and fructose, as a major determinant of the severity of metabolic disturbances in the hamster model. Dietary cholesterol appears to induce hepatic cholesterol ester and triglyceride accumulation, and diet-induced LXR activation (via cholesterol-derived oxysterols) may possibly be one key underlying mechanism.
Collapse
Affiliation(s)
- Heather Basciano
- Department of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
del Mar Romero M, Fernández-López JA, Esteve M, Alemany M. Site-related white adipose tissue lipid-handling response to oleoyl-estrone treatment in overweight male rats. Eur J Nutr 2009; 48:291-9. [PMID: 19326039 DOI: 10.1007/s00394-009-0013-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/27/2009] [Indexed: 01/18/2023]
Abstract
BACKGROUND Oleoyl-estrone (OE) decreases energy intake while maintaining glucose homeostasis, and energy expenditure at the expense of body fat. White adipose tissue (WAT) depots behave differently under starvation, postprandial state and pharmacologically induced lipolysis. AIM OF THE STUDY To understand the mechanism of massive lipid loss from WAT elicited by OE treatment. METHODS We used overweight male rats. Rats receiving OE (10 nmol/g) gavages were compared with controls and a pair-fed group. Whole fat pads from the mesenteric, retroperitoneal, epididymal and inguinal subcutaneous sites were excised and analyzed for lipid, DNA, mRNA and the expression of lipogenic, fatty acid transporters and lipase genes. RESULTS In OE and pair-fed rats, WAT weights decreased, with the limited loss of cells. Patterns of gene expression in most WAT sites were similar for OE and PF, suggesting a shared mechanism of fat mobilization, but in mesenteric WAT, PF increased lipogenic and fatty acid transporter gene expressions. However, OE inhibited lipogenic expressions more deeply than PF. CONCLUSIONS White adipose tissue sites showed different expression patterns, hinting at relatively specialized functions in fat storage; thus, single site analyses cannot be extrapolated to whole WAT. Differences between mesenteric and the other sites suggest that 'visceral fat' should be reserved for this site only, and not applied to other abdominal fat depots (epididymal, retroperitoneal).
Collapse
Affiliation(s)
- María del Mar Romero
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
29
|
Hsieh J, Hayashi AA, Webb J, Adeli K. Postprandial dyslipidemia in insulin resistance: Mechanisms and role of intestinal insulin sensitivity. ATHEROSCLEROSIS SUPP 2008; 9:7-13. [DOI: 10.1016/j.atherosclerosissup.2008.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/03/2008] [Accepted: 05/13/2008] [Indexed: 02/08/2023]
|
30
|
Duez H, Pavlic M, Lewis GF. Mechanism of intestinal lipoprotein overproduction in insulin resistant humans. ATHEROSCLEROSIS SUPP 2008; 9:33-8. [DOI: 10.1016/j.atherosclerosissup.2008.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 02/25/2008] [Accepted: 05/13/2008] [Indexed: 10/21/2022]
|
31
|
Vine DF, Glimm DR, Proctor SD. Intestinal lipid transport and chylomicron production: possible links to exacerbated atherogenesis in a rodent model of the metabolic syndrome. ATHEROSCLEROSIS SUPP 2008; 9:69-76. [PMID: 18632312 DOI: 10.1016/j.atherosclerosissup.2008.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 03/01/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
Abstract
Post-prandial lipaemia is prevalent during conditions of obesity and insulin-resistance (IR), and has been associated with mediating the accelerated progression of cardiovascular disease (CVD). Our group has contributed to the concept that intestinally derived chylomicron lipoproteins are atherogenic and are associated with increased cholesterol accumulation in arterial vessels. More recently we have established the JCR:LA-cp rodent model of post-prandial dyslipidemia during conditions of the metabolic syndrome (MetS): including obesity, insulin-resistance and intimal atherogenesis. We have used this model as a novel physiological approach to investigate intestinal lipid transport and metabolism in the 'absorption-to-chylomicron secretion' axis, in the context of IR. The purpose of this review is to highlight recent preliminary data that has been collected using a range of different methodologies in this unique model of MetS. For the first time we report that the JCR:LA-cp rodent has over-production of intestinal chylomicrons and that this is associated with intestinal villus hypertrophy. We have also observed that vascular re-modelling associated with increased arterial accumulation of atherogenic lipoproteins is evident in this model. We discuss our findings in the context of a void of knowledge in the understanding of intestinal lipid metabolism, and the potential significance of these pathways in contributing to dyslipidemia in MetS.
Collapse
Affiliation(s)
- Donna F Vine
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
32
|
Goldberg IJ, Hu Y, Noh HL, Wei J, Huggins LA, Rackmill MG, Hamai H, Reid BN, Blaner WS, Huang LS. Decreased lipoprotein clearance is responsible for increased cholesterol in LDL receptor knockout mice with streptozotocin-induced diabetes. Diabetes 2008; 57:1674-82. [PMID: 18346984 DOI: 10.2337/db08-0083] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Patients with diabetes often have dyslipidemia and increased postprandial lipidmia. Induction of diabetes in LDL receptor (Ldlr(-/-)) knockout mice also leads to marked dyslipidemia. The reasons for this are unclear. RESEARCH DESIGN AND METHODS We placed Ldlr(-/-) and heterozygous LDL receptor knockout (Ldlr(+/-)) mice on a high-cholesterol (0.15%) diet, induced diabetes with streptozotocin (STZ), and assessed reasons for differences in plasma cholesterol. RESULTS STZ-induced diabetic Ldlr(-/-) mice had plasma cholesterol levels more than double those of nondiabetic controls. Fast-performance liquid chromatography and ultracentrifugation showed an increase in both VLDL and LDL. Plasma VLDL became more cholesterol enriched, and both VLDL and LDL had a greater content of apolipoprotein (apo)E. In LDL the ratio of apoB48 to apoB100 was increased. ApoB production, assessed using [(35)S]methionine labeling in Triton WR1339-treated mice, was not increased in fasting STZ-induced diabetic mice. Similarly, postprandial lipoprotein production was not increased. Reduction of cholesterol in the diet to normalize the amount of cholesterol intake by the control and STZ-induced diabetic animals reduced plasma cholesterol levels in STZ-induced diabetic mice, but plasma cholesterol was still markedly elevated compared with nondiabetic controls. LDL from STZ-induced diabetic mice was cleared from the plasma and trapped more rapidly by livers of control mice. STZ treatment reduced liver expression of the proteoglycan sulfation enzyme, heparan sulfate N-deacetylase/N-sulfotrasferase-1, an effect that was reproduced in cultured hepatocytyes by a high glucose-containing medium. CONCLUSIONS STZ-induced diabetic, cholesterol-fed mice developed hyperlipidemia due to a non-LDL receptor defect in clearance of circulating apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Preventive Medicine, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Excessive postprandial lipemia is highly prevalent in obese and insulin-resistant/type 2 diabetic individuals and substantially increases the risk of atherosclerosis and cardiovascular disease. This article will review our current understanding of the link between insulin resistance and intestinal lipoprotein overproduction and highlight some of the key recent findings in the field. RECENT FINDINGS Emerging evidence from several animal models of insulin resistance as well as insulin-resistant humans clearly supports the link between insulin resistance and aberrant intestinal lipoprotein metabolism. In insulin-resistant states, elevated free fatty acid flux into the intestine, downregulation of intestinal insulin signaling and upregulation of microsomal triglyceride transfer protein all appear to stimulate intestinal lipoprotein production. Gut peptides, GLP-1 and GLP-2, may be important regulators of intestinal lipid absorption and lipoprotein production. SUMMARY Available evidence in humans and animal models strongly favors the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of triglyceride-rich lipoproteins. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors all contribute to the enhanced formation and secretion of triglyceride-rich lipoproteins.
Collapse
Affiliation(s)
- Khosrow Adeli
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
34
|
Duez H, Lamarche B, Valéro R, Pavlic M, Proctor S, Xiao C, Szeto L, Patterson BW, Lewis GF. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation 2008. [PMID: 18443237 DOI: 10.1161/circulationaha.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hepatic lipoprotein production has been shown previously to be regulated by free fatty acid (FFA) flux to the liver, whereas intestinal lipoprotein production is stimulated mainly by ingested fat absorbed from the intestinal lumen. Emerging evidence indicates that intestinal lipoprotein production is increased in insulin resistance and type 2 diabetes mellitus, conditions that are associated with increased levels of circulating FFAs. Here we investigated whether short-term elevation of plasma FFAs stimulates intestinal apolipoprotein (apo) B-48- and hepatic apoB-100-containing triglyceride-rich lipoprotein (TRL) production in humans in the fed state. METHODS AND RESULTS TRL apoB-48 and apoB-100 metabolism were examined in 12 healthy men during a constant fed state. The studies were as follows, respectively: (1) Intralipid/heparin was infused intravenously immediately before and during the kinetics study to induce an approximately 3-fold difference in plasma FFA compared with the saline study; (2) saline was infused intravenously as a control. ApoB-48- and apoB-100-containing TRL production and clearance were determined with a 12-hour primed constant infusion of [D3]L-leucine and multicompartmental kinetic modeling. TRL apoB-48 production rate was 69% higher in the Intralipid/heparin study than in the saline control (5.95+/-1.13 versus 3.53+/-0.58 mg/kg per day; P=0.027), and there was no significant difference in TRL apoB-48 clearance. TRL apoB-100 concentrations were also increased (P<0.001) and TRL apoB-100 production rate was 35% higher in the Intralipid/heparin study compared with saline (28+/-4 versus 21+/-3 mg/kg per day; P=0.020). CONCLUSIONS This is the first study to demonstrate that intestinal TRL apoB-48 production is increased after short-term elevation of plasma FFAs in humans in the fed state, similar to the well-described stimulation of hepatic TRL apoB100-containing particles by FFAs.
Collapse
Affiliation(s)
- Hélène Duez
- Department of Medicine, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Duez H, Lamarche B, Valéro R, Pavlic M, Proctor S, Xiao C, Szeto L, Patterson BW, Lewis GF. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation 2008; 117:2369-76. [PMID: 18443237 DOI: 10.1161/circulationaha.107.739888] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hepatic lipoprotein production has been shown previously to be regulated by free fatty acid (FFA) flux to the liver, whereas intestinal lipoprotein production is stimulated mainly by ingested fat absorbed from the intestinal lumen. Emerging evidence indicates that intestinal lipoprotein production is increased in insulin resistance and type 2 diabetes mellitus, conditions that are associated with increased levels of circulating FFAs. Here we investigated whether short-term elevation of plasma FFAs stimulates intestinal apolipoprotein (apo) B-48- and hepatic apoB-100-containing triglyceride-rich lipoprotein (TRL) production in humans in the fed state. METHODS AND RESULTS TRL apoB-48 and apoB-100 metabolism were examined in 12 healthy men during a constant fed state. The studies were as follows, respectively: (1) Intralipid/heparin was infused intravenously immediately before and during the kinetics study to induce an approximately 3-fold difference in plasma FFA compared with the saline study; (2) saline was infused intravenously as a control. ApoB-48- and apoB-100-containing TRL production and clearance were determined with a 12-hour primed constant infusion of [D3]L-leucine and multicompartmental kinetic modeling. TRL apoB-48 production rate was 69% higher in the Intralipid/heparin study than in the saline control (5.95+/-1.13 versus 3.53+/-0.58 mg/kg per day; P=0.027), and there was no significant difference in TRL apoB-48 clearance. TRL apoB-100 concentrations were also increased (P<0.001) and TRL apoB-100 production rate was 35% higher in the Intralipid/heparin study compared with saline (28+/-4 versus 21+/-3 mg/kg per day; P=0.020). CONCLUSIONS This is the first study to demonstrate that intestinal TRL apoB-48 production is increased after short-term elevation of plasma FFAs in humans in the fed state, similar to the well-described stimulation of hepatic TRL apoB100-containing particles by FFAs.
Collapse
Affiliation(s)
- Hélène Duez
- Department of Medicine, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bell DSH, O'Keefe JH, Jellinger P. Postprandial dysmetabolism: the missing link between diabetes and cardiovascular events? Endocr Pract 2008; 14:112-24. [PMID: 18238751 DOI: 10.4158/ep.14.1.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the association of postprandial dysmetabolism, ie, hyperglycemia, and hyperlipidemia with myocardial disease in diabetic, glucose-intolerant, and glucose-tolerant patients. METHODS We performed a MEDLINE search of the English-language literature published between January 1979 and April 2007 for studies regarding postprandial dysmetabolism and heart disease. RESULTS Postprandial dysmetabolism is associated with increased inflammation, endothelial dysfunction, decreased fibrinolysis, plaque instability, and cardiac events. CONCLUSION There is a direct and proportional association between postprandial dysmetabolism and both coronary artery disease and cardiac events.
Collapse
Affiliation(s)
- David S H Bell
- Southside Endocrinology, Birmingham, Alabama 35205, USA.
| | | | | |
Collapse
|
37
|
Hogue JC, Lamarche B, Tremblay AJ, Bergeron J, Gagné C, Couture P. Evidence of increased secretion of apolipoprotein B-48-containing lipoproteins in subjects with type 2 diabetes. J Lipid Res 2007; 48:1336-42. [PMID: 17337758 DOI: 10.1194/jlr.m600548-jlr200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Patients with type 2 diabetes have high levels of triglyceride-rich lipoproteins (TRLs), including apolipoprotein B-48 (apoB-48)-containing TRLs of intestinal origin, but the mechanism leading to overaccumulation of these lipoproteins remains to be fully elucidated. Therefore, the objective of this study was to examine the in vivo kinetics of TRL apoB-48 and VLDL, intermediate density lipoprotein (IDL), and LDL apoB-100 in type 2 diabetic subjects (n = 11) and nondiabetic controls (n = 13) using a primed-constant infusion of l-[5,5,5-D(3)]leucine for 12 h in the fed state. Diabetic subjects had significantly higher fasting glycemia, higher fasting insulinemia, higher plasma triglyceride, and lower HDL-cholesterol levels than controls. Compared with controls, diabetic subjects had increased TRL apoB-48, VLDL apoB-100, and IDL apoB-100 pool sizes as a result of increased production rates (PRs) and reduced fractional catabolic rates of these lipoprotein subfractions. Furthermore, multiple linear regression analyses revealed that the diabetic/control status was an independent predictor of TRL apoB-48 PR and represented nearly 35% of its variance. These results suggest that the overaccumulation of TRLs seen in patients with type 2 diabetes is attributable to increased PRs of both intestinally derived apoB-48-containing lipoproteins and TRL apoB-100 of hepatic origin and to decreased catabolism of these subfractions.
Collapse
Affiliation(s)
- Jean-Charles Hogue
- Lipid Research Center, Centre hospitalier de l'Université Laval Research Center, Québec, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Qin B, Qiu W, Avramoglu RK, Adeli K. Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins. Diabetes 2007; 56:450-61. [PMID: 17259391 DOI: 10.2337/db06-0518] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is growing evidence suggesting intestinal insulin resistance and overproduction of apolipoprotein (apo) B48-containing chylomicrons in insulin-resistant states. In the current study, we investigated the potential role of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the development of insulin resistance and aberrant lipoprotein metabolism in the small intestine in a Syrian golden hamster model. TNF-alpha infusion decreased whole-body insulin sensitivity, based on in vivo euglycemic clamp studies in chow-fed hamsters. Analysis of intestinal tissue in TNF-alpha-treated hamsters indicated impaired phosphorylation of insulin receptor-beta, insulin receptor substrate-1, Akt, and Shc and increased phosphorylation of p38, extracellular signal-related kinase-1/2, and Jun NH(2)-terminal kinase. TNF-alpha infusion also increased intestinal production of total apoB48, triglyceride-rich lipoprotein apoB48, and serum triglyceride levels in both fasting and postprandial (fat load) states. The effects of TNF-alpha on plasma apoB48 levels could be blocked by the p38 inhibitor SB203580. Ex vivo experiments using freshly isolated enterocytes also showed TNF-alpha-induced p38 phosphorylation and intestinal apoB48 overproduction, effects that could be blocked by SB203580. Interestingly, TNF-alpha increased the mRNA and protein mass of intestinal microsomal triglyceride transfer protein without altering apoB mRNA levels. Enterocytes were found to have detectable levels of both TNF-alpha receptor types (p55 and p75), and antibodies against either of the two TNF-alpha receptors partially blocked the stimulatory effect of TNF-alpha on apoB48 production and p38 phosphorylation. In summary, these data suggest that intestinal insulin resistance can be induced in hamsters by TNF-alpha infusion, and it is accompanied by intestinal overproduction of apoB48-containing lipoproteins. TNF-alpha-induced stimulation of intestinal lipoprotein production appears to be mediated via TNF-alpha receptors and the p38 mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Bolin Qin
- Division of Clinical Biochemistry, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
39
|
Levy E, Spahis S, Ziv E, Marette A, Elchebly M, Lambert M, Delvin E. Overproduction of intestinal lipoprotein containing apolipoprotein B-48 in Psammomys obesus: impact of dietary n-3 fatty acids. Diabetologia 2006; 49:1937-45. [PMID: 16788801 DOI: 10.1007/s00125-006-0315-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS Emerging evidence underscores the important role of the small intestine in the pathogenesis of dyslipidaemia in insulin resistance and type 2 diabetes. We therefore tested the hypothesis that n-3 fatty acids improve the various events governing intra-enterocyte lipid transport in Psammomys obesus gerbils, a model of nutritionally induced metabolic syndrome. MATERIALS AND METHODS Experiments were carried out on Psammomys obesus gerbils that were assigned to an isocaloric control diet and a diet rich in fish oil for 6 weeks. RESULTS Increased dietary intake of fish oil lowered body weight and improved hyperglycaemia and hyperinsulinaemia. It simultaneously decreased de novo intestinal lipogenesis and lipid esterification of the major lipid classes, e.g. triglycerides, phospholipids and cholesteryl esters, particularly in insulin-resistant and diabetic animals. Accordingly, lessened activity of monoacylglycerol and diacylglycerol acyltransferase was recorded. As assessed in cultured jejunal explants incubated with either [(14)C]-oleic acid or [(35)S]-methionine, fish oil feeding resulted in diminished triglyceride-rich lipoprotein assembly and apolipoprotein (apo) B-48 biogenesis, respectively. The mechanisms did not involve apo B-48 transcription or alter the gene expression and activity of the critical microsomal triglyceride transfer protein. Rather, the suppressed production of apo B-48 by n-3 fatty acids was associated with intracellular proteasome-mediated posttranslational downregulation in insulin-resistant and diabetic animals. CONCLUSIONS/INTERPRETATION Our data highlight the beneficial impact of n-3 fatty acids on adverse effects of the metabolic syndrome and emphasise their influence on intestinal lipid transport, an effect which may limit postprandial lipaemia and the risk of atherosclerosis.
Collapse
Affiliation(s)
- E Levy
- Department of Nutrition, Research Centre, Sainte-Justine Hospital and University of Montréal, 3175 Côte Ste-Catherine Road, Montreal, Quebec, H3T 1C5, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Fructose is consumed in significant amounts in Western diets. An increase in fructose consumption over the past 10-20 years has been linked with a rise in obesity and metabolic disorders. Fructose/sucrose produces deleterious metabolic effects in animal models. This raises concern regarding the short-term and long-term effects of fructose and its risk in humans. RECENT FINDINGS In rodents, fructose stimulates lipogenesis and leads to hepatic and extrahepatic insulin resistance, dyslipidaemia and high blood pressure. Insulin resistance appears to be related to ectopic lipid deposition. In humans, short-term fructose feeding increases de-novo lipogenesis and blood triglycerides and causes hepatic insulin resistance. There is presently no evidence for fructose-induced muscle insulin resistance in humans. The cellular mechanisms underlying the metabolic effects of fructose involve production of reactive oxygen species, activation of cellular stress pathways and possibly an increase in uric acid synthesis. SUMMARY Consuming large amounts of fructose can lead to the development of a complete metabolic syndrome in rodents. In humans, fructose consumed in moderate to high quantities in the diet increases plasma triglycerides and alters hepatic glucose homeostasis, but does not appear to cause muscle insulin resistance or high blood pressure in the short term. Further human studies are required to delineate the effects of fructose in humans.
Collapse
Affiliation(s)
- Kim-Anne Lê
- Department of Physiology, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
41
|
Duez H, Lamarche B, Uffelman KD, Valero R, Cohn JS, Lewis GF. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans. Arterioscler Thromb Vasc Biol 2006; 26:1357-63. [PMID: 16614317 DOI: 10.1161/01.atv.0000222015.76038.14] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Whereas postprandial hyperlipidemia is a well-described feature of insulin-resistant states and type 2 diabetes, no previous studies have examined intestinal lipoprotein production rates (PRs) in relation to hyperinsulinemia or insulin resistance in humans. METHODS AND RESULTS Apolipoprotein B-48 (apoB-48)-containing lipoprotein metabolism was examined in the steady-state fed condition with a 15-hour primed constant infusion of [D3]-l-leucine in 14 nondiabetic men with a broad range of body mass index (BMI) and insulin sensitivity. To examine the relationship between indices of insulin resistance and intestinal lipoprotein PR data were analyzed in 2 ways: by correlation and by comparing apoB-48 PRs in those whose fasting plasma insulin concentrations were above or below the median for the 14 subjects studied (60 pmol/L). ApoB-48 PR was significantly higher in hyperinsulinemic, insulin-resistant subjects (1.73+/-0.39 versus 0.88+/-0.13 mg/kg per day; P<0.05) and correlated with fasting plasma insulin concentrations (r=0.558; P=0.038), despite great heterogeneity in apoB-48 kinetic parameters, particularly among the obese subjects. There was no significant difference in clearance of apoB-48 between the 2 groups, nor was there a significant correlation between apoB-48 fractional clearance rate and fasting insulin or homeostasis model assessment-insulin resistance. CONCLUSIONS These are the first human data to conclusively demonstrate that intestinal apoB-48-containing triglyceride-rich lipoprotein PR is increased in hyperinsulinemic, insulin-resistant humans. Intestinal lipoprotein particle overproduction is a newly described feature of insulin resistance in humans.
Collapse
Affiliation(s)
- Hélène Duez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Guo Q, Avramoglu RK, Adeli K. Intestinal assembly and secretion of highly dense/lipid-poor apolipoprotein B48-containing lipoprotein particles in the fasting state: evidence for induction by insulin resistance and exogenous fatty acids. Metabolism 2005; 54:689-97. [PMID: 15877301 DOI: 10.1016/j.metabol.2004.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Emerging evidence suggests that overproduction of intestinally derived apolipoprotein (apo) B48-containing lipoprotein particles may be an important contributor to both fasting and postprandial dyslipidemia in insulin-resistant states. Mechanisms regulating the assembly and secretion of apoB48-containing lipoproteins are not fully understood particularly in the diabetic/insulin-resistant intestine. In the present study, we have investigated the density profile of apoB48 lipoproteins assembled in primary hamster enterocytes. Both intracellular and secreted apoB48 particles were examined in intestinal enterocytes isolated from normal or insulin-resistant fructose-fed hamsters, as well as in enterocytes treated with exogenous oleic acid. Microsomal luminal contents and culture media were analyzed by discontinuous and sequential ultracentrifugation on sucrose and KBr gradients, respectively. ApoB48 was mostly secreted on VLDL-, LDL-, and denser HDL-sized particles in the fasting state. In pulse-chase labeling experiments, nascent apoB48-containing particles initially accumulated in the microsomal lumen as HDL-sized particles, with subsequent formation of apoB48-VLDL particles, with only a minute amount of chylomicrons observed. Treatment with 720 mu mol/L of oleic acid, increased microsomal apoB48 HDL synthesis, and induced a marked shift toward lighter more buoyant particles. A marked enhancement in assembly of apoB48-containing lipoproteins was also observed in the microsomal lumen of fructose-fed hamster enterocytes, suggesting facilitated assembly and secretion of dense intestinal lipoprotein particles in insulin-resistant states. Overall, these observations suggest that a major proportion of apoB48-containing lipoprotein particles is assembled and secreted as highly dense, HDL-sized particles. The production of these small, dense, and potentially atherogenic apoB48 particles can be stimulated by increased free fatty acid flux as well as in insulin-resistant diabetes.
Collapse
Affiliation(s)
- Qiansha Guo
- Division of Clinical Biochemistry, Department of Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|