1
|
Gomez-Sanchez CE, Gomez-Sanchez EP. Cholesterol Availability and Adrenal Steroidogenesis. Endocrinology 2024; 165:bqae032. [PMID: 38500355 PMCID: PMC10977269 DOI: 10.1210/endocr/bqae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Celso E Gomez-Sanchez
- Research and Medical Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Elise P Gomez-Sanchez
- Research and Medical Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
2
|
Liimatta J, Curschellas E, Altinkilic EM, Naamneh Elzenaty R, Augsburger P, du Toit T, Voegel CD, Breault DT, Flück CE, Pignatti E. Adrenal Abcg1 Controls Cholesterol Flux and Steroidogenesis. Endocrinology 2024; 165:bqae014. [PMID: 38301271 PMCID: PMC10863561 DOI: 10.1210/endocr/bqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Cholesterol is the precursor of all steroids, but how cholesterol flux is controlled in steroidogenic tissues is poorly understood. The cholesterol exporter ABCG1 is an essential component of the reverse cholesterol pathway and its global inactivation results in neutral lipid redistribution to tissue macrophages. The function of ABCG1 in steroidogenic tissues, however, has not been explored. To model this, we inactivated Abcg1 in the mouse adrenal cortex, which led to an adrenal-specific increase in transcripts involved in cholesterol uptake and de novo synthesis. Abcg1 inactivation did not affect adrenal cholesterol content, zonation, or serum lipid profile. Instead, we observed a moderate increase in corticosterone production that was not recapitulated by the inactivation of the functionally similar cholesterol exporter Abca1. Altogether, our data imply that Abcg1 controls cholesterol uptake and biosynthesis and regulates glucocorticoid production in the adrenal cortex, introducing the possibility that ABCG1 variants may account for physiological or subclinical variation in stress response.
Collapse
Affiliation(s)
- Jani Liimatta
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, Kuopio 70200, Finland
| | - Evelyn Curschellas
- Department of Chemistry, Biochemistry and Pharmacy, Medical Faculty, University of Bern, Bern 3010, Switzerland
| | - Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Rawda Naamneh Elzenaty
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Philipp Augsburger
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Therina du Toit
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Clarissa D Voegel
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Emanuele Pignatti
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
3
|
Kluwe B, Pohlman N, Kesireddy V, Zhao S, Tan Y, Kline D, Brock G, Odei JB, Effoe VS, Tcheugui JBE, Kalyani RR, Sims M, Taylor HA, Mongraw-Chaffin M, Akhabue E, Joseph JJ. The Role of Aldosterone and Ideal Cardiovascular Health in Incident Cardiovascular Disease: The Jackson Heart Study. Am J Prev Cardiol 2023; 14:100494. [PMID: 37114212 PMCID: PMC10126856 DOI: 10.1016/j.ajpc.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Background Higher levels of ideal cardiovascular health (ICH) are associated with lower levels of aldosterone and incidence of cardiovascular disease (CVD). However, the degree to which aldosterone mediates the association between ICH and CVD incidence has not been explored. Thus, we investigated the mediational role of aldosterone in the association of 5 components of ICH (cholesterol, body mass index (BMI), physical activity, diet and smoking) with incident CVD and the mediational role of blood pressure (BP) and glucose in the association of aldosterone with incident CVD in a cohort of African Americans (AA). Methods The Jackson Heart Study is a prospective cohort of AAs adults with data on CVD outcomes. Aldosterone, ICH metrics and baseline characteristics were collected at exam 1 (2000-2004). ICH score was developed by summing 5 ICH metrics (smoking, dietary intake, physical activity, BMI, and total cholesterol) and grouped into two categories (0-2 and ≥3 metrics). Incident CVD was defined as stroke, coronary heart disease, or heart failure. Cox proportional hazard regression models were used to model the association of categorical ICH score with incident CVD. The R Package Mediation was utilized to examine: 1) The mediational role of aldosterone in the association of ICH with incident CVD and 2) The mediational role of blood pressure and glucose in the association of aldosterone with incident CVD. Results Among 3,274 individuals (mean age: 54±12.4 years, 65% female), there were 368 cases of incident CVD over a median of 12.7 years. The risk of incident CVD was 46% lower (HR: 0.54; 95%CI 0.36, 0.80) in those with ≥3 ICH metrics at baseline compared to 0-2. Aldosterone mediated 5.4% (p = 0.006) of the effect of ICH on incident CVD. A 1-unit increase in log-aldosterone was associated with a 38% higher risk of incident CVD (HR 1.38, 95%CI: 1.19, 1.61) with BP and glucose mediating 25.6% (p<0.001) and 4.8% (p = 0.048), respectively. Conclusion Aldosterone partially mediates the association of ICH with incident CVD and both blood pressure and glucose partially mediate the association of aldosterone with incident CVD, emphasizing the potential importance of aldosterone and ICH in risk of CVD among AAs.
Collapse
|
4
|
Tan YJD, Brooks DL, Wong KYH, Huang Y, Romero JR, Williams JS, Pojoga LH. Lysine-specific demethylase 1 deficiency modifies aldosterone synthesis in a sex-specific manner. J Endocrinol 2023; 256:JOE-22-0141. [PMID: 36327153 PMCID: PMC9855026 DOI: 10.1530/joe-22-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice are associated with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether (1) sex modifies ALDO biosynthetic enzymes; (2) LSD1 deficiency disrupts the effect of sex on these enzymes; (3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and (4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis but not ALDO levels or systolic blood pressure (SBP). However, enzyme expressions are shifted downward in LSD1+/- females vs males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels, and SBP in a sex-specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: (1) proximal (ALDO biosynthetic enzymes); (2) intermediate (circulating ALDO); and (3) distant (SBP). These results provide entry to better understand the roles of biological sex and LSD1 in (1) hypertension heterogeneity and (2) providing more personalized treatment.
Collapse
Affiliation(s)
- Yi Jun Desmond Tan
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Medicine & Health Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Danielle L. Brooks
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kelly Yin Han Wong
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Medicine & Health Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Yuefei Huang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Luminita H. Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Shimada H, Noro E, Suzuki S, Sakamoto J, Sato I, Parvin R, Yokoyama A, Sugawara A. Effects of Adipocyte-derived Factors on the Adrenal Cortex. Curr Mol Pharmacol 2020; 13:2-6. [DOI: 10.2174/1874467212666191015161334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 01/26/2023]
Abstract
Background and Objective:
Obesity is highly complicated by hypertension and hyperglycemia.
In particular, it has been proposed that obesity-related hypertension is caused by adipocyte-derived
factors that are recognized as undetermined proteins secreted from adipocytes. Adipocyte-derived factors
have been known to be related to aldosterone secretion in the adrenal gland. So far, Wnt proteins,
CTRP-1, VLDL, LDL, HDL and leptin have been demonstrated to stimulate aldosterone secretion. In
contrast, it has not yet been clarified whether adipocyte-derived factors also affect adrenal cortisol secretion.
Methods and Results:
In the present study, we investigated the effect of adipocyte-derived factors on
cortisol synthase gene CYP11B1 mRNA expression in vitro study using adrenocortical carcinoma
H295R cells and mouse fibroblast 3T3-L1cells. Interestingly, adipocyte-derived factors were demonstrated
to have the ability to stimulate CYP11B1 mRNA expression.
Conclusion:
Since CYP11B1 is well known as a limiting enzyme of cortisol synthesis, our study suggests
that adipocyte-derived factors may stimulate cortisol secretion, as well as aldosterone secretion.
Taken together, adipocyte-derived factors may be the cause of metabolic syndrome due to their stimulating
effects on aldosterone/cortisol secretion. Therefore, the innovation of novel drugs against them
may possibly be a new approach against metabolic syndrome.
Collapse
Affiliation(s)
- Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Jun Sakamoto
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Rehana Parvin
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
6
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
7
|
The Association of Life's Simple 7 with Aldosterone among African Americans in the Jackson Heart Study. Nutrients 2019; 11:nu11050955. [PMID: 31035479 PMCID: PMC6566676 DOI: 10.3390/nu11050955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023] Open
Abstract
Background: Among African Americans (AAs), attaining higher levels of American Heart Association (AHA) ideal cardiovascular health (Life’s Simple 7 [LS7]) is associated with lower risk of diabetes and cardiovascular disease (CVD). We previously showed that aldosterone is associated with higher risk of diabetes and CVD in AAs. Thus, we investigated the association of LS7 metrics with aldosterone in the Jackson Heart Study (JHS). Methods: Ideal metrics were defined by AHA 2020 goals for health behaviors (smoking, dietary intake, physical activity, and body mass index) and health factors (total cholesterol, blood pressure, and fasting glucose). The number of ideal LS7 metrics attained at baseline were summed into a continuous score (0–7) and categorical groups (Poor: 0–1, Intermediate: 2–3, and Ideal: ≥4 ideal LS7 metrics). Multivariable linear regression was used. Results: Among 4,095 JHS participants (mean age 55 ± 13 years, 65% female), median serum aldosterone was 4.90, 4.30, and 3.70 ng/dL in the poor (n = 1132), intermediate (n = 2288) and ideal (n = 675) categories respectively. Aldosterone was 15% [0.85 (0.80, 0.90)] and 33% [0.67 (0.61, 0.75)] lower in the intermediate and ideal LS7 categories compared to the poor LS7 category. Each additional LS7 metric attained on continuous LS7 score (0–7) was associated with an 11% [0.89 (0.86, 0.91)] lower aldosterone level with variation by sex with women having a 15% lower aldosterone vs. 5% in men. Conclusions: Higher attainment of ideal LS7 metrics was associated with lower serum aldosterone among AAs with a greater magnitude of association among women compared to men.
Collapse
|
8
|
Li J, Zhou Q, Ma Z, Wang M, Shen WJ, Azhar S, Guo Z, Hu Z. Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis. Reprod Biol Endocrinol 2017; 15:19. [PMID: 28302174 PMCID: PMC5356319 DOI: 10.1186/s12958-017-0239-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/06/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Steroidogenesis is a complex, multi-steps biological process in which, cholesterol precursor is converted to steroids in a tissue specific and tropic hormone dependent manner. Given that steroidogenesis is achieved by coordinated functioning of multiple tissue specific enzymes, many steroids intermediates/metabolites are generated during this process. Both the steroid products as well as major lipoprotein cholesterol donor, high-density lipoprotein 3 (hHDL3) have the potential to negatively regulate steroidogenesis via increased oxidative stress/reactive oxygen species (ROS) generation. METHODS In the current study, we examined the effects of treatment of a mouse model of steroidogenesis, Y1-BS1 adrenocortical tumor cells with pregnenolone, 22(R)-Hydroxycholesterol [22(R)-diol] or hHDL3 on ROS production, phosphorylation status of p38 MAPK and cAMP response element-binding protein (CREB), CREB transcriptional activity and mRNA expression of StAR, CPY11A1/P450scc and antioxidant enzymes, superoxide dismutases [Cu,ZnSOD (SOD1), MnSOD (SOD2)], catalase (CAT) and glutathione peroxidase 1 (GPX1). We also detected the steroid product in p38 MAPK inhibitor treated Y1 cells by HPLC-MS / MS. RESULTS Treatment of Y1 cells with H2O2 greatly enhanced the phosphorylation of both p38 MAPK and CREB protein. Likewise, treatment of cells with pregnenolone, 22(R) diol or hHDL3 increased ROS production measured with the oxidation-sensitive fluorescent probe 2',7'-Dichlorofluorescin diacetate (DCFH-DA). Under identical experimental conditions, treatment of cells with these agents also increased the phosphorylation of p38 MAPK and CREB. This increased CREB phosphorylation however, was associated with its decreased transcriptional activity. The stimulatory effects of pregnenolone, 22(R)-diol and hHDL3 on CREB phosphorylation was abolished by a specific p38 MAPK inhibitor, SB203580. Pregnenolone, and 22(R) diol but not hHDL3 upregulated the mRNA expression of SOD1, SOD2 and GPX1, while down-regulated the mRNA levels of StAR and CYP11A1. The p38 inhibitor SB203580 could increase the steroid production in HDL3, 22(R)-diol or pregnenolone treated cells. CONCLUSION Our data demonstrate induction of a ROS/p38 MAPK -mediated feedback inhibitory pathway by oxy-cholesterol and steroid intermediates and products attenuates steroidogenesis via inhibition of CREB transcriptional activity.
Collapse
Affiliation(s)
- Jiaxin Li
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Qian Zhou
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Zhuang Ma
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Meina Wang
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Wen-Jun Shen
- 0000 0004 0419 2556grid.280747.eGeriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304 USA
- 0000000419368956grid.168010.eStanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Salman Azhar
- 0000 0004 0419 2556grid.280747.eGeriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304 USA
- 0000000419368956grid.168010.eStanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Zhigang Guo
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| | - Zhigang Hu
- 0000 0001 0089 5711grid.260474.3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023 China
| |
Collapse
|
9
|
Tsai YY, Rainey WE, Bollag WB. Very low-density lipoprotein (VLDL)-induced signals mediating aldosterone production. J Endocrinol 2017; 232:R115-R129. [PMID: 27913572 PMCID: PMC8310676 DOI: 10.1530/joe-16-0237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 01/14/2023]
Abstract
Aldosterone, secreted by the adrenal zona glomerulosa, enhances sodium retention, thus increasing blood volume and pressure. Excessive production of aldosterone results in high blood pressure and contributes to cardiovascular and renal disease, stroke and visual loss. Hypertension is also associated with obesity, which is correlated with other serious health risks as well. Although weight gain is associated with increased blood pressure, the mechanism by which excess fat deposits increase blood pressure remains unclear. Several studies have suggested that aldosterone levels are elevated with obesity and may represent a link between obesity and hypertension. In addition to hypertension, obese patients typically have dyslipidemia, including elevated serum levels of very low-density lipoprotein (VLDL). VLDL, which functions to transport triglycerides from the liver to peripheral tissues, has been demonstrated to stimulate aldosterone production. Recent studies suggest that the signaling pathways activated by VLDL are similar to those utilized by AngII. Thus, VLDL increases cytosolic calcium levels and stimulates phospholipase D (PLD) activity to result in the induction of steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2) expression. These effects seem to be mediated by the ability of VLDL to increase the phosphorylation (activation) of their regulatory transcription factors, such as the cAMP response element-binding (CREB) protein family of transcription factors. Thus, research into the pathways by which VLDL stimulates aldosterone production may identify novel targets for the development of therapies for the treatment of hypertension, particularly those associated with obesity, and other aldosterone-modulated pathologies.
Collapse
Affiliation(s)
- Ying-Ying Tsai
- Department of PhysiologyMedical College of Georgia at Augusta University (formerly Georgia Regents University), Augusta, Georgia, USA
| | - William E Rainey
- Departments of Molecular & Integrative Physiology and Internal MedicineUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Wendy B Bollag
- Department of PhysiologyMedical College of Georgia at Augusta University (formerly Georgia Regents University), Augusta, Georgia, USA
- Charlie Norwood VA Medical CenterOne Freedom Way, Augusta, Georgia, USA
| |
Collapse
|
10
|
Bai J, Chow BKC. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system. FASEB J 2017; 31:1689-1697. [PMID: 28082350 DOI: 10.1096/fj.201600911r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
Abstract
Secretin (SCT) and its receptor (SCTR) are important in fluid regulation at multiple levels via the modulation of expression and translocation of renal aquaporin 2 and functions of central angiotensin II (ANGII). The functional interaction of SCT with peripheral ANGII, however, remains unknown. As the ANGII-aldosterone axis dominates the regulation of renal epithelial sodium channel (ENaC) function, we therefore tested whether SCT/SCTR can regulate sodium homeostasis via the renin-angiotensin-aldosterone system. SCTR-knockout (SCTR-/-) mice showed impaired aldosterone synthase (CYP11B2) expression and, consequently, aldosterone release upon intraperitoneal injection of ANGII. Endogenous ANGII production induced by dietary sodium restriction was higher in SCTR-/- than in C57BL/6N [wild-type (WT)] mice, but CYP11B2 and aldosterone synthesis were not elevated. Reduced accumulation of cholesteryl ester-the precursor of aldosterone-was observed in adrenal glands of SCTR-/- mice that were fed a low-sodium diet. Absence of SCTR resulted in elevated basal transcript levels of adrenal CYP11B2 and renal ENaCs. Although transcript and protein levels of ENaCs were similar in WT and SCTR-/- mice under sodium restriction, ENaCs in SCTR-/- mice were less sensitive to amiloride hydrochloride. In summary, the SCT/SCTR axis is involved in aldosterone precursor uptake, and the knockout of SCTR results in defective aldosterone biosynthesis/release and altered sensitivity of ENaCs to amiloride.-Bai, J., Chow, B. K. C. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Juan Bai
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Tsai YY, Rainey WE, Johnson MH, Bollag WB. VLDL-activated cell signaling pathways that stimulate adrenal cell aldosterone production. Mol Cell Endocrinol 2016; 433:138-46. [PMID: 27222295 PMCID: PMC4955520 DOI: 10.1016/j.mce.2016.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/29/2023]
Abstract
Aldosterone plays an important role in regulating ion and fluid homeostasis and thus blood pressure, and hyperaldosteronism results in hypertension. Hypertension is also observed with obesity, which is associated with additional health risks, including cardiovascular disease. Obese individuals have high serum levels of very low-density lipoprotein (VLDL), which has been shown to stimulate aldosterone production; however, the mechanisms underlying VLDL-induced aldosterone production are still unclear. Here we demonstrate in human adrenocortical carcinoma (HAC15) cells that submaximal concentrations of angiotensin II and VLDL stimulate aldosterone production in an additive fashion, suggesting the possibility of common mechanisms of action. We show using inhibitors that VLDL-induced aldosterone production is mediated by the PLC/IP3/PKC signaling pathway. Our results suggest that PKC is upstream of the extracellular signal-regulated kinase (ERK) activation previously observed with VLDL. An understanding of the mechanisms mediating VLDL-induced aldosterone production may provide insights into therapies to treat obesity-associated hypertension.
Collapse
Affiliation(s)
- Ying-Ying Tsai
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - William E Rainey
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - Maribeth H Johnson
- Department of Biostatistics and Epidemiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, United States; Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States.
| |
Collapse
|
12
|
Hattangady NG, Karashima S, Yuan L, Ponce-Balbuena D, Jalife J, Gomez-Sanchez CE, Auchus RJ, Rainey WE, Else T. Mutated KCNJ5 activates the acute and chronic regulatory steps in aldosterone production. J Mol Endocrinol 2016; 57:1-11. [PMID: 27099398 PMCID: PMC5027885 DOI: 10.1530/jme-15-0324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 02/04/2023]
Abstract
Somatic and germline mutations in the inward-rectifying K(+) channel (KCNJ5) are a common cause of primary aldosteronism (PA) in aldosterone-producing adenoma and familial hyperaldosteronism type III, respectively. Dysregulation of adrenal cell calcium signaling represents one mechanism for mutated KCNJ5 stimulation of aldosterone synthase (CYP11B2) expression and aldosterone production. However, the mechanisms stimulating acute and chronic production of aldosterone by mutant KCNJ5 have not been fully characterized. Herein, we defined the effects of the T158A KCNJ5 mutation (KCNJ5(T158A)) on acute and chronic regulation of aldosterone production using an adrenal cell line with a doxycycline-inducible KCNJ5(T158A) gene (HAC15-TRE-KCNJ5(T158A)). Doxycycline incubation caused a time-dependent increase in KCNJ5(T158A) and CYP11B2 mRNA and protein levels. Electrophysiological analyses confirm the loss of inward rectification and increased Na(+) permeability in KCNJ5(T158A)-expressing cells. KCNJ5(T158A) expression also led to the activation of CYP11B2 transcriptional regulators, NURR1 and ATF2. Acutely, KCNJ5(T158A) stimulated the expression of total and phosphorylated steroidogenic acute regulatory protein (StAR). KCNJ5(T158A) expression increased the synthesis of aldosterone and the hybrid steroids 18-hydroxycortisol and 18-oxocortisol, measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS). All of these stimulatory effects of KCNJ5(T158A) were inhibited by the L-type Ca(2+) channel blocker, verapamil. Overall, KCNJ5(T158A)increases CYP11B2 expression and production of aldosterone, corticosterone and hybrid steroids by upregulating both acute and chronic regulatory events in aldosterone production, and verapamil blocks KCNJ5(T158A)-mediated pathways leading to aldosterone production.
Collapse
Affiliation(s)
- Namita G Hattangady
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Shigehiro Karashima
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA Department of PharmacologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Lucy Yuan
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | | | - José Jalife
- Center for Arrhythmia ResearchUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Celso E Gomez-Sanchez
- G. V. (Sonny) Montgomery VA Medical Center and Department of MedicineUniversity of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Richard J Auchus
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA Department of PharmacologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - William E Rainey
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA Department of Molecular and Integrative PhysiologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Tobias Else
- Department of Internal MedicineDivision of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Xie D, Bollag WB. Obesity, hypertension and aldosterone: is leptin the link? J Endocrinol 2016; 230:F7-F11. [PMID: 27252389 PMCID: PMC8350967 DOI: 10.1530/joe-16-0160] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Obesity is a serious health hazard with rapidly increasing prevalence in the United States. In 2014, the World Health Organization estimated that nearly 2 billion people worldwide were overweight with an estimated 600 million of these obese. Obesity is associated with many chronic diseases, including cardiovascular disease and hypertension. Data from the Framingham Heart study suggest that approximately 78% of the risk for hypertension in men and 65% in women is related to excess body weight, a relationship that is further supported by studies showing increases in blood pressure with weight gain and decreases with weight loss. However, the exact mechanism by which excess body fat induces hypertension remains poorly understood. Several clinical studies have demonstrated elevated plasma aldosterone levels in obese individuals, especially those with visceral adiposity, with decreased aldosterone levels measured in concert with reduced blood pressure following weight loss. Since aldosterone is a mineralocorticoid hormone that regulates blood volume and pressure, serum aldosterone levels may link obesity and hypertension. Nevertheless, the mechanism by which obesity induces aldosterone production is unclear. A recent study by Belin de Chantemele and coworkers suggests that one adipose-released factor, leptin, is a direct agonist for aldosterone secretion; other adipose-related factors may also contribute to elevated aldosterone levels in obesity, such as very low-density lipoprotein (VLDL), the levels of which are elevated in obesity and which also directly stimulates aldosterone biosynthesis. This focused review explores the possible roles of leptin and VLDL in modulating aldosterone secretion to underlie obesity-associated hypertension.
Collapse
Affiliation(s)
- Ding Xie
- Department of Family MedicineMedical College of Georgia at Augusta University (formerly Georgia Regents University), Augusta, Georgia, USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical CenterAugusta, Georgia, USA Department of PhysiologyMedical College of Georgia at Augusta University (formerly Georgia Regents University), Augusta, Georgia, USA
| |
Collapse
|
14
|
LaPensee CR, Mann JE, Rainey WE, Crudo V, Hunt SW, Hammer GD. ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs. Endocrinology 2016; 157:1775-88. [PMID: 26986192 DOI: 10.1210/en.2015-2052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis.
Collapse
Affiliation(s)
- Christopher R LaPensee
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Jacqueline E Mann
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - William E Rainey
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Valentina Crudo
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Stephen W Hunt
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Gary D Hammer
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| |
Collapse
|
15
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
16
|
Nishimoto K, Harris RBS, Rainey WE, Seki T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 2014; 155:1363-72. [PMID: 24422541 PMCID: PMC3959598 DOI: 10.1210/en.2013-1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aldosterone is the primary adrenocortical hormone regulating sodium retention, and its production is under the control of the renin-angiotensin-aldosterone system (RAAS). In vitro, angiotensin II can induce aldosterone production in adrenocortical cells without causing cell proliferation. In vivo, a low-sodium diet activates the RAAS and aldosterone production, at least in part, through an expansion of the adrenal zona glomerulosa (zG) layer. Although these mechanisms have been investigated, RAAS effects on zG gene expression have not been fully elucidated. In this study, we took an unbiased approach to define the complete list of zG transcripts involved in RAAS activation. Adrenal glands were collected from 11-week old Sprague-Dawley rats fed either sodium-deficient (SDef), normal sodium (NS), or high-sodium (HS) diet for 72 hours, and laser-captured zG RNA was analyzed on microarrays containing 27 342 probe sets. When the SDef transcriptome was compared with NS transcriptome (SDef/NS comparison), only 79 and 10 probe sets were found to be up- and down-regulated more than two-fold in SDef, respectively. In SDef/HS comparison, 201 and 68 probe sets were up- and down-regulated in SDef, respectively. Upon gene ontology (GO) analysis of these gene sets, we identified three groups of functionally related GO terms: cell proliferation-associated (group 1), response to stimulus-associated (group 2), and cholesterol/steroid metabolism-associated (group 3) GO terms. Although genes in group 1 may play a critical role in zG layer expansion, those in groups 2 and 3 may have important functions in aldosterone production, and further investigations on these genes are warranted.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology (R.B.S.H., T.S.), Georgia Regents University, Augusta, Georgia 30912; and Department of Urology (K.N.), Tachikawa Hospital, Tachikawa, 190-0022 Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Matsuda K, Uruno A, Kogure N, Sugawara K, Shimada H, Nezu M, Saito-Ito T, Iki Y, Kudo M, Shimizu K, Sato I, Yoshikawa T, Satoh F, Ito R, Yokoyama A, Rainey WE, Saito-Hakoda A, Ito S, Sugawara A. Angiotensin II receptor blockers differentially affect CYP11B2 expression in human adrenal H295R cells. Mol Cell Endocrinol 2014; 383:60-8. [PMID: 24333837 DOI: 10.1016/j.mce.2013.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/08/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
We generated a stable H295R cell line expressing aldosterone synthase gene (CYP11B2) promoter/luciferase chimeric reporter construct that is highly sensitive to angiotensin II (AII) and potassium, and defined AII receptor blocker (ARB) effects. In the presence of AII, all ARBs suppressed AII-induced CYP11B2 transcription. However, telmisartan alone increased CYP11B2 transcription in the absence of AII. Telmisartan dose-dependently increased CYP11B2 transcription/mRNA expression and aldosterone secretion. Experiments using CYP11B2 promoter mutants indicated that the Ad5 element was responsible. Among transcription factors involved in the element, telmisartan significantly induced NGFIB/NURR1 expression. KN-93, a CaMK inhibitor, abrogated the telmisartan-mediated increase of CYP11B2 transcription/mRNA expression and NURR1 mRNA expression, but not NGFIB mRNA expression. NURR1 over-expression significantly augmented the telmisartan-mediated CYP11B2 transcription, while high-dose olmesartan did not affect it. Taken together, telmisartan may stimulate CYP11B2 transcription via NGFIB and the CaMK-mediated induction of NURR1 that activates the Ad5 element, independent of AII type 1 receptor.
Collapse
Affiliation(s)
- Ken Matsuda
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Uruno
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naotaka Kogure
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kaori Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masahiro Nezu
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takako Saito-Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuko Iki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masataka Kudo
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - William E Rainey
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
18
|
Matsuzawa Y, Suematsu S, Saito J, Omura M, Nishikawa T. Vascular aldosterone production at the pre-diabetic stage of young Otsuka Long-Evans Tokushima Fatty (OLETF) rats, compared with Long-Evans Tokushima Otsuka (LETO) rats. Molecules 2013; 18:15636-47. [PMID: 24352019 PMCID: PMC6270161 DOI: 10.3390/molecules181215636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of aortic smooth muscle cells (AoSMC) prepared from spontaneously diabetic rats to produce aldosterone (Aldo) and the regulatory mechanism that controls their Aldo production. AoSMC of 6 week-old Long-Evans Tokushima Otsuka (LETO: the control group) and 6 week-old Otsuka Long-Evans Tokushima Fatty (OLETF: the type 2 diabetes group) rats were used in the present experiments. CYP11B2 (Aldo synthetase) mRNA expression was detected in both the LETO and OLETF AoSMC. Basal Aldo production was significantly greater (4-5 fold higher) in the OLETF AoSMC culture medium than in the LETO AoSMC culture medium. When AoSMC were co-incubated with high-density lipoproteins (HDL), supplying cholesterol as a substrate for steroidogenesis in rats, angiotensin II (AII) significantly increased greater Aldo production in the OLETF AoSMC than in the LETO AoSMC. The present data suggested that future onset of diabetic vascular dysfunction is partly caused by excess Aldo production by AoSMC in young OLETF rats. Concomitant stimulation by HDL and AII resulted in elevated Aldo production in the OLETF and the LETO AoSMC, and also demonstrated that AII-induced Aldo production is greatly enhanced by HDL in OLETF, rather than in LETO. In conclusion, our data clearly demonstrated that Aldo production in the OLETF AoSMC was significantly higher than in the LETO AoSMC, suggesting possible future onset of vascular dysfunction in diabetes, induced by local Aldo production in the AoSMC.
Collapse
Affiliation(s)
| | | | | | | | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kohoku-ku, Yokohama 222-0036, Japan.
| |
Collapse
|
19
|
Swierczynska MM, Lamounier-Zepter V, Bornstein SR, Eaton S. Lipoproteins and Hedgehog signalling--possible implications for the adrenal gland function. Eur J Clin Invest 2013; 43:1178-83. [PMID: 23992253 DOI: 10.1111/eci.12145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/27/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Metabolic syndrome is a common metabolic disorder that is associated with an increased risk of type 2 diabetes and cardiovascular diseases. Disturbances in adrenal steroid hormone production significantly contribute to the development of this disorder. Therefore, it is extremely important to fully understand the mechanisms governing adrenal gland function, both in physiological and pathological conditions. RESULTS Recently, Sonic hedgehog has emerged as an important regulator of adrenal development, with a possible role in adult gland homeostasis. Recent work of our group shows that lipoproteins are important regulators of Hedgehog signaling; they act as carriers for the spread of Hedgehog proteins, but also contain lipid(s) that inhibit the pathway. CONCLUSIONS We propose that lipoproteins may affect Sonic hedgehog signaling in the adult adrenal gland at multiple levels. Understanding the interplay between lipoprotein metabolism and adrenal Hedgehog signaling may improve our understanding of how adrenal gland disorders contribute to the metabolic syndrome.
Collapse
Affiliation(s)
- Marta M Swierczynska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
20
|
Nishi H, Arai H, Momiyama T. NCI-H295R, a human adrenal cortex-derived cell line, expresses purinergic receptors linked to Ca²⁺-mobilization/influx and cortisol secretion. PLoS One 2013; 8:e71022. [PMID: 23951072 PMCID: PMC3738630 DOI: 10.1371/journal.pone.0071022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/30/2013] [Indexed: 01/06/2023] Open
Abstract
Purinergic receptor expression and involvement in steroidogenesis were examined in NCI-H295R (H295R), a human adrenal cortex cell line which expresses all the key enzymes necessary for steroidogenesis. mRNA/protein for multiple P1 (A2A and A2B), P2X (P2X5 and P2X7), and P2Y (P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, and P2Y14) purinergic receptors were detected in H295R. 2MeS-ATP (10–1000 µM), a P2Y1 agonist, induced glucocorticoid (GC) secretion in a dose-dependent manner, while other extracellular purine/pyrimidine agonists (1–1000 µM) had no distinct effect on GC secretion. Extracellular purines, even non-steroidogenic ones, induced Ca2+-mobilization in the cells, independently of the extracellular Ca2+ concentration. Increases in intracellular Ca2+ concentration induced by extracellular purine agonists were transient, except when induced by ATP or 2MeS-ATP. Angiotensin II (AngII: 100 nM) and dibutyryl-cyclic AMP (db-cAMP: 500 µM) induced both GC secretion and Ca2+-mobilization in the presence of extracellular Ca2+ (1.2 mM). GC secretion by AngII was reduced by nifedipine (10–100 µM); whereas the Ca2+ channel blocker did not inhibit GC secretion by 2MeS-ATP. Thapsigargin followed by extracellular Ca2+ exposure induced Ca2+-influx in H295R, and the cells expressed mRNA/protein of the component molecules for store-operated calcium entry (SOCE): transient receptor C (TRPC) channels, calcium release-activated calcium channel protein 1 (Orai-1), and the stromal interaction molecule 1 (STIM1). In P2Y1-knockdown, 2MeS-ATP-induced GC secretion was significantly inhibited. These results suggest that H295R expresses a functional P2Y1 purinergic receptor for intracellular Ca2+-mobilization, and that P2Y1 is linked to SOCE-activation, leading to Ca2+-influx which might be necessary for glucocorticoid secretion.
Collapse
Affiliation(s)
- Haruhisa Nishi
- Pharmacology, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
21
|
Modified high-density lipoprotein modulates aldosterone release through scavenger receptors via extra cellular signal-regulated kinase and Janus kinase-dependent pathways. Mol Cell Biochem 2012; 366:1-10. [DOI: 10.1007/s11010-012-1274-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/16/2012] [Indexed: 02/02/2023]
|
22
|
Saha S, Bornstein SR, Graessler J, Kopprasch S. Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways. Cell Tissue Res 2012; 348:71-80. [PMID: 22331364 DOI: 10.1007/s00441-012-1346-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/25/2012] [Indexed: 12/19/2022]
Abstract
Diabetic dyslipidemia is characterized by increased circulatory very-low-density lipoprotein (VLDL) levels. Aldosterone, apart from its role in fluid and electrolyte homeostasis, has also been implicated in insulin resistance and myocardial fibrosis. The impact of VLDL as a potential risk factor for aldosterone-mediated cardiovascular injury in diabetes mellitus, however, remains to be investigated. We have therefore studied native and modified VLDL-mediated steroidogenesis and its underlying molecular mechanisms in human adrenocortical carcinoma cells, NCI H295R. Native VLDL (natVLDL), isolated from healthy volunteers, was subjected to in vitro modification with glucose (200 mmol/l) or sodium hypochlorite (1.5 mmol/l) for preparation of glycoxidized and oxidized VLDL, respectively. VLDL treatment induced steroidogenesis in both a concentration- and time-dependent manner. Native and glycoxidized VLDL (50 μg/ml) were almost two-fold more potent in adrenocortical aldosterone release than angiotensin II (100 nmol/l). These forms of VLDL significantly augmented transcriptional regulation of aldosterone synthase (Cyp11B2), partially through scavenger receptor class B type I, as evident from the effect of BLT-1. In contrast to glycoxidized VLDL, oxidized VLDL significantly attenuated the stimulatory effect of natVLDL on adrenocortical hormone synthesis. Moreover, treatment with specific pharmacological inhibitors (H89, U0126, AG490) provided supporting evidence that VLDL, irrespective of modification, presumably recruited PKA, ERK1/2 and Jak-2 for steroid hormone release through modulation of Cyp11B2 mRNA level. In conclusion, this study demonstrates a novel insight into intracellular mechanism of VLDL-mediated aldosterone synthesis through transcriptional regulation of steroidogenic acute regulatory protein (StAR) and Cyp11B2 expression in human adrenocortical carcinoma cell line.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
23
|
Xing Y, Rainey WE, Apolzan JW, Francone OL, Harris RBS, Bollag WB. Adrenal cell aldosterone production is stimulated by very-low-density lipoprotein (VLDL). Endocrinology 2012; 153:721-31. [PMID: 22186415 PMCID: PMC3275386 DOI: 10.1210/en.2011-1752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Very low-density lipoproteins (VLDL) are a class of large lipoprotein synthesized in the liver. The key function of VLDL, in vivo, is to carry triglyceride from the liver to adipose tissue. As a steroidogenic organ, the adrenal gland mainly uses lipoproteins as sources of cholesterol. Although VLDL receptors have been detected in the human adrenal, the function of VLDL in the adrenal gland remains unknown. Herein, we used primary cultures of human and bovine adrenal cells and the adrenocortical cell line H295R as models to determine the effects of VLDL on adrenal steroidogenesis. Our studies revealed that VLDL significantly increased aldosterone synthesis in all of the models tested. This increase was largely due to VLDL's stimulation of the expression of steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2). VLDL increased CYP11B2 mRNA expression in a concentration-dependent manner. Effects of VLDL on CYP11B2 transcript levels were not additive with angiotensin II or potassium but were additive with the cAMP pathway agonists ACTH and forskolin. Nifedipine completely inhibited the effects of VLDL on CYP11B2 mRNA, suggesting that calcium is the main signal transduction pathway used by VLDL in adrenal cells. Indeed, VLDL increased cytosolic free calcium levels. An in vivo study conducted in sucrose-fed rats showed a positive correlation between elevated triglyceride (VLDL) levels in plasma and CYP11B2 expression in the adrenal. In conclusion, we have shown that VLDL can stimulate aldosterone synthesis in adrenocortical cells by increasing StAR and CYP11B2 expression, an event likely mediated by a calcium-initiated signaling cascade.
Collapse
Affiliation(s)
- Yewei Xing
- Department of Physiology, Georgia Health Sciences University, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
24
|
|