1
|
González-Gil A, Sánchez-Maldonado B, Rojo C, Flor-García M, Queiroga FL, Ovalle S, Ramos-Ruiz R, Fuertes-Recuero M, Picazo RA. Proneurogenic actions of follicle-stimulating hormone on neurospheres derived from ovarian cortical cells in vitro. BMC Vet Res 2024; 20:372. [PMID: 39160565 PMCID: PMC11334536 DOI: 10.1186/s12917-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 μm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.
Collapse
Affiliation(s)
- Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain.
| | - Belén Sánchez-Maldonado
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Concepción Rojo
- Department of Anatomy and Embriology, School of Veterinary Medicine, University Complutense of Madrid, Madrid, 28040, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Felisbina Luisa Queiroga
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal.
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Quinta dos Prados, Vila Real, 5000-801, Portugal.
| | - Susana Ovalle
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Manuel Fuertes-Recuero
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| | - Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| |
Collapse
|
2
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
3
|
Amanollahi M, Jameie M, Rezaei N. Neuroinflammation as a potential therapeutic target in neuroimmunological diseases. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:475-504. [DOI: 10.1016/b978-0-323-85841-0.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Wei F, Xian D, He Y, Yan Z, Deng X, Chen Y, Zhao L, Zhang Y, Li W, Ma B, Zhang J, Jing Y. Effects of maternal deprivation and environmental enrichment on anxiety-like and depression-like behaviors correlate with oxytocin system and CRH level in the medial-lateral habenula. Peptides 2022; 158:170882. [PMID: 36150631 DOI: 10.1016/j.peptides.2022.170882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
Abstract
The medial-lateral habenula (LHbM)'s role in anxiety and depression behaviors in female mice remains unclear. Here, we used neonatal maternal deprivation (MD) and post-weaning environmental enrichment (EE) to treat female BALB/c offspring and checked anxiety-like and depression-like behaviors as well as the corticotropin-releasing hormone (CRH), oxytocin receptor (OTR), estrogen receptor-beta (ERβ) levels in their LHbM at adulthood. We found that MD enhanced state anxiety-like behaviors in the elevated plus-maze test, and EE caused trait anxiety-like behaviors in the open field test and depression-like behaviors in the tail suspension test. The immunochemistry showed that MD reduced OT immunoreactive neuron numbers in the hypothalamic paraventricular nucleus but increased OTR levels in the LHbM; EE increased CRH levels in the LHbM but decreased OTR levels in the LHbM. The additive effects of EE and MD maintained the behavioral parameters, OT-ir neuronal numbers, CRH levels, and OTR levels similar to the additive of non-MD and non-EE. The correlation analysis showed that CRH levels correlated with synaptic connection levels, OTR levels correlated with nucleus densities, and ERβ levels correlated with Nissl body levels and body weights in female mice. Neither MD nor EE affected ERβ levels in the LHbM. Together, the study revealed the relationships between behaviors and neuroendocrine and neuronal alterations in female LHbM and the effects of experiences including MD and EE on them.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Donghua Xian
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yunqing He
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ziqing Yan
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yajie Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Long Zhao
- Department of Orthopedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Junfeng Zhang
- Department of Human Anatomy & Shanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shanxi, 710021, PR China.
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
5
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
7
|
Li W, Lu P, Lu Y, Wei H, Niu X, Xu J, Wang K, Zhang H, Li R, Qiu Z, Wang N, Jia P, Zhang Y, Zhang S, Lu H, Chen X, Liu Y, Zhang P. 17β-Estradiol Protects Neural Stem/Progenitor Cells Against Ketamine-Induced Injury Through Estrogen Receptor β Pathway. Front Neurosci 2020; 14:576813. [PMID: 33100963 PMCID: PMC7556164 DOI: 10.3389/fnins.2020.576813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ketamine inhibits neural stem/progenitor cell (NSPC) proliferation and disrupts normal neurogenesis in the developing brain. 17β-Estradiol alleviates neurogenesis damage and enhances behavioral performance after ketamine administration. However, the receptor pathway of 17β-estradiol that protects NSPCs from ketamine-induced injury remains unknown. In the present study, we investigated the role of estrogen receptor α (ER-α) and estrogen receptor β (ER-β) in 17β-estradiol’s protection against ketamine-exposed NSPCs and explored its potential mechanism. The primary cultured NSPCs were identified by immunofluorescence and then treated with ketamine and varying doses of ER-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) or ER-β agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) for 24 h. NSPC proliferation was analyzed by 5-bromo-2-deoxyuridine incorporation test. The expression of phosphorylated glycogen synthase kinase-3β (p-GSK-3β) was quantified by western blotting. It was found that treatment with different concentrations of PPT did not alter the inhibition of ketamine on NSPC proliferation. However, treatment with DPN attenuated the inhibition of ketamine on NSPC proliferation at 24 h after their exposure (P < 0.05). Furthermore, treatment with DPN increased p-GSK-3β expression in NSPCs exposed to ketamine. These findings indicated that ER-β mediates probably the protective effects of 17β-estradiol on ketamine-damaged NSPC proliferation and GSK-3β is involved in this process
Collapse
Affiliation(s)
- Weisong Li
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Niu
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shuyue Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, Xi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Camacho-Arroyo I, Piña-Medina AG, Bello-Alvarez C, Zamora-Sánchez CJ. Sex hormones and proteins involved in brain plasticity. VITAMINS AND HORMONES 2020; 114:145-165. [PMID: 32723542 DOI: 10.1016/bs.vh.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is well known that peripheral sex steroid hormones cross the blood-brain barrier and control a broad spectrum of reproductive behaviors. However, their role in other essential brain functions was investigated since the 1980s, when the accumulation of pregnenolone and dehydroepiandrosterone in the brain of mammalian species was determined. Since then, numerous studies have demonstrated the participation of sex hormones in brain plasticity processes. Sex hormones through both genomic and non-genomic mechanisms of action are capable of inducing gene transcription or activating signaling cascades that result in the promotion of different physiological and pathological events of brain plasticity, such as remodeling or formation of dendritic spines, neurogenesis, synaptogenesis or myelination. In this chapter, we will present the effects of sex hormones and proteins involved in brain plasticity.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - Ana Gabriela Piña-Medina
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
9
|
Prolactin, Estradiol and Testosterone Differentially Impact Human Hippocampal Neurogenesis in an In Vitro Model. Neuroscience 2020; 454:15-39. [PMID: 31930958 PMCID: PMC7839971 DOI: 10.1016/j.neuroscience.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Human hippocampal progenitor cells (HPCs) and tissue express classical sex hormone receptors. Prolactin does not impact human HPCs maintained in a proliferative state. Prolactin increases neuronal differentiation of human HPCs only in the short term. Estradiol and testosterone both increase the cell density of proliferating HPCs. Estradiol and testosterone have no observed effect on differentiating HPCs.
Previous studies have indicated that sex hormones such as prolactin, estradiol and testosterone may play a role in the modulation of adult hippocampal neurogenesis (AHN) in rodents and non-human primates, but so far there has been no investigation of their impact on human hippocampal neurogenesis. Here, we quantify the expression levels of the relevant receptors in human post-mortem hippocampal tissue and a human hippocampal progenitor cell (HPC) line. Secondly, we investigate how these hormones modulate hippocampal neurogenesis using a human in vitro cellular model. Human female HPCs were cultured with biologically relevant concentrations of either prolactin, estradiol or testosterone. Bromodeoxyuridine (BrdU) incorporation, immunocytochemistry (ICC) and high-throughput analyses were used to quantify markers determining cell fate after HPCs were either maintained in a proliferative state or allowed to differentiate in the presence of these hormones. In proliferating cells, estrogen and testosterone increased cell density but had no clear effect on markers of proliferation or cell death to account for this. In differentiating cells, a 3-day treatment of prolactin elicited a transient effect, whereby it increased the proportion of microtubule-associated protein 2 (MAP2)-positive and Doublecortin (DCX)-positive cells, but this effect was not apparent after 7-days. At this timepoint we instead observe a decrease in proliferation. Overall, our study demonstrates relatively minor, and possibly short-term effects of sex hormones on hippocampal neurogenesis in human cells. Further work will be needed to understand if our results differ to previous animal research due to species-specific differences, or whether it relates to limitations of our in vitro model.
Collapse
|
10
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
G protein-coupled estrogen receptor 1 negatively regulates the proliferation of mouse-derived neural stem/progenitor cells via extracellular signal-regulated kinase pathway. Brain Res 2019; 1714:158-165. [PMID: 30797747 DOI: 10.1016/j.brainres.2019.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
G protein-coupled estrogen receptor 1 (GPER1, also known as GPR30) has been reported to play a wide range of function in the central nervous system (CNS). However, whether GPER1 is expressed by neural stem/progenitor cells (NSPCs) and its role has not been established. Here, we found the expression of GPER1 in mouse-derived NSPCs via western blot and immunofluorescent staining. Moreover, we revealed that specific activation of GPER1 by the agonist G1 decreased the proliferation of NSPCs in a dose-dependent manner. The neurosphere formation assay and Ki67 staining further demonstrated that activation of GPER1 inhibited the proliferation of NSPCs. Additionally, the inhibitory effect of G1 on the proliferation of NSPCs could be blocked by the specific GPER1 antagonist G15. Intriguingly, ERK pathway was involved in the negative effect of GPER1 on the proliferation of NSPCs, because the phosphorylation level of ERK in NSPCs was remarkably decreased during G1 treatment. However, the antagonist G15 reversed the down-regulated level of p-ERK. Knock-down GPER1 also reversed the inhibitory effect of G1 on NSPCs proliferation. Together, our results provide the first evidence that GPER1 is expressed by NSPCs and its activation negatively modulates the proliferation of NSPCs, highlighting the importance of GPER1 in regulating NSPC behaviors.
Collapse
|
12
|
Baez-Jurado E, Rincón-Benavides MA, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Sahebkar A, Echeverria V, Garcia-Segura LM, Barreto GE. Molecular mechanisms involved in the protective actions of Selective Estrogen Receptor Modulators in brain cells. Front Neuroendocrinol 2019; 52:44-64. [PMID: 30223003 DOI: 10.1016/j.yfrne.2018.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Synthetic selective modulators of the estrogen receptors (SERMs) have shown to protect neurons and glial cells against toxic insults. Among the most relevant beneficial effects attributed to these compounds are the regulation of inflammation, attenuation of astrogliosis and microglial activation, prevention of excitotoxicity and as a consequence the reduction of neuronal cell death. Under pathological conditions, the mechanism of action of the SERMs involves the activation of estrogen receptors (ERs) and G protein-coupled receptor for estrogens (GRP30). These receptors trigger neuroprotective responses such as increasing the expression of antioxidants and the activation of kinase-mediated survival signaling pathways. Despite the advances in the knowledge of the pathways activated by the SERMs, their mechanism of action is still not entirely clear, and there are several controversies. In this review, we focused on the molecular pathways activated by SERMs in brain cells, mainly astrocytes, as a response to treatment with raloxifene and tamoxifen.
Collapse
Affiliation(s)
- E Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - M A Rincón-Benavides
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - O Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - L M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - G E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Li H, Ding C, Ding ZL, Ling M, Wang T, Wang W, Huang B. 17β-Oestradiol promotes differentiation of human embryonic stem cells into dopamine neurons via cross-talk between insulin-like growth factors-1 and oestrogen receptor β. J Cell Mol Med 2017; 21:1605-1618. [PMID: 28244646 PMCID: PMC5542902 DOI: 10.1111/jcmm.13090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Abstract
Human embryonic stem cells (hESCs) can self‐renew and differentiate into all cell lineages. E2 is known to exhibit positive effects on embryo development. Although the importance of E2 in many physiological processes has been reported, to date few researchers have investigated the effects of E2 on hESCs differentiation. We studied the effects of E2 on dopamine (DA) neuron induction of hESCs and its related signalling pathways using the three‐stage protocol. In our study, 0.1 μM E2 were applied to hESCs‐derived human embryoid bodies (hEBs) and effects of E2 on neural cells differentiation were investigated. Protein and mRNA level assay indicated that E2 up‐regulated the expression of insulin‐like growth factors (IGF)‐1, ectoderm, neural precursor cells (NPC) and DA neuron markers, respectively. The population of hESC‐derived NPCs and DA neurons was increased to 92% and 93% to that of DMSO group, respectively. Furthermore, yield of DA neuron‐secreted tyrosine hydroxylase (TH) and dopamine was also increased. E2‐caused promotion was relieved in single inhibitor (ICI or JB1) group partly, and E2 effects were repressed more stronger in inhibitors combination (ICI plus JB1) group than in single inhibitor group at hEBs, hNPCs and hDA neurons stages. Owing to oestrogen receptors regulate multiple brain functions, when single or two inhibitors were used to treat neural differentiation stage, we found that oestrogen receptor (ER)β but not ERα is strongly repressed at the hNPCs and hDA neurons stage. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2‐improved hNPC and hDA neuron differentiation through cross‐talk between IGF‐1 and ERβ in vitro.
Collapse
Affiliation(s)
- Hong Li
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Chenyue Ding
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhi-Liang Ding
- Department of Neurosurgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Mingfa Ling
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Wei Wang
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Boxian Huang
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| |
Collapse
|
15
|
Wu X, Majumder A, Webb R, Stice SL. High content imaging quantification of multiple in vitro human neurogenesis events after neurotoxin exposure. BMC Pharmacol Toxicol 2016; 17:62. [PMID: 27903287 PMCID: PMC5131404 DOI: 10.1186/s40360-016-0107-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
Background Our objective was to test neural active compounds in a human developmental neurotoxicity (DNT) model that represents neural tube stages of vulnerability. Previously we showed that 14 days in vitro (DIV 14) was sufficient to generate cryopreserved neuronal cells for post thaw neurite recovery assays. However, short exposure and assessment may not detect toxicants that affect an early neurogenesis continuum, from a mitotic human neural progenitor (hNP) cell population through the course of neurite outgrowth in differentiating neurons. Therefore, we continuously exposed differentiating hNP cells from DIV 0 through DIV 14 to known toxicants and endocrine active compounds in order to assess at DIV 14 effects of these compounds in a human DNT maturation model for neurogenesis. Methods The Human DNT continuum (DIV 0 to DIV 14) was determined using immunocytochemistry for SOX1+ (proliferating hNP) and HuC/D+ (post mitotic neurons). The cumulative effects of five compounds was observed on neurite outgrowth in (βIII-tubulin+) and (HuC/D+) cells using high content imaging. All data were analyzed using a one-way ANOVA with a significance threshold of p < 0.05. Results During maturation in vitro, the neural cultures transitioned from uniform hNP cells (DIV 0) to predominantly mature post mitotic neuronal neurons (HuC/D+, 65%; DIV14) but also maintained a smaller population of hNP cells (SOX1+). Using this DNT maturation model system, Bis-1, testosterone, and β-estradiol inhibited neuronal maturation at micromolar levels but were unaffected by acetaminophen. β-estradiol also disrupted neurite extension at 10 μM. Treating cells in this window with Bisphenol A (BPA) significantly inhibited neurite outgrowth and branching in these continuum cultures but only at the highest concentrations tested (10 μM). Conclusions Cumulative effects of neurotoxicant exposure during a maturation continuum altered human neurogenesis at lower exposure levels than observed in acute exposure of static cryopreserved neurite recovery neurons cultures. Unlike prior acute studies, β-estradiol was highly toxic when present throughout the continuum and cytotoxicity was manifested starting early in the continuum via a non-estrogen receptor α (ER α) mechanism. Therefore, the effect of neural developmental neurotoxins can and should be determined during the dynamic process of human neural maturation. Electronic supplementary material The online version of this article (doi:10.1186/s40360-016-0107-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian Wu
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Robin Webb
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Steven L Stice
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA. .,ArunA Biomedical, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
He Z, Cui L, Paule MG, Ferguson SA. Estrogen Selectively Mobilizes Neural Stem Cells in the Third Ventricle Stem Cell Niche of Postnatal Day 21 Rats. Mol Neurobiol 2016; 52:927-33. [PMID: 26041664 DOI: 10.1007/s12035-015-9244-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neuroprotective properties of stem cells have been described for various pathophysiological states. Here, we determined the effects of exogenous perinatal estrogen treatment on endogenous neural stem cell activity in the third ventricle stem cell niche (3VSCN) and the caudal third ventricle (C3V). Pregnant Sprague-Dawley rats were gavaged with ethinyl estradiol (EE2, 10 μg/kg/day) or vehicle on gestational days 6-21, and their offspring were similarly treated from birth to weaning on postnatal day 21. At weaning, neural stem cell activity was investigated using the stem cell markers nestin, Ki-67, phosphohistone H3 (PHH3), and doublecortin (DCX). The 3VSCN was characterized by nestin labeling, but little DCX labeling, while both the subventricular (SVZ) and subgranular zones (SGZ) displayed robust DCX expression. Ki-67 cell counts in the 3VSCN were 2.2 to 6.4 times those of the C3V. In the 3VSCN, EE2 treatment significantly increased Ki-67, PHH3, and co-labeled cell counts by 135-207 %, effects which appeared stronger in females. EE2 treatment had only marginally significant effects in the C3V, mildly increasing PHH3 and co-labeled cell counts. Perinatal estrogen treatment selectively increased and mobilized proliferative cells in the 3VSCN at weaning, potentially providing increased neuroprotection. Because PHH3 cells are thought to be in the mitotic phase of the cell cycle and Ki-67 cells can be found in most phases of the cycle, the effect of estrogen treatment on 3VSCN cells appears to involve enhancement of mitosis.
Collapse
Affiliation(s)
- Zhen He
- HFT-132, Division of Neurotoxicology, National Center for Toxicological Research/FDA, 3900 NCTR Road, Jefferson, AR, 72079, USA,
| | | | | | | |
Collapse
|
17
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
18
|
Lin CJ, Fan-Chiang YC, Dufour S, Chang CF. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii. Dev Neurobiol 2015; 76:121-36. [PMID: 25980979 DOI: 10.1002/dneu.22303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/09/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl-stained total brain cells, and Pcna-immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2 ) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Chun Fan-Chiang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC/UCBN, Muséum National D'histoire Naturelle, Paris, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
19
|
Can S, Selli J, Buyuk B, Aydin S, Kocaaslan R, Guvendi GF. The effect of estrogen usage on eccentric exercise-induced damage in rat testes. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e22521. [PMID: 26023337 PMCID: PMC4443386 DOI: 10.5812/ircmj.17(4)2015.22521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/24/2015] [Accepted: 03/15/2015] [Indexed: 11/16/2022]
Abstract
Background: Recent years, lots of scientific studies are focused on the possible mechanism of inflammatory response and oxidative stress which are the mechanism related with tissue damage and exercise fatigue. It is well-known that free oxygen radicals may be induced under invitro conditions as well as oxidative stress by exhaustive physical exercise. Objectives: The aim of this study was to investigate the effects of anabolic steroids in conjunction with exercise in the process of spermatogenesis in the testes, using histological and stereological methods. Materials and Methods: Thirty-six male Sprague Dawley rats were divided to six groups, including the control group, the eccentric exercise administered group, the estrogen applied group, the estrogen applied and dissected one hour after eccentric exercise group, the no estrogen applied and dissected 48 hours after eccentric exercise group and the estrogen applied and dissected 48 hours after eccentric exercise group. Eccentric exercise was performed on a motorized rodent treadmill and the estrogen applied groups received daily physiological doses by subcutaneous injections. Testicular tissues were examined using specific histopathological, immunohistochemical and stereological methods. Sections of the testes tissue were stained using the TUNEL method to identify apoptotic cells. Apoptosis was calculated as the percentage of positive cells, using stereological analysis. A statistical analysis of the data was carried out with one-way analysis of variance (ANOVA) for the data obtained from stereological analysis. Results: Conventional light microscopic results revealed that testes tissues of the eccentric exercise administered group and the estrogen supplemented group exhibited slight impairment. In groups that were both eccentrically exercised and estrogen supplemented, more deterioration was detected in testes tissues. Likewise, immunohistochemistry findings were also more prominent in the eccentrically exercised and estrogen supplemented groups. Conclusions: The findings suggest that estrogen supplementation increases damage in testicular tissue due to eccentric exercise.
Collapse
Affiliation(s)
- Serpil Can
- Department of Physiology, School of Medicine, Kafkas University, Kars, Turkey
- Corresponding Author: Serpil Can, Department of Physiology, School of Medicine, Kafkas University, Kars, Turkey. Tel: +90-50566260271, E-mail:
| | - Jale Selli
- Department of Histology and Embryology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Basak Buyuk
- Department of Histology and Embryology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Sergulen Aydin
- Department of Family Medicine, School of Medicine, Kafkas University, Kars, Turkey
| | - Ramazan Kocaaslan
- Department of Urology, School of Medicine, Kafkas University, Kars, Turkey
| | | |
Collapse
|
20
|
Askvig JM, Watt JA. The MAPK and PI3K pathways mediate CNTF-induced neuronal survival and process outgrowth in hypothalamic organotypic cultures. J Cell Commun Signal 2015; 9:217-31. [PMID: 25698661 PMCID: PMC4580676 DOI: 10.1007/s12079-015-0268-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/05/2015] [Indexed: 11/26/2022] Open
Abstract
While collateral sprouting has been shown to occur in a variety of neuronal populations, the factor or factors responsible for mediating the sprouting response remain largely un-defined. There is evidence indicating that ciliary neurotrophic factor (CNTF) may play an important role in promoting neuronal survival and process outgrowth in neuronal phenotypes tested to date. We previously demonstrated that the astrocytic Jak-STAT pathway is necessary to mediate CNTF-induced oxytocinergic (OT) neuronal survival; however, the mechanism (s) of CNTF-mediated process outgrowth remain unknown. Our working hypothesis is that CNTF mediates differential neuroprotective responses via different intracellular signal transduction pathways. In order to test this hypothesis, we utilized stationary hypothalamic organotypic cultures to assess the contribution of the MAPK-ERK and PI3-AKT pathways to OT neuron survival and process outgrowth. Our results demonstrate that the MAPK-ERK½ pathway mediates CNTF-induced neuronal survival. Moreover, we show that inhibition of the p38-, JNK-MAPK, and mTOR pathways prevents loss OT neurons following axotomy. We also provide quantitative evidence indicating that CNTF promotes process outgrowth of OT neurons via the PI3K-AKT pathway. Together, these data indicate that distinct intracellular signaling pathways mediate diverse neuroprotective processes in response to CNTF.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA.
| | - John A Watt
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Room 1701 Stop 9037, 501 N Columbia Road, Grand Forks, ND, 58203, USA.
| |
Collapse
|
21
|
Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P. Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience 2014; 275:314-21. [PMID: 24956284 DOI: 10.1016/j.neuroscience.2014.06.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of mitogen-activated protein kinase (MAPK) of neural stem cells (NSCs) changed in response to the proliferative effect of melatonin. Therefore, the aim of the present study was to explore the proliferative mechanism mediated by melatonin on the adult rat hippocampal NS/PCs. Treatment with melatonin significantly increased the number of neurospheres in a concentration-dependent manner and up-regulated nestin protein. Pretreatment with luzindole, a melatonin receptor antagonist, and PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, prevented the increase in the number of neurospheres formed by the activation of melatonin. The levels of phospho-c-Raf and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) increased when treated with melatonin. Pretreatment with luzindole or PD98059 prevented the melatonin-induced increase in these signaling molecules. The present results showed that melatonin could induce NS/PCs to proliferate by increasing phosphorylation of ERK1/2 and c-Raf through melatonin receptor. These results provide further evidence for a role of melatonin in promoting neurogenesis, adding to the remarkably pleiotropic nature of this neurohormone. This intrinsic modulator deserves further investigation to better understand its physiological and therapeutic implication.
Collapse
Affiliation(s)
- C Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Y Puriboriboon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - T Junmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - K Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - P Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
22
|
Böttner M, Thelen P, Jarry H. Estrogen receptor beta: tissue distribution and the still largely enigmatic physiological function. J Steroid Biochem Mol Biol 2014; 139:245-51. [PMID: 23523517 DOI: 10.1016/j.jsbmb.2013.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/26/2023]
Abstract
UNLABELLED In 1996, the molecular biology of E2 had to be reevaluated: in an effort to identify novel nuclear receptors or unknown isoforms of existing receptors Kuiper and colleague described the expression of a novel subtype of the estrogen receptor (ER) in rat prostate and ovary. Upon this pioneering discovery the already known ER was renamed ERα while the newly described ER was termed ERβ. In this review an attempt is made to summarize the current knowledge regarding the expression and function of ERβ in selected reproductive and non-reproductive organs under physiological conditions. The data suggest that ERβ may be considered as a dominant-negative regulator of ERα modulating transcriptional responses to estrogens. The ratio of ER α vs. β. within a cell may determine the cell sensitivity to estrogens and its biological responses to the hormone. CONCLUSION It is not the ligand, it is the multiplicity of receptors which determines the plethora of estrogen actions. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- M Böttner
- Department of Anatomy, University of Kiel, Germany
| | | | | |
Collapse
|
23
|
Ma YL, Qin P, Li Y, Shen L, Wang SQ, Dong HL, Hou WG, Xiong LZ. The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion. BMC Neurosci 2013; 14:118. [PMID: 24106772 PMCID: PMC3851874 DOI: 10.1186/1471-2202-14-118] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Because neuroprotective effects of estrogen remain controversial, we aimed to investigate the effect of different doses of estradiol (E2) on cerebral ischemia using both in vivo and in vitro experiments. RESULTS PC12 cells were cultured at physiological (10 nM and 20 nM) or pharmacological (10 μM and 20 μM) dosages of E2 for 24 hours (h). The results of 5-bromodeoxyuridine (Brdu) incorporation and flow cytometric analysis showed that physiological doses of E2 enhanced cell proliferation and pharmacological doses of E2 inhibited cell proliferation. After the cells were exposed to oxygen and glucose deprivation (OGD) for 4 h and reperfusion for 20 h, the results of 3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, flow cytometric analysis and Western blot analysis showed that physiological doses of E2 enhanced cell viability, reduced cell apoptosis and decreased the expression of pro-apoptotic protein caspase-3. In contrast, pharmacological doses of E2 decreased cell viability and induced cell apoptosis. In vivo, adult ovariectomized (OVX) female rats received continuous subcutaneous injection of different doses of E2 for 4 weeks. Transient cerebral ischemia was induced for 2 h using the middle cerebral artery occlusion (MCAO) technique, followed by 22 h of reperfusion. The results of Garcia test, 2, 3, 5-triphenyltetrazolium chloride (TTC) staining showed that 6 μg/kg and 20 μg/kg E2 replacement induced an increase in neurological deficit scores, a decrease in the infarct volume and a reduction in the expression of caspase-3 when compared to animals in the OVX group without E2 treatment. However, 50 μg/kg E2 replacement treatment decreased neurological deficit scores, increased the infarct volume and the expression of caspase-3 when compared to animals in the control group and 6 up/kg or 20 μg/kg E2 replacement group. CONCLUSION We conclude that physiological levels of E2 exhibit neuroprotective effects on cerebral ischemia; whereas, pharmacological or supraphysiological doses of E2 have damaging effects on neurons after cerebral ischemia.
Collapse
Affiliation(s)
- Yu-Long Ma
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P R China
| | - Pei Qin
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P R China
| | - Yan Li
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P R China
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, P R China
| | - Lan Shen
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, P R China
| | - Shi-Quan Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P R China
| | - Hai-Long Dong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P R China
| | - Wu-Gang Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P R China
| | - Li-Ze Xiong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P R China
| |
Collapse
|
24
|
Nonneman DJ, Shackelford SD, King DA, Wheeler TL, Wiedmann RT, Snelling WM, Rohrer GA. Genome-wide association of meat quality traits and tenderness in swine1,2. J Anim Sci 2013; 91:4043-50. [DOI: 10.2527/jas.2013-6255] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- D. J. Nonneman
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | | | - D. A. King
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - T. L. Wheeler
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - R. T. Wiedmann
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - W. M. Snelling
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - G. A. Rohrer
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| |
Collapse
|
25
|
The sex-specific associations of the aromatase gene with Alzheimer's disease and its interaction with IL10 in the Epistasis Project. Eur J Hum Genet 2013; 22:216-20. [PMID: 23736221 DOI: 10.1038/ejhg.2013.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/21/2013] [Accepted: 02/14/2013] [Indexed: 12/29/2022] Open
Abstract
Epistasis between interleukin-10 (IL10) and aromatase gene polymorphisms has previously been reported to modify the risk of Alzheimer's disease (AD). However, although the main effects of aromatase variants suggest a sex-specific effect in AD, there has been insufficient power to detect sex-specific epistasis between these genes to date. Here we used the cohort of 1757 AD patients and 6294 controls in the Epistasis Project. We replicated the previously reported main effects of aromatase polymorphisms in AD risk in women, for example, adjusted odds ratio of disease for rs1065778 GG=1.22 (95% confidence interval: 1.01-1.48, P=0.03). We also confirmed a reported epistatic interaction between IL10 rs1800896 and aromatase (CYP19A1) rs1062033, again only in women: adjusted synergy factor=1.94 (1.16-3.25, 0.01). Aromatase, a rate-limiting enzyme in the synthesis of estrogens, is expressed in AD-relevant brain regions ,and is downregulated during the disease. IL-10 is an anti-inflammatory cytokine. Given that estrogens have neuroprotective and anti-inflammatory activities and regulate microglial cytokine production, epistasis is biologically plausible. Diminishing serum estrogen in postmenopausal women, coupled with suboptimal brain estrogen synthesis, may contribute to the inflammatory state, that is a pathological hallmark of AD.
Collapse
|
26
|
Fiocchetti M, Ascenzi P, Marino M. Neuroprotective effects of 17β-estradiol rely on estrogen receptor membrane initiated signals. Front Physiol 2012; 3:73. [PMID: 22493583 PMCID: PMC3319910 DOI: 10.3389/fphys.2012.00073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/13/2012] [Indexed: 12/15/2022] Open
Abstract
Besides its crucial role in many physiological events, 17β-estradiol (E2) exerts protective effects in the central nervous system. The E2 effects are not restricted to the brain areas related with the control of reproductive function, but rather are widespread throughout the developing and the adult brain. E2 actions are mediated through estrogen receptors (i.e., ERα and ERβ) belonging to the nuclear receptor super-family. As members of the ligand-regulated transcription factor family, classically, the actions of ERs in the brain were thought to mediate only the E2 long-term transcriptional effects. However, a growing body of evidence highlighted rapid, membrane initiated E2 effects in the brain that are independent of ER transcriptional activities and are involved in E2-induced neuroprotection. The aim of this review is to focus on the rapid effects of E2 in the brain highlighting the specific role of the signaling pathway(s) of the ERβ subtype in the neuroprotective actions of E2.
Collapse
|
27
|
Wang JM, Hou X, Adeosun S, Hill R, Henry S, Paul I, Irwin RW, Ou XM, Bigler S, Stockmeier C, Brinton RD, Gomez-Sanchez E. A dominant negative ERβ splice variant determines the effectiveness of early or late estrogen therapy after ovariectomy in rats. PLoS One 2012; 7:e33493. [PMID: 22428062 PMCID: PMC3302771 DOI: 10.1371/journal.pone.0033493] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain.
Collapse
Affiliation(s)
- Jun Ming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Oestradiol exerts a profound influence upon multiple brain circuits. For the most part, these effects are mediated by oestrogen receptor (ER)α. We review here the roles of ERβ, the other ER isoform, in mediating rodent oestradiol-regulated anxiety, aggressive and sexual behaviours, the control of gonadotrophin secretion, and adult neurogenesis. Evidence exists for: (i) ERβ located in the paraventricular nucleus underpinning the suppressive influence of oestradiol on the stress axis and anxiety-like behaviour; (ii) ERβ expressed in gonadotrophin-releasing hormone neurones contributing to oestrogen negative-feedback control of gonadotrophin secretion; (iii) ERβ controlling the offset of lordosis behaviour; (iv) ERβ suppressing aggressive behaviour in males; (v) ERβ modulating responses to social stimuli; and (vi) ERβ in controlling adult neurogenesis. This review highlights two major themes; first, ERβ and ERα are usually tightly inter-related in the oestradiol-dependent control of a particular brain function. For example, even though oestradiol feedback to control reproduction occurs principally through ERα-dependent mechanisms, modulatory roles for ERβ also exist. Second, the roles of ERα and ERβ within a particular neural network may be synergistic or antagonistic. Examples of the latter include the role of ERα to enhance, and ERβ to suppress, anxiety-like and aggressive behaviours. Splice variants such as ERβ2, acting as dominant negative receptors, are of further particular interest because their expression levels may reflect preceeding oestradiol exposure of relevance to oestradiol replacement therapy. Together, this review highlights the predominant modulatory, but nonetheless important, roles of ERβ in mediating the many effects of oestradiol upon adult brain function.
Collapse
Affiliation(s)
- R. J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - S. Ogawa
- Laboratory of Behavioral Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - J. M. Wang
- Department of Pathology, Pharmacology and Toxicology, Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - A. E. Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Lecanu L. Sex, the Underestimated Potential Determining Factor in Brain Tissue Repair Strategy. Stem Cells Dev 2011; 20:2031-5. [DOI: 10.1089/scd.2011.0188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
30
|
López-González R, Camacho-Arroyo I, Velasco I. Progesterone and 17β-estradiol increase differentiation of mouse embryonic stem cells to motor neurons. IUBMB Life 2011; 63:930-9. [PMID: 21901819 DOI: 10.1002/iub.560] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/18/2011] [Indexed: 12/18/2022]
Abstract
Embryonic stem (ES) cells have the capacity to differentiate into endodermal, mesodermal, and ectodermal lineages. Motor neuron (MN) differentiation of mouse ES cells involves embryoid bodies formation with addition of Sonic hedgehog and retinoic acid. In this work, using immunocytochemistry, flow cytometry, and quantitative RT-PCR, we investigated whether progesterone or 17β-estradiol have inductive effects on ES cell-derived MN, as it has been demonstrated that these hormones modify proliferation and neural differentiation of pluripotent cells. When 100 nM progesterone was added during differentiation, we found higher proportions of MN, compared to the control condition; coincubation of progesterone with the progesterone receptor (PR) antagonist RU-486 caused a decrease in the number of MN to a percentage even lower than controls. The addition of nanomolar concentrations of 17β-estradiol also significantly induced MN differentiation. This effect of estradiol was completely antagonized by addition of the general estrogen receptor (ER) antagonist ICI 182,780. To identify the ER subtype mediating the increase on MN differentiation, we incubated estradiol with the ER-α antagonist MPP or with the ER-β blocker PHTPP. When we coincubated 17β-estradiol with MPP, we found a significant decrease in the percentage of MN. In contrast, the coincubation of 17β-estradiol with PHTPP had no effect on the induction of MN differentiation. All these effects on cell number were confirmed by significant changes in the expression of the MN markers Islet-1 and Choline acetyl transferase, assessed by real-time RT-PCR. Cell proliferation in embryoid bodies was significantly enhanced by progesterone treatment. No changes in apoptotic cell death were found in differentiating cells after progesterone or 17β-estradiol addition. Our findings indicate that progesterone and 17β-estradiol induce a higher proportion of MN derived from mouse ES cells through intracellular PR and ER, respectively. Furthermore, the effect of estradiol was mediated by specific activation of ER-α.
Collapse
Affiliation(s)
- Rodrigo López-González
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México
| | | | | |
Collapse
|
31
|
Boulware MI, Kent BA, Frick KM. The impact of age-related ovarian hormone loss on cognitive and neural function. Curr Top Behav Neurosci 2011; 10:165-84. [PMID: 21533680 DOI: 10.1007/7854_2011_122] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On average, women now live one-third of their lives after menopause. Because menopause has been associated with an elevated risk of dementia, an increasing body of research has studied the effects of reproductive senescence on cognitive function. Compelling evidence from humans, nonhuman primates, and rodents suggests that ovarian sex-steroid hormones can have rapid and profound effects on memory, attention, and executive function, and on regions of the brain that mediate these processes, such as the hippocampus and prefrontal cortex. This chapter will provide an overview of studies in humans, nonhuman primates, and rodents that examine the effects of ovarian hormone loss and hormone replacement on cognitive functions mediated by the hippocampus and prefrontal cortex. For humans and each animal model, we outline the effects of aging on reproductive function, describe how ovarian hormones (primarily estrogens) modulate hippocampal and prefrontal physiology, and discuss the effects of both reproductive aging and hormone treatment on cognitive function. Although this review will show that much has been learned about the effects of reproductive senescence on cognition, many critical questions remain for future investigation.
Collapse
Affiliation(s)
- Marissa I Boulware
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
32
|
Underlying mechanisms mediating the antidepressant effects of estrogens. Biochim Biophys Acta Gen Subj 2010; 1800:1136-44. [DOI: 10.1016/j.bbagen.2009.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 11/02/2009] [Indexed: 12/12/2022]
|
33
|
Kordower JH, Chen EY, Morrison JH. Long-term gonadal hormone treatment and endogenous neurogenesis in the dentate gyrus of the adult female monkey. Exp Neurol 2010; 224:252-7. [PMID: 20362573 DOI: 10.1016/j.expneurol.2010.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 01/18/2023]
Abstract
Neurogenesis occurs continually throughout life in all mammals and the extent of neurogenesis is influenced by many factors including gonadal hormones. Most research regarding hormones and neurogenesis has been performed on non-primate species. To determine whether gonadal hormones can modulate endogenous neurogenesis in the dentate gyrus (DG) of the hippocampus in non-human primates, ovariectomized (OVX) female rhesus monkeys received continuous, unopposed beta-estradiol (OVX-E-Con), cyclic unopposed beta-estradiol (OVX-E-Cyc), continuous beta-estradiol+cyclic progesterone (OVX-E-Con+P-Cyc), or control (OVX-Veh) treatments. At week 29, all monkeys received BrdU injections for 4 consecutive days, in addition to the ongoing treatment. Twenty days after the last BrdU injection, all animals were sacrificed for tissue collection. In DG of hippocampus, scattered BrdU-ir cells were observed mainly in the subgranular zone (SGZ) and in the granule cell layer and occasionally these BrdU-ir cells in the SGZ formed clusters containing between 2 and 5 cells. In the granule cell layer and SGZ, virtually none of the BrdU-ir cells were either Dcx, a marker of immature neurons, or GFAP positive. However, an occasional BrdU-ir cell was positive for both neuronal marker NeuN or beta III-tubulin. Unbiased stereological analysis of BrdU-ir cells within the SGZ and the granule cell layer of DG revealed that among the experimental groups, there was no significant difference in number of BrdU-ir cells within the SGZ and the granule cell layer of the DG: OVX-E-Con (1801+/-218.7), OVX-E-Cyc (1783+/-415.6), OVX-E-Con+/-P-Cyc (1721+/-229.6), and OVX-Veh (1263+/-106.3), but a trend towards increased BrdU-ir cells was observed in all the experimental groups.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
34
|
Mouriec K, Lareyre JJ, Tong SK, Le Page Y, Vaillant C, Pellegrini E, Pakdel F, Chung BC, Kah O, Anglade I. Early regulation of brain aromatase (cyp19a1b) by estrogen receptors during zebrafish development. Dev Dyn 2010; 238:2641-51. [PMID: 19718764 DOI: 10.1002/dvdy.22069] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early expression of estrogen receptors (esr) and their role in regulating early expression of cyp19a1b encoding brain aromatase were examined in the brain of zebrafish. Using in toto hybridization and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), a significant increase in the expression of esr1, esr2a, and esr2b was observed between 24 and 48 hours postfertilization (hpf). In toto hybridization demonstrated that esr2a and esr2b, but not esr1, are found in the hypothalamus. Using real-time RT-PCR, an increase in cyp19a1b mRNAs occurs between 24 and 48 hpf, indicating that expression of cyp19a1b is temporally correlated with that of esr. This increase is blocked by the pure anti-estrogen ICI182,780. Furthermore, E2 treatment of cyp19a1b-GFP (green fluorescent protein) transgenic embryos results in appearance of GFP expression in the brain as early as 25 hpf. These results indicate that basal expression of cyp19a1b expression in the brain of developing zebrafish most likely relies upon expression of esr that are fully functional before 25 hpf.
Collapse
Affiliation(s)
- K Mouriec
- Neurogenesis And OEstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Henry S, Bigler S, Wang J. High throughput analysis of neural progenitor cell proliferation in adult rodent hippocampus. Biosci Trends 2009; 3:233-238. [PMID: 20103852 PMCID: PMC2830061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Extensive efforts have been made to determine the status on neural progenitor cell proliferation in specific pathological conditions and to evaluate the therapeutic efficacy of drugs for preventing neurogenic deficits in neurodegenerative diseases. However, the most commonly used stereological analysis using 5-bromo-2'-deoxyuridine (BrdU) immuno-positive sections is a time consuming and labor intensive process and is often a bottle neck in neurogenic drug development, particularly when large sample sizes are needed. In addition, BrdU is toxic to new born neurons and also labels DNA damage in old cells. In this study, we established a method that quantitatively measures the number of Ki-67, an endogenous cell proliferation marker, positive cells by flow cytometry which analyzes extracted cell nuclei from rodent hippocampi in suspension. Our results demonstrate that this approach can be applied to a large number of rodent samples, can be accomplished in a short period of time (1-3 days), and can be completed in a more accurately objective manner than by using 3-D cell counting with immunohistochemically processed sections.
Collapse
Affiliation(s)
- Sherry Henry
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven Bigler
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
- Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
36
|
Liu L, Wang J, Zhao L, Nilsen J, McClure K, Wong K, Brinton RD. Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2. Endocrinology 2009; 150:3186-96. [PMID: 19359388 PMCID: PMC2703530 DOI: 10.1210/en.2008-1447] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone receptor (PR) expression and regulation of neural progenitor cell (NPC) proliferation was investigated using NPC derived from adult rat brain. RT-PCR revealed that PRA mRNA was not detected in rat NPCs, whereas membrane-associated PRs, PR membrane components (PGRMCs) 1 and 2, mRNA were expressed. Progesterone-induced increase in 5-bromo-2-deoxyuridine incorporation was confirmed by fluorescent-activated cell sorting analysis, which indicated that progesterone promoted rat NPC exit of G(0)/G(1) phase at 5 h, followed by an increase in S-phase at 6 h and M-phase at 8 h, respectively. Microarray analysis of cell-cycle genes, real-time PCR, and Western blot validation revealed that progesterone increased expression of genes that promote mitosis and decreased expression of genes that repress cell proliferation. Progesterone-induced proliferation was not dependent on conversion to metabolites and was antagonized by the ERK(1/2) inhibitor UO126. Progesterone-induced proliferation was isomer and steroid specific. PGRMC1 small interfering RNA treatment, together with computational structural analysis of progesterone and its isomers, indicated that the proliferative effect of progesterone is mediated by PGRMC1/2. Progesterone mediated NPC proliferation and concomitant regulation of mitotic cell cycle genes via a PGRMC/ERK pathway mechanism is a potential novel therapeutic target for promoting neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Lifei Liu
- Program in Neuroscience, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Estradiol promotes proliferation of dopaminergic precursors resulting in a higher proportion of dopamine neurons derived from mouse embryonic stem cells. Int J Dev Neurosci 2009; 27:493-500. [PMID: 19379802 DOI: 10.1016/j.ijdevneu.2009.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 01/04/2023] Open
Abstract
Estradiol protects dopamine neurons of the substantia nigra from toxic insults. Such neurons succumb in Parkinson's disease; one strategy for restoring dopamine deficiency is cell therapy with neurons differentiated from embryonic stem cells. We investigated the effects of 17beta-estradiol on dopaminergic induction of embryonic stem cells using the 5-stage protocol. Cells were incubated with different steroid concentrations during the proliferation (stage 4) or differentiation (stage 5) phases. Estradiol added at nM concentrations only during stage 4 increases the proliferation of dopaminergic precursors expressing Lmx1a, inducing a higher proportion of dopamine neurons at stage 5. These actions were mediated by activation of estrogen receptors, because co-incubation of cells with estradiol and ICI 182,780 completely abolished the positive effect on both proliferation of committed precursors, and subsequent differentiation to dopaminergic neurons. Our results suggest that estradiol should be useful in producing higher proportions of dopamine neurons from embryonic stem cells aimed for treating Parkinson's disease.
Collapse
|
38
|
Brinton RD. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends Pharmacol Sci 2009; 30:212-22. [PMID: 19299024 DOI: 10.1016/j.tips.2008.12.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 01/29/2023]
Abstract
Controversy regarding estrogen action in the brain remains at the forefront of basic, translational and clinical science for women's health. Here, I provide an integrative analysis of estrogen-inducible plasticity and posit it as a strategy for predicting cognitive domains affected by estrogen in addition to sources of variability. Estrogen enhancement of plasticity is evidenced by increases in neurogenesis, neural network connectivity and synaptic transmission. In parallel, estrogen increases glucose transport, aerobic glycolysis and mitochondrial function to provide the ATP necessary to sustain increased energetic demand. The pattern of plasticity predicts that estrogen would preferentially affect cognitive tasks of greater complexity, temporal demand and associative challenge. Thus, estrogen deprivation should be associated with decrements in these functions. Estrogen regulation of plasticity and bioenergetics provides a framework for predicting estrogen-dependent cognitive functions while also identifying sources of variability and potential biomarkers for identifying women appropriate for hormone therapy.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, CA 90033, USA.
| |
Collapse
|
39
|
Ng LWC, Yip SK, Wong HK, Yam GH, Liu YM, Lui WT, Wang CC, Choy KW. Adipose-derived stem cells from pregnant women show higher proliferation rate unrelated to estrogen. Hum Reprod 2009; 24:1164-70. [PMID: 19181742 DOI: 10.1093/humrep/dep001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Adipose tissue contains an abundant population of multipotent adipose-derived stem cells (ASCs) and has been an excellent source of mesenchymal stem cells for cell therapy and tissue engineering. To ensure successful cell therapies, consistency of stem cell performance across donors is critical. However, the effect of the donor's reproductive status on ASC proliferation rate and differentiation capacity is undefined. METHODS We investigated whether the yield and function of ASCs are affected by the woman's reproductive status: pregnancy, premenopause or menopause. ASCs were isolated from the abdomen of 15 women and their proliferation rates and differentiation capacities were compared by cell count. The capacity of ASCs to differentiate into the chondrogenic lineage was investigated by quantitative real-time polymerase chain reaction and immunohistochemistry. RESULTS There was no significant difference in the differentiation capacity between the three groups, whereas the proliferation rate of ASCs from pregnant women was significantly higher than from the other two groups (P < 0.05). The proliferation rate of ASCs after estrogen treatment remained unchanged. CONCLUSIONS Despite the higher proliferation rate in pregnant women, ASCs showed consistency in cell differentiation capacity and were unaffected by donor status. This suggests that factors other than estrogen are responsible for the difference in proliferation.
Collapse
Affiliation(s)
- L W C Ng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, NT, Hong Kong SAR
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Brinton RD. Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer's disease. Adv Drug Deliv Rev 2008; 60:1504-11. [PMID: 18647624 PMCID: PMC2993571 DOI: 10.1016/j.addr.2008.06.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/12/2008] [Indexed: 02/06/2023]
Abstract
Estrogen-induced signaling pathways in hippocampal and cortical neurons converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis and citric acid cycle-driven oxidative phosphorylation and ATP generation. Data derived from experimental and clinical paradigms investigating estrogen intervention in healthy systems and prior to neurodegenerative insult indicate enhanced neural defense and survival through maintenance of calcium homeostasis, enhanced glycolysis coupled to the citric acid cycle (aerobic glycolysis), sustained and enhanced mitochondrial function, protection against free radical damage, efficient cholesterol trafficking and beta amyloid clearance. The convergence of E(2) mechanisms of action onto mitochondrial is also a potential point of vulnerability when activated in a degenerating neural system and could exacerbate the degenerative processes through increased load on dysregulated calcium homeostasis. The data indicate that as the continuum of neurological health progresses from healthy to unhealthy so too do the benefits of estrogen or hormone therapy. If neurons are healthy at the time of estrogen exposure, their response to estrogen is beneficial for both neuronal survival and neurological function. In contrast, if neurological health is compromised, estrogen exposure over time exacerbates neurological demise. The healthy cell bias of estrogen action hypothesis provides a lens through which to assess the disparities in outcomes across the basic to clinical domains of scientific inquiry and on which to predict future applications of estrogen and hormone therapeutic interventions sustain neurological health and to prevent age-associated neurodegenerative diseases such as Alzheimer's. Overall, E(2) promotes the energetic capacity of brain mitochondria by maximizing aerobic glycolysis (oxidative phosphorylation coupled to pyruvate metabolism). The enhanced aerobic glycolysis in the aging brain would be predicted to prevent conversion of the brain to using alternative sources of fuel such as the ketone body pathway characteristic of Alzheimer's.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, California 90033, USA.
| |
Collapse
|