1
|
Oyedokun PA, Akangbe MA, Akhigbe TM, Akhigbe RE. Regulatory Involvement of Kisspeptin in Energy Balance and Reproduction. Cell Biochem Biophys 2024:10.1007/s12013-024-01537-w. [PMID: 39327386 DOI: 10.1007/s12013-024-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The hypothalamic-pituitary-gonadal axis, which regulates steroidogenesis and germ cell formation, closely regulates the reproduction process. Nonetheless, other chemical mediators, such as kisspeptin, influence this axis. Kisspeptin is a hypothalamic neuropeptide that modulates the function of this axis and also plays a central role in energy balance. The present study reviews the impact and associated mechanisms of kisspeptin on male and female reproduction based on available evidence in the literature. Kisspeptin and its neurons exert anorexigenic activity, thus maintaining adequate energy balance for optimal reproductive function. Also, they stimulate the release of GnRH, resulting in the optimal performance of gonadal physiological processes viz. production of steroid sex hormones and germ cells. However, studies linking kisspeptin to reproduction are yet scanty. Hence, studies exploring the upstream and downstream signaling pathways activated by kisspeptin concerning reproduction in an attempt to better understand the associated mechanisms of the regulatory activities of kisspeptin on reproduction are recommended. In addition, potential factors that may modulate kisspeptin activities may be useful in the management of infertility and perhaps, in the development of contraceptives for those who do not intend to achieve conception.
Collapse
Affiliation(s)
- P A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - M A Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria.
| |
Collapse
|
2
|
Panting EN, Weight JH, Sartori JA, Coall DA, Smith JT. The role of placental kisspeptin in trophoblast invasion and migration: an assessment in Kiss1r knockout mice, BeWo cell lines and human term placenta. Reprod Fertil Dev 2024; 36:RD23230. [PMID: 38976640 DOI: 10.1071/rd23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Context There is mounting evidence implicating kisspeptin signalling in placental development and function. Aims This study aimed to elucidate kisspeptin's role in trophoblast invasion and migration using three experimental models. Methods First, we examined the mouse fetus and placenta in a kisspeptin receptor (Kiss1r) knockout (KO) model. Fetal/placental weights and gene expression (quantitative polymerase chain reaction) were assessed. Second, we determined kisspeptin effects on a human trophoblast (BeWo) cell line in vitro . Third, we examined KISS1 and KISS1R gene expression in human placenta from term and pre-term pregnancies. Key results No difference was found in fetal or placental weight between Kiss1r KO and wildtype mice. However, expression of the trophoblast invasion marker, Mmp2 mRNA, was greater in the placental labyrinth zone of Kiss1r KO mice. BeWo cell models of villus cytotrophoblast and syncytiotrophoblast cells exhibited kisspeptin protein expression, with greater expression in syncytiotrophoblast, consistent with KISS1 mRNA. Kisspeptin treatment inhibited the migratory potential of cytotrophoblast-like cells. Finally, while no difference was seen in KISS1 and KISS1R mRNA between term and pre-term placentas, we saw a difference in the relative expression of each gene pre-term. We also observed a positive correlation between KISS1 expression and maternal body mass index. Conclusions Our results indicate that kisspeptin may inhibit trophoblast invasion. Implications Further investigation is required to clarify specific regulatory mechanisms.
Collapse
Affiliation(s)
- E N Panting
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - J H Weight
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - J A Sartori
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - D A Coall
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J T Smith
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Moore AM, Novak AG, Lehman MN. KNDy Neurons of the Hypothalamus and Their Role in GnRH Pulse Generation: an Update. Endocrinology 2023; 165:bqad194. [PMID: 38170643 PMCID: PMC10768882 DOI: 10.1210/endocr/bqad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
There is considerable evidence that synchronized activity within a reciprocally connected population of cells in the arcuate nucleus (ARC) coexpressing kisspeptin, neurokinin B (NKB), and dynorphin (KNDy cells) is crucial for the generation of gonadotrophin-releasing hormone (GnRH) pulses in mammals. The initial "KNDy hypothesis" proposed that pulsatile GnRH secretion is elicited by episodic kisspeptin release from KNDy cells following synchronized activation and termination of the population by NKB and dynorphin, respectively. Since then, the role of KNDy cells as a critical component of the pulse generator has been further supported by studies at the single-cell level, demonstrating that the population is both necessary and sufficient for pulsatility. In addition, there have been considerable modifications and expansion of the original hypothesis, including work demonstrating the critical role of glutamate in synchronization of the KNDy cell network, functional interactions with other ARC subpopulations, and the existence of species differences in the role of dynorphin in pulse generation. Here we review these recent changes and discuss how the translation of these findings has led to the development of new therapies for disorders related to pulse generation. We also outline critical gaps in knowledge that are currently limiting the application of KNDy research in the clinic, particularly regarding the role of dynorphin in pulse generation in primates.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Alyssa G Novak
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Nikolettos K, Vlahos N, Pagonopoulou O, Nikolettos N, Zikopoulos K, Tsikouras P, Kontomanolis E, Damaskos C, Garmpis N, Asimakopoulos B. Is There an Association Between Circulating Kisspeptin Levels and Ovarian Reserve in Women of Reproductive Age? In Vivo 2023; 37:2219-2223. [PMID: 37652519 PMCID: PMC10500527 DOI: 10.21873/invivo.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM To investigate the possible association of kisspeptin levels with the ovarian reserves of women of reproductive age. PATIENTS AND METHODS Eighty women aged 19-40 participated after signing an informed consent. Of these, 74 were finally included as in 6 women the blood samples were considered inappropriate due to hemolysis. They were divided into three main groups according to their ovarian reserve patterns: women with adequate ovarian reserves (Group A - AOR) (n=30), women with increased ovarian reserves (Group B - PCOS) (n=31), and women with diminished ovarian reserves (Group C - DOR) (n=13). RESULTS Women with diminished ovarian reserves had statistically significantly increased age and FSH compared to the other two groups. No statistically significant difference was found between the three groups for estradiol and thyroid stimulating hormone. Moreover, body mass index, luteinizing hormone, total testosterone, 17-hydroxyprogesterone, dehydroepiandrosterone, anti-Mullerian hormone (AMH), and antral follicle count (AFC) were increased in group B compared to the other two groups. AMH and AFC were decreased in women with diminished ovarian reserves compared to the other two groups, as expected. The comparison of kisspeptin levels between the three groups showed that kisspeptin levels were increased in women with diminished ovarian reserves, compared to the other two groups, but without a statistically significant difference. However, kisspeptin levels in group C were statistically significantly higher than those in group A. CONCLUSION There are no strong indications that kisspeptin levels are associated with the ovarian reserve in women of reproductive age.
Collapse
Affiliation(s)
- Konstantinos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece;
| | - Nikolaos Vlahos
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, Aretaieion Hospital, Athens, Greece
| | - Olga Pagonopoulou
- Laboratory of Physiology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Panagiotis Tsikouras
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Emmanouil Kontomanolis
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Byron Asimakopoulos
- Laboratory of Physiology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
5
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System. Reprod Sci 2023; 30:802-822. [PMID: 35799018 DOI: 10.1007/s43032-022-01027-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
6
|
Zubair H, Saqib M, Khan MN, Shamas S, Irfan S, Shahab M. Variation in Hypothalamic GnIH Expression and Its Association with GnRH and Kiss1 during Pubertal Progression in Male Rhesus Monkeys ( Macaca mulatta). Animals (Basel) 2022; 12:ani12243533. [PMID: 36552453 PMCID: PMC9774706 DOI: 10.3390/ani12243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Modulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion across postnatal development in higher primates is not fully understood. While gonadotropin-inhibitory hormone (GnIH) is reported to suppress reproductive axis activity in birds and rodents, little is known about the developmental trajectory of GnIH expression in rhesus monkeys throughout the pubertal transition. This study was aimed at examining the variation in GnIH immunoreactivity (-ir) and associated changes among GnIH, GnRH, and Kiss1 mRNA expression in the hypothalamus of infant, juvenile, prepubertal, and adult male rhesus monkeys. The brains from rhesus macaques were collected from infancy until adulthood and were examined using immunofluorescence and RT-qPCR. The mean GnIH-ir was found to be significantly higher in prepubertal animals (p < 0.01) compared to infants, and significantly reduced in adults (p < 0.001). Significantly higher (p < 0.001) GnRH and Kiss1 mRNA expression was noted in adults while GnIH mRNA expression was the highest at the prepubertal stage (p < 0.001). Significant negative correlations were seen between GnIH-GnRH (p < 0.01) and GnIH-Kiss1 (p < 0.001) expression. Our findings suggest a role for GnIH in the prepubertal suppression of the reproductive axis, with disinhibition of the adult reproductive axis occurring through decreases in GnIH. This pattern of expression suggests that GnIH may be a viable target for the development of novel therapeutics and contraceptives for humans.
Collapse
Affiliation(s)
- Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| | - Muhammad Saqib
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noman Khan
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shazia Shamas
- Department of Zoology, Rawalpindi Women University, Rawalpindi 46300, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| |
Collapse
|
7
|
Leonardi CEP, Carrasco RA, Dias FCF, Zwiefelhofer EM, Adams GP, Singh J. Mechanism of LH release after peripheral administration of kisspeptin in cattle. PLoS One 2022; 17:e0278564. [PMID: 36459509 PMCID: PMC9718405 DOI: 10.1371/journal.pone.0278564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Kisspeptin modulates GnRH secretion in mammals and peripheral administration of 10-amino acid fragment of kisspeptin (Kp10) induces LH release and ovulation in cattle. Experiments were done to determine if iv administration of kisspeptin will activate GnRH neurons (i.e., after crossing the blood-brain barrier) and if pre-treatment with a GnRH receptor blocker will alter kisspeptin-induced LH release (from gonadotrophs) and ovulation. In Experiment 1, cows (n = 3 per group) were given human-Kisspeptin10 (hKp10; 3 x 15 mg iv at 60-min intervals) or normal saline and euthanized 150 min after treatment was initiated. Every 20th free-floating section (50 μm thickness) from the preoptic area to hypothalamus was double immunostained to colocalize GnRH- (DAB) and activated neurons (cFOS; Nickel-DAB). Kisspeptin induced plasma LH release from 15 to 150 min (P = 0.01) but the proportion of activated GnRH neurons did not differ between groups (5.8% and 3.5%, respectively; P = 0.11). Immunogold electron microscopy detected close contacts between kisspeptin fibers and GnRH terminals in the median eminence. In Experiment 2, pubertal heifers (n = 5 per group) were treated with 1) hKp10 iv, 2) Cetrorelix (GnRH antagonist; im) + hKp10 iv or 3) saline on Day 6 of the follicular wave under low-progesterone condition. A rise in plasma LH concentration was detected from 15 to 240 min in the hKp10 group but not in cetrorelix or control group (P<0.001). Ovulations were detected only in the hKp10 group (4/5; P = 0.02). Cetrorelix treatment was associated with regression of the preovulatory dominant follicle and emergence of a new follicular wave 3.4±0.75 days after the treatment in all five heifers. Results support the hypothesis that the effect of peripheral kisspeptin is mediated downstream of GnRH synthesis and does not involve GnRH-independent LH release from gonadotrophs. Peripheral kisspeptin may release pre-synthesized GnRH from the nerve terminals in areas outside the blood-brain barrier.
Collapse
Affiliation(s)
- Carlos E. P. Leonardi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Rodrigo A. Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Fernanda C. F. Dias
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Eric M. Zwiefelhofer
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gregg P. Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
8
|
Zubair H, Shamas S, Ullah H, Nabi G, Huma T, Ullah R, Hussain R, Shahab M. Morphometric and Myelin Basic Protein Expression Changes in Arcuate Nucleus Kisspeptin Neurons Underlie Activation of Hypothalamic Pituitary Gonadal-axis in Monkeys ( Macaca Mulatta) during the Breeding Season. Endocr Res 2022; 47:113-123. [PMID: 35866239 DOI: 10.1080/07435800.2022.2102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Kisspeptin is involved in the hypothalamic pituitary gonadal-axis' seasonal regulation in rodents and sheep. Studies of kisspeptin signaling in regulating the transition between breeding and nonbreeding seasons have focused on kisspeptin expression, myelin basic protein (MBP) expression around kisspeptin-ir cells, and quantifying the synaptic connections between kisspeptin and gonadotropin-releasing hormone (GnRH) neurons in various animal models; however, the role of kisspeptin in regulating the seasonal breeding of primates has not been explored yet. OBJECTIVE This study investigated changes in kisspeptin signaling during breeding and a non-breeding season in a non-human primate model, the rhesus monkey. METHODS Three adult male monkeys (n = 3) from the breeding season and two monkeys (n = 2) from the non-breeding season were used in this study. After measuring the testicular volume and collecting a single blood sample, all animals were humanely euthanized under controlled conditions, and their hypothalami were collected and processed. Two 20 µm thick hypothalamic sections (mediobasal hypothalamus) from each animal were processed for kisspeptin-MBP and kisspeptin-GnRH immunohistochemistry (IHC). One section from each animal was used as a primary antibody omitted control to check the nonspecific binding in each IHC. RESULTS Compared to the non-breeding season, plasma testosterone levels and testicular volumes were significantly higher in monkeys during the breeding season. Furthermore, compared to the non-breeding season, increased kisspeptin expression and a higher number of synaptic contacts between kisspeptin fibers and GnRH cell bodies were observed in the arcuate nucleus of the breeding season monkeys. In contrast, enlarged kisspeptin soma and higher MBP expression were observed in non-breeding monkeys. CONCLUSION Our results indicated enhanced kisspeptin signaling in primate hypothalamus during the breeding season. These findings support the idea that kisspeptin acts as a mediator for the seasonal regulation of the reproductive axis in higher primates.
Collapse
Affiliation(s)
- Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Shamas
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Hamid Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Tanzeel Huma
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahim Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, ZJ, China
| | - Rashad Hussain
- Department of Neurology, Center for Translational Neuro-medicine, University of Rochester, Rochester, NY, USA
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
9
|
Hu KL, Chen Z, Li X, Cai E, Yang H, Chen Y, Wang C, Ju L, Deng W, Mu L. Advances in clinical applications of kisspeptin-GnRH pathway in female reproduction. Reprod Biol Endocrinol 2022; 20:81. [PMID: 35606759 PMCID: PMC9125910 DOI: 10.1186/s12958-022-00953-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/30/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Kisspeptin is the leading upstream regulator of pulsatile and surge Gonadotrophin-Releasing Hormone secretion (GnRH) in the hypothalamus, which acts as the key governor of the hypothalamic-pituitary-ovary axis. MAIN TEXT Exogenous kisspeptin or its receptor agonist can stimulate GnRH release and subsequent physiological gonadotropin secretion in humans. Based on the role of kisspeptin in the hypothalamus, a broad application of kisspeptin and its receptor agonist has been recently uncovered in humans, including central control of ovulation, oocyte maturation (particularly in women at a high risk of ovarian hyperstimulation syndrome), test for GnRH neuronal function, and gatekeepers of puberty onset. In addition, the kisspeptin analogs, such as TAK-448, showed promising agonistic activity in healthy women as well as in women with hypothalamic amenorrhoea or polycystic ovary syndrome. CONCLUSION More clinical trials should focus on the therapeutic effect of kisspeptin, its receptor agonist and antagonist in women with reproductive disorders, such as hypothalamic amenorrhoea, polycystic ovary syndrome, and endometriosis.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Center for Reproductive Medicine, Peking University Third Hospital, No.49 Huayuan North Road, Haidian District, Beijing, People's Republic of China, 100191
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Zimiao Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Xiaoxue Li
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Enci Cai
- Department of Nutrition and Food Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Yi Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Congying Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Liping Ju
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China, 325006.
| | - Liangshan Mu
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200.
| |
Collapse
|
10
|
Sheep as a model for neuroendocrinology research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:1-34. [PMID: 35595346 DOI: 10.1016/bs.pmbts.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal models remain essential to understand the fundamental mechanisms of physiology and pathology. Particularly, the complex and dynamic nature of neuroendocrine cells of the hypothalamus make them difficult to study. The neuroendocrine systems of the hypothalamus are critical for survival and reproduction, and are highly conserved throughout vertebrate evolution. Their roles in controlling body metabolism, growth and body composition, stress, electrolyte balance, and reproduction, have been intensively studied, and have yielded groundbreaking discoveries. Many of these discoveries would not have been feasible without the use of the domestic sheep (Ovis aries). The sheep has been used for decades to study the neuroendocrine systems of the hypothalamus and has become a model for human neuroendocrinology. The aim of this chapter is to review some of the profound biomedical discoveries made possible by the use of sheep. The advantages and limitations of sheep as a neuroendocrine model will be discussed. While no animal model can perfectly recapitulate a human disease or condition, sheep are invaluable for enabling manipulations not possible in human subjects and isolating physiologic variables to garner insight into neuroendocrinology and associated pathologies.
Collapse
|
11
|
Campbell RE, Coolen LM, Hoffman GE, Hrabovszky E. Highlights of neuroanatomical discoveries of the mammalian gonadotropin-releasing hormone system. J Neuroendocrinol 2022; 34:e13115. [PMID: 35502534 PMCID: PMC9232911 DOI: 10.1111/jne.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
The anatomy and morphology of gonadotropin-releasing hormone (GnRH) neurons makes them both a joy and a challenge to investigate. They are a highly unique population of neurons given their developmental migration into the brain from the olfactory placode, their relatively small number, their largely scattered distribution within the rostral forebrain, and, in some species, their highly varied individual anatomical characteristics. These unique features have posed technological hurdles to overcome and promoted fertile ground for the establishment and use of creative approaches. Historical and more contemporary discoveries defining GnRH neuron anatomy remain critical in shaping and challenging our views of GnRH neuron function in the regulation of reproductive function. We begin this review with a historical overview of anatomical discoveries and developing methodologies that have shaped our understanding of the reproductive axis. We then highlight significant discoveries across specific groups of mammalian species to address some of the important comparative aspects of GnRH neuroanatomy. Lastly, we touch on unresolved questions and opportunities for future neuroanatomical research on this fascinating and important population of neurons.
Collapse
Affiliation(s)
- Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Lique M. Coolen
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | | | - Erik Hrabovszky
- Laboratory of Reproductive NeurobiologyInstitute of Experimental MedicineBudapestHungary
| |
Collapse
|
12
|
Lee EB, Dilower I, Marsh CA, Wolfe MW, Masumi S, Upadhyaya S, Rumi MAK. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022; 11:1146. [PMID: 35406710 PMCID: PMC8997554 DOI: 10.3390/cells11071146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin (KP) and kisspeptin receptor (KPR) are essential for the onset of puberty, development of gonads, and maintenance of gonadal function in both males and females. Hypothalamic KPs and KPR display a high degree of sexual dimorphism in expression and function. KPs act on KPR in gonadotropin releasing hormone (GnRH) neurons and induce distinct patterns of GnRH secretion in males and females. GnRH acts on the anterior pituitary to secrete gonadotropins, which are required for steroidogenesis and gametogenesis in testes and ovaries. Gonadal steroid hormones in turn regulate the KP neurons. Gonadal hormones inhibit the KP neurons within the arcuate nucleus and generate pulsatile GnRH mediated gonadotropin (GPN) secretion in both sexes. However, the numbers of KP neurons in the anteroventral periventricular nucleus and preoptic area are greater in females, which release a large amount of KPs in response to a high estrogen level and induce the preovulatory GPN surge. In addition to the hypothalamus, KPs and KPR are also expressed in various extrahypothalamic tissues including the liver, pancreas, fat, and gonads. There is a remarkable difference in circulating KP levels between males and females. An increased level of KPs in females can be linked to increased numbers of KP neurons in female hypothalamus and more KP production in the ovaries and adipose tissues. Although the sexually dimorphic features are well characterized for hypothalamic KPs, very little is known about the extrahypothalamic KPs. This review article summarizes current knowledge regarding the sexual dimorphism in hypothalamic as well as extrahypothalamic KP and KPR system in primates and rodents.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Courtney A. Marsh
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Sameer Upadhyaya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| |
Collapse
|
13
|
Raúl Schmidt A, Ignacio Felipe Inserra P, Andrés Cortasa S, Proietto S, Fidel V, Halperin J, Daniel Vitullo A, Berta Dorfman V. Distribution of kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus of the South American plains vizcacha, Lagostomus maximus. Gen Comp Endocrinol 2022; 317:113974. [PMID: 34973969 DOI: 10.1016/j.ygcen.2021.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022]
Abstract
Kisspeptin (KISS), a key hormone involved in the regulation of the hypothalamic-pituitary-ovarian (HPO) axis, has been localized in the anteroventral periventricular (AVPV) nucleus and the neighboring rostral periventricular nucleus (PeVN), and in the arcuate (ARC) nucleus of the mammalian hypothalamus. In the ARC, the KISS neurons that co-express neurokinin B (NKB) and dynorphin A (Dyn) are named KNDy cells. The South American plains vizcacha is a rodent with peculiar reproductive traits. Around mid-pregnancy, vizcacha shows the reactivation of its HPO axis with the pulsatile release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH), an essential event for the success of gestation. Considering the role of KISS system in GnRH modulation, the aim of this work was to study their neuroanatomical distribution in adult vizcachas. AVPV showed sexual dimorphism with a significant smaller area in males (t-Test, p < 0.05), and KISS immunoreactivity was detected in somas and varicosities homogenously distributed in the AVPV with a concordant sex-related expression pattern. NKB and Dyn expression was also observed in cytoplasm of neurons scattered in the AVPV. Three subpopulations of neurons were detected in the AVPV: neurons expressing Dyn and NKB (DyNK cells), neurons expressing KISS and NKB (KiNK cells), and single NKB expressing neurons. Strikingly, KISS and Dyn were always expressed in different cells. In addition, in the ARC nucleus, KNDy cells were detected. On the other hand, KISS and GnRH expression was detected in different subpopulations of neurons, GnRH cells showed KISS receptor (KISSR or GPR-54) expression, and KISS immunoreactive afferent contacts were detected making close appositions onto somas and dendrites of GnRH cells. These results show similarities and differences between the KISS system in the hypothalamus of the vizcacha and other mammals, and constitute crucial observations about KISS and GnRH relation. Considering the peculiarity of HPO axis regulation in this species, the present work provides a neuroanatomical framework for the further elucidation of molecular mechanisms underlying GnRH expression and secretion.
Collapse
Affiliation(s)
- Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Fidel
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
14
|
Gołyszny M, Obuchowicz E, Zieliński M. Neuropeptides as regulators of the hypothalamus-pituitary-gonadal (HPG) axis activity and their putative roles in stress-induced fertility disorders. Neuropeptides 2022; 91:102216. [PMID: 34974357 DOI: 10.1016/j.npep.2021.102216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Neuropeptides being regulators of the hypothalamus-pituitary-adrenal (HPA) axis activity, also affect the function of the hypothalamus-pituitary-gonadal (HPG) axis by regulating gonadotrophin-releasing hormone (GnRH) secretion from hypothalamic neurons. Here, we review the available data on how neuropeptides affect HPG axis activity directly or indirectly via their influence on the HPA axis. The putative role of neuropeptides in stress-induced infertility, such as polycystic ovary syndrome, is also described. This review discusses both well-known neuropeptides (i.e., kisspeptin, Kp; oxytocin, OT; arginine-vasopressin, AVP) and more recently discovered peptides (i.e., relaxin-3, RLN-3; nesfatin-1, NEFA; phoenixin, PNX; spexin, SPX). For the first time, we present an up-to-date review of all published data regarding interactions between the aforementioned neuropeptide systems. The reviewed literature suggest new pathophysiological mechanisms leading to fertility disturbances that are induced by stress.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| |
Collapse
|
15
|
Inverse age-related changes between hypothalamic NPY and KISS1 gene expression during pubertal initiation in male rhesus monkey. Reprod Biol 2022; 22:100599. [PMID: 35033902 DOI: 10.1016/j.repbio.2021.100599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/26/2021] [Indexed: 01/12/2023]
Abstract
The neuroendocrine mechanism underlying the sinusoidal wave nature of gonadotropin-releasing hormone pulse generator activity from infantile to adult age still needs to be meticulously defined. Direct inhibition of kisspeptin neurons by neuropeptide Y (NPY) and close intimacy between the two rekindle the importance of these two neuropeptides controlling reproductive axis activity. Thus, the present study was undertaken to decipher simultaneous fluctuations and to profile correlative changes in the relative expression of KISS1, NPY, and their receptor genes from the mediobasal hypothalamus of infant (n = 3), juvenile, pre-pubertal, and adult (n = 4 in each stage) male rhesus monkey (Macaca mulatta) by RT-qPCR. Significant elevation (p < 0.05-0.01) in KISS1 and KISS1R and low (p < 0.05) expression in NPY and NPY1R mRNA in the adult group as compared to the pre-pubertal group was observed. Moreover, significantly high (p < 0.05) expression of NPY and NPY1R mRNA with non-significant (p> 0.05) decline in KISS1 and KISS1R in pre-pubertal animals in comparison to infants describe inverse correlative age-associated changes during pubertal development. Current findings imply that NPY may contribute as a neurobiological brake for the dormancy of kisspeptin neurons before pubertal onset, while dwindling of this brake is likely to occasion kisspeptin dependent hypothalamic-pituitary-gonadal axis activation at puberty. These findings may help in the development of clinical and therapeutic strategies to regulate fertility in humans.
Collapse
|
16
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
17
|
Hypothalamic kisspeptin and kisspeptin receptors: Species variation in reproduction and reproductive behaviours. Front Neuroendocrinol 2022; 64:100951. [PMID: 34757093 DOI: 10.1016/j.yfrne.2021.100951] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.
Collapse
|
18
|
Ozawa H. Kisspeptin neurons as an integration center of reproductive regulation: Observation of reproductive function based on a new concept of reproductive regulatory nervous system. Reprod Med Biol 2021; 21:e12419. [PMID: 34934400 PMCID: PMC8656200 DOI: 10.1002/rmb2.12419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background Regulation of the reproductive system has been explained by the actions and feedback of gonadotropin releasing hormone‐luteinizing hormone/follicle stimulating hormone (GnRH‐LH/FSH) ‐sex steroids; however, the discovery of kisspeptin neurons and a kisspeptin‐GnRH‐LH/FSH axis has prompted this regulation to be reviewed. Methods We investigated changes in kisspeptin neurons and associated changes in the hypothalamic‐pituitary‐gonadal (HPG) axis under various situations and experimental conditions using histochemical methods. Main findings (Results) Kisspeptin neurons play an important role in receiving and integrating information from internal and external environmental factors and communicating it to the conventional HPG axis. Conclusion The recently described Kisspeptin‐GnRH‐LH/FSH‐gonad system regulates reproductive function via mechanisms that until recently were not completely understood.
Collapse
Affiliation(s)
- Hitoshi Ozawa
- Department of Anatomy and Neurobiology Graduate School of Medicine Nippon Medical School Tokyo Japan
| |
Collapse
|
19
|
Herbison AE. The dendron and episodic neuropeptide release. J Neuroendocrinol 2021; 33:e13024. [PMID: 34427000 DOI: 10.1111/jne.13024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
The unexpected observation that the long processes of gonadotrophin-releasing hormone (GnRH) neurons not only conducted action potentials, but also operated to integrate afferent information at their distal-most extent gave rise to the concept of a blended dendritic-axonal process termed the "dendron". The proximal dendrites of the GnRH neuron function in a conventional manner, receiving synaptic inputs and initiating action potentials that are critical for the surge mode of GnRH secretion. The distal dendrons are regulated by both classical synapses and volume transmission and likely operate using subthreshold electrotonic propagation into the nearby axon terminals in the median eminence. Evidence indicates that neural processing at the distal dendron is responsible for the pulsatile patterning of GnRH secretion. Although the dendron remains unique to the GnRH neuron, data show that it exists in both mice and rats and may be a common feature of mammalian species in which GnRH neuron cell bodies do not migrate into the basal hypothalamus. This review outlines the discovery and function of the dendron as a unique neuronal structure optimised to generate episodic neuronal output.
Collapse
Affiliation(s)
- Allan E Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Chandra K, Banerjee A, Das M. Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Carrasco RA, Leonardi CE, Hutt K, Singh J, Adams GP. Kisspeptin induces LH release and ovulation in an induced ovulator†. Biol Reprod 2021; 103:49-59. [PMID: 32307518 DOI: 10.1093/biolre/ioaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/14/2022] Open
Abstract
Kisspeptin has been implicated in the ovulatory process of several species of spontaneous ovulators but in only one induced ovulator. In contrast, NGF in semen is the principal trigger of ovulation in other species of induced ovulators-camelids. We tested the hypotheses that kisspeptin induces luteinizing hormone (LH) secretion in llamas through a hypothalamic mechanism, and kisspeptin neurons are the target of NGF in its ovulation-inducing pathway. In Experiment 1, llamas were given either NGF, kisspeptin, or saline intravenously, and LH secretion and ovulation were compared among groups. All llamas treated with NGF (5/5) or kisspeptin (5/5) had an elevation of LH blood concentrations after treatment and ovulated, whereas none of the saline group did (0/5). In Experiment 2, llamas were either pretreated with a gonadotropin-releasing hormone (GnRH) receptor antagonist or saline and treated 2 h later with kisspeptin. Llamas pretreated with saline had elevated plasma LH concentrations and ovulated (6/6) whereas llamas pretreated with cetrorelix did not (0/6). In Experiment 3, we evaluated the hypothalamic kisspeptin-GnRH neuronal network by immunohistochemistry. Kisspeptin neurons were detected in the arcuate nucleus, the preoptic area, and the anterior hypothalamus, establishing synaptic contacts with GnRH neurons. We found no colocalization between kisspeptin and NGF receptors by double immunofluorescence. Functional and morphological findings support the concept that kisspeptin is a mediator of the LH secretory pathway in llamas; however, the role of kisspeptins in the NGF ovulation-inducing pathway in camelids remains unclear since NGF receptors were not detected in kisspeptin neurons in the hypothalamus.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Carlos E Leonardi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kylie Hutt
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
22
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Kisspeptin Neurons and Estrogen-Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. Int J Mol Sci 2021; 22:ijms22179229. [PMID: 34502135 PMCID: PMC8430864 DOI: 10.3390/ijms22179229] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
- Correspondence:
| |
Collapse
|
23
|
Delli V, Silva MSB, Prévot V, Chachlaki K. The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Mol Cell Endocrinol 2021; 532:111302. [PMID: 33964320 DOI: 10.1016/j.mce.2021.111302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
24
|
Hypothalamic neurokinin signalling and its application in reproductive medicine. Pharmacol Ther 2021; 230:107960. [PMID: 34273412 DOI: 10.1016/j.pharmthera.2021.107960] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
The discovery of the essential requirement for kisspeptin and subsequently neurokinin B signalling for human reproductive function has sparked renewed interest in the neuroendocrinology of reproduction. A key discovery has been a population of cells co-expressing both these neuropeptides and dynorphin in the hypothalamus, directly regulating gonadotropin hormone releasing hormone (GnRH) secretion and thus pituitary secretion of gonadotropins. These neurons also project to the vasomotor centre, and their overactivity in estrogen deficiency results in the common and debilitating hot flushes of the menopause. Several antagonists to the neurokinin 3 receptor, for which neurokinin B is the endogenous ligand, have been developed, and are entering clinical studies in human reproductive function and clinical trials. Even single doses can elicit marked declines in testosterone levels in men, and their use has elicited evidence of the regulation of ovarian follicle growth in women. The most advanced indication is the treatment of menopausal vasomotor symptoms, where these drugs show remarkable results in both the degree and speed of symptom control. A range of other reproductive indications are starting to be explored, notably in polycystic ovary syndrome, the most common endocrinopathy in women.
Collapse
|
25
|
Bethea CL, Cameron JL. Neuro-pharmacological reinstatement of ovulation and associated neurobiology in a macaque model of functional hypothalamic amenorrhoea. Hum Reprod 2021; 36:175-188. [PMID: 33319240 DOI: 10.1093/humrep/deaa296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/23/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION What is the underlying neuropathology in a cynomolgus macaque model of functional hypothalamic amenorrhoea (FHA) and can it be normalized to restore ovulation? SUMMARY ANSWER Anovulatory monkeys exhibited increased hypothalamic norepinephrine (NE), kisspeptin and gonadotropin-releasing hormone (GnRH) in the early follicular phase, but administration of the NE reuptake inhibitor (NRI), reboxetine (REB), restored ovulation during stress and normalized NE, kisspeptin and GnRH. WHAT IS KNOWN ALREADY Female cynomolgus macaques, like women, show individual reproductive sensitivity to modest psychosocial and metabolic stress. During stress, resilient females ovulate through two menstrual cycles whereas stress-sensitive (SS) macaques immediately cease ovulation. On Day 5 of a non-stressed menstrual cycle, resilient macaques have less NE synthesizing enzyme [dopamine β-hydroxylase (DBH)], kisspeptin and GnRH innervation of the medial basal hypothalamus but more endogenous serotonin than SS macaques. Stress increased DBH/NE, kisspeptin and GnRH but did not alter serotonin. STUDY DESIGN, SIZE, DURATION In a longitudinal design, 27 adult (7-13 years) female cynomolgus macaques (Macaca fascicularis) with three different levels of sensitivity to stress were monitored with daily vaginal swabs and frequent serum progesterone (P) measurements. Three 90-day experimental periods called 'Cycle Sets' were monitored. A Cycle Set consisted of one ovulatory menstrual cycle without stress, and two cycles, or 60 days, with modest stress. Each Cycle Set was followed by a rest period. During a Cycle Set, individuals were either untreated (placebo) or administered escitalopram (CIT) or REB. Ultimately, half of each sensitivity group was euthanized during stress with CIT or REB treatment and the hypothalamus was obtained. Neurobiological endpoints were compared between CIT and REB treatment groups in stress resilient and SS monkeys. PARTICIPANTS/MATERIALS, SETTING, METHODS The monkeys were housed at the University of Pittsburgh primate facility for the duration of the experiments. Upon euthanasia, their brains and serum samples were shipped to the Oregon National Primate Research Center. The hypothalamus was examined with immunohistochemistry for the expression of DBH (a marker for NE axons), kisspeptin and GnRH. P was measured in the serum samples by radioimmunoassay. MAIN RESULTS AND THE ROLE OF CHANCE Daily administration of REB restored ovulation in 9 of 10 SS animals during stress. Of note, REB significantly increased P secretion during stress in the most sensitive group (P = 0.032), which indicates ovulation. CIT lacked efficacy. REB significantly reduced DBH/NE, kisspeptin and GnRH axon density in the hypothalamus relative to CIT treatment (P = 0.003. 0.018 and 0.0001, respectively) on Day 5 of the menstrual cycle in resilient and sensitive groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The US FDA has not approved REB for human use, although it is used in Europe for the treatment of depression/anxiety as EdronaxTR. Whether REB could be useful for the treatment of FHA in women has not been determined. WIDER IMPLICATIONS FOR THE FINDINGS The use of an NRI to treat FHA is a novel approach and the potential reinstatement of ovulation could be straightforward compared to current treatment protocols. The underlying neurobiology provides a compelling case for treating the origin of the pathology, i.e. elevated NE, rather than circumventing the hypothalamus altogether with gonadotropins, which have associated risks such as hyperstimulation syndrome or multiple births. STUDY FUNDING/COMPETING INTEREST(S) Portions of this study were supported by NIH grant HD062864 to C.L.B., NIH grant HD62618 to J.L.C. and C.L.B. and 1P51 OD011092 for the operation of the Oregon National Primate Research Center. There were no competing interests.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, USA
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
26
|
Berland M, Paiva L, Santander LA, Ratto MH. Distribution of GnRH and Kisspeptin Immunoreactivity in the Female Llama Hypothalamus. Front Vet Sci 2021; 7:597921. [PMID: 33604362 PMCID: PMC7884347 DOI: 10.3389/fvets.2020.597921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/05/2022] Open
Abstract
Llamas are induced non-reflex ovulators, which ovulate in response to the hormonal stimulus of the male protein beta-nerve growth factor (β-NGF) that is present in the seminal plasma; this response is dependent on the preovulatory gonadotrophin-releasing hormone (GnRH) release from the hypothalamus. GnRH neurones are vital for reproduction, as these provide the input that controls the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary gland. However, in spontaneous ovulators, the activity of GnRH cells is regulated by kisspeptin neurones that relay the oestrogen signal arising from the periphery. Here, we investigated the organisation of GnRH and kisspeptin systems in the hypothalamus of receptive adult female llamas. We found that GnRH cells exhibiting different shapes were distributed throughout the ventral forebrain and some of these were located in proximity to blood vessels; sections of the mediobasal hypothalamus (MBH) displayed the highest number of cells. GnRH fibres were observed in both the organum vasculosum laminae terminalis (OVLT) and median eminence (ME). We also detected abundant kisspeptin fibres in the MBH and ME; kisspeptin cells were found in the arcuate nucleus (ARC), but not in rostral areas of the hypothalamus. Quantitative analysis of GnRH and kisspeptin fibres in the ME revealed a higher innervation density of kisspeptin than of GnRH fibres. The physiological significance of the anatomical findings reported here for the ovulatory mechanism in llamas is still to be determined.
Collapse
Affiliation(s)
- Marco Berland
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Luis Paiva
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Lig Alondra Santander
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Marcelo Héctor Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
27
|
Bakker J. Kisspeptin and neurokinin B expression in the human hypothalamus: Relation to reproduction and gender identity. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:297-313. [PMID: 34225936 DOI: 10.1016/b978-0-12-820107-7.00018-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus are at the core of reproductive functioning. GnRH released into the median eminence regulates the secretion of the gonadotropins from the anterior pituitary, which in turn activates gametogenesis and steroid synthesis by the gonads. The GnRH system displays functional sex differences: GnRH is secreted in pulses at a constant frequency in men, whereas in women, pulse frequency varies over the menstrual cycle. In both sexes, GnRH release is regulated by sex steroid hormones, acting at the level of the hypothalamus and the anterior pituitary in a classic feedback loop. Because GnRH neurons do not express sex steroid receptors, hormone effects on GnRH release are presumed to be mediated indirectly through other steroid-sensitive neuronal systems, which then converge onto GnRH cell bodies and/or terminals. Human genetic studies demonstrated that kisspeptin (KP) as well as neurokinin B (NKB) signaling are both potent regulators of GNRH secretion. In humans, postmortem studies using immunohistochemistry have shown that women have higher KP and NKB expression in the infundibular nucleus than men. Sex differences in KP expression are present throughout life, which is from the infant/prepubertal into the elderly period, whereas sex differences in NKB expression do not emerge until adulthood. KP and NKB are often coexpressed together with dynorphin by the same population of neurons, also known as KDNy neurons in other species. Indeed, significant coexpression between KP and NKB but not with Dynorphin has been observed thereby challenging the KDNy concept in humans. Female-typical expression of both KP and NKB were observed in the infundibular nucleus of trans women (male sex assigned at birth and female gender identity). Taken together, sex differences in KP and NKB expression most likely reflect organizational actions of sex steroid hormones on the developing brain but they also remain sensitive to circulating sex steroids in adulthood. The female-dominant sex difference in infundibular KP and NKB expression suggests that this brain region is most likely involved in both the negative and positive feedback actions of estrogens on GnRH secretion. Finally, the sex-reversal observed in KP and NKB expression in trans women might reflect, at least partially, an atypical sexual differentiation of the brain.
Collapse
Affiliation(s)
- Julie Bakker
- GIGA Neurosciences, Liège University, Liège, Belgium.
| |
Collapse
|
28
|
Rumpler É, Skrapits K, Takács S, Göcz B, Trinh SH, Rácz G, Matolcsy A, Kozma Z, Ciofi P, Dhillo WS, Hrabovszky E. Characterization of Kisspeptin Neurons in the Human Rostral Hypothalamus. Neuroendocrinology 2021; 111:249-262. [PMID: 32299085 DOI: 10.1159/000507891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS Immunohistochemical techniques were used. RESULTS The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sarolta H Trinh
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Kozma
- Department of Forensic Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary,
| |
Collapse
|
29
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
30
|
Coen CW, Bennett NC, Holmes MM, Faulkes CG. Neuropeptidergic and Neuroendocrine Systems Underlying Eusociality and the Concomitant Social Regulation of Reproduction in Naked Mole-Rats: A Comparative Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:59-103. [PMID: 34424513 DOI: 10.1007/978-3-030-65943-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The African mole-rat family (Bathyergidae) includes the first mammalian species identified as eusocial: naked mole-rats. Comparative studies of eusocial and solitary mole-rat species have identified differences in neuropeptidergic systems that may underlie the phenomenon of eusociality. These differences are found in the oxytocin, vasopressin and corticotrophin-releasing factor (CRF) systems within the nucleus accumbens, amygdala, bed nucleus of the stria terminalis and lateral septal nucleus. As a corollary of their eusociality, most naked mole-rats remain pre-pubertal throughout life because of the presence of the colony's only reproductive female, the queen. To elucidate the neuroendocrine mechanisms that mediate this social regulation of reproduction, research on the hypothalamo-pituitary-gonadal axis in naked mole-rats has identified differences between the many individuals that are reproductively suppressed and the few that are reproductively mature: the queen and her male consorts. These differences involve gonadal steroids, gonadotrophin-releasing hormone-1 (GnRH-1), kisspeptin, gonadotrophin-inhibitory hormone/RFamide-related peptide-3 (GnIH/RFRP-3) and prolactin. The comparative findings in eusocial and solitary mole-rat species are assessed with reference to a broad range of studies on other mammals.
Collapse
Affiliation(s)
- Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Rumpler É, Takács S, Göcz B, Baska F, Szenci O, Horváth A, Ciofi P, Hrabovszky E, Skrapits K. Kisspeptin Neurons in the Infundibular Nucleus of Ovariectomized Cats and Dogs Exhibit Unique Anatomical and Neurochemical Characteristics. Front Neurosci 2020; 14:598707. [PMID: 33343288 PMCID: PMC7738562 DOI: 10.3389/fnins.2020.598707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons co-synthesizing kisspeptin (KP), neurokinin B (NKB), and dynorphin (“KNDy neurons”) in the hypothalamic arcuate/infundibular nucleus (INF) form a crucial component of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) “pulse generator.” The goal of our study was to characterize KP neuron distribution, neuropeptide phenotype and connectivity to GnRH cells in ovariectomized (OVX) dogs and cats with immunohistochemistry on formalin-fixed hypothalamic tissue sections. In both species, KP and NKB neurons occurred in the INF and the two cell populations overlapped substantially. Dynorphin was detected in large subsets of canine KP (56%) and NKB (37%) cells and feline KP (64%) and NKB (57%) cells; triple-labeled (“KNDy”) somata formed ∼25% of all immunolabeled neurons. Substance P (SP) was present in 20% of KP and 29% of NKB neurons in OVX cats but not dogs, although 26% of KP and 24% of NKB neurons in a gonadally intact male dog also contained SP signal. Only in cats, cocaine- and amphetamine regulated transcript was also colocalized with KP (23%) and NKB (7%). In contrast with reports from mice, KP neurons did not express galanin in either carnivore. KP neurons innervated virtually all GnRH neurons in both species. Results of this anatomical study on OVX animals reveal species-specific features of canine and feline mediobasal hypothalamic KP neurons. Anatomical and neurochemical similarities to and differences from the homologous KP cells of more extensively studied rodent, domestic and primate species will enhance our understanding of obligate and facultative players in the molecular mechanisms underlying pulsatile GnRH/LH secretion.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Baska
- Department of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Ottó Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary.,MTA-SZIE Large Animal Clinical Research Group, University of Veterinary Medicine, Üllõ, Hungary
| | - András Horváth
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary
| | - Philippe Ciofi
- INSERM U1215, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
32
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
33
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
34
|
Amodei R, Gribbin K, He W, Lindgren I, Corder KR, Jonker SS, Estill CT, Coolen LM, Lehman MN, Whitler W, Stormshak F, Roselli CE. Role for Kisspeptin and Neurokinin B in Regulation of Luteinizing Hormone and Testosterone Secretion in the Fetal Sheep. Endocrinology 2020; 161:bqaa013. [PMID: 32005991 PMCID: PMC7079722 DOI: 10.1210/endocr/bqaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
Evidence suggests that the hypothalamic-pituitary-gonadal (HPG) axis is active during the critical period for sexual differentiation of the ovine sexually dimorphic nucleus, which occurs between gestational day (GD) 60 and 90. Two possible neuropeptides that could activate the fetal HPG axis are kisspeptin and neurokinin B (NKB). We used GD85 fetal lambs to determine whether intravenous administration of kisspeptin-10 (KP-10) or senktide (NKB agonist) could elicit luteinizing hormone (LH) release. Immunohistochemistry and fluorescent in situ hybridization (FISH) were employed to localize these peptides in brains of GD60 and GD85 lamb fetuses. In anesthetized fetuses, KP-10 elicited robust release of LH that was accompanied by a delayed rise in serum testosterone in males. Pretreatment with the GnRH receptor antagonist (acyline) abolished the LH response to KP-10, confirming a hypothalamic site of action. In unanesthetized fetuses, senktide, as well as KP-10, elicited LH release. The senktide response of females was greater than that of males, indicating a difference in NKB sensitivity between sexes. Gonadotropin-releasing hormone also induced a greater LH discharge in females than in males, indicating that testosterone negative feedback is mediated through pituitary gonadotrophs. Kisspeptin and NKB immunoreactive cells in the arcuate nucleus were more abundant in females than in males. Greater than 85% of arcuate kisspeptin cells costained for NKB. FISH revealed that the majority of these were kisspeptin/NKB/dynorphin (KNDy) neurons. These results support the hypothesis that kisspeptin-GnRH signaling regulates the reproductive axis of the ovine fetus during the prenatal critical period acting to maintain a stable androgen milieu necessary for brain masculinization.
Collapse
Affiliation(s)
- Rebecka Amodei
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Kyle Gribbin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Wen He
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Isa Lindgren
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Keely R Corder
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - William Whitler
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Fred Stormshak
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
35
|
Köves K, Szabó E, Kántor O, Heinzlmann A, Szabó F, Csáki Á. Current State of Understanding of the Role of PACAP in the Hypothalamo-Hypophyseal Gonadotropin Functions of Mammals. Front Endocrinol (Lausanne) 2020; 11:88. [PMID: 32210912 PMCID: PMC7067695 DOI: 10.3389/fendo.2020.00088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 01/25/2023] Open
Abstract
PACAP was discovered 30 years ago in Dr. Akira Arimura's laboratory. In the past three decades since then, it has become evident that this peptide plays numerous crucial roles in mammalian organisms. The most important functions of PACAP are the following: 1. neurotransmitter, 2. neuromodulator, 3. hypophysiotropic hormone, 4. neuroprotector. This paper reviews the accumulated data regarding the distribution of PACAP and its receptors in the mammalian hypothalamus and pituitary gland, the role of PACAP in the gonadotropin hormone secretion of females and males. The review also summarizes the interaction between PACAP, GnRH, and sex steroids as well as hypothalamic peptides including kisspeptin. The possible role of PACAP in reproductive functions through the biological clock is also discussed. Finally, the significance of PACAP in the hypothalamo-hypophysial system is considered and the facts missing, that would help better understand the function of PACAP in this system, are also highlighted.
Collapse
Affiliation(s)
- Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Enikő Szabó
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Orsolya Kántor
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Andrea Heinzlmann
- Department of Anatomy and Histology, University of Veterinary Sciences, Budapest, Hungary
| | - Flóra Szabó
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Ágnes Csáki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
El-Sherry TM, Abdel-Ghani MA, Mahmoud GB, Ezzat AA. Kisspeptin injection improved the semen characteristics and sperm rheotaxis in Ossimi ram. Reprod Domest Anim 2020; 55:240-247. [PMID: 31880370 DOI: 10.1111/rda.13613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to investigate the effect of kisspeptin-10 (Kp10) injection on semen characteristics, testosterone (T) production and sperm rheotaxis using microfluidic devices in immature ram. Computer-assisted sperm analysis (CASA) with controlled flow velocity was used to explore the kinetic parameters of sperm and positive rheotaxis (PR %). PR % was defined as the number of PR sperms over the number of motile sperms. Healthy Ossimi rams were randomly divided into two groups; a saline-treated control group and Kp10-treated one (5 µg/kg body weight). Treatments were given by intramuscular injection once a week for 1 month. After 1 month, the semen was collected and evaluated weekly for 6 weeks, while the blood samples were collected every 2 weeks for the next 8 weeks. Semen properties were significantly affected by Kp10 injection (p < .01). The Kp10 increased the volume, sperm concentration and percentages of live sperm compared with those of control. Additionally, sperm trajectories and rheotaxis get improved by the injection of Kp10 with time. Furthermore, kisspeptin improved the secretion of testosterone levels throughout the period of study. In conclusion, injections of the Kp10 had a positive impact on semen characteristics as well as improved sperm rheotaxis of Ossimi rams in subtropics.
Collapse
Affiliation(s)
- Timor M El-Sherry
- Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Mohammed A Abdel-Ghani
- Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Gamal B Mahmoud
- Department of Animal Production, Faculty of Agriculture, Assiut University, Assuit, Egypt
| | - Ahmed A Ezzat
- Department of Biology, College of Science, King Khalid Unversity, Abha, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
37
|
Abstract
The neuroendocrinology of reproduction focuses on the neuromodulation of gonadotropin-releasing hormone (GnRH), the ontogeny of the hypothalamic-pituitary-gonadal axis, and common reproductive events and conditions, namely, puberty, the menstrual cycle, and disorders of reproductive function. The core concept underpinning the neuroendocrinology of reproduction is neuroregulation of hypothalamic GnRH drive. In both men and women, reproductive function requires that GnRH input elicit appropriate secretion of follicle-stimulating hormone and luteinizing hormone from the anterior pituitary and that the gonads respond to such input appropriately. Moreover, insufficient GnRH drive causes hypothalamic hypogonadism and secondary insufficiency of gonadal sex steroid hormone synthesis and release in both sexes. Alterations in GnRH drive also reflect gonadal conditions such as dysgenesis, hyperandrogenism, gonadotropin mutations, and aging and loss or absence of oocytes or Sertoli cells. The most common cause of insufficient GnRH drive is functional, that is, due to the endocrine effects of psychologic or behavioral variables. Rarely does reduced GnRH drive reflect organic or congenital causes such as developmental defects, brain tumors, or celiac disease. Despite a common neuropathogenesis the heterogeneity of behavioral variables associated with reduced GnRH drive has resulted in a variety of names, including functional hypothalamic amenorrhea, stress-induced anovulation, and psychogenic amenorrhea.
Collapse
Affiliation(s)
- Deepika Garg
- (1)Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
38
|
Rønnekleiv OK, Qiu J, Kelly MJ. Arcuate Kisspeptin Neurons Coordinate Reproductive Activities with Metabolism. Semin Reprod Med 2019; 37:131-140. [PMID: 31869841 DOI: 10.1055/s-0039-3400251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypothalamic control of fertility is the quintessential homeostatic function. However, fertility is metabolically demanding; so, there must be coordination between energy states and reproductive functions. Because gonadotropin-releasing hormone (GnRH) neurons are devoid of many of the critical metabolic hormone receptors for sensing nutrient levels, it has long been recognized that the sensing of energy stores had to be done by neurons presynaptic to GnRH neurons. Some of the obvious players have been the anorexigenic proopiomelanocortin (POMC) and orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons, both of which are in close apposition to the median eminence, a circumventricular organ. Indeed, POMC and NPY/AgRP neurons are inversely regulated by glucose and metabolic hormones including insulin and leptin. However, their synaptic connections with GnRH neurons are sparse and/or GnRH neurons are lacking the postsynaptic receptors to mediate the appropriate physiological response. Kisspeptin neurons were discovered in the early part of this century and subsequently shown to project to and control GnRH neuronal excitability. In fact, more recently the arcuate kisspeptin neurons have been identified as the command neurons driving pulsatile release of GnRH. Subsequently, it was shown that arcuate kisspeptin neurons express not only steroid hormone receptors but also metabolic hormone receptors such that similar to POMC neurons, they are excited by insulin and leptin. Therefore, based on the premise that arcuate kisspeptin neurons are the key neurons coordinating energy states with reproduction, we will review not only how these vital neurons control pulsatile GnRH release but how they control energy homeostasis through their synaptic connections with POMC and NPY/AgRP neurons and ultimately how E2 can regulate their excitability.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon.,Division of Neuroscience, National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon.,Division of Neuroscience, National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| |
Collapse
|
39
|
Terasawa E. Mechanism of pulsatile GnRH release in primates: Unresolved questions. Mol Cell Endocrinol 2019; 498:110578. [PMID: 31518609 PMCID: PMC6944307 DOI: 10.1016/j.mce.2019.110578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
Abstract
The pulsatility of GnRH release is essential for reproductive function. The key events in reproductive function, such as puberty onset and ovulatory cycles, are regulated by the frequency and amplitude modulation of pulsatile GnRH release. Abnormal patterns of GnRH pulsatility are seen in association with disease states, such as polycystic ovarian syndrome and anorexia nervosa. Recent studies with physiological, track-tracing, optogenetic and electrophysiological recording experiments indicate that a group of kisspeptin neurons in the arcuate nucleus (ARC) of the hypothalamus are responsible for pulsatile GnRH release. Thus, the kisspeptin neuron in the ARC has been called the "GnRH pulse-generator." However, a few pieces of evidence do not quite fit into this concept. This article reviews some old works and discusses unresolved issues on the mechanism of GnRH pulse generation.
Collapse
Affiliation(s)
- Ei Terasawa
- AWisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA; Department of Pediatrics, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
40
|
Polkowska J, Wójcik-G Adysz A, Chmielewska N, Wa Kowska M. Expression of kisspeptin protein in hypothalamus and LH profile of growing female lambs. Reprod Fertil Dev 2019; 30:609-618. [PMID: 28917264 DOI: 10.1071/rd17018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Kisspeptin (kp) is considered to be one of the major regulators of the induction of pubertal events via the activation of the gonadotrophin-releasing hormone-LH system. The aim of the present study was to analyse expression of immunoreactive (ir) kp in the hypothalamic neurons of female lambs from the neonatal to the peripubertal period (5 days to 32 weeks) in relation to the plasma LH pattern using immunohistochemistry and image analysis. Hypothalami were collected from female lambs (n=33) from the infantile, juvenile, prepubertal and peripubertal periods. The population of kp-ir perikarya was detected mainly in the arcuate nucleus and their number increased gradually from 5 to 16 weeks of age and was maintained at a high level up to the peripubertal stage. This was reflected by the significant (P<0.05) gradual increase in the percentage of hypothalamic area occupied by kp-ir neurons and increase in the number of kp-ir perikarya within the arcuate nucleus. The same pattern of kp immunoreactivity was observed in the median eminence. Plasma LH concentration increased from Week 5 to Weeks 12-16 and further increased at Week 32. LH pulse frequency increased from Week 5 to 32 (P<0.05). Thus, changes in kp expression reflected changes in the LH pattern during lamb growth. The data obtained provide evidence about the participation of kp in the mechanisms of ontogenic development of ovine reproductive processes.
Collapse
Affiliation(s)
- Jolanta Polkowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Anna Wójcik-G Adysz
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Marta Wa Kowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| |
Collapse
|
41
|
Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish. Cell Tissue Res 2019; 379:349-372. [PMID: 31471710 DOI: 10.1007/s00441-019-03089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
Collapse
|
42
|
Mishra GK, Patra MK, Singh LK, Sheikh PA, Upmanyu V, Chakravarti S, Karikalan M, Sonwane A, Singh SK, Das GK, Kumar H, Krishnaswamy N. Expression of Kisspeptin and its receptor in the hypothalamus of cyclic and acyclic buffalo (Bubalus bubalis). Theriogenology 2019; 139:167-177. [PMID: 31419703 DOI: 10.1016/j.theriogenology.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 11/26/2022]
Abstract
Kisspeptin (Kiss1), neurokinin-B (NKB) and dynorphin (Dyn) neurons regulate the surge and pulsatile centres of gonadotropin releasing hormone (GnRH) in the hypothalamus and are modulated by the ovarian steroids. Accordingly, we studied the temporospatial expression of Kiss1, its receptor and other genes that regulate GnRH in the preoptic area (POA) and arcuate (ARC) regions of hypothalamus at different phases of bubaline estrous cycle. Brain of buffalo (n = 32) was collected immediately after exsanguination and categorized into early luteal (EL), mid luteal (ML), follicular (FL) stages and acyclic (n = 8/group). Total RNA was extracted from the POA and ARC of each stage and real time PCR amplification of Kiss1, Kiss1r, NKB, NKB receptor (NKBR), Dyn, Dyn receptor (OPRK1), GnRH1, ERα, PR, LEPR and GHSR was done using GAPDH as endogenous control and acyclic stage as calibrator group. Further, immunolocalization of Kiss1 and Kiss1r was done on the hypothalamus. In the POA, significant up-regulation of Kiss1 and NKB with a concomitant down-regulation of Dyn transcripts was recorded at FL stage. There was, however, down-regulation of Kiss1 and Kiss1r during the EL perhaps due to the loss of estradiol as a consequence of ovulation. On the other hand, in the ARC, there was a significant up-regulation of Kiss1 and Dyn at FL and ML, while NKB transcript was consistently down-regulated at any stage of estrous cycle. In the POA, expression of ERα was not modulated; however, PR was down-regulated in the EL. In the ARC, the ERα expression was significantly up-regulated in the EL, whereas, PR was moderately expressed irrespective of the stage of estrous cycle. The immunolocalization study revealed the presence of Kiss1 and Kiss1r in the POA and ARC in the cyclic buffalo with relative abundance at FL. The transcriptional profile of the genes suggests that there is estrous cycle stage specific expression of Kiss1, Kiss1r and other GnRH regulating genes in the POA and ARC regions of hypothalamus in the buffalo. Up-regulation of Kiss1r in the POA during ML and ARC during EL indicates the involvement of kisspeptinergic system in the regulation of low LH pulse frequencies during the early and mid luteal phases in the cyclic buffalo.
Collapse
Affiliation(s)
- G K Mishra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M K Patra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India.
| | - L K Singh
- Division of Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, 132 001, Haryana, India
| | - P A Sheikh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - V Upmanyu
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S Chakravarti
- Biological Products Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - A Sonwane
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S K Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - G K Das
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - H Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - N Krishnaswamy
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| |
Collapse
|
43
|
Bhattacharya I, Sen Sharma S, Majumdar SS. Pubertal orchestration of hormones and testis in primates. Mol Reprod Dev 2019; 86:1505-1530. [DOI: 10.1002/mrd.23246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology & BiotechnologyHNB Garhwal University, Srinagar CampusSrinagar India
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
| | - Souvik Sen Sharma
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
| | - Subeer S. Majumdar
- Cellular Endocrinology LabNational Institute of ImmunologyNew Delhi India
- Gene and Protein Engineering LabNational Institute of Animal BiotechnologyHyderabad India
| |
Collapse
|
44
|
Plant TM. The neurobiological mechanism underlying hypothalamic GnRH pulse generation: the role of kisspeptin neurons in the arcuate nucleus. F1000Res 2019; 8. [PMID: 31297186 PMCID: PMC6600864 DOI: 10.12688/f1000research.18356.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 01/21/2023] Open
Abstract
This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby
Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.
Collapse
Affiliation(s)
- Tony M Plant
- Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Plant TM. The neurobiological mechanism underlying hypothalamic GnRH pulse generation: the role of kisspeptin neurons in the arcuate nucleus. F1000Res 2019; 8:F1000 Faculty Rev-982. [PMID: 31297186 PMCID: PMC6600864 DOI: 10.12688/f1000research.18356.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 03/22/2024] Open
Abstract
This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.
Collapse
Affiliation(s)
- Tony M. Plant
- Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Amelkina O, Tanyapanyachon P, Thongphakdee A, Chatdarong K. Identification of feline Kiss1 and distribution of immunoreactive kisspeptin in the hypothalamus of the domestic cat. J Reprod Dev 2019; 65:335-343. [PMID: 31142694 PMCID: PMC6708855 DOI: 10.1262/jrd.2018-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, the Kiss1 gene has been reported in a number of vertebrate species, and a substantial dataset has been acquired to demonstrate the critical role of
kisspeptins in the reproductive system; yet limited information is available for carnivores. In the present study, we identified and characterized feline Kiss1 by isolating
and cloning its full-length cDNA in the domestic cat hypothalamus and caracal testis, using the method of rapid amplification of cDNA ends. Additionally, we isolated and cloned the 3′ end of
Kiss1 cDNA, containing kisspeptin-10 (Kp10), from the ovaries of a clouded leopard and Siberian tiger. Nucleotide sequencing revealed that domestic cat
Kiss1 cDNA is of 711 base pairs and caracal Kiss1 cDNA is of 792 base pairs, both having an open reading frame of 450 base pairs, encoding a precursor
protein Kiss1 of 149 amino acids. The core sequence of the feline kisspeptin Kp10 was found to be identical in all species analyzed here and is highly conserved in other
vertebrate species. Using an anti-Kp10 antibody, we found the immunoreactive kisspeptin to be localized in the periventricular and infundibular nuclei of the cat hypothalamus. The results
show that kisspeptin is highly conserved among different feline families, and its immunoreactive distribution in the hypothalamus may indicate its physiological function in the domestic
cat.
Collapse
Affiliation(s)
- Olga Amelkina
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Prattana Tanyapanyachon
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Kaywalee Chatdarong
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
47
|
Uenoyama Y, Inoue N, Maeda KI, Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J Reprod Dev 2018; 64:469-476. [PMID: 30298825 PMCID: PMC6305848 DOI: 10.1262/jrd.2018-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin, identified as a natural ligand of GPR54 in 2001, is now considered as a master regulator of puberty and subsequent reproductive functions in mammals. Our previous studies using
Kiss1 knockout (KO) rats clearly demonstrated the indispensable role of kisspeptin in gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. In addition, behavioral
analyses of Kiss1 KO rats revealed an organizational effect of kisspeptin on neural circuits controlling sexual behaviors. Our studies using transgenic mice carrying a
region-specific Kiss1 enhancer-driven reporter gene provided a clue as to the mechanism by which estrogen regulates Kiss1 expression in hypothalamic
kisspeptin neurons. Analyses of Kiss1 expression and gonadotropin secretion during the pubertal transition shed light on the mechanism triggering GnRH/gonadotropin secretion
at the onset of puberty in rats. Here, we summarize data obtained from the aforementioned studies and revisit the physiological roles of kisspeptin in the mechanism underlying reproductive
functions in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
48
|
Medger K, Bennett NC, Chimimba CT, Oosthuizen MK, Mikkelsen JD, Coen CW. Analysis of gonadotrophin-releasing hormone-1 and kisspeptin neuronal systems in the nonphotoregulated seasonally breeding eastern rock elephant-shrew (Elephantulus myurus). J Comp Neurol 2018; 526:2388-2405. [PMID: 30004584 DOI: 10.1002/cne.24498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
Of the 18 sub-Saharan elephant-shrew species, only eastern rock elephant-shrews reproduce seasonally throughout their distribution, a process seemingly independent of photoperiod. The present study characterizes gonadal status and location/intensity of gonadotrophin-releasing hormone-1 (GnRH-1) and kisspeptin immunoreactivities in this polyovulating species in the breeding and nonbreeding seasons. GnRH-1-immunoreactive (ir) cell bodies are predominantly in the medial septum, diagonal band, and medial preoptic area; processes are generally sparse except in the external median eminence. Kisspeptin-ir cell bodies are detected only within the arcuate nucleus; the density of processes is generally low, except in the septohypothalamic nucleus, ventromedial bed nucleus of the stria terminalis, arcuate nucleus, and internal and external median eminence. Kisspeptin-ir processes are negligible at locations containing GnRH-1-ir cell bodies. The external median eminence is the only site with conspicuously overlapping distributions of the respective immunoreactivities and, accordingly, a putative site for kisspeptin's regulation of GnRH-1 release in this species. In the nonbreeding season in males, there is an increase in the rostral population of GnRH-1-ir cell bodies and density of GnRH-1-ir processes in the median eminence. In both sexes, the breeding season is associated with increased kisspeptin-ir process density in the rostral periventricular area of the third ventricle and arcuate nucleus; at the latter site, this is positively correlated with gonadal mass. Cross-species comparisons lead us to hypothesize differential mechanisms within these peptidergic systems: that increased GnRH-1 immunoreactivity during the nonbreeding season reflects increased accumulation with reduced release; that increased kisspeptin immunoreactivity during the breeding season reflects increased synthesis with increased release.
Collapse
Affiliation(s)
- Katarina Medger
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christian T Chimimba
- Department of Zoology and Entomology, DST-NRF Centre of Excellence for Invasion Biology (CIB), University of Pretoria, Pretoria, South Africa
| | - Maria K Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
49
|
Qiu J, Rivera HM, Bosch MA, Padilla SL, Stincic TL, Palmiter RD, Kelly MJ, Rønnekleiv OK. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. eLife 2018; 7:e35656. [PMID: 30079889 PMCID: PMC6103748 DOI: 10.7554/elife.35656] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
The neuropeptides tachykinin2 (Tac2) and kisspeptin (Kiss1) in hypothalamic arcuate nucleus Kiss1 (Kiss1ARH) neurons are essential for pulsatile release of GnRH and reproduction. Since 17β-estradiol (E2) decreases Kiss1 and Tac2 mRNA expression in Kiss1ARH neurons, the role of Kiss1ARH neurons during E2-driven anorexigenic states and their coordination of POMC and NPY/AgRP feeding circuits have been largely ignored. Presently, we show that E2 augmented the excitability of Kiss1ARH neurons by amplifying Cacna1g, Hcn1 and Hcn2 mRNA expression and T-type calcium and h-currents. E2 increased Slc17a6 mRNA expression and glutamatergic synaptic input to arcuate neurons, which excited POMC and inhibited NPY/AgRP neurons via metabotropic receptors. Deleting Slc17a6 in Kiss1 neurons eliminated glutamate release and led to conditioned place preference for sucrose in E2-treated KO female mice. Therefore, the E2-driven increase in Kiss1 neuronal excitability and glutamate neurotransmission may play a key role in governing the motivational drive for palatable food in females.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Heidi M Rivera
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Martha A Bosch
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Stephanie L Padilla
- Department of BiochemistryHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Todd L Stincic
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Richard D Palmiter
- Department of BiochemistryHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Martin J Kelly
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
- Division of NeuroscienceOregon National Primate Research Center, Oregon Health and Science UniversityBeavertonUnited States
| | - Oline K Rønnekleiv
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
- Division of NeuroscienceOregon National Primate Research Center, Oregon Health and Science UniversityBeavertonUnited States
| |
Collapse
|
50
|
Abstract
Contribution to Special Issue on Fast effects of steroids. The concept that the positive feedback effect of ovarian estradiol (E2) results in GnRH and gonadotropin surges is a well-established principle. However, a series of studies investigating the rapid action of E2 in female rhesus monkeys has led to a new concept that neuroestradiol, synthesized and released in the hypothalamus, also contributes to regulation of the preovulatory GnRH surge. This unexpected finding started from our surprising observation that E2 induces rapid stimulatory action in GnRH neurons in vitro. Subsequently, we confirmed that a similar rapid stimulatory action of E2 occurs in vivo. Unlike subcutaneous injection of E2 benzoate (EB), a brief (10-20 min), direct infusion of EB into the median eminence in ovariectomized (OVX) female monkeys rapidly stimulates release of GnRH and E2 in a pulsatile manner, and the EB-induced GnRH and E2 release is blocked by simultaneous infusion of the aromatase inhibitor, letrozole. This suggests that stimulated release of E2 is of hypothalamic origin. To further determine the role of neuroestradiol we examined the effects of letrozole on EB-induced GnRH and LH surges in OVX females. Results indicate that letrozole treatment greatly attenuated the EB-induced GnRH and LH surges. Collectively, neuroestradiol released from the hypothalamus appears to be necessary for the positive feedback effect of E2 on the GnRH/LH surge.
Collapse
Affiliation(s)
- Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|