1
|
Mao S, Wu C, Feng G, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Selection and Regulatory Network Analysis of Differential CircRNAs in the Hypothalamus of Goats with High and Low Reproductive Capacity. Int J Mol Sci 2024; 25:10479. [PMID: 39408808 PMCID: PMC11476610 DOI: 10.3390/ijms251910479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The objectives of this investigation were to identify differentially expressed circular RNAs (circRNAs) in the hypothalamus of goats with high and low prolificacy and construct a circRNA-mRNA regulatory network to uncover key potential circRNAs that influence goat prolificacy. Transcriptome analysis was performed on hypothalamus samples from low-prolificacy (n = 5) and high-prolificacy (n = 6) Chuanzhong black goats to identify circRNAs that influence prolificacy in these goats. Differential expression analysis identified a total of 205 differentially expressed circRNAs, comprising 100 upregulated and 105 downregulated circRNAs in the high-prolificacy group compared with the low-prolificacy group. Enrichment analysis of these differentially expressed circRNAs indicated significant enrichment in Gene Ontology terms associated with mammalian oogenesis, negative regulation of neurotransmitter secretion, reproductive developmental processes, hormone-mediated signaling pathways, and negative regulation of hormone secretion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted significant enrichment in the oxytocin signaling pathway, GnRH signaling pathway, and hormone-mediated oocyte maturation. The hypothalamus of low- and high-prolificacy goats contains circular RNAs (circRNAs), including chicirc_063269, chicirc_097731, chicirc_017440, chicirc_049641, chicirc_008429, chicirc_145057, chicirc_030156, chicirc_109497, chicirc_030156, chicirc_176754, and chicirc_193363. Chuanzhong black goats have the potential to influence prolificacy by modulating the release of serum hormones from the hypothalamus. A circRNA-miRNA regulatory network was constructed, which determined that miR-135a, miR-188-3p, miR-101-3p, and miR-128-3p may interact with differentially expressed circRNAs, thereby regulating reproductive capacity through the hypothalamic-pituitary-gonadal axis. The results of this study enhance our knowledge of the molecular mechanisms that regulate prolificacy in Chuanzhong black goats at the hypothalamic level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zheng W, Guo Y, Kahar A, Bai J, Zhu Q, Huang X, Li Y, Xu B, Jia X, Wu G, Zhang C, Zhu Y. RUNX1-induced upregulation of PTGS2 enhances cell growth, migration and invasion in colorectal cancer cells. Sci Rep 2024; 14:11670. [PMID: 38778047 PMCID: PMC11111780 DOI: 10.1038/s41598-024-60296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) arises via the progressive accumulation of dysregulation in key genes including oncogenes and tumor-suppressor genes. Prostaglandin-endoperoxide synthase 2 (PTGS2, also called COX2) acts as an oncogenic driver in CRC. Here, we explored the upstream transcription factors (TFs) responsible for elevating PTGS2 expression in CRC cells. The results showed that PTGS2 silencing repressed cell growth, migration and invasion in HCT116 and SW480 CRC cells. The two fragments (499-981 bp) and (1053-1434 bp) were confirmed as the core TF binding profiles of the PTGS2 promoter. PTGS2 expression positively correlated with RUNX1 level in colon adenocarcinoma (COAD) samples using the TCGA-COAD dataset. Furthermore, RUNX1 acted as a positive regulator of PTGS2 expression by promoting transcriptional activation of the PTGS2 promoter via the 1086-1096 bp binding motif. In conclusion, our study demonstrates that PTGS2 upregulation induced by the TF RUNX1 promotes CRC cell growth, migration and invasion, providing an increased rationale for the use of PTGS2 inhibitors in CRC prevention and treatment.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- Hepatobiliary Gastrointestinal Surgery Department, Red Star Hospital of the 13th Division of Xinjiang Production and Construction Corps, Hami, 839000, The Xinjiang Uygur Autonomous Region, China, China
- The Affiliated People's Hospital of Xinxiang Medical College, Xinxiang, 453000, Henan, China
| | - Yingchang Guo
- Department of Interventional Therapy, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453000, Henan, China
| | - Aihemaiti Kahar
- Hepatobiliary Gastrointestinal Surgery Department, Red Star Hospital of the 13th Division of Xinjiang Production and Construction Corps, Hami, 839000, The Xinjiang Uygur Autonomous Region, China, China
| | - Junwei Bai
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Qinhui Zhu
- Department of General Surgery, Shangcai People's Hospital, Zhumadian, 463800, Henan, China
| | - Xinli Huang
- Department of General Surgery, Suiping People's Hospital, Zhumadian, 463100, Henan, China
| | - Yuan Li
- Department of Anesthesiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Bingyi Xu
- Weihui People's Hospital, Weihui, 453100, Henan, China
| | - Xueshan Jia
- Development Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
3
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Chakravarthi VP, Ratri A, Masumi S, Borosha S, Ghosh S, Christenson LK, Roby KF, Wolfe MW, Rumi MAK. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: The role of estrogen receptor β. Mol Cell Endocrinol 2021; 528:111212. [PMID: 33676987 PMCID: PMC8916094 DOI: 10.1016/j.mce.2021.111212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Follicle development beyond the preantral stage is dependent on gonadotropins. FSH signaling is crucial for the advancement of preantral follicles to the antral stage, and LH signaling is essential for further maturation of preovulatory follicles. Estrogen is intricately tied to gonadotropin signaling during the advanced stages of folliculogenesis. We observed that Erβnull ovarian follicles fail to develop beyond the antral stage, even after exogenous gonadotropin stimulation. As ERβ is primarily expressed in the granulosa cells (GCs), we explored the gonadotropin-regulated GC genes that induce maturation of antral follicles. Synchronized follicle development was induced by administration of exogenous gonadotropins to wildtype 4-wk-old female rats. The GC transcriptome was analyzed via RNA-sequencing before and after gonadotropin stimulation. An Erβnull mutant model that fails to show follicle maturation was also included in order to identify the ERβ-regulated genes involved at this step. We observed that specific groups of genes were differentially expressed in response to PMSG or hCG administration in wildtype rats. While some of the PMSG or hCG-induced genes showed a similar expression pattern in Erβnull GCs, a subset of PMSG- or hCG-induced genes showed a differential expression pattern in Erβnull GCs. These latter ERβ-regulated genes included previously known FSH or LH target genes including Lhcgr, Cyp11a1, Cyp19a1, Pgr, Runx2, Egfr, Kiss1, and Ptgs2, which are involved in follicle development, oocyte maturation, and ovulation. We also identified novel ERβ-regulated genes including Jaml, Galnt6, Znf750, Dusp9, Wnt16, and Mageb16 that failed to respond to gonadotropin stimulation in Erβnull GCs. Our findings indicate that the gonadotropin-induced spatiotemporal pattern of gene expression is essential for ovarian follicle maturation beyond the antral stage. However, expression of a subset of those gonadotropin-induced genes is dependent on transcriptional regulation by ERβ.
Collapse
Affiliation(s)
| | - Anamika Ratri
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katherine F Roby
- Department of Anatomy and Cell Biology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Bian X, Xie Q, Zhou Y, Wu H, Cui J, Jia L, Suo L. Transcriptional changes of mouse ovary during follicle initial or cyclic recruitment mediated by extra hormone treatment. Life Sci 2021; 264:118654. [PMID: 33141043 DOI: 10.1016/j.lfs.2020.118654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
AIMS Folliculogenesis contains gonadotropin-independent and -dependent stage. Disruption in any of this process would induce failure in retrieving capable oocytes during clinical treatment. However, there is still limited understanding of the molecular components specifically regulating this process. MATERIAL AND METHODS Ovaries of P3, P20 and exogenous gonadotropin-treated P22 mice were sampled and underwent RNA-seq to investigate the transcriptome variance during mouse folliculogenesis. KEY FINDINGS In our dataset, 1883 and 626 DEGs were captured for each stage respectively, which were further clustered into eight expression patterns. Pathway enrichment analysis identified distinct biological processes enriched in two stages, with the most prominent being the pathways related to metabolism, gene expression, cell cycle, immune system and DNA methylation. Transcriptional regulator inference yielded eight master transcription factors (i.e. Runx1, Stat3, Sox3, Pou5f1, Gata4, Foxl2, Cebpb, and Esr1) driving folliculogenesis. SIGNIFICANCE Our study revealed the temporal transcriptional reprogramming and gene expression dynamics during folliculogenesis mediated by extra hormone treatment, which could provide novel insights to controlled ovarian stimulation in future infertility treatment.
Collapse
Affiliation(s)
- Xuejiao Bian
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuxiao Zhou
- Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Liling Jia
- Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
6
|
Chen H, Crosley P, Azad AK, Gupta N, Gokul N, Xu Z, Weinfeld M, Postovit LM, Pangas SA, Hitt MM, Fu Y. RUNX3 Promotes the Tumorigenic Phenotype in KGN, a Human Granulosa Cell Tumor-Derived Cell Line. Int J Mol Sci 2019; 20:ijms20143471. [PMID: 31311113 PMCID: PMC6678151 DOI: 10.3390/ijms20143471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Granulosa cell tumors of the ovary (GCT) are the predominant type of ovarian sex cord/stromal tumor. Although prognosis is generally favorable, the outcome for advanced and recurrent GCT is poor. A better understanding of the molecular pathogenesis of GCT is critical to developing effective therapeutic strategies. Here we have examined the potential role of the runt-related transcription factor RUNX3. There are only two GCT cell lines available. While RUNX3 is silenced in the GCT cell line KGN cells, it is highly expressed in another GCT cell line, COV434 cells. Re-expression of RUNX3 promotes proliferation, anchorage-independent growth, and motility in KGN cells in vitro and tumor formation in mice in vivo. Furthermore, expression of a dominant negative form of RUNX3 decreases proliferation of COV434 cells. To address a potential mechanism of action, we examined expression of cyclin D2 and the CDK inhibitor p27Kip1, two cell cycle regulators known to be critical determinants of GCT cell proliferation. We found that RUNX3 upregulates the expression of cyclin D2 at the mRNA and protein level, and decreases the level of the p27Kip1 protein, but not p27Kip1 mRNA. In conclusion, we demonstrate that RUNX proteins are expressed in GCT cell lines and human GCT specimens, albeit at variable levels, and RUNX3 may play an oncogenic role in a subset of GCTs.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Powel Crosley
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abul K Azad
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nidhi Gupta
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nisha Gokul
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Stephanie A Pangas
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary M Hitt
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
7
|
Gérard N, Robin E. Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: What do we know in the mare relative to other species. Theriogenology 2019; 130:163-176. [PMID: 30921545 DOI: 10.1016/j.theriogenology.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Terminal follicular differentiation and ovulation are essential steps of reproduction. They are induced by the increase in circulating LH, and lead to the expulsion from the ovary of oocytes ready to be fertilized. This review summarizes our current understanding of cellular and molecular pathways that control ovulation using a broad mammalian literature, with a specific focus to the mare, which is unique in some aspects of ovarian function in some cases. Essential steps and key factors are approached. The first part of this review concerns LH, receptors and signaling, addressing the description of the equine gonadotropin and cloning, signaling pathways that are activated following the binding of LH to its receptors, and implication of transcription factors which better known are CCAAT-enhancer-binding proteins (CEBP) and cAMP response element-binding protein (CREB). The second and major part is devoted to the cellular and molecular actors within follicular cells during preovulatory maturation. We relate to 1) molecules involved in vascular permeability and vasoconstriction, 2) involvement of neuropeptides, such as kisspeptin, neurotrophins and neuronal growth factor, neuropeptide Y (NPY), 3) the modification of steroidogenesis, steroids intrafollicular levels and enzymes activity, 4) the local inflammation, with the increase in prostaglandins synthesis, and implication of leukotrienes, cytokines and glucocorticoids, 5) extracellular matrix remodelling with involvement of proteases, antiproteases and inhibitors, as well as relaxin, and finaly 6) the implication of oxytocine, osteopontin, growth factors and reactive oxygen species. The third part describes our current knowledge on molecular aspect of in vivo cumulus-oocyte-complexe maturation, with a specific focus on signaling pathways, paracrine factors, and intracellular regulations that occur in cumulus cells during expansion, and in the oocyte during nuclear and cytoplasmic meiosis resumption. Our aim was to give an overall and comprehensive map of the regulatory mechanisms that intervene within the preovulatory follicle during differentiation and ovulation.
Collapse
Affiliation(s)
- Nadine Gérard
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Elodie Robin
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
8
|
Runx3 regulates folliculogenesis and steroidogenesis in granulosa cells of immature mice. Cell Tissue Res 2018; 375:743-754. [DOI: 10.1007/s00441-018-2947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
|
9
|
Gao K, Wang P, Peng J, Xue J, Chen K, Song Y, Wang J, Li G, An X, Cao B. Regulation and function of runt-related transcription factors (RUNX1 and RUNX2) in goat granulosa cells. J Steroid Biochem Mol Biol 2018; 181:98-108. [PMID: 29626608 DOI: 10.1016/j.jsbmb.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Transcription factors, runt-related transcription factor 1 (RUNX1) and 2 (RUNX2), belong to the runt-related (RUNX) gene family and play critical roles in mammalian reproduction processes. However, the regulatory mechanisms of RUNX1 and RUNX2 expression or their functions in goat follicles remain largely unknown. Herein, RUNX1 and RUNX2 proteins were detected in the oocytes and granulosa cells of preantral and antral follicles, as well as corpus luteum by immunohistochemistry. Treatments with human chorionic gonadotropin (hCG) or with the agonists and inhibitors of hCG-induced intracellular signaling pathways in granulosa cells in vitro, we found that hCG increased RUNX1 expression by activating PKC and PI3K signaling molecules, and increased RUNX2 expression by activating adenylate cyclase, PKC, and PI3K signaling molecules. We also demonstrated that miR-181b expression is dependent on the hCG-induced activation of PKC and PKA, and miR-222 expression is dependent on the hCG-induced activation of PI3K and PKC in cultured granulosa cells. Meanwhile, miR-181b and miR-222 suppressed RUNX1 and RUNX2 expression by targeting RUNX1 and RUNX2 3' untranslated regions (3'UTRs) with or without hCG, respectively. These results suggested that hCG-mediated miR-181b and miR-222 expression are important for the regulation of RUNX1 and RUNX2 expression levels in granulosa cells. To explore the specific functions of RUNX1 and RUNX2, we transfected RUNX1 and RUNX2 small interfering RNAs into primary cultured granulosa cells. Knockdown of RUNX1 and RUNX2 significantly decreased progesterone productions and the mRNA abundance of key steroidogenic enzymes (StAR, CYP11A1 and HSD3B) after hCG treatment. But only miR-222 increased estradiol secretion in goat granulosa cells. In addition, knockdown of RUNX1 and RUNX2 also promoted granulosa cell proliferation. The hormonally regulated expression of RUNX1 and RUNX2 in granulosa cells, their involvement in progesterone production, and promoted granulosa cell proliferation suggest important roles of RUNX1 and RUNX2 in follicular development and luteinization.
Collapse
Affiliation(s)
- Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiayin Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Junjun Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kaiwen Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiangang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
10
|
Lee-Thacker S, Choi Y, Taniuchi I, Takarada T, Yoneda Y, Ko C, Jo M. Core Binding Factor β Expression in Ovarian Granulosa Cells Is Essential for Female Fertility. Endocrinology 2018; 159:2094-2109. [PMID: 29554271 PMCID: PMC5905395 DOI: 10.1210/en.2018-00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
Abstract
Core binding factor β (CBFβ) is a non-DNA-binding partner of all RUNX proteins and critical for transcription activity of CBF transcription factors (RUNXs/CBFβ). In the ovary, the expression of Runx1 and Runx2 is highly induced by the luteinizing hormone (LH) surge in ovulatory follicles, whereas Cbfb is constitutively expressed. To investigate the physiological significance of CBFs in the ovary, the current study generated two different conditional mutant mouse models in which granulosa cell expression of Cbfb and Runx2 was reduced by Cre recombinase driven by an Esr2 promoter. Cbfbgc-/- and Cbfbgc-/- × Runx2gc+/- mice exhibited severe subfertility and infertility, respectively. In the ovaries of both mutant mice, follicles develop normally, but the majority of preovulatory follicles failed to ovulate either in response to human chorionic gonadotropin administration in pregnant mare serum gonadotropin-primed immature animals or after the LH surge at 5 months of age. Morphological and physiological changes in the corpus luteum of these mutant mice revealed the reduced size, progesterone production, and vascularization, as well as excessive lipid accumulation. In granulosa cells of periovulatory follicles and corpora lutea of these mice, the expression of Edn2, Ptgs1, Lhcgr, Sfrp4, Wnt4, Ccrl2, Lipg, Saa3, and Ptgfr was also drastically reduced. In conclusion, the current study provided in vivo evidence that CBFβ plays an essential role in female fertility by acting as a critical cofactor of CBF transcription factor complexes, which regulate the expression of specific key ovulatory and luteal genes, thus coordinating the ovulatory process and luteal development/function in mice.
Collapse
Affiliation(s)
- Somang Lee-Thacker
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Yohan Choi
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinoisa
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
- Correspondence: Misung Jo, PhD, Department of Obstetrics and Gynecology, University of Kentucky, 800 Rose Street, Room MS 335, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
11
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
12
|
Siavashpour A, Ghasemi Y, Khalvati B, Jeivad F, Azarpira N, Niknahad H. Diazinon Interrupts Ovarian Steroidogenic Acute Regulatory ( StAR) Gene Transcription in Gonadotropin-Stimulated Rat Model. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:535-542. [PMID: 29881411 PMCID: PMC5985171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organophosphate pesticides are considered as endocrine disruptors that interfere with reproductive functions. The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a crucial hormone for a successful beginning and maintenance of pregnancy. Steroidogenic acute regulatory protein (StAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial membrane to the inner organelle membranes. We investigated the effect of Diazinon (DZN), an organophosphate, on StAR mRNA expression by Sybergreen Real Time-PCR in a time-dependent manner in luteal phase. Fifty immature female Wistar rats (24-day-old) were injected with a single injection of Pregnant mare's Serum Gonadotropin (PMSG) followed by a single injection of human Chorionic Gonadotropin (hCG), 48 h later. Then, DZN was administered in a single dose (70 mg/kg bw, I.P), controls received only the vehicle, 12 h post-hCG injection. Ovaries were collected in 4 h. intervals from 8 to 24 h post-hCG injection. Then, hCG stimulation transcript levels of StAR gene were significantly altered in the hormone-stimulated rats following DZN treatment. In addition, histological study showed that the CL diameter in DZN-treated group was smaller than control group (p = 0.000). Our findings suggest that the critical step in the function of CL is disrupted by DZN and may correlates with female reproductive damage.
Collapse
Affiliation(s)
- Asma Siavashpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. ,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bahman Khalvati
- Medicinal Plants Research Center, Yasuj Univercity of Medical Sciences, Yasuj, Iran.
| | - Fereshteh Jeivad
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences,Shiraz, Iran.
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. ,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Corresponding author: E-mail:
| |
Collapse
|
13
|
Ma X, Hayes E, Biswas A, Seger C, Prizant H, Hammes SR, Sen A. Androgens Regulate Ovarian Gene Expression Through Modulation of Ezh2 Expression and Activity. Endocrinology 2017; 158:2944-2954. [PMID: 28666321 PMCID: PMC5659665 DOI: 10.1210/en.2017-00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
A substantial amount of evidence suggests that androgen signaling through classical androgen receptors is critical for both normal and pathologic ovarian physiology. Specifically, we and others have shown that, in mouse granulosa cells, androgen actions through both extranuclear and nuclear androgen receptor signaling are critical for normal follicle development and ovulation. Here, we show that androgens through the PI3K/Akt pathway rapidly (within minutes) phosphorylate and inhibit activity of the Polycomb group protein enhancer of zeste homolog 2 (Ezh2). Over the course of 24 to 48 hours, androgens then induce expression of the microRNA miR-101, which targets Ezh2 messenger RNA (mRNA), leading to a nearly complete loss of Ezh2 protein expression. This long-term androgen-induced loss of Ezh2 actions ultimately results in sustained reduction of the H3K27me3-repressive mark in the promoter region of the Runt-related transcription factor-1 (Runx1) gene, a luteinizing hormone (LH)-induced transcription factor essential for ovulation, leading to increased Runx1 mRNA expression. Accordingly, blocking androgen-induced inhibition of Ezh2 in vivo adversely affects LH-induced Runx1 mRNA expression and subsequent ovulation. Importantly, although estrogen treatment of granulosa cells similarly causes rapid activation of the PI3K/Akt pathway and short-term phosphorylation of Ezh2, it does not induce miR-101 expression and thereby does not reduce overall Ezh2 expression, demonstrating the androgen specificity of long-term Ezh2 suppression. Thus, this study provides insight regarding how androgen-induced extranuclear kinase signaling and intranuclear transcription through Ezh2 modifications may influence the expression pattern of genes, ultimately affecting various downstream physiological processes.
Collapse
Affiliation(s)
- Xiaoting Ma
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Emily Hayes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Anindita Biswas
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Christina Seger
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Hen Prizant
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Stephen R. Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Aritro Sen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
14
|
Liu DT, Brewer MS, Chen S, Hong W, Zhu Y. Transcriptomic signatures for ovulation in vertebrates. Gen Comp Endocrinol 2017; 247:74-86. [PMID: 28111234 PMCID: PMC5410184 DOI: 10.1016/j.ygcen.2017.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/01/2023]
Abstract
The central roles of luteinizing hormone (LH), progestin and their receptors for initiating ovulation have been well established. However, signaling pathways and downstream targets such as proteases that are essential for the rupture of follicular cells are still unclear. Recently, we found anovulation in nuclear progestin receptor (Pgr) knockout (Pgr-KO) zebrafish, which offers a new model for examining genes and pathways that are important for ovulation and fertility. In this study, we examined expression of all transcripts using RNA-Seq in preovulatory follicular cells collected following the final oocyte maturation, but prior to ovulation, from wild-type (WT) or Pgr-KO fish. Differential expression analysis revealed 3567 genes significantly differentially expressed between WT and Pgr-KO fish (fold change⩾2, p<0.05). Among those, 1543 gene transcripts were significantly more expressed, while 2024 genes were significantly less expressed, in WT than those in Pgr-KO. We then retrieved and compared transcriptional data from online databases and further identified 661 conserved genes in fish, mice, and humans that showed similar levels of high (283 genes) or low (387) expression in animals that were ovulating compared to those with no ovulation. For the first time, ovulatory genes and their involved biological processes and pathways were also visualized using Enrichment Map and Cytoscape. Intriguingly, enrichment analysis indicated that the genes with higher expression were involved in multiple ovulatory pathways and processes such as inflammatory response, angiogenesis, cytokine production, cell migration, chemotaxis, MAPK, focal adhesion, and cytoskeleton reorganization. In contrast, the genes with lower expression were mainly involved in DNA replication, DNA repair, DNA methylation, RNA processing, telomere maintenance, spindle assembling, nuclear acid transport, catabolic processes, and nuclear and cell division. Our results indicate that a large set of genes (>3000) is differentially regulated in the follicular cells in zebrafish prior to ovulation, terminating programs such as growth and proliferation, and beginning processes including the inflammatory response and apoptosis. Further studies are required to establish relationships among these genes and an ovulatory circuit in the zebrafish model.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China; Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Shixi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China
| | - Wanshu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China; Department of Biology, East Carolina University, Greenville, NC 27858, United States.
| |
Collapse
|
15
|
Riggio AI, Blyth K. The enigmatic role of RUNX1 in female-related cancers - current knowledge & future perspectives. FEBS J 2017; 284:2345-2362. [PMID: 28304148 DOI: 10.1111/febs.14059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
Historically associated with the aetiology of human leukaemia, the runt-related transcription factor 1 (RUNX1) gene has in recent years reared its head in an assortment of epithelial cancers. This review discusses the state-of-the-art knowledge of the enigmatic role played by RUNX1 in female-related cancers of the breast, the uterus and the ovary. The weight of evidence accumulated so far is indicative of a very context-dependent role, as either an oncogene or a tumour suppressor. This is corroborated by high-throughput sequencing endeavours which report different genetic alterations affecting the gene, including amplification, deep deletion and mutations. Herein, we attempt to dissect that contextual role by firstly giving an overview of what is currently known about RUNX1 function in these specific tumour types, and secondly by delving into connections between this transcription factor and the physiology of these female tissues. In doing so, RUNX1 emerges not only as a gene involved in female sex development but also as a crucial mediator of female hormone signalling. In view of RUNX1 now being listed as a driver gene, we believe that greater knowledge of the mechanisms underlying its functional dualism in epithelial cancers is worthy of further investigation.
Collapse
Affiliation(s)
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| |
Collapse
|
16
|
Li F, Miao X, Chen Y, Curry TE. CXADR-like membrane protein (CLMP) in the rat ovary: stimulation by human chorionic gonadotrophin during the periovulatory period. Reprod Fertil Dev 2017; 28:742-9. [PMID: 25400132 DOI: 10.1071/rd14201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/17/2014] [Indexed: 01/20/2023] Open
Abstract
CXADR-like membrane protein (CLMP) is a novel cell-cell adhesion molecule. The present study investigated the spatiotemporal expression pattern of CLMP and its regulation in the rat ovary during the periovulatory period. Real-time polymerase chain reaction analysis revealed that Clmp mRNA was rapidly stimulated in intact ovaries by 4h after human chorionic gonadotrophin (hCG) treatment. In situ hybridisation analysis demonstrated that Clmp mRNA expression was stimulated in theca cells at 4h after hCG and remained elevated until 12h. Clmp mRNA was also upregulated in granulosa cells and was present in forming corpora lutea. Our data indicate that the protein kinase A but not the protein kinase C pathway regulates the expression of Clmp mRNA in granulosa cells. Phosphatidylinositol 3 kinase and p38 kinase are also involved in regulating Clmp mRNA expression. The stimulation of Clmp mRNA by hCG requires new protein synthesis. Furthermore, inhibition of epidermal growth factor receptor activation significantly inhibited Clmp mRNA expression, whereas inhibition of prostaglandin synthesis or progesterone action had no effect. The stimulation of CLMP in the rat ovary may be important in cell adhesion events during ovulation and luteal formation such as maintaining the structure and communication of ovarian follicular and luteal cells.
Collapse
Affiliation(s)
- Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Xiaoping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Yonglong Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
17
|
Li FX, Yu JJ, Liu Y, Miao XP, Curry TE. Induction of Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 During the Periovulatory Period in the Rat Ovary. Reprod Sci 2016; 24:1033-1040. [PMID: 27872196 DOI: 10.1177/1933719116676394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 3 ( Enpp3) is involved in multiple physiological processes, such as morphological changes and inflammatory processes. The present study investigated the spatiotemporal expression pattern and regulatory mechanisms controlling expression of Enpp3 in the rat ovary during the periovulatory period. Immature female rats were injected with pregnant mare serum gonadotropin to stimulate follicular development. Ovaries, granulosa cells, or theca-interstitial cells were collected at various times after human chorionic gonadotropin (hCG) administration. Real-time polymerase chain reaction analysis revealed that messenger RNA (mRNA) for Enpp3 was highly induced in both granulosa cells and theca-interstitial cells by hCG. In situ hybridization analysis demonstrated that Enpp3 mRNA expression was induced in theca cells at 4 hours after hCG, and the expression remained elevated until 12 hours after hCG. The expression of Enpp3 mRNA was stimulated in granulosa cells at 8 hours and reached the highest expression at 12 hours. Localization of Enpp3 mRNA was observed in newly forming corpora lutea by in situ hybridization. The hCG-stimulated expression of Enpp3 mRNA was blocked by a protein kinase C inhibitor (GF109203) instead of the protein kinase A inhibitor (H89). Furthermore, Enpp3 induction is dependent on new protein synthesis. Inhibition of progesterone action did not alter Enpp3 mRNA expression, whereas inhibition of prostaglandin synthesis or the epidermal growth factor pathway diminished Enpp3 mRNA levels. In conclusion, our findings suggest that the induction of the Enpp3 mRNA may be important for the morphological changes and inflammatory response during ovulation and luteinization.
Collapse
Affiliation(s)
- Fei-Xue Li
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiao-Jiao Yu
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiao-Ping Miao
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Thomas E Curry
- 2 Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
18
|
Li FX, Liu Y, Miao XP, Fu GQ, Curry TE. Expression and regulation of the differentiation regulators ERBB Receptor Feedback Inhibitor 1 (ERRFI1) and Interferon-related Developmental Regulator 1 (IFRD1) during the periovulatory period in the rat ovary. Mol Reprod Dev 2016; 83:714-23. [DOI: 10.1002/mrd.22673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Fei-xue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Ying Liu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Xiao-ping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Guo-quan Fu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center; University of Kentucky; Lexington Kentucky
| |
Collapse
|
19
|
Mishra B, Park JY, Wilson K, Jo M. X-linked lymphocyte regulated gene 5c-like (Xlr5c-like) is a novel target of progesterone action in granulosa cells of periovulatory rat ovaries. Mol Cell Endocrinol 2015; 412:226-38. [PMID: 26004213 PMCID: PMC4516606 DOI: 10.1016/j.mce.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022]
Abstract
Progesterone (P4), acting through its nuclear receptor (PGR), plays an essential role in ovulation by mediating the expression of genes involved in ovulation and/or luteal formation. To identify ovulatory specific PGR-regulated genes, a preliminary microarray analysis was performed using rat granulosa cells treated with hCG ± RU486 (PGR antagonist). The transcript most highly down-regulated by RU486 was an EST (expressed sequence tag) sequence (gb: BI289578.1) that matches with predicted sequence for Xlr5c-like mRNA. Since nothing is known about Xlr5c-like, we first characterized the expression pattern of Xlr5c-like mRNA in the rat ovary. The level of mRNA for Xlr5c-like is transiently up-regulated in granulosa cells of periovulatory follicles after hCG stimulation in PMSG-primed rat ovaries. The transient induction of Xlr5c-like mRNA was mimicked by hCG treatment in cultured granulosa cells from preovulatory ovaries. We further demonstrated that the LH-activated PKA, MEK, PI3K, and p38 signaling is involved in the increase in Xlr5c-like mRNA. The increase in Xlr5c-like mRNA was abolished by RU486. The inhibitory effect of RU486 was reversed by MPA (synthetic progestin), but not by dexamethasone (synthetic glucocorticoid). Furthermore, mutation of SP1/SP3 and PGR response element sites in the promoter region of Xlr5c-like decreased Xlr5c-like reporter activity. RU486 also inhibited Xlr5c-like reporter activity. ChIP assay verified the binding of PGR and SP3 to the Xlr5c-like promoter in periovulatory granulosa cells. Functionally, siRNA-mediated Xlr5c-like knockdown in granulosa cell cultures resulted in reduced levels of mRNA for Snap25, Cxcr4, and Adamts1. Recombinant Xlr5c-like protein expressed using an adenoviral approach was localized predominantly to the nucleus and to a lesser extent to the cytoplasm of rat granulosa cells. In conclusion, this is the first report showing the spatiotemporally regulated expression of Xlr5c-like mRNA by hCG in rat periovulatory ovaries. P4/PGR mediates the LH-induced increase in Xlr5c-like mRNA. In turn, Xlr5c-like is involved in regulating the expression of specific ovulatory genes such as Snap25, Cxcr4, and Adamts1, possibly acting in the nucleus of periovulatory granulosa cells.
Collapse
Affiliation(s)
- Birendra Mishra
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Ji Yeon Park
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Kalin Wilson
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA.
| |
Collapse
|
20
|
Bai ZK, Li DD, Guo CH, Yang ZQ, Cao H, Guo B, Yue ZP. Differential expression and regulation of Runx1 in mouse uterus during the peri-implantation period. Cell Tissue Res 2015; 362:231-40. [DOI: 10.1007/s00441-015-2174-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
|
21
|
Naillat F, Yan W, Karjalainen R, Liakhovitskaia A, Samoylenko A, Xu Q, Sun Z, Shen B, Medvinsky A, Quaggin S, Vainio SJ. Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary. Exp Cell Res 2015; 332:163-78. [DOI: 10.1016/j.yexcr.2015.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/23/2014] [Accepted: 01/21/2015] [Indexed: 11/30/2022]
|
22
|
Ni XR, Sun ZJ, Hu GH, Wang RH. High concentration of insulin promotes apoptosis of primary cultured rat ovarian granulosa cells via its increase in extracellular HMGB1. Reprod Sci 2014; 22:271-7. [PMID: 25228632 DOI: 10.1177/1933719114549852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. Insulin resistance/hyperinsulinemia is a prevalent finding in women with PCOS, which indicates that insulin resistance/hyperinsulinemia may be an important player in the pathogenesis of the PCOS. However, the underlying mechanism of insulin resistance/hyperinsulinemia on the pathogenesis of the PCOS remains elusive. In this study, we found an increased high-mobility group box 1 (HMGB1) in the serum from women with PCOS having insulin resistance/hyperinsulinemia. Furthermore, we discovered that high concentration of insulin, which mimics insulin resistance model, promoted apoptosis in primary cultured rat ovarian granulosa cells (GCs) via its effect on the increase in extracellular HMGB1. Our data presented the first evidence that increased HMGB1 induced by insulin resistance/hyperinsulinemia promoted apoptosis of ovarian GCs, which provided new molecular basis for the PCOS pathogenesis.
Collapse
Affiliation(s)
- Xiao-Rong Ni
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| | - Zhou-Jun Sun
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| | - Guo-Hua Hu
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| | - Rong-Hui Wang
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Park JY, Jang H, Curry TE, Sakamoto A, Jo M. Prostate androgen-regulated mucin-like protein 1: a novel regulator of progesterone metabolism. Mol Endocrinol 2013; 27:1871-86. [PMID: 24085821 DOI: 10.1210/me.2013-1097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge reprograms preovulatory follicular cells to become terminally differentiated luteal cells which produce high levels of progesterone and become resistant to apoptosis. PARM1 (prostate androgen regulated mucin-like protein 1) has been implicated in cell differentiation and cell survival in nonovarian cells, but little is known about PARM1 in the ovary. This study demonstrated that the LH surge induced a dramatic increase in Parm1 expression in periovulatory follicles and newly forming CL in both cycling and immature rat models. We further demonstrated that hCG increases Parm1 expression in granulosa cell cultures. The in vitro up-regulation of Parm1 expression was mediated by hCG-activated multiple signaling pathways and transcriptional activation of this gene. Parm1 knockdown increased the viability of cultured granulosa cells but resulted in a decrease in progesterone levels. The inhibitory effect of Parm1 silencing on progesterone was reversed by adenoviral mediated add-back expression of Parm1. Parm1 silencing had little effect on the expression of genes involved in progesterone biosynthesis and metabolism such as Scarb1, Ldlr, Vldlr, Scp2, Star, Cyp11a1, Hsd3b, and Srd5a1, while decreasing the expression of Akr1c3. Analyses of culture media steroid levels revealed that Parm1 knockdown had no effect on pregnenolone levels, while resulting in time-dependent decreases in progesterone and 20α-dihydroprogesterone and accelerated accumulation of 5α-pregnanediol. This study revealed that the up-regulation of Parm1 expression promotes progesterone and 20α-dihydroprogesterone accumulation in luteinizing granulosa cells by inhibiting progesterone catabolism to 5α-pregnanediol. PARM1 contributes to ovulation and/or luteal function by acting as a novel regulator of progesterone metabolism.
Collapse
Affiliation(s)
- Ji Yeon Park
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, Room MS 335, University of Kentucky, Lexington, Kentucky 40536-0298.
| | | | | | | | | |
Collapse
|
24
|
Agca C, Yakan A, Agca Y. Estrus synchronization and ovarian hyper-stimulation treatments have negligible effects on cumulus oocyte complex gene expression whereas induction of ovulation causes major expression changes. Mol Reprod Dev 2013; 80:102-17. [PMID: 23239112 DOI: 10.1002/mrd.22141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/29/2012] [Indexed: 02/02/2023]
Abstract
The effects of exogenous hormones, used for estrus synchronization and ovarian hyper stimulation, on cumulus oocyte complexes (COCs) gene expression in sexually mature rats were determined using microarrays. Gene expression in COCs collected from GnRH (G(trt)), GnRH + eCG (G + E(trt)), and GnRH + eCG + hCG (G + E + H(trt)) treatments were compared to COCs from naturally cycling (NC) rats before the preovulatory luteninizing hormone surge. There was no significant difference in gene expression among NC, G(trt), and G + E(trt); however, over 2,600 genes were significantly different between NC and G + E + H(trt) (P < 0.05). Genes upregulated in G + E + H(trt) encode for: proteins that are involved in prostaglandin synthesis (Ptgs2, Pla2g4a, and Runx1) and cholesterol biosynthesis (Hmgcr, Sc4mol, and Dhcr24); receptors that allow cholesterol uptake (Ldlr and Scarb1), regulate progesterone synthesis (Star), and inactivate estrogen (Sult1e1); and downstream effectors of LH signal (Pgr, Cebpb, Creb3l1, Areg, Ereg, and Adamts1). Conversely, G + E + H(trt) downregulated genes encoding proteins involved in: DNA replication and cell cycle progression (Ccne2, Orc5l, Rad50, and Mcm6); reproductive developmental process; and granulosa cell expansion (Gdf9, Bmp15, Amh, Amhr2, Bmpr1b, Tgfb2, Foxl2, Pde3a, Esr2, Fshr, Ybx2, Ccnd2, Ccnb1ip1, and Zp3); maternal effect genes required for embryo development (Zar1, Npm2, Nlrp5, Dnmt1, H1foo, and Zfp57); amino acid degradation; and ketogenesis (Hmgcs2, and Cpt1b). These results from the rat show that hormones used for estrus synchronization (G(trt)) and ovarian hyper stimulation (G + E(trt)) had minimal effects on gene expression, whereas induction of ovulation (G + E + H(trt)) caused major changes in gene expression of rat COCs. This study provides comprehensive information about regulated genes during late follicle development and ovulation induction.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
25
|
Binder AK, Rodriguez KF, Hamilton KJ, Stockton PS, Reed CE, Korach KS. The absence of ER-β results in altered gene expression in ovarian granulosa cells isolated from in vivo preovulatory follicles. Endocrinology 2013; 154:2174-87. [PMID: 23580569 PMCID: PMC3740481 DOI: 10.1210/en.2012-2256] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Determining the spatial and temporal expression of genes involved in the ovulatory pathway is critical for the understanding of the role of each estrogen receptor in the modulation of folliculogenesis and ovulation. Estrogen receptor (ER)-β is highly expressed in ovarian granulosa cells, and mice lacking ER-β are subfertile due to inefficient ovulation. Previous work has focused on isolated granulosa cells or cultured follicles and, although informative, provides confounding results due to the heterogeneous cell types present including granulosa and theca cells and oocytes and exposure to in vitro conditions. Herein we isolated preovulatory granulosa cells from wild-type (WT) and ERβ-null mice using laser capture microdissection to examine the genomic transcriptional response downstream of pregnant mare serum gonadotropin (mimicking FSH) and pregnant mare serum gonadotropin/human chorionic gonadotropin (mimicking LH) stimulation. This allows for a direct comparison of in vivo granulosa cells at the same stage of development from both WT and ERβ-null ovaries. ERβ-null granulosa cells showed altered expression of genes known to be regulated by FSH (Akap12 and Runx2) as well as not previously reported (Arnt2 and Pou5f1) in WT granulosa cells. Our analysis also identified 304 genes not previously associated with ERβ in granulosa cells. LH-responsive genes including Abcb1b and Fam110c show reduced expression in ERβ-null granulosa cells; however, novel genes including Rassf2 and Megf10 were also identified as being downstream of LH signaling in granulosa cells. Collectively, our data suggest that granulosa cells from ERβ-null ovaries may not be appropriately differentiated and are unable to respond properly to gonadotropin stimulation.
Collapse
Affiliation(s)
- April K Binder
- National Institute of Environmental Health Sciences, Laboratory of Reproduction and Developmental Toxicology, 111 TW Alexander Drive, MD B3-02, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Although much progress has been made in the genetic dissection of biological networks involved in follicular/luteal development in the mammalian ovary, the gene regulation mechanisms involved are still poorly understood. Over the last 10 years, miRNAs have emerged as master regulators of tissue growth and differentiation in animals. However, compared with other body tissues, little is still known about the functional involvement of miRNAs in the ovary. Several studies have identified miRNA populations specifically associated with the development of follicles and corpora lutea, particularly in relation to the follicular-luteal transition, and the functional involvement of some of these miRNAs has been characterised in vitro and/or in vivo. Specifically, three different miRNAs, miR-224, miR-378 and miR-383, have shown to be involved in regulating aromatase expression during follicle development. In addition, miR-21 has been identified as promoting follicular cell survival during ovulation, and pro-angiogenic miR-17-5p and let-7b were shown to be necessary for normal development of the corpus luteum. Experimental evidence for the involvement of several other miRNAs in different aspects of follicle/luteal development has also been obtained. In addition, many of these studies exemplify the challenges associated with identifying physiologically relevant targets of ovarian miRNAs. Continuous advances in this field will be considerably facilitated by progress in understanding miRNA physiology in other body systems and will eventually lead to a much better understanding of the control of follicular/luteal development. In turn, through the potential offered by miRNA diagnostics and miRNA therapeutics, this new knowledge should bring considerable benefits to reproductive medicine.
Collapse
Affiliation(s)
- F X Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | | | | |
Collapse
|
27
|
Liu J, Zhao M, Zhuang S, Yang Y, Yang Y, Liu W. Low concentrations of o,p'-DDT inhibit gene expression and prostaglandin synthesis by estrogen receptor-independent mechanism in rat ovarian cells. PLoS One 2012; 7:e49916. [PMID: 23209616 PMCID: PMC3507918 DOI: 10.1371/journal.pone.0049916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/15/2012] [Indexed: 01/13/2023] Open
Abstract
o,p'-DDT is an infamous xenoestrogen as well as a ubiquitous and persistent pollutant. Biomonitoring studies show that women have been internally exposed to o,p'-DDT at range of 0.3-500 ng/g (8.46×10(-10) M-1.41×10(-6) M) in blood and other tissues. However, very limited studies have investigated the biological effects and mechanism(s) of o,p'-DDT at levels equal to or lower than current exposure levels in human. In this study, using primary cultures of rat ovarian granulosa cells, we determined that very low doses of o,p'-DDT (10(-12)-10(-8) M) suppressed the expression of ovarian genes and production of prostaglandin E2 (PGE2). In vivo experiments consistently demonstrated that o,p'-DDT at 0.5-1 mg/kg inhibited the gene expression and PGE2 levels in rat ovary. The surprising results from the receptor inhibitors studies showed that these inhibitory effects were exerted independently of either classical estrogen receptors (ERs) or G protein-coupled receptor 30 (GPR30). Instead, o,p'-DDT altered gene expression or hormone action via inhibiting the activation of protein kinase A (PKA), rather than protein kinase C (PKC). We further revealed that o,p'-DDT directly interfered with the PKA catalytic subunit. Our novel findings support the hypothesis that exposure to low concentrations of o,p'-DDT alters gene expression and hormone synthesis through signaling mediators beyond receptor binding, and imply that the current exposure levels of o,p'-DDT observed in the population likely poses a health risk to female reproduction.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meirong Zhao
- Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Shulin Zhuang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Ye Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Weiping Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
28
|
Park ES, Park J, Franceschi RT, Jo M. The role for runt related transcription factor 2 (RUNX2) as a transcriptional repressor in luteinizing granulosa cells. Mol Cell Endocrinol 2012; 362:165-75. [PMID: 22713854 PMCID: PMC3864655 DOI: 10.1016/j.mce.2012.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 05/08/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Transcription factors induced by the LH surge play a vital role in reprogramming the gene expression in periovulatory follicles. The present study investigated the role of RUNX2 transcription factor in regulating the expression of Runx1, Ptgs2, and Tnfaip6 using cultured granulosa cells isolated from PMSG-primed immature rats. hCG or forskolin+PMA induced the transient increase in Runx1, Ptgs2, and Tnfaip6 expression, while the expression of Runx2 continued to increase until 48 h. The knockdown of the agonist-stimulated Runx2 expression increased Runx1, Ptgs2, and Tnfaip6 expression and PGE(2) levels in luteinizing granulosa cells. Conversely, the over-expression of RUNX2 inhibited the expression of these genes and PGE(2) levels. The mutation of RUNX binding motifs in the Runx1 promoter enhanced transcriptional activity of the Runx1 promoter. The knockdown and overexpression of Runx2 increased and decreased Runx1 promoter activity, respectively. ChIP assays revealed the binding of RUNX2 in the Runx1 and Ptgs2 promoters. Together, these novel findings provide support for the role of RUNX2 in down-regulation of Runx1, Ptgs2, and Tnfaip6 during the late ovulatory period to support proper ovulation and/or luteinization.
Collapse
Affiliation(s)
- Eun-Sil Park
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
- Department of Molecular and Biomedical Pharmacology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | - Jiyeon Park
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011N University Ave. Ann Arbor, MI 48109-1078, USA
- Department of Biological Chemistry, School of Medicine, University of Michigan, 1011N University Ave. Ann Arbor, MI 48109-1078, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| |
Collapse
|
29
|
Li F, Jo M, Curry TE, Liu J. Hormonal induction of polo-like kinases (Plks) and impact of Plk2 on cell cycle progression in the rat ovary. PLoS One 2012; 7:e41844. [PMID: 22870256 PMCID: PMC3411565 DOI: 10.1371/journal.pone.0041844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/29/2012] [Indexed: 11/19/2022] Open
Abstract
The highly conserved polo-like kinases (Plks) are potent regulators of multiple functions in the cell cycle before and during mitotic cell division. We investigated the expression pattern of Plk genes and their potential role(s) in the rat ovary during the periovulatory period. Plk2 and Plk3 were highly induced both in intact ovaries and granulosa cells in vivo after treatment with the luteinizing hormone (LH) agonist, human chorionic gonadotropin (hCG). In vitro, hCG stimulated the expression of Plk2 in granulosa cells, but not Plk3. This induction of Plk2 expression was mimicked by both forskolin and phorbol 12 myristate 13-acetate (PMA). Moreover, Plk2 expression was reduced by inhibitors of prostaglandin synthesis or the EGF pathway, but not by progesterone receptor antagonist (RU486) treatment. At the promoter level, mutation of the Sp1 binding sequence abolished the transcriptional activity of the Plk2 gene. ChIP assays also revealed the interaction of endogenous Sp1 protein in the Plk2 promoter region. Functionally, the over-expression of Plk2 and Plk3 arrested granulosa cells at the G0/G1 phase of the cell cycle. In contrast, the knockdown of Plk2 expression in granulosa cells decreased the number of cells in the G0/G1 stage of the cell cycle, but increased granulosa cell viability. In summary, hCG induced Plk2 and Plk3 expression in the rat ovary. Prostaglandins and the EGF signaling pathway are involved in regulating Plk2 expression. The transcription factor Sp1 is important for Plk2 transcriptional up-regulation. Our findings suggest that the increase in Plk2 and Plk3 expression contributes to the cell cycle arrest of granulosa cells which is important for the luteinization of granulosa cells during the periovulatory period.
Collapse
Affiliation(s)
- Feixue Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jing Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
30
|
Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology 2011; 290:42-9. [DOI: 10.1016/j.tox.2011.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 12/19/2022]
|
31
|
Liu J, Yang Y, Yang Y, Zhang Y, Liu W. Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. Toxicology 2011; 282:47-55. [DOI: 10.1016/j.tox.2011.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
|
32
|
Li F, Liu J, Jo M, Curry TE. A role for nuclear factor interleukin-3 (NFIL3), a critical transcriptional repressor, in down-regulation of periovulatory gene expression. Mol Endocrinol 2011; 25:445-59. [PMID: 21212137 DOI: 10.1210/me.2010-0250] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The LH surge triggers dramatic transcriptional changes in genes associated with ovulation and luteinization. The present study investigated the spatiotemporal expression of nuclear factor IL-3 (NFIL3), a transcriptional regulator of the basic leucine zipper transcription factor superfamily, and its potential role in the ovary during the periovulatory period. Immature female rats were injected with pregnant mare's serum gonadotropin, treated with human chorionic gonadotropin (hCG), and ovaries or granulosa cells were collected at various times after hCG. Nfil3 mRNA was highly induced both in intact ovaries and granulosa cells after hCG treatment. In situ hybridization demonstrated that Nfil3 mRNA was highly induced in theca-interstitial cells at 4-8 h after hCG, localized to granulosa cells at 12 h, and decreased at 24 h. Overexpression of NFIL3 in granulosa cells inhibited the induction of prostaglandin-endoperoxide synthase 2 (Ptgs2), progesterone receptor (Pgr), epiregulin (Ereg), and amphiregulin (Areg) and down-regulated levels of prostaglandin E2. The inhibitory effect on Ptgs2 induction was reversed by NFIL3 small interfering RNA treatment. In theca-interstitial cells the expression of hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (Hpgd) was also inhibited by NFIL3 overexpression. Data from luciferase assays demonstrated that NFIL3 overexpression decreased the induction of the Ptgs2 and Areg promoter activity. EMSA and chromatin immunoprecipitation analyses indicated that NFIL3 binds to the promoter region containing the DNA-binding sites of cAMP response element binding protein and CCAAT enhancer binding protein-β. In summary, hCG induction of NFIL3 expression may modulate the process of ovulation and theca-interstitial and granulosa cell differentiation by regulating expression of PTGS2, PGR, AREG, EREG, and HPGD, potentially through interactions with cAMP response element binding protein and CCAAT enhancer binding protein-β on their target gene promoters.
Collapse
Affiliation(s)
- Feixue Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Liu J, Park ES, Curry TE, Jo M. Periovulatory expression of hyaluronan and proteoglycan link protein 1 (Hapln1) in the rat ovary: hormonal regulation and potential function. Mol Endocrinol 2010; 24:1203-17. [PMID: 20339004 DOI: 10.1210/me.2009-0325] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Periovulatory follicular matrix plays an important role in cumulus-oocyte complex (COC) expansion, ovulation, and luteal formation. Hyaluronan and proteoglycan link protein 1 (HAPLN1), a component of follicular matrix, was shown to enhance COC expansion in vitro. However, the regulatory mechanisms of periovulatory expression of Hapln1 and its role in periovulatory granulosa cells have not been elucidated. We first determined the periovulatory expression pattern of Hapln1 using pregnant mare serum gonadotropin/human chorionic gonadotropin (PMSG/hCG)-primed immature rat ovaries. Hapln1 expression was transiently induced both in intact ovaries and granulosa cells at 8 h and 12 h after hCG injection. This in vivo expression of Hapln1 was recapitulated by culturing preovulatory granulosa cells with hCG. The stimulatory effect of hCG was blocked by inhibition of protein kinase A, phosphatidylinositol-dependent kinase, p38 MAPK, epidermal growth factor signaling, and prostaglandin synthesis, revealing key mediators involved in LH-induced Hapln1 expression. In addition, knockdown of Runx1 and Runx2 expression by small interfering RNA or inhibition of RUNX activities by dominant-negative RUNX decreased hCG or agonist-induced Hapln1 expression. Chromatin immunoprecipitation assays verified the in vivo binding of RUNX1 and RUNX2 to the Hapln1 promoter in periovulatory granulosa cells. Luciferase reporter assays revealed that mutation of the RUNX binding sites completely obliterated the agonist-induced activity of the Hapln1 promoter. These data conclusively identified RUNX proteins as the crucial transcription regulators for LH-induced Hapln1 expression. Functionally, treatment with HAPLN1 increased the viability of cultured granulosa cells and decreased the number of the cells undergoing apoptosis, whereas knockdown of Hapln1 expression decreased granulosa cells viability. This novel finding indicates that HAPLN1 may promote periovulatory granulosa cell survival, which would facilitate their differentiation into luteal cells.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
34
|
Park ES, Lind AK, Dahm-Kähler P, Brännström M, Carletti MZ, Christenson LK, Curry TE, Jo M. RUNX2 transcription factor regulates gene expression in luteinizing granulosa cells of rat ovaries. Mol Endocrinol 2010; 24:846-58. [PMID: 20197312 DOI: 10.1210/me.2009-0392] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge promotes terminal differentiation of follicular cells to become luteal cells. RUNX2 has been shown to play an important role in cell differentiation, but the regulation of Runx2 expression and its function in the ovary remain to be determined. The present study examined 1) the expression profile of Runx2 and its partner CBFbeta during the periovulatory period, 2) regulatory mechanisms of Runx2 expression, and 3) its potential function in the ovary. Runx2 expression was induced in periovulatory granulosa cells of human and rodent ovaries. RUNX2 and core binding factor-beta (CBFbeta) proteins in nuclear extracts and RUNX2 binding to a consensus binding sequence increased after human chorionic gonadotropin (hCG) administration. This in vivo up-regulation of Runx2 expression was recapitulated in vitro in preovulatory granulosa cells by stimulation with hCG. The hCG-induced Runx2 expression was reduced by antiprogestin (RU486) and EGF-receptor tyrosine kinase inhibitor (AG1478), indicating the involvement of EGF-signaling and progesterone-mediated pathways. We also found that in the C/EBPbeta knockout mouse ovary, Runx2 expression was reduced, indicating C/EBPbeta-mediated expression. Next, the function of RUNX2 was investigated by suppressing Runx2 expression by small interfering RNA in vitro. Runx2 knockdown resulted in reduced levels of mRNA for Rgc32, Ptgds, Fabp6, Mmp13, and Abcb1a genes. Chromatin immunoprecipitation analysis demonstrated the binding of RUNX2 in the promoter region of these genes, suggesting that these genes are direct downstream targets of RUNX2. Collectively, the present data indicate that the LH surge-induced RUNX2 is involved in various aspects of luteal function by directly regulating the expression of diverse luteal genes.
Collapse
Affiliation(s)
- Eun-Sil Park
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The steroid hormone, progesterone, plays a critical role in the regulation of female ovulation. The physiological effects of progesterone are mediated by two nuclear receptor transcription factors, PR-A and PR-B, which are produced from a single gene and upon binding progesterone regulate the expression of specific gene networks in reproductive tissues. Both null mutation of the PR gene to delete both receptor proteins and selective disruption of the PR-A isoform lead to a failure of ovulation due to disabled follicular rupture in response to gonadotrophin stimulation. Recent studies have revealed that the LH stimulus that triggers ovulation is transduced by PRs residing in mural granulosa cells that induce expression of paracrine signals that interact with cumulus cells to control cumulus matrix function and expansion to facilitate follicular rupture.
Collapse
Affiliation(s)
- Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Devi YS, Shehu A, Halperin J, Stocco C, Le J, Seibold AM, Gibori G. Prolactin signaling through the short isoform of the mouse prolactin receptor regulates DNA binding of specific transcription factors, often with opposite effects in different reproductive issues. Reprod Biol Endocrinol 2009; 7:87. [PMID: 19703295 PMCID: PMC2746216 DOI: 10.1186/1477-7827-7-87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/24/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been well established that prolactin (PRL) signals through the long form of its receptor (PRL-RL) and activates the Jak/Stat pathway for transcription of PRL target genes. However, signaling pathways mediated through the short PRL-R isoform (PRL-RS) remains controversial. Our recent finding that PRL signaling through PRL-RS represses two transcription factors critical for follicular development lead us to examine other putative PRL/PRL-RS target transcription factors in the decidua and ovary, two well-known target tissues of PRL action in reproduction. METHODS In this investigation we used mice expressing PRL-RS on a PRL-R knockout background and a combo protein/DNA array to study the transcription factors regulated by PRL through PRL-RS only. RESULTS We show that PRL activation of the PRL-RS receptor either stimulates or inhibits the DNA binding activity of a substantial number of transcription factors in the decidua as well as ovary. We found few transcription factors to be similarly regulated in both tissues, while most transcription factors are oppositely regulated by PRL in the decidua and ovary. In addition, some transcription factors are regulated by PRL only in the ovary or only in the decidua. Several of these transcription factors are involved in physiological pathways known to be regulated by PRL while others are novel. CONCLUSION Our results clearly indicate that PRL does signal through PRL-RS in the decidua as well as the ovary, independently of PRL-RL, and activates/represses transcription factors in a tissue specific manner. This is the first report showing PRL/PRL-RS regulation of specific transcription factors. Many of these transcription factors were not previously known to be PRL targets, suggesting novel physiological roles for this hormone.
Collapse
Affiliation(s)
- Y Sangeeta Devi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | - Aurora Shehu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | - Julia Halperin
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
- Universidad Maimonides, Hidalgo 775 – C.P.: C1405BCK, Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos Stocco
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | - Jamie Le
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | - Anita M Seibold
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | - Geula Gibori
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| |
Collapse
|