1
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
2
|
Zielinska-Pukos MA, Kopiasz Ł, Hamulka J. The Effect of Maternal Overweight/Obesity on Serum and Breastmilk Leptin, and Its Associations with Body Composition, Cardiometabolic Health Indices, and Maternal Diet: The BLOOM Study. Metabolites 2024; 14:221. [PMID: 38668349 PMCID: PMC11051946 DOI: 10.3390/metabo14040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In overweight and obese patients, elevated serum and breastmilk leptin concentrations are observed, with serum leptin also being likely affected by the diet. We analyzed serum and breastmilk leptin in normal weight (NW) and overweight/obese (OW/OB) mothers, and evaluated its associations with (1) maternal anthropometric parameters; (2) markers of cardiometabolic health; and (3) the maternal diet. The BLOOM (Breastmilk and the Link to Overweight/Obesity and Maternal diet) study was conducted among 40 women (n = 20 OW/OB; n = 20, NW) who were exclusively or predominantly breastfeeding for 15.5 ± 1.2 (OW/OB group (0.99)) weeks. We collected 24 h breastmilk and fasting blood samples for leptin analysis by ELISA. Maternal dietary habits were evaluated using a 3-day dietary record and food frequency questionnaire, which were used to calculate the Polish-adapted Mediterranean Diet score. Maternal anthropometric measurements and DEXA scans were performed, and anthropometric and cardiometabolic indices were calculated. The OW mothers had 1.4 times higher serum levels, while OB mothers had 4.5 and 6.2 higher serum and breastmilk leptin levels, respectively, in comparison to the NW mothers. The FM% was correlated with serum and breastmilk leptin levels (r = 0.878, r = 0.638). Serum leptin was associated with markers of cardiometabolic health such as AIP, CMI, and VAI in the NW mothers, and with LAP in the OW/OB mothers. Higher energy, fructose intake and adherence to the Mediterranean diet were associated with serum leptin in the NW mothers (β = 0.323, 0.039-0.608; β = 0.318, 0.065-0.572; β = 0.279, 0.031-0.528); meanwhile, higher adherence to the Mediterranean diet could protect against elevated breastmilk leptin concentrations in OW/OB mothers (β = -0.444, -0.839--0.050), even after adjustment for FM%. Our results suggest a potential association between maternal serum leptin concentrations and cardiometabolic health. In addition, we confirm the importance of healthy dietary patterns in the improvement of breastmilk composition.
Collapse
Affiliation(s)
- Monika A. Zielinska-Pukos
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
3
|
Saavedra LPJ, Piovan S, Moreira VM, Gonçalves GD, Ferreira ARO, Ribeiro MVG, Peres MNC, Almeida DL, Raposo SR, da Silva MC, Barbosa LF, de Freitas Mathias PC. Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Rev Endocr Metab Disord 2024; 25:309-324. [PMID: 38040983 DOI: 10.1007/s11154-023-09854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.
Collapse
Affiliation(s)
- Lucas Paulo Jacinto Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Veridiana Mota Moreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maria Natália Chimirri Peres
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Douglas Lopes Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Scarlett Rodrigues Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Mariane Carneiro da Silva
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Letícia Ferreira Barbosa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
4
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
A Diet Profiling Algorithm (DPA) to Rank Diet Quality Suitable to Implement in Digital Tools—A Test Study in a Cohort of Lactating Women. Nutrients 2023; 15:nu15061337. [PMID: 36986066 PMCID: PMC10051632 DOI: 10.3390/nu15061337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Although nutrient profiling systems can empower consumers towards healthier food choices, there is still a need to assess diet quality to obtain an overall perspective. The purpose of this study was to develop a diet profiling algorithm (DPA) to evaluate nutritional diet quality, which gives a final score from 1 to 3 with an associated color (green-yellow-orange). It ranks the total carbohydrate/total fiber ratio, and energy from saturated fats and sodium as potentially negative inputs, while fiber and protein are assumed as positive items. Then, the total fat/total carbohydrate ratio is calculated to evaluate the macronutrient distribution, as well as a food group analysis. To test the DPA performance, diets of a lactating women cohort were analyzed, and a correlation analysis between DPA and breast milk leptin levels was performed. Diets classified as low quality showed a higher intake of negative inputs, along with higher energy and fat intakes. This was reflected in body mass index (BMI) and food groups, indicating that women with the worst scores tended to choose tastier and less satiating foods. In conclusion, the DPA was developed and tested in a sample population. This tool can be easily implemented in digital nutrition platforms, contributing to real-time dietary follow-up of patients and progress monitoring, leading to further dietary adjustment.
Collapse
|
6
|
Castillo P, Pomar CA, Palou A, Palou M, Picó C. Influence of Maternal Metabolic Status and Diet during the Perinatal Period on the Metabolic Programming by Leptin Ingested during the Suckling Period in Rats. Nutrients 2023; 15:nu15030570. [PMID: 36771278 PMCID: PMC9921535 DOI: 10.3390/nu15030570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
We aimed to analyze the long-term metabolic effects of leptin supplementation at physiological doses during suckling in the offspring of diet-induced obese rats, together with the potential benefits of improving maternal diet during lactation. Thus, the offspring of: dams fed standard-diet (SD) (CON-dams), dams fed western-diet (WD) before and during gestation and lactation (WD-dams), and dams fed as WD-dams but moved to SD during lactation (REV-dams) were supplemented throughout suckling with leptin or vehicle, and fed SD or WD from weaning to four months. Under SD, leptin treatment significantly improved metabolic profile and body fat accumulation, with stronger effects in the male offspring of CON-dams and REV-dams. Under WD, the offspring of WD-dams presented metabolic alterations that were not evident in the offspring of REV-dams. Moreover, leptin supplementation improved glucose homeostasis in the male offspring of REV-dams. Conversely, leptin supplementation in females born to WD-dams and fed WD from weaning resulted in impaired insulin sensitivity and increased hepatic lipid content. These results highlight the importance of a balanced maternal diet during the perinatal period, especially lactation, for the subsequent metabolic health of the offspring and for the beneficial effects of leptin supplementation during suckling, more evident in the male offspring.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-971172373
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
7
|
Postnatal Leptin Levels Correlate with Breast Milk Leptin Content in Infants Born before 32 Weeks Gestation. Nutrients 2022; 14:nu14245224. [PMID: 36558383 PMCID: PMC9782260 DOI: 10.3390/nu14245224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Perinatal leptin deficiency and reduced intake of mother’s milk may contribute to the development of childhood obesity. Preterm infants have reduced leptin production, and they are at heightened risk of neonatal leptin deficiency. Because fresh human milk contains significantly more leptin than donor milk, we used a cross-over design to determine if blood leptin levels in maternal milk-fed preterm infants fall during conversion to donor human milk. Infants born between 22 0/7 and 31 6/7 weeks gestation on exclusive maternal milk feedings were enrolled into a 21-day cross-over trial. On days 1−7 and 15−21, infants were fed maternal milk, and on days 8−14, infants were fed donor milk. On day 1, study infants had a mean postmenstrual age of 33 weeks. Plasma leptin correlated with milk leptin, and leptin levels in maternal milk far exceed the leptin levels of donor milk. Plasma leptin did not increase during donor milk administration, but it did following resumption of maternal milk (p < 0.05). In this crossover trial, preterm infant blood leptin levels correlated with milk leptin content. This suggests that preterm infants can enterally absorb leptin from human milk, and leptin-rich breast milk may be a targeted therapy for the prevention of obesity.
Collapse
|
8
|
Reynés B, Palou M, Palou A, Serra F. The intake of β-sitosterol partially counteracts metformin beneficial effects in diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Association between breast-feeding exposure and duration with offspring's dietary patterns over 1 year of age: a systematic review of observational studies. Br J Nutr 2022; 129:1793-1803. [PMID: 35811427 DOI: 10.1017/s0007114522002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Some evidence suggests that breast-feeding may modify food preferences in the later years of life. The present study aimed to provide a systematic review of observational studies investigating the association between exposure to breast milk and its duration with data-driven or hypothesis-driven (or diet quality scores) dietary patterns over 1 year of age. The databases of PubMed, Scopus and Web of Science were searched for observational studies published from January 2010 until July 2021, which led to the identification of twenty-two eligible articles. There was considerable heterogeneity between studies in terms of assessment of exposure and outcome. Of the eleven studies that assessed data-driven dietary patterns, ten reported a significant association for at least one identified dietary pattern. Overall, being breast-fed and a longer duration of any/exclusive breast-feeding were associated with higher scores on healthy dietary patterns characterised mainly by high loadings of fruits, vegetables and whole grains. In comparison, a negative association was found for unhealthy dietary patterns rich in foods with high content of added sugar, salt and saturated fats. In terms of diet quality scores, nine out of eleven studies reported a significant positive association between the duration of any breast-feeding and adherence to recommended healthy diets or dietary guidelines. In conclusion, the evidence from this review was generally in support of the hypothesis indicating breast-feeding is associated with healthy dietary patterns at later ages. However, due to the methodological limitations in the available studies, further research is warranted to elucidate solid evidence on this topic.
Collapse
|
10
|
Alonso-Bernáldez M, Asensio A, Palou-March A, Sánchez J, Palou A, Serra F, Palou M. Breast Milk MicroRNAs Related to Leptin and Adiponectin Function Can Be Modulated by Maternal Diet and Influence Offspring Phenotype in Rats. Int J Mol Sci 2022; 23:ijms23137237. [PMID: 35806240 PMCID: PMC9266562 DOI: 10.3390/ijms23137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence of the role of milk components in the metabolic programming of offspring. Here, we aimed to investigate the effects of a diet during lactation on breast milk leptin, adiponectin, and related miRNAs’ expression, and their impact on dams and their offspring. Dams were fed a control diet (controls) or a diet enriched with oleic acid, betaine, and leucine (TX) throughout lactation. A TX diet promoted higher leptin at lactation day (LD) five and lower adiponectin on LD15 (vs. controls) in milk, resulting in increased leptin to adiponectin (L/A) ratio throughout lactation. Moreover, TX diet reduced milk levels of miR-27a, miR-103, miR-200a, and miR-222. Concerning TX offspring, higher body fat was early observed and maintained into adult life, accompanied by higher HOMA-IR than controls at three months of age. Offspring body fat content in adulthood correlated positively with milk L/A ratio at LD15 and negatively with miRNAs modulated by the TX diet. In conclusion, maternal diet during lactation can modulate leptin and adiponectin interplay with miRNAs in milk, setting up the metabolic programming of the offspring. Better knowledge about the influence of diet on this process is necessary to promote a healthy adult life in the progeny.
Collapse
Affiliation(s)
- Marta Alonso-Bernáldez
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
| | - Antoni Asensio
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
| | - Andreu Palou-March
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisca Serra
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| | - Mariona Palou
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
11
|
Reynés B, Cifre M, Palou A, Oliver P. Perinatal Treatment with Leptin, but Not Celastrol, Protects from Metabolically Obese, Normal-Weight Phenotype in Rats. Nutrients 2022; 14:nu14112277. [PMID: 35684076 PMCID: PMC9183119 DOI: 10.3390/nu14112277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Perinatal nutrition has a well-known influence on obesity susceptibility. We previously demonstrated the protective anti-obesity effects of perinatal leptin administration. Celastrol is a natural compound acting as a leptin sensitizer with anti-obesity effects when administered in adult animals. Here, we aimed to determine if perinatal treatment with leptin, celastrol, or their combination was able to improve metabolic health in animals fed an isocaloric high-fat (HF) diet. Leptin and/or celastrol or their vehicle were administered orally to rats during the suckling period. After weaning, animals were chronically pair-fed with an HF diet provided isocaloric to the intake of a normal-fat diet by control animals to avoid obesity. Isocaloric HF feeding in vehicle-treated animals resulted in metabolic features characteristic of the metabolically obese, normal-weight (MONW) phenotype, i.e., obesity-related disturbances without increased body weight. Leptin treatment prevented liver fat deposition and insulin resistance, induced greater insulin and leptin signaling capacity, decreased gene expression of orexigenic signals at the hypothalamic level, and induced browning in retroperitoneal adipose tissue. However, celastrol treatment did not provide any protective effect and resulted in greater size of the retroperitoneal adipose depot, higher circulating glucose and insulin levels, and decreased leptin sensitivity capacity in adipose tissue. The co-administration of leptin ameliorated the negative effects of celastrol on the retroperitoneal depot, inducing browning and decreasing its size. In conclusion, the perinatal administration of leptin, but not celastrol, provided protection against the consequences of dietary unbalances leading to an MONW phenotype in adulthood.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
| | - Margalida Cifre
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-971-173-170
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Pomar CA, Castillo P, Palou M, Palou A, Picó C. Implementation of a healthy diet to lactating rats attenuates the early detrimental programming effects in the offspring born to obese dams. Putative relationship with milk hormone levels. J Nutr Biochem 2022; 107:109043. [PMID: 35569798 DOI: 10.1016/j.jnutbio.2022.109043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Lactation is a critical period of development and alterations in milk composition due to maternal diet or status may affect infant growth. We aimed to evaluate in rats whether improving maternal nutrition during lactation attenuates early imprinted adverse metabolic effects in the offspring born to obese dams. Three groups were studied: Control (C) dams, fed with standard diet; Western diet (WD) dams, fed with WD one month prior to gestation and during gestation and lactation; and Reversion (Rev) dams, fed as WD-dams, but moved to a standard diet during lactation. Macronutrient content, insulin, leptin and adiponectin levels were determined in milk. Phenotypic traits and circulating parameters in dams and their offspring were determined throughout lactation. Results showed that, at weaning, WD-dams displayed lower body weight and greater plasma insulin and non-esterified fatty acids levels than C-dams, and signs of hepatic steatosis. Milk from WD-dams showed lower protein content and insulin, leptin, and adiponectin levels during the entire or the late lactation. Rev-dams retained excess body fat content, but milk composition and most circulating parameters were not different from controls at late lactation and showed higher leptin mRNA levels in mammary gland than WD-dams. The offspring of WD-dams, but not that of Rev-dams, displayed higher body weight, adiposity, and circulating leptin and glucose levels than controls at weaning. In conclusion, dietary improvement during lactation prevents early adverse effects in offspring associated with maternal intake of an obesogenic diet, that may be related with the normalization of milk hormone levels.
Collapse
Affiliation(s)
- Catalina A Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
13
|
Abstract
Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
14
|
Tajaddini A, Kendig MD, Prates KV, Westbrook RF, Morris MJ. Male Rat Offspring Are More Impacted by Maternal Obesity Induced by Cafeteria Diet than Females-Additive Effect of Postweaning Diet. Int J Mol Sci 2022; 23:ijms23031442. [PMID: 35163366 PMCID: PMC8835941 DOI: 10.3390/ijms23031442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/07/2023] Open
Abstract
Maternal obesity increases the risk of health complications in offspring, but whether these effects are exacerbated by offspring exposure to unhealthy diets warrants further investigation. Female Sprague-Dawley rats were fed either standard chow (n = 15) or ‘cafeteria’ (Caf, n = 21) diets across pre-pregnancy, gestation, and lactation. Male and female offspring were weaned onto chow or Caf diet (2–3/sex/litter), forming four groups; behavioural and metabolic parameters were assessed. At weaning, offspring from Caf dams were smaller and lighter, but had more retroperitoneal (RP) fat, with a larger effect in males. Maternal Caf diet significantly increased relative expression of ACACA and Fasn in male and female weanling liver, but not CPT-1, SREBP and PGC1; PPARα was increased in males from Caf dams. Maternal obesity enhanced the impact of postweaning Caf exposure on adult body weight, RP fat, liver mass, and plasma leptin in males but not females. Offspring from Caf dams appeared to exhibit reduced anxiety-like behaviour on the elevated plus maze. Hepatic CPT-1 expression was reduced only in adult males from Caf fed dams. Post weaning Caf diet consumption did not alter liver gene expression in the adult offspring. Maternal obesity exacerbated the obesogenic phenotype produced by postweaning Caf diet in male, but not female offspring. Thus, the impact of maternal obesity on adiposity and liver gene expression appeared more marked in males. Our data underline the sex-specific detrimental effects of maternal obesity on offspring.
Collapse
Affiliation(s)
- Aynaz Tajaddini
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (A.T.); (M.D.K.); (K.V.P.)
| | - Michael D. Kendig
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (A.T.); (M.D.K.); (K.V.P.)
| | - Kelly V. Prates
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (A.T.); (M.D.K.); (K.V.P.)
| | | | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (A.T.); (M.D.K.); (K.V.P.)
- Correspondence:
| |
Collapse
|
15
|
Picó C, Palou M. Leptin and Metabolic Programming. Nutrients 2021; 14:nu14010114. [PMID: 35010989 PMCID: PMC8746998 DOI: 10.3390/nu14010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
This Special Issue of Nutrients "Leptin and Metabolic Programming" includes one review article regarding the function of leptin throughout the entire life on cardiometabolic fates and four original articles related to the new function of leptin present in milk and liquid amniotic, its possible relation with other components of breast milk, and how environmental conditions may impact on leptin action and metabolic programming [...].
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 07122 Palma, Spain
- Correspondence:
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 07122 Palma, Spain
| |
Collapse
|
16
|
Nomura H, Son C, Aotani D, Shimizu Y, Katsuura G, Noguchi M, Kusakabe T, Tanaka T, Miyazawa T, Hosoda K, Nakao K. Impaired leptin responsiveness in the nucleus accumbens of leptin-overexpressing transgenic mice with dysregulated sucrose and lipid preference independent of obesity. Neurosci Res 2021; 177:94-102. [PMID: 34971637 DOI: 10.1016/j.neures.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022]
Abstract
While hypothalamic leptin resistance can occur prior to establishment of obesity, clarification is needed as to whether the impaired response to leptin in the reward-related nuclei occurs independently of obesity. To answer this question, we attempted to dissociate the normally coexisting leptin resistance from obesity. We investigated phenotypes of leptin-overexpressing transgenic mice fed for 1 week with 60 % high-fat diet (HFD) (LepTg-HFD1W mice). After 1 week, we observed that LepTg-HFD1W mice weighed as same as wild type (WT) mice fed standard chow diet (CD) for 1 week (WT-CD1W mice). However, compared to WT-CD1W mice, LepTg-HFD1W mice exhibited attenuated leptin-induced anorexia, decreased leptin-induced c-fos immunostaining in nucleus accumbens (NAc), one of important site of reward system, decreased leptin-stimulated pSTAT3 immunostaining in hypothalamus. Furthermore, neither sucrose nor lipid preference was suppressed by leptin in LepTg-HFD1W mice. On the contrary, leptin significantly suppressed both preferences in WT mice fed HFD (WT-HFD1 W mice). These results indicate that leptin responsiveness decreases in NAc independently of obesity. Additionally, in this situation, suppressive effect of leptin on the hedonic feeding results in impaired regulation. Such findings suggest the impaired leptin responsiveness in NAc partially contributes to dysregulated hedonic feeding behavior independently of obesity.
Collapse
Affiliation(s)
- Hidenari Nomura
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Cheol Son
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiyuki Shimizu
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goro Katsuura
- Department of Social and Behavioral Medicine, Division of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michio Noguchi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Tanaka
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Miyazawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Myo-Inositol Supplementation in Suckling Rats Protects against Adverse Programming Outcomes on Hypothalamic Structure Caused by Mild Gestational Calorie Restriction, Partially Comparable to Leptin Effects. Nutrients 2021; 13:nu13093257. [PMID: 34579137 PMCID: PMC8466200 DOI: 10.3390/nu13093257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
We studied whether myo-inositol supplementation throughout lactation, alone and combined with leptin, may reverse detrimental effects on hypothalamic structure and function caused by gestational calorie gestation (CR) in rats. Candidate early transcript-based biomarkers of metabolic health in peripheral blood mononuclear cells (PBMC) were also studied. Offspring of dams exposed to 25% gestational CR and supplemented during lactation with physiological doses of leptin (CR-L), myo-inositol (CR-M), the combination (CR-LM), or the vehicle (CR-V) as well as control rats (CON-V) were followed and sacrificed at postnatal day 25. Myo-inositol and the combination increased the number of neurons in arcuate nucleus (ARC) (only in females) and paraventricular nucleus, and myo-inositol (alone) restored the number of αMSH+ neurons in ARC. Hypothalamic mRNA levels of Lepr in CR-M and Insr in CR-M and CR-LM males were higher than in CR-V and CON-V, respectively. In PBMC, increased expression levels of Lrp11 and Gls in CR-V were partially normalized in all supplemented groups (but only in males for Gls). Therefore, myo-inositol supplementation throughout lactation, alone and combined with leptin, reverts programmed alterations by fetal undernutrition on hypothalamic structure and gene expression of potential early biomarkers of metabolic health in PBMC, which might be attributed, in part, to increased leptin sensitivity.
Collapse
|
18
|
Yau-Qiu ZX, Madrid-Gambin F, Brennan L, Palou A, Rodríguez AM. Leptin Supplementation During Lactation Restores Key Liver Metabolite Levels Malprogrammed by Gestational Calorie Restriction. Mol Nutr Food Res 2021; 65:e2001046. [PMID: 33900028 DOI: 10.1002/mnfr.202001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Perinatal nutritional factors can program offspring metabolic phenotype and risk to obesity. This study investigates the potential role of leptin supplementation (during lactation) in ameliorating the malprogrammed effects caused by mild maternal calorie restriction during gestation, on young rat offspring liver metabolic response. METHODS AND RESULTS Untargeted and targeted metabolomics studies on liver samples are performed by NMR and GC-MS, respectively. Global DNA methylation and the expression by RT-PCR of key genes involved in different pathways are also determined. By NMR, 15 liver metabolites are observed to be altered in the offspring of gestational calorie-restricted dams (CR group), at days 25-27 of life. Physiological leptin supplementation during lactation partially reverted the effect of CR condition for most of these metabolites. Moreover, targeted fatty acid analysis by GC-MS shows a significant decrease in the hepatic concentration of certain very long-chain fatty acids (VLCFA) in CR offspring, partially or totally reverted by leptin supplementation. No remarkable changes are found in global DNA methylation or mRNA expression. CONCLUSION Physiological leptin supplementation during lactation contributes to the reversion of changes caused by maternal mild calorie restriction on the liver metabolome. This agrees with a putative role of leptin supplementation preventing or reversing metabolic disturbances caused by gestational metabolic malprogramming.
Collapse
Affiliation(s)
- Zhi Xin Yau-Qiu
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and obesity), University of the Balearic Islands (UIB), Palma de Mallorca, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Francisco Madrid-Gambin
- UCD School of Agriculture and Food Science, Institute of Food and Health, Conway Institute, University College Dublin (UCD), Dublin, Ireland.,Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, Conway Institute, University College Dublin (UCD), Dublin, Ireland
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and obesity), University of the Balearic Islands (UIB), Palma de Mallorca, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and obesity), University of the Balearic Islands (UIB), Palma de Mallorca, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
19
|
Castillo P, Palou M, Otero D, Núñez P, Palou A, Picó C. Sex-Specific Effects of Myo-Inositol Ingested During Lactation in the Improvement of Metabolic Health in Adult Rats. Mol Nutr Food Res 2021; 65:e2000965. [PMID: 33554468 DOI: 10.1002/mnfr.202000965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/08/2021] [Indexed: 01/06/2023]
Abstract
SCOPE To examine the effects of myo-inositol supplementation during lactation in male and female rats on metabolic parameters and its potential to reverse metabolic alterations associated with a moderate gestational calorie restriction. METHODS AND RESULTS The offspring of control and 25% gestational calorie-restricted rats are supplemented with myo-inositol or vehicle throughout lactation and exposed to a Western diet (WD) from 5 to 7 months of age. Blood parameters are measured and gene expression and protein levels in retroperitoneal white adipose tissue (rWAT) and liver are analyzed. In male offspring, but not in females, myo-inositol supplementation resulted in lower fasting triglyceride and insulin levels and HOMA-IR at 7 months, and reversed the alterations in these parameters due to gestational calorie restriction. The expression pattern of key genes in metabolism in rWAT and liver support the beneficial effect of myo-inositol supplementation in reversing metabolic alterations programmed by gestational calorie restriction in male rats. CONCLUSIONS Myo-inositol supplementation at physiological doses during lactation improves metabolic health and prevents the programmed trend to develop insulin resistance and hypertriglyceridemia in male rats acquired by inadequate fetal nutrition and exacerbated by a diabetogenic diet in adulthood. The absence of clear effects in females deserves further investigation.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - David Otero
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
| | - Paula Núñez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
20
|
Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest 2021; 51:e13482. [PMID: 33350459 DOI: 10.1111/eci.13482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
The concept of developmental origins of health and disease (DOHaD) was initially supported by the low birth weight and higher risk of developing cardiovascular disease in adult life, caused by nutrition restriction during foetal development. However, other programming windows have been recognized in the last years, namely lactation, infancy, adolescence and even preconception. Although the concept has been developed in order to study the impact of foetal calorie restriction in adult life, it is now recognized that maternal overweight during programming windows is also harmful to the offspring. This article explores and summarizes the current knowledge about the impact of maternal obesity and obesogenic diets during lactation in the metabolic programming towards the development of metabolic syndrome in the adult life. The impact of maternal obesity and obesogenic diets in milk quality is discussed, including the alterations in specific micro and macronutrients, as well as the impact of such alterations in the development of metabolic syndrome-associated features in the newborn, such as insulin resistance and adiposity. Moreover, the impact of milk quality and formula feeding in infants' gut microbiota, immune system maturation and in the nutrient-sensing mechanisms, namely those related to gut hormones and leptin, are also discussed under the current knowledge.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma (Mallorca), Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma (Mallorca), Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma (Mallorca), Spain
| | - Flávio Reis
- Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Conceição Egas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Faculty of Medicine, Institute of Physiology and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
21
|
Quinn EA. Centering human milk composition as normal human biological variation. Am J Hum Biol 2021; 33:e23564. [DOI: 10.1002/ajhb.23564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elizabeth A. Quinn
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri USA
| |
Collapse
|
22
|
Chen MC, Liu TT, Wang JP, Chen YP, Chen QX, Zhu YJ, Liu B. Strong inhibitory activities and action modes of lipopeptides on lipase. J Enzyme Inhib Med Chem 2020; 35:897-905. [PMID: 32216480 PMCID: PMC7170388 DOI: 10.1080/14756366.2020.1734798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipopeptides have been reported to exhibit anti-obesity effects. In this study, we obtained a Bacillus velezensis strain FJAT-52631 that could coproduce iturins, fengycins, and surfactins. Results showed that the FJAT-52631 crude lipopeptide, purified fengycin, iturin, and surfactin standards exhibited strong inhibition activities against lipase with dose-dependence manners (half maximal inhibitory concentration (IC50) = 0.011, 0.005, 0.056, and 0.005 mg/mL, respectively). Moreover, fengycin and surfactin had the comparable activities with orlistat, but iturin not. It was revealed that the inhibition mechanism and type of the lipopeptides were reversible and competitive. The quenching mechanism of lipase was static and only one binding site between lipase and lipopoeptide was inferred from the fluorescence analysis. The docking analysis displayed that fengycin and surfactin could directly interact with the active amino acid residues (Ser or Asp) of lipase, but not with iturin. Our work suggests that the B. velezensis lipopeptides would have great potential to act as lipase inhibitors.
Collapse
Affiliation(s)
- Mei-Chun Chen
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tian-Tian Liu
- College of Biological Science and Engineering, Xiamen University, Xiamen, China
| | - Jie-Ping Wang
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan-Ping Chen
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qing-Xi Chen
- College of Biological Science and Engineering, Xiamen University, Xiamen, China
| | - Yu-Jing Zhu
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Bo Liu
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
23
|
Yau-Qiu ZX, Picó C, Rodríguez AM, Palou A. Leptin Distribution in Rat Foetal and Extraembryonic Tissues in Late Gestation: A Physiological View of Amniotic Fluid Leptin. Nutrients 2020; 12:E2542. [PMID: 32825787 PMCID: PMC7551401 DOI: 10.3390/nu12092542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Prenatal leptin is key to regulating foetal growth and early metabolic programming. The presence of intact leptin in rat foetal (at late gestation) and neonatal (immediately after birth) stomach content and mucosa has been previously described, suggesting that it may act as a regulatory nutrient for the neonate rats, be internalised by the stomach, and play a physiological role early in life, which requires to be further investigated, including its origin. We aimed to study the ontogeny of the presence of leptin in the foetal stomach and key extraembryonic tissues in rats at late gestation (days 18-21). Leptin concentration was determined by enzyme-linked immunosorbent assay, and placental leptin immunolocalisation was analysed by immunohistochemistry. Leptin showed a sudden appearance in the amniotic fluid (AF) at day 20 of gestation, gastric content (swallowed AF), stomach, and umbilical cord, significantly increasing at day 21. Leptin levels in these fluids and tissues were positively correlated. In the placenta, leptin was detectable at all the studied days, but its localisation changed from widespread throughout the placenta at day 18 to well-defined in the labyrinth zone from day 19 onwards. The results support a possible internalisation of AF leptin by the immature stomach of near-term foetuses and suggest that changes in placental leptin localisation might help to explain the sudden appearance of leptin in AF at gestational day 20, with potential physiological significance regarding short-term feeding control and metabolic programming in the developing offspring.
Collapse
Affiliation(s)
- Zhi Xin Yau-Qiu
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB), Palma de Mallorca, 07122 Balearic Islands, Spain; (Z.X.Y.-Q.); (C.P.); (A.P.)
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, 07010 Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, 07122 Balearic Islands, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB), Palma de Mallorca, 07122 Balearic Islands, Spain; (Z.X.Y.-Q.); (C.P.); (A.P.)
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, 07010 Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, 07122 Balearic Islands, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB), Palma de Mallorca, 07122 Balearic Islands, Spain; (Z.X.Y.-Q.); (C.P.); (A.P.)
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, 07010 Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, 07122 Balearic Islands, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB), Palma de Mallorca, 07122 Balearic Islands, Spain; (Z.X.Y.-Q.); (C.P.); (A.P.)
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, 07010 Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, 07122 Balearic Islands, Spain
| |
Collapse
|
24
|
Szostaczuk N, van Schothorst EM, Sánchez J, Priego T, Palou M, Bekkenkamp-Grovenstein M, Faustmann G, Obermayer-Pietsch B, Tiran B, Roob JM, Winklhofer-Roob BM, Keijer J, Palou A, Picó C. Identification of blood cell transcriptome-based biomarkers in adulthood predictive of increased risk to develop metabolic disorders using early life intervention rat models. FASEB J 2020; 34:9003-9017. [PMID: 32474969 DOI: 10.1096/fj.202000071rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Calorie restriction during gestation in rats has long-lasting adverse effects in the offspring. It induces metabolic syndrome-related alterations, which are partially reversed by leptin supplementation during lactation. We employed these conditions to identify transcript-based nutrient sensitive biomarkers in peripheral blood mononuclear cells (PBMCs) predictive of later adverse metabolic health. The best candidate was validated in humans. Transcriptome analysis of PBMCs from adult male Wistar rats of three experimental groups was performed: offspring of control dams (CON), and offspring of 20% calorie-restricted dams during gestation without (CR) and with leptin supplementation throughout lactation (CR-LEP). The expression of 401 genes was affected by gestational calorie restriction and reversed by leptin. The changes preceded metabolic syndrome-related phenotypic alterations. Of these genes, Npc1 mRNA levels were lower in CR vs CON, and normalized to CON in CR-LEP. In humans, NPC1 mRNA levels in peripheral blood cells (PBCs) were decreased in subjects with mildly impaired metabolic health compared to healthy subjects. Therefore, a set of potential transcript-based biomarkers indicative of a predisposition to metabolic syndrome-related alterations were identified, including NPC1, which was validated in humans. Low NPC1 transcript levels in PBCs are a candidate biomarker of increased risk for impaired metabolic health in humans.
Collapse
Affiliation(s)
- Nara Szostaczuk
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain
| | | | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Teresa Priego
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | - Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Graz, Austria.,Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Clinical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Graz, Austria
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
25
|
Liu TT, Liu XT, Chen QX, Shi Y. Lipase Inhibitors for Obesity: A Review. Biomed Pharmacother 2020; 128:110314. [PMID: 32485574 DOI: 10.1016/j.biopha.2020.110314] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
With the rapid increase in the population of obese individuals, obesity has become a global problem. Many kinds of chronic metabolic diseases easily caused by obesity have received increasing attention from researchers. People are also striving to find various safe and effective treatment methods as well as anti-obesity medicines. Pancreatic lipase (PL) inhibitors have received substantial attention from researchers in recent years, and PL inhibitors from natural products have attracted much attention due to their structural diversity, low toxicity and wide range of sources. They have been used in the intestinal tract, blood, and the central nervous system with no side effects, and these advantages could lead to a new generation of diet pills or health care products with great development potential. This article is mainly aimed at discussing the research of obesity drug treatment with PL inhibitors and offers a brief review of related properties and the use of PL inhibitors in the field of weight loss.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Xiao-Tian Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yan Shi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
26
|
Cholinergic-pathway-weakness-associated pancreatic islet dysfunction: a low-protein-diet imprint effect on weaned rat offspring. J Dev Orig Health Dis 2020; 11:484-491. [DOI: 10.1017/s2040174420000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractCurrently, metabolic disorders are one of the major health problems worldwide, which have been shown to be related to perinatal nutritional insults, and the autonomic nervous system and endocrine pancreas are pivotal targets of the malprogramming of metabolic function. We aimed to assess glucose–insulin homeostasis and the involvement of cholinergic responsiveness (vagus nerve activity and insulinotropic muscarinic response) in pancreatic islet capacity to secrete insulin in weaned rat offspring whose mothers were undernourished in the first 2 weeks of the suckling phase. At delivery, dams were fed a low-protein (4% protein, LP group) or a normal-protein diet (20.5% protein, NP group) during the first 2 weeks of the suckling period. Litter size was adjusted to six pups per mother, and rats were weaned at 21 days old. Weaned LP rats presented a lean phenotype (P < 0.01); hypoglycaemia, hypoinsulinaemia and hypoleptinaemia (P < 0.05); and normal corticosteronaemia (P > 0.05). In addition, milk insulin levels in mothers of the LP rats were twofold higher than those of mothers of the NP rats (P < 0.001). Regarding glucose–insulin homeostasis, weaned LP rats were glucose-intolerant (P < 0.01) and displayed impaired pancreatic islet insulinotropic function (P < 0.05). The M3 subtype of the muscarinic acetylcholine receptor (M3mAChR) from weaned LP rats was less responsive, and the superior vagus nerve electrical activity was reduced by 30% (P < 0.01). A low-protein diet in the suckling period malprogrammes the vagus nerve to low tonus and impairs muscarinic response in the pancreatic β-cells of weaned rats, which are imprinted to secrete inadequate insulin amounts from an early age.
Collapse
|
27
|
Marousez L, Lesage J, Eberlé D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019; 11:E2966. [PMID: 31817318 PMCID: PMC6950532 DOI: 10.3390/nu11122966] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.
Collapse
Affiliation(s)
| | | | - Delphine Eberlé
- University Lille, EA4489 Environnement Périnatal et Santé, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
28
|
Breast Milk Supply of MicroRNA Associated with Leptin and Adiponectin Is Affected by Maternal Overweight/Obesity and Influences Infancy BMI. Nutrients 2019; 11:nu11112589. [PMID: 31661820 PMCID: PMC6893542 DOI: 10.3390/nu11112589] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Breast milk constitutes a dietary source of leptin, adiponectin and microRNAs (miRNAs) for newborns. Expression of miRNAs previously associated with maternal obesity, leptin or adiponectin function were assessed and their impact on infant weight analyzed. Milk samples were collected (at month 1, 2, and 3) from a cohort of 59 healthy lactating mothers (38 normal-weight and 21 overweight/obese (BMI ≥ 25)), and infant growth was followed up to 2 years of age. Thirteen miRNAs, leptin and adiponectin were determined in milk. Leptin, adiponectin and miRNA showed a decrease over time of lactation in normal-weight mothers that was altered in overweight/obesity. Furthermore, negative correlations were observed in normal-weight mothers between the expression of miRNAs in milk and the concentration of leptin or adiponectin, but were absent in overweight/obesity. Moreover, miRNAs negatively correlated with infant BMI only in normal-weight mothers (miR-103, miR-17, miR-181a, miR-222, miR-let7c and miR-146b). Interestingly, target genes of milk miRNAs differently regulated in overweight/obesity could be related to neurodevelopmental processes. In conclusion, a set of miRNAs present in breast milk, in close conjunction with leptin and adiponectin, are natural bioactive compounds with the potential to modulate infant growth and brain development, an interplay that is disturbed in the case of maternal overweight/obesity.
Collapse
|
29
|
Amissah E, Lin L, Gamble GD, Crowther CA, Bloomfield FH, Harding JE. Macronutrient Supplements in Preterm and Small-for-Gestational-Age Animals: A Systematic Review and Meta-analysis. Sci Rep 2019; 9:14715. [PMID: 31605011 PMCID: PMC6789152 DOI: 10.1038/s41598-019-51295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Early macronutrient supplementation in preterm and/or small-for-gestational-age (SGA) infants may improve growth but have detrimental effects on later cardio-metabolic health which may be sex-specific. We systematically reviewed the long-term effects of early macronutrient supplementation in preterm and SGA animals and whether these differ by sex. Using Cochrane Neonatal and SYRCLE methodologies we included random or quasi-random studies that allocated non-human mammals to macronutrient supplements or no supplements between birth and weaning and assessed post-weaning outcomes. We used random-effects models to calculate standardized mean differences (SMD) with 95% confidence intervals (CIs). Six studies provided low to very-low-quality evidence that macronutrient supplementation increased weight in juvenile rats (SMD; 95% CI: 2.13; 1.00, 3.25; 1 study, n = 24), increased leptin concentrations in older adults (1.31; 0.12, 2.51; 1 study, n = 14 male rats), but decreased leptin concentrations in young adults (-1.13; -2.21, -0.05; 1 study, n = 16 female rats) and improved spatial learning and memory (qualitative data; 1 study). There was no evidence of sex-specific effects and no overall effect on length, serum lipids, body composition, HOMA-IR, or blood pressure. Macronutrient supplements may affect later growth, metabolism, and neurodevelopment of preterm and SGA animals, but evidence is limited and low quality.
Collapse
Affiliation(s)
- Emma Amissah
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Luling Lin
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Gregory D Gamble
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
30
|
Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev 2019; 76:875-892. [PMID: 30285146 DOI: 10.1093/nutrit/nuy046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leptin ingested as a component of breast milk is increasingly recognized to play a role in the postnatal programming of a healthy phenotype in adulthood. Besides its primary function in controlling body weight, leptin may be an essential nutrient required during lactation to ensure that the system controlling fat accumulation and body composition is well organized from the early stages of development. This review delves into the following topics: (1) the imprinted protective function of adequate leptin intake during lactation in future metabolic health; (2) the consequences of a lack of leptin intake or of alterations in leptin levels; and (3) the mechanisms described for the effects of leptin on postnatal programming. Furthermore, it highlights the importance of breastfeeding and the need to establish optimal or reference intake values for leptin during lactation to design patterns of personalized nutrition from early childhood.
Collapse
Affiliation(s)
- Mariona Palou
- Alimentómica SL, Palma de Mallorca, Spain.,Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Picó
- Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Andreu Palou
- Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
31
|
Li J, Cha R, Luo H, Hao W, Zhang Y, Jiang X. Nanomaterials for the theranostics of obesity. Biomaterials 2019; 223:119474. [PMID: 31536920 DOI: 10.1016/j.biomaterials.2019.119474] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
As a chronic and lifelong disease, obesity not only significant impairs health but also dramatically shortens life span (at least 10 years). Obesity requires a life-long effort for the successful treatment because a number of abnormalities would appear in the development of obesity. Nanomaterials possess large specific surface area, strong absorptivity, and high bioavailability, especially the good targeting properties and adjustable release rate, which would benefit the diagnosis and treatment of obesity and obesity-related metabolic diseases. Herein, we discussed the therapy and diagnosis of obesity and obesity-related metabolic diseases by using nanomaterials. Therapies of obesity with nanomaterials include improving intestinal health and reducing energy intake, targeting and treating functional cell abnormalities, regulating redox homeostasis, and removing free lipoprotein in blood. Diagnosis of obesity-related metabolic diseases would benefit the therapy of these diseases. The development of nanomaterials will promote the diagnosis and therapy of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China.
| | - Huize Luo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Wenshuai Hao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Yan Zhang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100032, PR China.
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| |
Collapse
|
32
|
Ginés I, Gil-Cardoso K, Serrano J, Casanova-Marti À, Lobato M, Terra X, Blay MT, Ardévol A, Pinent M. Proanthocyanidins Limit Adipose Accrual Induced by a Cafeteria Diet, Several Weeks after the End of the Treatment. Genes (Basel) 2019; 10:genes10080598. [PMID: 31398921 PMCID: PMC6723337 DOI: 10.3390/genes10080598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
A dose of proanthocyanidins with satiating properties proved to be able to limit body weight increase several weeks after administration under exposure to a cafeteria diet. Here we describe some of the molecular targets and the duration of the effects. We treated rats with 500 mg grape seed proanthocyanidin extract (GSPE)/kg BW for ten days. Seven or seventeen weeks after the last GSPE dose, while animals were on a cafeteria diet, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to measure the mRNA of the key energy metabolism enzymes from the liver, adipose depots and muscle. We found that a reduction in the expression of adipose Lpl might explain the lower amount of adipose tissue in rats seven weeks after the last GSPE dose. The liver showed increased expression of Cpt1a and Hmgs2 together with a reduction in Fasn and Dgat2. In addition, muscle showed a higher fatty oxidation (Oxct1 and Cpt1b mRNA). However, after seventeen weeks, there was a completely different gene expression pattern. At the conclusion of the study, seven weeks after the last GSPE administration there was a limitation in adipose accrual that might be mediated by an inhibition of the gene expression of the adipose tissue Lpl. Concomitantly there was an increase in fatty acid oxidation in liver and muscle.
Collapse
Affiliation(s)
- Iris Ginés
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Àngela Casanova-Marti
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Maria Lobato
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| |
Collapse
|
33
|
Quitete FT, de Moura EG, Atella GC, Lisboa PC, de Oliveira E. Differential effects in male adult rats of lifelong coconut oil exposure versus during early-life only. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Buresova J, Janovska P, Kuda O, Krizova J, der Stelt IRV, Keijer J, Hansikova H, Rossmeisl M, Kopecky J. Postnatal induction of muscle fatty acid oxidation in mice differing in propensity to obesity: a role of pyruvate dehydrogenase. Int J Obes (Lond) 2018; 44:235-244. [PMID: 30538280 DOI: 10.1038/s41366-018-0281-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND/OBJECTIVE Adaptation to the extrauterine environment depends on a switch from glycolysis to catabolism of fatty acids (FA) provided as milk lipids. We sought to learn whether the postnatal induction of muscle FA oxidation in mice could reflect propensity to obesity and to characterize the mechanisms controlling this induction. METHODS Experiments were conducted using obesity-resistant A/J and obesity-prone C57BL/6J (B6) mice maintained at 30 °C, from 5 to 28 days after birth. At day 10, both A/J and B6 mice with genetic ablation (KO) of α2 subunit of AMP-activated protein kinase (AMPK) were also used. In skeletal muscle, expression of selected genes was determined using quantitative real-time PCR, and AMPK subunits content was evaluated using Western blotting. Activities of both AMPK and pyruvate dehydrogenase (PDH), as well as acylcarnitine levels in the muscle were measured. RESULTS Acylcarnitine levels and gene expression indicated transient increase in FA oxidation during the first 2 weeks after birth, with a stronger increase in A/J mice. These data correlated with (i) the surge in plasma leptin levels, which peaked at day 10 and was higher in A/J mice, and (ii) relatively low activity of PDH linked with up-regulation of PDH kinase 4 gene (Pdk4) expression in the 10-day-old A/J mice. In contrast with the Pdk4 expression, transient up-regulation of uncoupling protein 3 gene was observed in B6 but not A/J mice. AMPK activity changed during the development, without major differences between A/J and B6 mice. Expression of neither Pdk4 nor other muscle genes was affected by AMPK-KO. CONCLUSIONS Our results indicate a relatively strong postnatal induction of FA oxidation in skeletal muscle of the obesity-resistant A/J mice. This induction is transient and probably results from suppression of PDH activity, linked with a postnatal surge in plasma leptin levels, independent of AMPK.
Collapse
Affiliation(s)
- Jana Buresova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Krizova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
35
|
Inhibitory mechanism and molecular analysis of furoic acid and oxalic acid on lipase. Int J Biol Macromol 2018; 120:1925-1934. [DOI: 10.1016/j.ijbiomac.2018.09.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/25/2023]
|
36
|
Mariné-Casadó R, Domenech-Coca C, Del Bas JM, Bladé C, Arola L, Caimari A. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol 2018; 9:1639. [PMID: 30534077 PMCID: PMC6275206 DOI: 10.3389/fphys.2018.01639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that chronic exposure to different photoperiods induced marked variations in several glucose and lipid metabolism-related parameters in normoweight Fischer 344 (F344) rats. Here, we examined the effects of the combination of an obesogenic cafeteria diet (CAF) and the chronic exposure to three different day lengths (L12, 12 h light/day; L18, 18 h light/day; and L6, 6 h light/day) in this rat strain. Although no changes were observed during the first 4 weeks of adaptation to the different photoperiods in which animals were fed a standard diet, the addition of the CAF for the subsequent 7 weeks triggered profound physiologic and metabolic alterations in a photoperiod-dependent manner. Compared with L12 rats, both L6 and L18 animals displayed lower body weight gain and cumulative food intake in addition to decreased energy expenditure and locomotor activity. These changes were accompanied by differences in food preferences and by a sharp upregulation of the orexigenic genes Npy and Ghsr in the hypothalamus, which could be understood as a homeostatic mechanism for increasing food consumption to restore body weight control. L18 rats also exhibited higher glycemia than the L6 group, which could be partly attributed to the decreased pAkt2 levels in the soleus muscle and the downregulation of Irs1 mRNA levels in the gastrocnemius muscle. Furthermore, L6 animals displayed lower whole-body lipid utilization than the L18 group, which could be related to the lower lipid intake and to the decreased mRNA levels of the fatty acid transporter gene Fatp1 observed in the soleus muscle. The profound differences observed between L6 and L18 rats could be related with hepatic and muscular changes in the expression of circadian rhythm-related genes Cry1, Bmal1, Per2, and Nr1d1. Although further research is needed to elucidate the pathophysiologic relevance of these findings, our study could contribute to emphasize the impact of the consumption of highly palatable and energy dense foods regularly consumed by humans on the physiological and metabolic adaptations that occur in response to seasonal variations of day length, especially in diseases associated with changes in food intake and preference such as obesity and seasonal affective disorder.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cristina Domenech-Coca
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Maria Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| |
Collapse
|
37
|
Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactational programming of glucose homeostasis: a window of opportunity. Reproduction 2018; 156:R23-R42. [PMID: 29752297 PMCID: PMC6668618 DOI: 10.1530/rep-17-0780] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.
Collapse
Affiliation(s)
- Lindsay Ellsworth
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Emma Harman
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | | | - Brigid Gregg
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Szostaczuk N, Sánchez J, Konieczna J, Palou A, Picó C. Leptin Intake at Physiological Doses Throughout Lactation in Male Wistar Rats Normalizes the Decreased Density of Tyrosine Hydroxylase-Immunoreactive Fibers in the Stomach Caused by Mild Gestational Calorie Restriction. Front Physiol 2018; 9:256. [PMID: 29618984 PMCID: PMC5871795 DOI: 10.3389/fphys.2018.00256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/06/2018] [Indexed: 01/30/2023] Open
Abstract
Introduction: Gestational under nutrition in rats has been shown to decrease expression of sympathetic innervation markers in peripheral tissues of offspring, including the stomach. This has been linked to lower gastric secretion and decreased circulating levels of ghrelin. Considering the critical role of leptin intake during lactation in preventing obesity and reversing adverse developmental programming effects, we aimed to find out whether leptin supplementation may reverse the above mentioned alterations caused by mild gestational calorie restriction. Methods: Three groups of male rats were studied at a juvenile age (25 days old) and during adulthood (3 and 6 months old): the offspring of ad libitum fed dams (controls), the offspring of dams that were diet restricted (20%) from days 1 to 12 of gestation (CR), and CR rats supplemented with a daily oral dose of leptin (equivalent to 5 times the average amount they could receive each day from maternal milk) throughout lactation (CR-Leptin). The density of TyrOH-immunoreactive (TyrOH+) fibers and the levels of Tyrosine hydroxylase (TyrOH)-used as potential markers of functional sympathetic innervation-were measured in stomach. Plasma leptin and ghrelin levels were also determined. Results: Twenty five-day-old CR rats, but not CR-Leptin rats, displayed lower density of TyrOH+ fibers (-46%) and TyrOH levels (-47%) in stomach compared to controls. Alterations in CR animals were mitigated at 6 months of age, and differences were not significant. Adult CR-Leptin animals showed higher plasma ghrelin levels than CR animals, particularly at 3 months (+16%), and a lower leptin/ghrelin ratio (-28 and -37% at 3 and 6 months, respectively). Conclusion: Leptin intake during lactation is able to reverse the alterations in the density of TyrOH+ fibers in the stomach and normalize the increased leptin/ghrelin ratio linked to a mild gestational calorie restriction in rats, supporting the relevance of leptin as an essential nutrient during lactation.
Collapse
Affiliation(s)
- Nara Szostaczuk
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Jadwiga Konieczna
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| |
Collapse
|
39
|
Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients 2018. [PMID: 29518911 PMCID: PMC5872733 DOI: 10.3390/nu10030315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity is highly associated with the pathologies included in the concept of the Metabolic Syndrome. Grape-seed proanthocyanins (GSPE) have showed very positive effects against all these metabolic disruptions; however, there is, as yet, no consensus about their effectiveness against an obesogenic challenge, such as a cafeteria diet. We determined the effectiveness of a dose of 500 mg GSPE/kg b.w. (body weight) against the obesogenic effects of a 17-week cafeteria diet, administered as a sub-chronic treatment, 10–15 days before, intermittently and at the end of the diet, in Wistar rats. Body weight, adiposity, indirect calorimetry and plasma parameters were analyzed. GSPE pre-treatment showed a long-lasting effect on body weight and adiposity that was maintained for seven weeks after the last dose. A corrective treatment was administered for the last two weeks of the cafeteria diet intervention; however, it did not effectively correct any of the parameters assessed. The most effective treatment was an intermittent GSPE dosage, administered every second week during the cafeteria diet. This limited body weight gain, adiposity and most lipotoxic effects. Our results support the administration of this GSPE dose, keeping an intermittent interval between dosages longer than every second week, to improve obesogenic disruptions produced by a cafeteria diet.
Collapse
|
40
|
Ojeda ML, Nogales F, Muñoz Del Valle P, Díaz-Castro J, Murillo ML, Carreras O. Metabolic syndrome and selenium in fetal programming: gender differences. Food Funct 2018; 7:3031-8. [PMID: 27334401 DOI: 10.1039/c6fo00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Since Selenium (Se) forms part of glutathione peroxidase (GPx), which appears to have a dual role in Metabolic Syndrome (MS), this study evaluates the implication of Se in the transmission of this pathology to the progeny. METHODS Se body distribution, glucose, triglycerides, cholesterol, insulin and metabolic hormones [glucagon, leptin, gastric inhibitory polypeptide (GIP), and triiodothyronine (T3)], growth factors, receptor activator of nuclear factor kappa-B ligand (RANK-L) and osteopontin, as well as oxidative hepatic balance in the offspring of dams exposed to a fructose-rich diet (65%) with normal Se content (0.01 ppm) during gestation and lactation, were measured according to sex. RESULTS Fructose pups had lower body weight; however, male pups had a lower body mass index and growth indicators in serum. Fructose pups, especially females, had lower levels of serum insulin and HOMA-IR. With regard to Se homeostasis, fructose pups presented a depletion of Se in heart and muscle, and repletion in kidneys, pancreas and thyroid, although only female pups showed a repletion of Se in the liver. Fructose pups presented lower superoxide dismutase activity and only female fructose pups had higher GPx activity, which provoked hepatic oxidation. CONCLUSIONS Se balance and Se tissue deposits in MS pups during lactation are altered by gender. This difference is focused on hepatic Se deposits that affect GPx activity, which could be related to a disruption in the insulin-signaling cascade in females. Furthermore, although female fructose pups had greater metabolic disorders, only the males' growth and development were affected. Particularly relevant is the depletion of Se found in the heart of fructose pups, as this element is essential for correct heart function.
Collapse
Affiliation(s)
- M Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | - Javier Díaz-Castro
- Department of Physiology, Faculty of Pharmacy and Institute of Nutrition and Food Technology 'José Mataix', University of Granada, 18071 Granada, Spain
| | - M Luisa Murillo
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| |
Collapse
|
41
|
Gender-Associated Impact of Early Leucine Supplementation on Adult Predisposition to Obesity in Rats. Nutrients 2018; 10:nu10010076. [PMID: 29329236 PMCID: PMC5793304 DOI: 10.3390/nu10010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 01/06/2018] [Indexed: 12/14/2022] Open
Abstract
Early nutrition plays an important role in development and may constitute a relevant contributor to the onset of obesity in adulthood. The aim of this study was to evaluate the long-term impact of maternal leucine (Leu) supplementation during lactation on progeny in rats. A chow diet, supplemented with 2% Leu, was supplied during lactation (21 days) and, from weaning onwards, was replaced by a standard chow diet. Then, at adulthood (6 months of age), this was replaced with hypercaloric diets (either with high-fat (HF) or high-carbohydrate (HC) content), for two months, to induce obesity. Female offspring from Leu-supplemented dams showed higher increases in body weight and in body fat (62%) than their respective controls; whereas males were somehow protected (15% less fat than the corresponding controls). This profile in Leu-females was associated with altered neuronal architecture at the paraventricular nucleus (PVN), involving neuropeptide Y (NPY) fibers and impaired expression of neuropeptides and factors of the mTOR signaling pathway in the hypothalamus. Interestingly, leptin and adiponectin expression in adipose tissue at weaning and at the time before the onset of obesity could be defined as early biomarkers of metabolic disturbance, predisposing towards adult obesity under the appropriate environment.
Collapse
|
42
|
Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge. PLoS One 2017; 12:e0188658. [PMID: 29190757 PMCID: PMC5708666 DOI: 10.1371/journal.pone.0188658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams' serum and breast milk, and in their pup's stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio-suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA-eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA's postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup's total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA's higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne) factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis.
Collapse
|
43
|
Firth EC, Gamble GD, Cornish J, Vickers MH. Neonatal leptin treatment reverses the bone-suppressive effects of maternal undernutrition in adult rat offspring. Sci Rep 2017; 7:7686. [PMID: 28794412 PMCID: PMC5550441 DOI: 10.1038/s41598-017-07500-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/29/2017] [Indexed: 11/19/2022] Open
Abstract
Alterations in the early life environment, including maternal undernutrition (UN) during pregnancy, can lead to increased risk of metabolic and cardiovascular disorders in offspring. Leptin treatment of neonates born to UN rats reverses the programmed metabolic phenotype, but the possible benefits of this treatment on bone tissue have not been defined. We describe for the first time the effects of neonatal leptin treatment on bone in adult offspring following maternal UN. Offspring from either UN or ad libitum-fed (AD) rats were treated with either saline or leptin (2.5 µg/ g.d on postnatal days (D)3–13) and were fed either a chow or high fat (HF) diet from weaning until study completion at D170. Analysis of micro-tomographic data of the left femur showed highly significant effects of UN on cortical and trabecular bone tissue indices, contributing to inferior microstructure and bone strength, almost all of which were reversed by early leptin life treatment. The HF fat diet negatively affected trabecular bone tissue, but the effects of only trabecular separation and number were reversed by leptin treatment. The negative effects of maternal UN on skeletal health in adult offspring might be prevented or attenuated by various interventions including leptin. Establishment of a minimal efficacious leptin dose warrants further study.
Collapse
Affiliation(s)
- Elwyn C Firth
- Liggins Institute, University of Auckland, Auckland, New Zealand. .,Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | - Greg D Gamble
- Bone and Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Group, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Castro H, Pomar CA, Palou A, Picó C, Sánchez J. Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating. Mol Nutr Food Res 2016; 61. [PMID: 27794180 DOI: 10.1002/mnfr.201600513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/16/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
SCOPE We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. METHODS AND RESULTS Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. CONCLUSION Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances.
Collapse
Affiliation(s)
- Heriberto Castro
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain.,Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
45
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
46
|
Serrano J, Casanova-Martí À, Gil-Cardoso K, Blay MT, Terra X, Pinent M, Ardévol A. Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food Funct 2016; 7:483-90. [PMID: 26514231 DOI: 10.1039/c5fo00892a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Grape-seed proanthocyanidins' role as stimulators of active GLP-1 in rats suggests that they could be effective as satiating agents. Wistar rats were used to study the effects of proanthocyanidins on food intake with different doses, administration times and proanthocyanidin extract compositions. A dose of 423 mg of phenolics per kg body weight (BW) of grape-seed proanthocyanidin extract (GSPE) was necessary to decrease the 12-hour cumulative food intake by 18.7 ± 3.4%. Proanthocyanidins were effective when delivered directly into the gastrointestinal tract one hour before, or simultaneously at the start of the feeding period. Proanthocyanidins without galloyl forms, such as those from cocoa extract, were not as effective as grape-seed derived forms. GSPE increased the portal levels of active GLP-1 and total ghrelin and decreased the CCK levels, simultaneously with a decrease in gastric emptying. In conclusion, grape-seed proanthocyanidins could be useful as a satiating agent under the conditions defined in this study.
Collapse
Affiliation(s)
- Joan Serrano
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Àngela Casanova-Martí
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Katherine Gil-Cardoso
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - M Teresa Blay
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Ximena Terra
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Montserrat Pinent
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Anna Ardévol
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| |
Collapse
|
47
|
Garcia-Mantrana I, Collado MC. Obesity and overweight: Impact on maternal and milk microbiome and their role for infant health and nutrition. Mol Nutr Food Res 2016; 60:1865-75. [PMID: 27159888 DOI: 10.1002/mnfr.201501018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 12/20/2022]
Abstract
Obesity, particularly in infants, is becoming a significant public health problem that has reached "epidemic" status worldwide. Obese children have an increased risk of developing obesity-related diseases, such as metabolic syndromes and diabetes, as well as increased risk of mortality and adverse health outcomes later in life. Experimental data show that maternal obesity has negative effects on the offspring's health in the short and long term. Increasing evidence suggests a key role for microbiota in host metabolism and energy harvest, providing novel tools for obesity prevention and management. The maternal environment, including nutrition and microbes, influences the likelihood of developing childhood diseases, which may persist and be exacerbated in adulthood. Maternal obesity and weight gain also influence microbiota composition and activity during pregnancy and lactation. They affect microbial diversity in the gut and breast milk. Such microbial changes may be transferred to the offspring during delivery and also during lactation, affecting infant microbial colonisation and immune system maturation. Thus, an adequate nutritional and microbial environment during the peri-natal period may provide a window of opportunity to reduce the risk of obesity and overweight in our infants using targeted strategies aimed at modulating the microbiota during early life.
Collapse
Affiliation(s)
- Izaskun Garcia-Mantrana
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
48
|
Pollock KE, Stevens D, Pennington KA, Thaisrivongs R, Kaiser J, Ellersieck MR, Miller DK, Schulz LC. Hyperleptinemia During Pregnancy Decreases Adult Weight of Offspring and Is Associated With Increased Offspring Locomotor Activity in Mice. Endocrinology 2015. [PMID: 26196541 DOI: 10.1210/en.2015-1247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pregnant women who are obese or have gestational diabetes mellitus have elevated leptin levels and their children have an increased risk for child and adult obesity. The goals of this study were to determine whether offspring weights are altered by maternal hyperleptinemia, and whether this occurs via behavioral changes that influence energy balance. We used 2 hyperleptinemic mouse models. The first was females heterozygous for a leptin receptor mutation (DB/+), which were severely hyperleptinemic, and that were compared with wild-type females. The second model was wild-type females infused with leptin (LEP), which were moderately hyperleptinemic, and were compared with wild-type females infused with saline (SAL). Total food consumption, food preference, locomotor activity, coordinated motor skills, and anxiety-like behaviors were assessed in wild-type offspring from each maternal group at 3 postnatal ages: 4-6, 11-13, and 19-21 weeks. Half the offspring from each group were then placed on a high-fat diet, and behaviors were reassessed. Adult offspring from both groups of hyperleptinemic dams weighed less than their respective controls beginning at 23 weeks of age, independent of diet or sex. Weight differences were not explained by food consumption or preference, because female offspring from hyperleptinemic dams tended to consume more food and had reduced preference for palatable, high-fat and sugar, food compared with controls. Offspring from DB/+ dams were more active than offspring of controls, as were female offspring of LEP dams. Maternal hyperleptinemia during pregnancy did not predispose offspring to obesity, and in fact, reduced weight gain.
Collapse
Affiliation(s)
- Kelly E Pollock
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Damaiyah Stevens
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Kathleen A Pennington
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Rose Thaisrivongs
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Jennifer Kaiser
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Mark R Ellersieck
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Dennis K Miller
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Laura Clamon Schulz
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
49
|
Konieczna J, Palou M, Sánchez J, Picó C, Palou A. Leptin intake in suckling rats restores altered T3 levels and markers of adipose tissue sympathetic drive and function caused by gestational calorie restriction. Int J Obes (Lond) 2015; 39:959-66. [PMID: 25869480 DOI: 10.1038/ijo.2015.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Maternal calorie restriction during gestation in rats has been associated with altered white adipose tissue (WAT) sympathetic innervation and function in offspring. Here, we aimed to investigate whether supplementation with oral leptin (a breast milk component) throughout the lactation period may revert the aforementioned adverse programming effects. METHODS Three groups of male and female rats were studied at the postnatal day 25: the offspring of control dams, the offspring of 20% calorie-restricted dams during pregnancy (CR) and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Tyrosine hydroxylase (TH) levels and its immunoreactive area, and mRNA expression levels of lipid metabolism-related genes and of deiodinase iodothyronine type II (Dio2) were determined in WAT. Triiodothyronine (T3) levels were determined in the blood. RESULTS In CR males, leptin treatment restored the decreased TH levels and its immunoreactive area in WAT, and partially normalized expression levels of genes related to lipolysis and fatty acid oxidation (adipose triglyceride lipase, hormone-sensitive lipase, carnitine palmitoyltransferase 1b and peroxisome proliferator-activated receptor gamma coactivator 1-alpha). Leptin treatment also reverted the decreased T3 plasma levels and WAT lipoprotein lipase mRNA levels occurring in CR males and females, and the decreased Dio2 mRNA levels in CR females. CONCLUSIONS Leptin supplementation throughout the lactation period reverts the malprogrammed effects on WAT structure and function induced by undernutrition during pregnancy. These findings support the relevance of the intake of leptin during lactation, bearing clear characteristics of essential nutrient, and provide a strategy to treat and/or prevent the programmed trend to obesity acquired by inadequate fetal nutrition.
Collapse
Affiliation(s)
- J Konieczna
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - M Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - J Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - C Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - A Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
50
|
Blood cell transcriptomic-based early biomarkers of adverse programming effects of gestational calorie restriction and their reversibility by leptin supplementation. Sci Rep 2015; 5:9088. [PMID: 25766068 PMCID: PMC4357898 DOI: 10.1038/srep09088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/19/2015] [Indexed: 11/08/2022] Open
Abstract
The challenge of preventing major chronic diseases requires reliable, early biomarkers. Gestational mild undernutrition in rats is enough to program the offspring to develop later pathologies; the intake of leptin, a breastmilk component, during lactation may reverse these programming effects. We used these models to identify, in peripheral blood mononuclear cells (PBMCs), transcriptomic-based early biomarkers of programmed susceptibility to later disorders, and explored their response to neonatal leptin intake. Microarray analysis was performed in PBMCs from the offspring of control and 20% gestational calorie-restricted dams (CR), and CR-rats supplemented with physiological doses of leptin throughout lactation. Notably, leptin supplementation normalised 218 of the 224 mRNA-levels identified in PBMCs associated to undernutrition during pregnancy. These markers may be useful for early identification and subsequent monitoring of individuals who are at risk of later diseases and would specifically benefit from the intake of appropriate amounts of leptin during lactation.
Collapse
|