1
|
Singla P, Broughton T, Sullivan MV, Garg S, Berlinguer‐Palmini R, Gupta P, Smith KJ, Gardner B, Canfarotta F, Turner NW, Velliou E, Amarnath S, Peeters M. Double Imprinted Nanoparticles for Sequential Membrane-to-Nuclear Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309976. [PMID: 38973256 PMCID: PMC11423068 DOI: 10.1002/advs.202309976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Efficient and site-specific delivery of therapeutics drugs remains a critical challenge in cancer treatment. Traditional drug nanocarriers such as antibody-drug conjugates are not generally accessible due to their high cost and can lead to serious side effects including life-threatening allergic reactions. Here, these problems are overcome via the engineering of supramolecular agents that are manufactured with an innovative double imprinting approach. The developed molecularly imprinted nanoparticles (nanoMIPs) are targeted toward a linear epitope of estrogen receptor alfa (ERα) and loaded with the chemotherapeutic drug doxorubicin. These nanoMIPs are cost-effective and rival the affinity of commercial antibodies for ERα. Upon specific binding of the materials to ERα, which is overexpressed in most breast cancers (BCs), nuclear drug delivery is achieved via receptor-mediated endocytosis. Consequentially, significantly enhanced cytotoxicity is elicited in BC cell lines overexpressing ERα, paving the way for precision treatment of BC. Proof-of-concept for the clinical use of the nanoMIPs is provided by evaluating their drug efficacy in sophisticated three-dimensional (3D) cancer models, which capture the complexity of the tumor microenvironment in vivo without requiring animal models. Thus, these findings highlight the potential of nanoMIPs as a promising class of novel drug compounds for use in cancer treatment.
Collapse
Affiliation(s)
- Pankaj Singla
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Thomas Broughton
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- NIHR, Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Mark V. Sullivan
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
| | - Saweta Garg
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Rolando Berlinguer‐Palmini
- The Bio‐Imaging Unit, Medical SchoolNewcastle UniversityWilliam Leech BuildingNewcastle Upon TyneNE2 4HHUK
| | - Priyanka Gupta
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional ScienceUniversity College LondonLondonW1W 7TYUK
| | - Katie J Smith
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Ben Gardner
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | | | - Nicholas W. Turner
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
| | - Eirini Velliou
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional ScienceUniversity College LondonLondonW1W 7TYUK
| | - Shoba Amarnath
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- NIHR, Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Marloes Peeters
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| |
Collapse
|
2
|
Davis D, Dovey J, Sagoshi S, Thaweepanyaporn K, Ogawa S, Vasudevan N. Steroid hormone-mediated regulation of sexual and aggressive behaviour by non-genomic signalling. Steroids 2023; 200:109324. [PMID: 37820890 DOI: 10.1016/j.steroids.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, United Kingdom
| | - Janine Dovey
- School of Biological Sciences, University of Reading, United Kingdom
| | - Shoko Sagoshi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States; Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, United Kingdom.
| |
Collapse
|
3
|
Wnuk A, Przepiórska K, Pietrzak BA, Kajta M. Emerging Evidence on Membrane Estrogen Receptors as Novel Therapeutic Targets for Central Nervous System Pathologies. Int J Mol Sci 2023; 24:ijms24044043. [PMID: 36835454 PMCID: PMC9968034 DOI: 10.3390/ijms24044043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Nuclear- and membrane-initiated estrogen signaling cooperate to orchestrate the pleiotropic effects of estrogens. Classical estrogen receptors (ERs) act transcriptionally and govern the vast majority of hormonal effects, whereas membrane ERs (mERs) enable acute modulation of estrogenic signaling and have recently been shown to exert strong neuroprotective capacity without the negative side effects associated with nuclear ER activity. In recent years, GPER1 was the most extensively characterized mER. Despite triggering neuroprotective effects, cognitive improvements, and vascular protective effects and maintaining metabolic homeostasis, GPER1 has become the subject of controversy, particularly due to its participation in tumorigenesis. This is why interest has recently turned toward non-GPER-dependent mERs, namely, mERα and mERβ. According to available data, non-GPER-dependent mERs elicit protective effects against brain damage, synaptic plasticity impairment, memory and cognitive dysfunctions, metabolic imbalance, and vascular insufficiency. We postulate that these properties are emerging platforms for designing new therapeutics that may be used in the treatment of stroke and neurodegenerative diseases. Since mERs have the ability to interfere with noncoding RNAs and to regulate the translational status of brain tissue by affecting histones, non-GPER-dependent mERs appear to be attractive targets for modern pharmacotherapy for nervous system diseases.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| | | | | | - Małgorzata Kajta
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| |
Collapse
|
4
|
Johnson CS, Mermelstein PG. The interaction of membrane estradiol receptors and metabotropic glutamate receptors in adaptive and maladaptive estradiol-mediated motivated behaviors in females. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:33-91. [PMID: 36868633 DOI: 10.1016/bs.irn.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Estrogen receptors were initially identified as intracellular, ligand-regulated transcription factors that result in genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor α and estrogen receptor β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) can rapidly alter cellular excitability and gene expression, particularly through the phosphorylation of CREB. A principal mechanism of neuronal mER action has been shown to occur through glutamate-independent transactivation of metabotropic glutamate receptors (mGlu), which elicits multiple signaling outcomes. The interaction of mERs with mGlu has been shown to be important in many diverse functions in females, including driving motivated behaviors. Experimental evidence suggests that a large part of estradiol-induced neuroplasticity and motivated behaviors, both adaptive and maladaptive, occurs through estradiol-dependent mER activation of mGlu. Herein we will review signaling through estrogen receptors, both "classical" nuclear receptors and membrane-bound receptors, as well as estradiol signaling through mGlu. We will focus on how the interactions of these receptors and their downstream signaling cascades are involved in driving motivated behaviors in females, discussing a representative adaptive motivated behavior (reproduction) and maladaptive motivated behavior (addiction).
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
5
|
Mohr MA, Keshishian T, Falcy BA, Laham BJ, Wong AM, Micevych PE. Puberty enables oestradiol-induced progesterone synthesis in female mouse hypothalamic astrocytes. J Neuroendocrinol 2022; 34:e13082. [PMID: 35000221 PMCID: PMC9207152 DOI: 10.1111/jne.13082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
The development of oestrogen positive feedback is a hallmark of female puberty. Both oestrogen and progesterone signalling are required for the functioning of this neuroendocrine feedback loop but the physiological changes that underlie the emergence of positive feedback remain unknown. Only after puberty does oestradiol (E2) facilitate progesterone synthesis in the rat female hypothalamus (neuroP), an event critical for positive feedback and the LH surge. We hypothesize that prior to puberty, these astrocytes have low levels of membrane oestrogen receptor alpha (ERα), which is needed for facilitation of neuroP synthesis. Thus, we hypothesized that prepubertal astrocytes are unable to respond to E2 with increased neuroP synthesis due a lack of membrane ERα. To test this, hypothalamic tissues and enriched primary hypothalamic astrocyte cultures were acquired from prepubertal (postnatal week 3) and post-pubertal (week 8) female mice. E2-facilitated neuroP was measured in the hypothalamus pre- and post-puberty, and hypothalamic astrocyte responses were measured after treatment with E2. Prior to puberty, E2-facilitated neuroP synthesis did not occur in the hypothalamus, and mERα expression was low in hypothalamic astrocytes, but E2-facilitated neuroP synthesis in the rostral hypothalamus and mERα expression increased post-puberty. The increase in mERα expression in hypothalamic astrocytes corresponded with a post-pubertal increase in caveolin-1 protein, PKA phosphorylation, and a more rapid [Ca2+ ]i flux in response to E2. Together, results from the present study indicate that E2-facilitated neuroP synthesis occurs in the rostral hypothalamus, develops during puberty, and corresponds to a post-pubertal increase in mERα levels in hypothalamic astrocytes.
Collapse
Affiliation(s)
- Margaret A Mohr
- Department of Neurobiology, UCLA DGSOM, Los Angeles, California, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Tina Keshishian
- Department of Neurobiology, UCLA DGSOM, Los Angeles, California, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Brennan A Falcy
- Department of Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts, USA
| | - Blake J Laham
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Angela M Wong
- Department of Neurobiology, UCLA DGSOM, Los Angeles, California, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Paul E Micevych
- Department of Neurobiology, UCLA DGSOM, Los Angeles, California, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
7
|
Johnson CS, Micevych PE, Mermelstein PG. Membrane estrogen signaling in female reproduction and motivation. Front Endocrinol (Lausanne) 2022; 13:1009379. [PMID: 36246891 PMCID: PMC9557733 DOI: 10.3389/fendo.2022.1009379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptors were initially identified in the uterus, and later throughout the brain and body as intracellular, ligand-regulated transcription factors that affect genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor-α and estrogen receptor-β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) not only rapidly effect cellular excitability, but can and do ultimately affect gene expression, as seen through the phosphorylation of CREB. A principal mechanism of neuronal mER action is through glutamate-independent transactivation of metabotropic glutamate receptors (mGluRs), which elicits multiple signaling outcomes. The interaction of mERs with mGluRs has been shown to be important in many diverse functions in females, including, but not limited to, reproduction and motivation. Here we review membrane-initiated estrogen receptor signaling in females, with a focus on the interactions between these mERs and mGluRs.
Collapse
Affiliation(s)
- Caroline S. Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Caroline S. Johnson,
| | - Paul E Micevych
- Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
9
|
Datta G, Miller NM, Du W, Geiger JD, Chang S, Chen X. Endolysosome Localization of ERα Is Involved in the Protective Effect of 17α-Estradiol against HIV-1 gp120-Induced Neuronal Injury. J Neurosci 2021; 41:10365-10381. [PMID: 34764157 PMCID: PMC8672688 DOI: 10.1523/jneurosci.1475-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Wenjuan Du
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Sulie Chang
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
10
|
Gross KS, Mermelstein PG. Estrogen receptor signaling through metabotropic glutamate receptors. VITAMINS AND HORMONES 2020; 114:211-232. [PMID: 32723544 DOI: 10.1016/bs.vh.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the non-nuclear initiated effects of steroid hormone signaling have become more widely accepted, there has been a need to define the novel mechanisms of hormone receptor action that account for these outcomes. One mechanism that has emerged is the coupling of classical estrogen receptors (ERα and ERβ) with metabotropic glutamate receptors (mGluRs) to initiate G protein signaling cascades that ultimately influence neuronal physiology, structure, and behavior. Since its initial discovery in hippocampal neurons, evidence of ER/mGluR associations have been found throughout the nervous system, and the heterogeneity of possible receptor pairings afforded by multiple ER and mGluR subtypes appears to drive diverse molecular outcomes that can impact processes like cognition, motivation, movement, and pain. Recent evidence also suggests that the role of mGluRs in steroid hormone signaling may not be unique to ERs, but rather a conserved mechanism of membrane-initiated hormone receptor action.
Collapse
Affiliation(s)
- Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
11
|
Khbouz B, de Bournonville C, Court L, Taziaux M, Corona R, Arnal JF, Lenfant F, Cornil CA. Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. Eur J Neurosci 2019; 52:2627-2645. [PMID: 31833601 DOI: 10.1111/ejn.14646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/30/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022]
Abstract
Estrogens exert pleiotropic effects on multiple physiological and behavioral responses. Male and female sexual behavior in rodents constitutes some of the best-characterized responses activated by estrogens in adulthood and largely depend on ERα. Evidence exists that nucleus- and membrane-initiated estrogen signaling cooperate to orchestrate the activation of these behaviors both in short- and long-term. However, questions remain regarding the mechanism(s) and receptor(s) involved in the early brain programming during development to organize the circuits underlying sexually differentiated responses. Taking advantage of a mouse model harboring a mutation of the ERα palmitoylation site, which prevents membrane ERα signaling (mERα; ERα-C451A), this study investigated the role of mERα on the expression of male and female sexual behavior and neuronal populations that differ between sexes. The results revealed no genotype effect on the expression of female sexual behavior, while male sexual behavior was significantly reduced, but not abolished, in males homozygous for the mutation. Similarly, the number of kisspeptin- (Kp-ir) and calbindin-immunoreactive (Cb-ir) neurons in the anteroventral periventricular nucleus (AVPv) and the sexually dimorphic nucleus of the preoptic area (SDN-POA), respectively, were not different between genotypes in females. In contrast, homozygous males showed increased numbers of Kp-ir and decreased numbers of Cb-ir neurons compared to wild-types, thus leading to an intermediate phenotype between females and wild-type males. Importantly, females neonatally treated with estrogens exhibited the same neurochemical phenotype as their corresponding genotype among males. Together, these data provide evidence that mERα is involved in the perinatal programming of the male brain.
Collapse
Affiliation(s)
- Badr Khbouz
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Lucas Court
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Rebeca Corona
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Jean-François Arnal
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Françoise Lenfant
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | | |
Collapse
|
12
|
Wong AM, Scott AK, Johnson CS, Mohr MA, Mittelman-Smith M, Micevych PE. ERαΔ4, an ERα splice variant missing exon4, interacts with caveolin-3 and mGluR2/3. J Neuroendocrinol 2019; 31:e12725. [PMID: 31050077 PMCID: PMC6591055 DOI: 10.1111/jne.12725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
The two isoforms of the nuclear estrogen receptor, ERα and ERβ are widely expressed in the central nervous system. Although they were first described as nuclear receptors, both isoforms have also been found at the cell membrane where they mediate cell signaling. Surface biotinylation studies using neuronal and glial primary cultures label an alternatively spliced form of ERα. The 52 kDa protein, ERαΔ4, is missing exon 4 and is highly expressed in membrane fractions derived from cultured cells. In vivo, both full-length (66 kDa) ERα and ERαΔ4 are present in membrane fractions. In response to estradiol, full-length ERα and ERαΔ4 are initially trafficked to the membrane, and then internalized in parallel. Previous studies determined that only the full-length ERα associates with metabotropic glutamate receptor-1a (mGluR1a), initiating cellular signaling. The role of ERαΔ4, remained to be elucidated. Here, we report ERαΔ4 trafficking, association with mGluR2/3, and downstream signaling in female rat arcuate nucleus (ARH). Caveolin (CAV) proteins are needed for ER transport to the cell membrane, and using co-immunoprecipitation CAV-3 was shown to associate with ERαΔ4. CAV-3 was necessary for ERαΔ4 trafficking to the membrane: in the ARH, microinjection of CAV-3 siRNA reduced CAV-3 and ERαΔ4a in membrane fractions by 50%, and 60%, respectively. Moreover, co-immunoprecipitation revealed that ERαΔ4 associated with inhibitory mGluRs, mGluR2/3. Estrogen benzoate (EB) treatment (5 μg; s.c.; every 4 days; three cycles) reduced levels of cAMP, an effect attenuated by antagonizing mGluR2/3. Following EB treatment, membrane levels of ERαΔ4 and mGluR2/3 were reduced implying ligand-induced internalization. These results implicate ERαΔ4 in an estradiol-induced inhibitory cell signaling in the ARH.
Collapse
Affiliation(s)
- Angela M Wong
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Alexandra K Scott
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Caroline S Johnson
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Margaret A Mohr
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Melinda Mittelman-Smith
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| | - Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
13
|
Sosa LDV, Petiti JP, Picech F, Chumpen S, Nicola JP, Perez P, De Paul A, Valdez-Taubas J, Gutierrez S, Torres AI. The ERα membrane pool modulates the proliferation of pituitary tumours. J Endocrinol 2019; 240:229-241. [PMID: 30400032 DOI: 10.1530/joe-18-0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms underlying the ERα nuclear/cytoplasmic pool that modulates pituitary cell proliferation have been widely described, but it is still not clear how ERα is targeted to the plasma membrane. The aim of this study was to analyse ERα palmitoylation and the plasma membrane ERα (mERα) pool, and their participation in E2-triggered membrane-initiated signalling in normal and pituitary tumour cell growth. Cell cultures were prepared from anterior pituitaries of female Wistar rats and tumour GH3 cells, and treated with 10 nM of oestradiol (E2). The basal expression of ERα was higher in tumour GH3 than in normal pituitary cells. Full-length palmitoylated ERα was observed in normal and pituitary tumour cells, demonstrating that E2 stimulation increased both, ERα in plasma membrane and ERα and caveolin-1 interaction after short-term treatment. In addition, the Dhhc7 and Dhhc21 palmitoylases were negatively regulated after sustained stimulation of E2 for 3 h. Although the uptake of BrdU into the nucleus in normal pituitary cells was not modified by E2, a significant increase in the GH3 tumoural cell, as well as ERK1/2 activation, with this effect being mimicked by PPT, a selective antagonist of ERα. These proliferative effects were blocked by ICI 182780 and the global inhibitor of palmitoylation. These findings indicate that ERα palmitoylation modulated the mERα pool and consequently the ERK1/2 pathway, thereby contributing to pituitary tumour cell proliferation. These results suggest that the plasma membrane ERα pool might be related to the proliferative behaviour of prolactinoma and may be a marker of pituitary tumour growth.
Collapse
Affiliation(s)
- Liliana Del V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan P Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Florencia Picech
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Sabrina Chumpen
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Juan P Nicola
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIBICI-CONICET, Cordoba, Argentina
| | - Pablo Perez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Ana De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Javier Valdez-Taubas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Silvina Gutierrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
14
|
Meitzen J, Britson KA, Tuomela K, Mermelstein PG. The expression of select genes necessary for membrane-associated estrogen receptor signaling differ by sex in adult rat hippocampus. Steroids 2019; 142:21-27. [PMID: 28962849 PMCID: PMC5874170 DOI: 10.1016/j.steroids.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
Abstract
17β-estradiol can rapidly modulate neuron function via membrane estrogen receptors (ERs) in a sex-specific manner. For example, female rat hippocampal neurons express palmitoylated versions of ERα and ERβ that associate with the plasma membrane. These membrane-associated ERs are organized by caveolin proteins into functional signaling microdomains with metabotropic glutamate receptors (mGluRs). ER/mGluR signaling mediates several sex-specific estradiol actions on hippocampal neuron function. An important unanswered question regards the mechanism by which sex-specific membrane-associated ER signaling is generated, especially since it has been previously demonstrated that mGluR action is not sex-specific. One possibility is that the genes necessary for the ER membrane complex are differentially expressed between males and females, including genes that encode ERα and β, caveolin 1 and 3, and/or the palmitoylacyltransferases DHHC-7 and -21. Thus we used qPCR to test the hypothesis that these genes show sex differences in expression in neonatal and adult rat hippocampus. As an additional control we tested the expression of the 20 other DHHC palmitoylacyltransferases with no known connections to ER. In neonatal hippocampus, no sex differences were detected in gene expression. In adult hippocampus, the genes that encode caveolin 1 and DHHC-7 showed decreased expression in females compared to males. Thus, select genes differ by sex at specific developmental stages, arguing for a more nuanced model than simple widespread perinatal emergence of sex differences in all genes enabling sex-specific estradiol action. These findings enable the generation of new hypotheses regarding the mechanisms by which sex differences in membrane-associated ER signaling are programmed.
Collapse
Affiliation(s)
- John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.
| | - Kyla A Britson
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Krista Tuomela
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul G Mermelstein
- Dept. of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Santollo J, Daniels D. Anorexigenic effects of estradiol in the medial preoptic area occur through membrane-associated estrogen receptors and metabotropic glutamate receptors. Horm Behav 2019; 107:20-25. [PMID: 30462987 PMCID: PMC6348004 DOI: 10.1016/j.yhbeh.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 11/22/2022]
Abstract
Activation of membrane-associated estrogen receptors (mER) decreases food and water intake in female rats. Additional studies suggest these effects are mediated, at least in part, by membrane-associated estrogen receptor alpha (ERα). Nevertheless, the critical site of action and the intracellular signaling required for the ingestive effects of ERα remain unclear. Estradiol given to the medial preoptic area (mPOA) decreases ingestive behaviors, and membrane-associated ERα has been shown to affect intracellular signaling through interactions with metabotropic glutamate receptor (mGluR) subtypes, but an involvement of this signaling pathway, in the mPOA, in ingestive behavior remains untested. To address these open questions, we first showed that activation of mER in the mPOA decreased both overnight food and water intake, and did so in a time course consistent with a genomic mechanism of action. Next, we tested the requirement of mGluR1a signaling in the mPOA for the anorexigenic and anti-dipsogenic effects of estradiol. As expected, estradiol in the mPOA decreased food intake, but only in the absence of an mGluR1a antagonist. The same was not true for estradiol effects on water intake, which were unaffected by an mGluR1a antagonist. These results suggest that estrogens require mGluR activation for at least some of their effects on ingestive behaviors, and indicate that the mPOA is a critical site of action. The results also reveal an interesting divergence in the estrogenic control of ingestive behavior by which mGluR signaling in the mPOA plays a role in the control of food intake, but not water intake.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Derek Daniels
- Behavioral Neuroscience Program, Department of Psychology, The State University of New York at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
16
|
Tonn Eisinger KR, Woolfrey KM, Swanson SP, Schnell SA, Meitzen J, Dell'Acqua M, Mermelstein PG. Palmitoylation of caveolin-1 is regulated by the same DHHC acyltransferases that modify steroid hormone receptors. J Biol Chem 2018; 293:15901-15911. [PMID: 30158247 PMCID: PMC6187622 DOI: 10.1074/jbc.ra118.004167] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Palmitoylation is a reversible post-translational addition of a 16-carbon lipid chain involved in trafficking and compartmentalizing target proteins. It is important for many cellular functions, including signaling via membrane-localized estrogen receptors (ERs). Within the nervous system, palmitoylation of ERα is necessary for membrane surface localization and mediation of downstream signaling through the activation of metabotropic glutamate receptors (mGluRs). Substitution of the single palmitoylation site on ERα prevents its physical association with the integral membrane protein caveolin-1 (CAV1), required for the formation of the ER/mGluR signaling complex. Interestingly, siRNA knockdown of either of two palmitoyl acyltransferases, zinc finger DHHC type-containing 7 (DHHC7) or DHHC21, also eliminates this signaling mechanism. Because ERα has only one palmitoylation site, we hypothesized that one of these DHHCs palmitoylates CAV1. We investigated this possibility by using an acyl-biotin exchange assay in HEK293 cells in conjunction with DHHC overexpression and found that DHHC7 increases CAV1 palmitoylation. Substitution of the palmitoylation sites on CAV1 eliminated this effect but did not disrupt the ability of the DHHC enzyme to associate with CAV1. In contrast, siRNA-mediated knockdown of DHHC7 alone was not sufficient to decrease CAV1 palmitoylation but rather required simultaneous knockdown of DHHC21. These findings provide additional information about the overall influence of palmitoylation on the membrane-initiated estrogen signaling pathway and highlight the importance of considering the influence of palmitoylation on other CAV1-dependent processes.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- From the Department of Neuroscience and
- the Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kevin M Woolfrey
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, and
| | | | | | - John Meitzen
- the Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mark Dell'Acqua
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, and
| | - Paul G Mermelstein
- From the Department of Neuroscience and
- the Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
17
|
Micevych PE, Sinchak K. Extranuclear signaling by ovarian steroids in the regulation of sexual receptivity. Horm Behav 2018; 104:4-14. [PMID: 29753716 PMCID: PMC6240501 DOI: 10.1016/j.yhbeh.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Paul E Micevych
- Dept of Neurobiology, David Geffen School of Medicine at UCLA, Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, United States
| | - Kevin Sinchak
- Dept of Biological Sciences, California State University, Long Beach, United States.
| |
Collapse
|
18
|
Wang HB, Li T, Ma DZ, Zhi H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells. FASEB J 2018; 32:fj201701386. [PMID: 29932870 DOI: 10.1096/fj.201701386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3β and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3β (Ser9)/total protein ( t)-GSK3β, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3β (Tyr216)/ t-GSK3β expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Hong-Bin Wang
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Dong-Zhou Ma
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital, Hebei University of Engineering, Handan, China
| |
Collapse
|
19
|
Marczell I, Balogh P, Nyiro G, Kiss AL, Kovacs B, Bekesi G, Racz K, Patocs A. Membrane-bound estrogen receptor alpha initiated signaling is dynamin dependent in breast cancer cells. Eur J Med Res 2018; 23:31. [PMID: 29880033 PMCID: PMC5992704 DOI: 10.1186/s40001-018-0328-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/19/2018] [Indexed: 01/22/2023] Open
Abstract
Background Although membrane-associated estrogen receptors (mERs) have been known to play important role in steroid-induced signal transmission, we still know little about their function in the estrogen-induced proliferation of breast cancer cells. Methods In our current work we tried to separate membrane-initiated estrogen receptor signaling from the overall estrogenic effect in MCF-7 breast carcinoma cells. Re-analyzing expression data from multiple microarray experiments, we selected a set of key regulatory genes involved in proliferation regulation and estrogen signaling to monitor estrogen-induced transcription changes. We then compared these expression changes after 17β-estradiol and a membrane receptor selective estrogen–BSA treatment using quantitative real-time PCR. In order to follow receptor trafficking we used light and electron microscopy. Results Our quantitative real-time PCR results confirmed that the selective membrane receptor agonist, estrogen–BSA induces similarly pronounced expression changes regarding these genes as 17β-estradiol. Morphological study revealed that the membrane-bound form of classical estrogen receptor alpha is internalized after ligand binding via dynamin-dependent, caveola-mediated endocytosis. Inhibition of this internalization with dynamin inhibitor, dynasore practically abolished the regulatory effect of E2-BSA, suggesting that interaction and internalization with the scaffold protein is necessary for effective signaling. Conclusions The physiological role of plasma membrane estrogen receptor alpha is intensively studied, yet there are still several aspects of it to be resolved. The dynamin-dependent, ligand-mediated internalization of mERs seems to play an important role in estrogen signaling. Our results may serve as another example of how membrane initiated estrogen signaling and nuclear receptor initiated signaling overlap and form an intertwined system. Electronic supplementary material The online version of this article (10.1186/s40001-018-0328-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Istvan Marczell
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary
| | - Petra Balogh
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Gabor Nyiro
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary.,Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Szentkirályi str. 46., 1088, Hungary
| | - Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Balazs Kovacs
- Department of Aquaculture, Szent Istvan University, Godollo, Hungary
| | - Gabor Bekesi
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary
| | - Karoly Racz
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary.,Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Attila Patocs
- 2nd Department of Medicine, Semmelweis University, Budapest, Szentkirályi utca 46., 1088, Hungary. .,HAS-SE 'Lendület' Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, 46. Szentkiralyi str, 1088, Hungary. .,Department of Laboratory Medicine, Semmelweis University, Budapest, Nagyvárad sq 4, 1089, Hungary.
| |
Collapse
|
20
|
Tonn Eisinger KR, Larson EB, Boulware MI, Thomas MJ, Mermelstein PG. Membrane estrogen receptor signaling impacts the reward circuitry of the female brain to influence motivated behaviors. Steroids 2018; 133:53-59. [PMID: 29195840 PMCID: PMC5864533 DOI: 10.1016/j.steroids.2017.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
Within the adult female, estrogen signaling is well-described as an integral component of the physiologically significant hypothalamic-pituitary-gonadal axis. In rodents, the timing of ovulation is intrinsically entwined with the display of sexual receptivity. For decades, the importance of estradiol activating intracellular estrogen receptors within the hypothalamus and midbrain/spinal cord lordosis circuits has been appreciated. These signaling pathways primarily account for the ability of the female to reproduce. Yet, often overlooked is that the desire to reproduce is also tightly regulated by estrogen receptor signaling. This lack of emphasis can be attributed to an absence of nuclear estrogen receptors in brain regions associated with reward, such as the nucleus accumbens, which are associated with motivated behaviors. This review outlines how membrane-localized estrogen receptors affect metabotropic glutamate receptor signaling within the rodent nucleus accumbens. In addition, we discuss how, as estrogens drive increased motivation for reproduction, they also produce the untoward side effect of heightening female vulnerability to drug addiction.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin B Larson
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marissa I Boulware
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark J Thomas
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Micevych PE, Mermelstein PG, Sinchak K. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction. Trends Neurosci 2017; 40:654-666. [PMID: 28969926 DOI: 10.1016/j.tins.2017.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/10/2017] [Indexed: 12/21/2022]
Abstract
Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity.
Collapse
Affiliation(s)
- Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), and Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, Los Angeles, CA 90095, USA.
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
22
|
Abstract
The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation) for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH), activating β-endorphin projections to the medial preoptic nucleus (MPN), which in turn modulate ventromedial hypothalamic nucleus (VMH) activity-the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.
Collapse
Affiliation(s)
- Paul E Micevych
- Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at University of California, Los AngelesLos Angeles, CA, United States.,Brain Research Institute, University of California, Los AngelesLos Angeles, CA, United States
| | - Robert L Meisel
- Department of Neuroscience, University of MinnesotaMinneapolis, MN, United States
| |
Collapse
|
23
|
Gouw AM, Efe G, Barakat R, Preecha A, Mehdizadeh M, Garan SA, Brooks GA. Roles of estrogen receptor-alpha in mediating life span: the hypothalamic deregulation hypothesis. Physiol Genomics 2016; 49:88-95. [PMID: 28011880 DOI: 10.1152/physiolgenomics.00073.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several species caloric restriction (CR) extends life span. In this paper we integrate data from studies on CR and other sources to articulate the hypothalamic deregulation hypothesis by which estrogen receptor-alpha (ER-α) signaling in the hypothalamus and limbic system affects life span under the stress of CR in mammals. ER-α is one of two principal estrogen-binding receptors differentially expressed in the amygdala, hippocampus, and several key hypothalamic nuclei: the arcuate nucleus (ARN), preoptic area (POA), ventromedial nucleus (VMN), antero ventral periventricular nucleus (AVPV), paraventricular nucleus (PVN), supraoptic nucleus (SON), and suprachiasmatic nucleus (SCN). Estradiol signaling via ER-α is essential in basal level functioning of reproductive cycle, sexually receptive behaviors, physiological stress responses, as well as sleep cycle, and other nonsexual behaviors. When an organism is placed under long-term CR, which introduces an external stress to this ER-α signaling, the reduction of ER-α expression is attenuated over time in the hypothalamus. This review paper seeks to characterize the downstream effects of ER-α in the hypothalamus and limbic system that affect normal endocrine functioning.
Collapse
Affiliation(s)
- Arvin M Gouw
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and.,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| | - Gizem Efe
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Rita Barakat
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Andrew Preecha
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Morvarid Mehdizadeh
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Steven A Garan
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - George A Brooks
- Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and .,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| |
Collapse
|
24
|
Mela V, Vargas A, Meza C, Kachani M, Wagner EJ. Modulatory influences of estradiol and other anorexigenic hormones on metabotropic, Gi/o-coupled receptor function in the hypothalamic control of energy homeostasis. J Steroid Biochem Mol Biol 2016; 160:15-26. [PMID: 26232394 PMCID: PMC4732935 DOI: 10.1016/j.jsbmb.2015.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 11/22/2022]
Abstract
The appetite suppressant actions of estradiol are due to its ability to attenuate orexigenic signals and potentiate anorexigenic signals. The work from my laboratory has shown that male guinea pigs are more sensitive to the hyperphagic and hypothermic effects of cannabinoids than their female counterparts. Cannabinoid sensitivity is further dampened by the activational effects of estradiol. This occurs via the hypothalamic feeding circuitry, where estradiol rapidly attenuates the cannabinoid CB1 receptor-mediated presynaptic inhibition of glutamatergic input onto anorexigenic proopiomelanocortin (POMC) neurons in the arcuate nucleus. This disruption is blocked by the estrogen receptor antagonist ICI 182,780, and associated with increased expression of phosphatidylinositol-3-kinase (PI3K). Moreover, the ability of estradiol to reduce both the cannabinoid-induced hyperphagia and glutamate release onto POMC neurons is abrogated by the PI3K inhibitor PI 828. The peptide orphanin FQ/nociceptin (OFQ/N) activates opioid receptor-like (ORL)1 receptors to hyperpolarize and inhibit POMC neurons via the activation of postsynaptic G protein-gated, inwardly-rectifying (GIRK) channels. We have demonstrated that the fasting-induced hyperphagia observed in ORL1-null mice is blunted compared to wild type controls. In addition, the ORL1 receptor-mediated activation of GIRK channels in POMC neurons from ovariectomized female rats is markedly impaired by estradiol. The estrogenic attenuation of presynaptic CB1 and postsynaptic ORL1 receptor function may be part of a more generalized mechanism through which anorexigenic hormones suppress orexigenic signaling. Indeed, we have found that leptin robustly suppresses the OFQ/N-induced activation of GIRK channels in POMC neurons. Furthermore, its ability to augment excitatory input onto POMC neurons is blocked by PI 828. Thus, estradiol and other hormones like leptin reduce energy intake at least partly by activating PI3K to disrupt the pleiotropic functions of Gi/o-coupled receptors that inhibit anorexigenic POMC neurons.
Collapse
Affiliation(s)
- Virginia Mela
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Amanda Vargas
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Cecilia Meza
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Edward J Wagner
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
25
|
Micevych PE, Wong AM, Mittelman-Smith MA. Estradiol Membrane-Initiated Signaling and Female Reproduction. Compr Physiol 2016; 5:1211-22. [PMID: 26140715 DOI: 10.1002/cphy.c140056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discoveries of rapid, membrane-initiated steroid actions and central nervous system steroidogenesis have changed our understanding of the neuroendocrinology of reproduction. Classical nuclear actions of estradiol and progesterone steroids affecting transcription are essential. However, with the discoveries of membrane-associated steroid receptors, it is becoming clear that estradiol and progesterone have neurotransmitter-like actions activating intracellular events. Ultimately, membrane-initiated actions can influence transcription. Estradiol membrane-initiated signaling (EMS) modulates female sexual receptivity and estrogen feedback regulating the luteinizing hormone (LH) surge. In the arcuate nucleus, EMS activates a lordosis-regulating circuit that extends to the medial preoptic nucleus and subsequently to the ventromedial nucleus (VMH)--the output from the limbic and hypothalamic regions. Here, we discuss how EMS leads to an active inhibition of lordosis behavior. To stimulate ovulation, EMS facilitates astrocyte synthesis of progesterone (neuroP) in the hypothalamus. Regulation of GnRH release driving the LH surge is dependent on estradiol-sensitive kisspeptin (Kiss1) expression in the rostral periventricular nucleus of the third ventricle (RP3V). NeuroP activation of the LH surge depends on Kiss1, but the specifics of signaling have not been well elucidated. RP3V Kiss1 neurons appear to integrate estradiol and progesterone information which feeds back onto GnRH neurons to stimulate the LH surge. In a second population of Kiss1 neurons, estradiol suppresses the surge but maintains tonic LH release, another critical component of the estrous cycle. Together, evidence suggests that regulation of reproduction involves membrane action of steroids, some of which are synthesized in the brain.
Collapse
Affiliation(s)
- Paul E Micevych
- UCLA - David Geffen School of Medicine Los Angeles, California, USA
| | - Angela May Wong
- UCLA - David Geffen School of Medicine Los Angeles, California, USA
| | | |
Collapse
|
26
|
Conde K, Meza C, Kelly MJ, Sinchak K, Wagner EJ. Estradiol Rapidly Attenuates ORL-1 Receptor-Mediated Inhibition of Proopiomelanocortin Neurons via Gq-Coupled, Membrane-Initiated Signaling. Neuroendocrinology 2016; 103:787-805. [PMID: 26765570 PMCID: PMC4947458 DOI: 10.1159/000443765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Estradiol rapidly regulates the activity of arcuate nucleus (ARH) proopiomelanocortin (POMC) neurons that project to the medial preoptic nucleus (MPN) to regulate lordosis. Orphanin FQ/nociceptin (OFQ/N) acts via opioid receptor-like (ORL)-1 receptors to inhibit these POMC neurons. Therefore, we tested the hypothesis that estradiol excites POMC neurons by rapidly attenuating inhibitory ORL-1 signaling in these cells. Hypothalamic slices through the ARH were prepared from ovariectomized rats injected with Fluorogold into the MPN. Electrophysiological recordings were generated in ARH neurons held at or near -60 mV, and neuronal phenotype was determined post hoc by immunohistofluorescence. OFQ/N application induced robust outward currents and hyperpolarizations via G protein-gated, inwardly rectifying K+ (GIRK) channels that were attenuated by pretreatment with either 17-β estradiol (E2) or E2 conjugated to bovine serum albumin. This was blocked by the estrogen receptor (ER) antagonist ICI 182,780 and mimicked by the Gq-coupled membrane ER (Gq-mER) ligand STX and the ERα agonist PPT. Inhibiting phosphatidylinositol-3-kinase (PI3K) blocked the estrogenic attenuation of ORL-1/GIRK currents. Antagonizing either phospholipase C (PLC), protein kinase C (PKC), protein kinase A (PKA) or neuronal nitric oxide synthase (nNOS) also abrogated E2 inhibition of ORL-1/GIRK currents, whereas activation of PKC, PKA, protein kinase B (Akt) and nNOS substrate L-arginine all attenuated the OFQ/N response. This was observed in 92 MPN-projecting, POMC-positive ARH neurons. Thus, ORL-1 receptor-mediated inhibition of POMC neurons is rapidly and negatively modulated by E2, an effect which is stereoselective and membrane initiated via Gq-mER and ERα activation that signals through PLC, PKC, PKA, PI3K and nNOS.
Collapse
Affiliation(s)
- Kristie Conde
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
| | - Cecilia Meza
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| | - Martin J. Kelly
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| |
Collapse
|
27
|
Kisler K, Dominguez R. Live-Cell Imaging of the Estrogen Receptor by Total Internal Reflection Fluorescence Microscopy. Methods Mol Biol 2016; 1366:175-187. [PMID: 26585135 DOI: 10.1007/978-1-4939-3127-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trafficking studies of plasma membrane-localized intracellular estrogen receptors have mainly relied on biochemical and histological techniques to locate the receptor before and after estradiol stimulation. More often than not these experiments were performed using postmortem, lysed, or fixed tissue samples, whose tissue or cellular structure is typically severely altered or at times completely lost, making the definitive localization of estrogen receptors difficult to ascertain. To overcome this limitation we began using total internal reflection fluorescence microscopy (TIRFM) to study the trafficking of plasma membrane estrogen receptors. This real-time imaging approach, described in this chapter, permits observation of live, intact cells while allowing visualization of the steps (in time and spatial distribution) involved in receptor activation by estradiol and movements on and near the membrane. TIRFM yields high-contrast real-time images of fluorescently labeled E6BSA molecules on and just below the cell surface and is ideal for studying estrogen receptor trafficking in living cells.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Biophysics, and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St., ZNI 323, Los Angeles, CA, 90033, USA
| | - Reymundo Dominguez
- Department of Physiology and Biophysics, Keck Schoolof Medicine of the University of Southern California, Los Angeles, CA, USA.
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 2015; 74:125-38. [PMID: 26122294 PMCID: PMC4820286 DOI: 10.1016/j.yhbeh.2015.06.010] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Over the past 30 years, research has demonstrated that estrogens not only are important for female reproduction, but also play a role in a diverse array of cognitive functions. Originally, estrogens were thought to have only one receptor, localized exclusively to the cytoplasm and nucleus of cells. However, it is now known that there are at least three estrogen receptors (ERs): ERα, ERβ and G-protein coupled ER1 (GPER1). In addition to being localized to nuclei, ERα and ERβ are localized to the cell membrane, and GPER1 is also observed at the cell membrane. The mechanism through which ERs are associated with the membrane remains unclear, but palmitoylation of receptors and associations between ERs and caveolin are implicated in membrane association. ERα and ERβ are mostly observed in the nucleus using light microscopy unless they are particularly abundant. However, electron microscopy has revealed that ERs are also found at the membrane in complimentary distributions in multiple brain regions, many of which are innervated by dopamine inputs and were previously thought to contain few ERs. In particular, membrane-associated ERs are observed in the prefrontal cortex, dorsal striatum, nucleus accumbens, and hippocampus, all of which are involved in learning and memory. These findings provide a mechanism for the rapid effects of estrogens in these regions. The effects of estrogens on dopamine-dependent cognition likely result from binding at both nuclear and membrane-associated ERs, so elucidating the localization of membrane-associated ERs helps provide a more complete understanding of the cognitive effects of these hormones.
Collapse
Affiliation(s)
- Anne Almey
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Heimovics SA, Trainor BC, Soma KK. Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious. Integr Comp Biol 2015; 55:281-93. [PMID: 25980562 DOI: 10.1093/icb/icv048] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.
Collapse
Affiliation(s)
- Sarah A Heimovics
- *Department of Biology, University of St Thomas, St Paul, MN 55105, USA;
| | - Brian C Trainor
- Department of Psychology, University of California-Davis, Davis, CA 95616, USA
| | - Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, V6T 1Z7, Canada
| |
Collapse
|
30
|
Wong AM, Abrams MC, Micevych PE. β-arrestin regulates estradiol membrane-initiated signaling in hypothalamic neurons. PLoS One 2015; 10:e0120530. [PMID: 25803606 PMCID: PMC4372564 DOI: 10.1371/journal.pone.0120530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/23/2015] [Indexed: 12/26/2022] Open
Abstract
Estradiol (E2) action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS). E2 regulates membrane estrogen receptor-α (ERα) levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH), membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1 (Arrb1) was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2) in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN) into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001). These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity.
Collapse
Affiliation(s)
- Angela M. Wong
- Department of Neurobiology David Geffen School of Medicine at UCLA and Laboratory of Neuroendocrinology of the Brain Research Institute, at University of California Los Angeles, Los Angeles, California, United States of America
| | - Matthew C. Abrams
- Department of Neurobiology David Geffen School of Medicine at UCLA and Laboratory of Neuroendocrinology of the Brain Research Institute, at University of California Los Angeles, Los Angeles, California, United States of America
| | - Paul E. Micevych
- Department of Neurobiology David Geffen School of Medicine at UCLA and Laboratory of Neuroendocrinology of the Brain Research Institute, at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sinchak K, Dalhousay L, Sanathara N. Orphanin FQ-ORL-1 regulation of reproduction and reproductive behavior in the female. VITAMINS AND HORMONES 2015; 97:187-221. [PMID: 25677773 DOI: 10.1016/bs.vh.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Orphanin FQ (OFQ/N) and its receptor, opioid receptor-like receptor-1 (ORL-1), are expressed throughout steroid-responsive limbic and hypothalamic circuits that regulate female ovarian hormone feedback and reproductive behavior circuits. The arcuate nucleus of the hypothalamus (ARH) is a brain region that expresses OFQ/N and ORL-1 important for both sexual behavior and modulating estradiol feedback loops. Within the ARH, the activation of the OFQ/N-ORL-1 system facilitates sexual receptivity (lordosis) through the inhibition of β-endorphin neuronal activity. Estradiol initially activates ARH β-endorphin neurons to inhibit lordosis. Simultaneously, estradiol upregulates coexpression of OFQ/N and progesterone receptors and ORL-1 in ARH β-endorphin neurons. Ovarian hormones regulate pre- and postsynaptic coupling of ORL-1 to its G protein-coupled signaling pathways. When the steroid-primed rat is nonreceptive, estradiol acts pre- and postsynaptically to decrease the ability of the OFQ/N-ORL-1 system to inhibit ARH β-endorphin neurotransmission. Conversely, when sexually receptive, ORL-1 signaling is restored to inhibit β-endorphin neurotransmission. Although steroid signaling that facilitates lordosis converges to deactivate ARH β-endorphin neurons, estradiol-only facilitation of lordosis requires the activation of ORL-1, but estradiol+progesterone does not, indicating that multiple circuits mediate ovarian hormone signaling to deactivate ARH β-endorphin neurons. Research on the role of OFQ/N-ORL-1 in ovarian hormone feedback loops is just beginning. In the rat, OFQ/N may act to terminate gonadotropin-releasing hormone and luteinizing hormone release under positive and negative feedbacks. In the ewe, it appears to directly inhibit gonadotropin-releasing hormone release to mediate progesterone-negative feedback. As a whole, the localization and actions of OFQ/N-ORL-1 system indicate that it may mediate the actions of estradiol and progesterone to synchronize reproductive behavior and ovarian hormone feedback loops.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, California, USA.
| | - Lauren Dalhousay
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Nayna Sanathara
- Department of Pharmacological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
32
|
Rainville J, Pollard K, Vasudevan N. Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: cross-talk with glucocorticoids with implications for behavior. Front Endocrinol (Lausanne) 2015; 6:18. [PMID: 25762980 PMCID: PMC4329805 DOI: 10.3389/fendo.2015.00018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
The estrogen receptor and glucocorticoid receptor are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER) or membrane GR (mGR) that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.
Collapse
Affiliation(s)
- Jennifer Rainville
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Kevin Pollard
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Nandini Vasudevan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
- *Correspondence: Nandini Vasudevan, Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA e-mail:
| |
Collapse
|
33
|
Sanathara NM, Moreas J, Mahavongtrakul M, Sinchak K. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat. Neuroendocrinology 2014; 100:103-18. [PMID: 24821192 PMCID: PMC4225187 DOI: 10.1159/000363324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; also known as nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. METHODS We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. RESULTS The number of PR- and OFQ/N-immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple labeled, indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. CONCLUSION Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis.
Collapse
Affiliation(s)
- Nayna M Sanathara
- Department of Biological Sciences, California State University, Long Beach, Long Beach, Calif., USA
| | | | | | | |
Collapse
|
34
|
Shinoda H, Legare ME, Mason GL, Berkbigler JL, Afzali MF, Flint AF, Hanneman WH. Significance of ERα, HER2, and CAV1 expression and molecular subtype classification to canine mammary gland tumor. J Vet Diagn Invest 2014; 26:390-403. [DOI: 10.1177/1040638714527289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Canine mammary gland tumor (CMT) and human breast cancer (HBC) share many similarities regarding their risk factors, histological features, and behavior. Despite the increasing evidence of molecular marker expression as a prognostic indicator for HBC, few studies have applied this approach to CMT. The aim of the present study is to evaluate the significance of the expression of estrogen receptor–alpha (ERα), human epidermal growth factor receptor 2 (HER2), and caveolin-1 (CAV1) to the behavior and the clinical outcome of CMT. Additionally, the correlation between subtype classification (luminal A, luminal B, HER2-overexpressing, basal-like, and normal-like) and tumor behavior prognosis were assessed. Canine mammary gland tissues were immunohistochemically stained for ERα, HER2, and CAV1 and evaluated and classified into 5 subtypes on the basis of immunoreactivity. Although there were no statistically significant differences in the molecular marker immunoreactivity of different subtypes, the degree of positive staining for ERα, extranuclear ERα, HER2, and CAV1 showed significant correlations ( P < 0.05) with the behavior and prognosis of the tumor. The current study indicates the prognostic value of immunohistochemical staining status of ERα, HER2, and CAV1 for CMT. In addition, some trends were seen in subtype classification on the prognosis of the tumor, implying that, although further analysis is needed, there is potential clinical application of 5-subtype classification for CMT.
Collapse
Affiliation(s)
- Hitomi Shinoda
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Marie E. Legare
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Gary L. Mason
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jennifer L. Berkbigler
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Maryam F. Afzali
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Alfred F. Flint
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - William H. Hanneman
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|
35
|
Anchan D, Gafur A, Sano K, Ogawa S, Vasudevan N. Activation of the GPR30 receptor promotes lordosis in female mice. Neuroendocrinology 2014; 100:71-80. [PMID: 25012534 DOI: 10.1159/000365574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Estrogens are important effectors of reproduction and are critical for upregulating female reproductive behavior or lordosis in females. In addition to the importance of transcriptional regulation of genes by 17β-estradiol-bound estrogen receptors (ER), extranuclear signal transduction cascades such as protein kinase A (PKA) are also important in regulating female sexual receptivity. GPR30 (G-protein coupled receptor 30), also known as GPER1, a putative membrane ER (mER), is a G protein-coupled receptor that binds 17β-estradiol with an affinity that is similar to that possessed by the classical nuclear ER and activates both PKA and extracellular-regulated kinase signaling pathways. The high expression of GPR30 in the ventromedial hypothalamus, a region important for lordosis behavior as well as kinase cascades activated by this receptor, led us to hypothesize that GPR30 may regulate lordosis behavior in female rodents. METHOD In this study, we investigated the ability of G-1, a selective agonist of GPR30, to regulate lordosis in the female mouse by administering this agent prior to progesterone in an estradiol-progesterone priming paradigm prior to testing with stud males. RESULTS As expected, 17β-estradiol benzoate (EB), but not sesame oil, increased lordosis behavior in female mice. G-1 also increased lordosis behavior in female mice and decreased the number of rejective responses towards male mice, similar to the effect of EB. The selective GPR30 antagonist G-15 blocked these effects. CONCLUSION This study demonstrates that activation of the mER GPR30 stimulates social behavior in a rodent model in a manner similar to EB.
Collapse
Affiliation(s)
- Divya Anchan
- Neuroscience Program, Tulane University, New Orleans, La., USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Estradiol and other estrogens are important modulators of fetal and maternal physiology in pregnancy. Much is known about the biosynthesis of estrogens in fetus and mother, and much is known about the role that estrogen plays in labor and delivery. However, much less is known about the regulation of estrogen biosynthesis throughout the latter half of gestation, and the role that estrogen plays in homeostatic and neuroendocrine control in the fetus. This review focuses on the biosynthesis and actions of estrogen in the fetal circulation, the role that it plays in the development of the fetus in the latter half of gestation, and the role that is played by the estrogen milieu in the control of the timing of birth. Estrogen circulates in fetal blood in both unconjugated and conjugated molecular forms, with the conjugated steroids far more abundant than the unconjugated steroids. This review therefore also addresses the biological significance of the variety of molecular forms of estrogen circulating in fetal and maternal blood.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 32610, Gainesville, FL, USA,
| |
Collapse
|
37
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
38
|
Balogh P, Szabó A, Katz S, Likó I, Patócs A, L.Kiss A. Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund's adjuvant treatment. PLoS One 2013; 8:e79508. [PMID: 24244516 PMCID: PMC3828353 DOI: 10.1371/journal.pone.0079508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/27/2013] [Indexed: 12/03/2022] Open
Abstract
Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-β) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-α) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-α showed an inverse correlation with the secretion of TGF-β. At the cellular and subcellular levels ER-α was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-α is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-α and its caveola-mediated endocytosis might play role in TGF-β induced type II EMT in vivo.
Collapse
Affiliation(s)
- Petra Balogh
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
- * E-mail:
| | - Arnold Szabó
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Sándor Katz
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - István Likó
- Pharmacology and Drug Safety Research, R. Gedeon Plc, Hungary
| | - Attila Patócs
- HSA-SE Lendület Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Anna L.Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Meitzen J, Luoma JI, Boulware MI, Hedges VL, Peterson BM, Tuomela K, Britson KA, Mermelstein PG. Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 2013; 154:4293-304. [PMID: 24008343 PMCID: PMC3800757 DOI: 10.1210/en.2013-1172] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In addition to activating nuclear estrogen receptor signaling, 17β-estradiol can also regulate neuronal function via surface membrane receptors. In various brain regions, these actions are mediated by the direct association of estrogen receptors (ERs) activating metabotropic glutamate receptors (mGluRs). These ER/mGluR signaling partners are organized into discrete functional microdomains via caveolin proteins. A central question that remains concerns the underlying mechanism by which these subpopulations of ERs are targeted to the surface membrane. One candidate mechanism is S-palmitoylation, a posttranscriptional modification that affects the subcellular distribution and function of the modified protein, including promoting localization to membranes. Here we test for the role of palmitoylation and the necessity of specific palmitoylacyltransferase proteins in neuronal membrane ER action. In hippocampal neurons, pharmacological inhibition of palmitoylation eliminated 17β-estradiol-mediated phosphorylation of cAMP response element-binding protein, a process dependent on surface membrane ERs. In addition, mutation of the palmitoylation site on estrogen receptor (ER) α blocks ERα-mediated cAMP response element-binding protein phosphorylation. Similar results were obtained after mutation of the palmitoylation site on ERβ. Importantly, mutation of either ERα or ERβ did not affect the ability of the reciprocal ER to signal at the membrane. In contrast, membrane ERα and ERβ signaling were both dependent on the expression of the palmitoylacyltransferase proteins DHHC-7 and DHHC-21. Neither mGluR activity nor caveolin or ER expression was affected by knockdown of DHHC-7 and DHHC-21. These data collectively suggest discrete mechanisms that regulate specific isoform or global membrane ER signaling in neurons separate from mGluR activity or nuclear ER function.
Collapse
Affiliation(s)
- John Meitzen
- PhD, Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, 127 David Clark Laboratories, Campus Box 7617, Raleigh, North Carolina 27695.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Micevych P, Sinchak K. Temporal and concentration-dependent effects of oestradiol on neural pathways mediating sexual receptivity. J Neuroendocrinol 2013; 25:1012-23. [PMID: 24028299 PMCID: PMC3943611 DOI: 10.1111/jne.12103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 11/27/2022]
Abstract
The acceptance of oestradiol signalling through receptors found in the cell membrane, as well as, the nucleus, has provided for a re-examination of the timing and location of the actions of oestradiol on neural circuits mediating sexual receptivity (lordosis). Oestradiol membrane signalling involves the transactivation of metabotrophic glutamate receptors (mGluRs) that transduce steroid information through protein kinase C signalling cascades producing rapid activation of lordosis-regulating circuits. It has been known for some time that oestradiol initially produces an inhibition of the medial preoptic nucleus. We have demonstrated that underlying this inhibition is oestradiol acting in the arcuate nucleus to induce β-endorphin release, which inhibits the medial preoptic nucleus through a μ-opioid receptor mechanism. This transient inhibition is relieved by either subsequent progesterone treatment or longer exposure to higher doses of oestradiol to facilitate lordosis behaviour. We review recent findings about oestradiol membrane signalling inducing dendritic spine formation in the arcuate nucleus that is critical for oestradiol induction of sexual receptivity. Moreover, we discuss the evidence that, in addition to oestrogen receptor α, several other putative membrane oestrogen receptors facilitate lordosis behaviour through regulation of the arcuate nucleus. These include the GRP30 and the STX activated Gq-mER. Finally, we report on the importance of GABA acting at GABAB receptors for oestradiol membrane signalling that regulates lordosis circuit activation and sexual receptivity.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, CA 90840
| |
Collapse
|
41
|
Marin R, Casañas V, Pérez JA, Fabelo N, Fernandez CE, Diaz M. Oestrogens as modulators of neuronal signalosomes and brain lipid homeostasis related to protection against neurodegeneration. J Neuroendocrinol 2013; 25:1104-15. [PMID: 23795744 DOI: 10.1111/jne.12068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Oestrogens trigger several pathways at the plasma membrane that exert beneficial actions against neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Part of these actions takes place in lipid rafts, which are membrane domains with a singular protein and lipid composition. These microdomains also represent a preferential site for signalling protein complexes, or signalosomes. A plausible hypothesis is that the dynamic interaction of signalosomes with different extracellular ligands may be at the basis of neuronal maintenance against different neuropathologies. Oestrogen receptors are localised in neuronal lipid rafts, taking part of macromolecular complexes together with a voltage-dependent anion channel (VDAC), and other molecules. Oestradiol binding to its receptor at this level enhances neuroprotection against amyloid-β degeneration through the activation of different signal transduction pathways, including VDAC gating modulation. Moreover, part of the stability and functionality of signalling platforms lays on the distribution of lipid hallmarks in these microstructures, which modulate membrane physicochemical properties, thus favouring molecular interactions. Interestingly, recent findings indicate a potential role of oestrogens in the preservation of neuronal membrane physiology related to lipid homeostasis. Thus, oestrogens and docosahexaenoic acid may act synergistically to stabilise brain lipid structure by regulating neuronal lipid biosynthetic pathways, suggesting that part of the neuroprotective effects elicited by oestrogens occur through mechanisms aimed at preserving lipid homeostasis. Overall, oestrogen mechanisms of neuroprotection may occur not only by its interaction with neuronal protein targets through nongenomic and genomic mechanisms, but also through its participation in membrane architecture stabilisation via 'lipostatic' mechanisms.
Collapse
Affiliation(s)
- R Marin
- Department of Physiology, Laboratory of Cellular Neurobiology, University of La Laguna, La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Mahavongtrakul M, Kanjiya MP, Maciel M, Kanjiya S, Sinchak K. Estradiol dose-dependent regulation of membrane estrogen receptor-α, metabotropic glutamate receptor-1a, and their complexes in the arcuate nucleus of the hypothalamus in female rats. Endocrinology 2013; 154:3251-60. [PMID: 23825124 PMCID: PMC3749471 DOI: 10.1210/en.2013-1235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sexual receptivity in the female rat is dependent on dose and duration of estradiol exposure. A 2 μg dose of estradiol benzoate (EB) primes reproductive behavior circuits without facilitating lordosis. However, 50 μg EB facilitates lordosis after 48 hours. Both EB doses activate membrane estrogen receptor-α (mERα) that complexes with and signals through metabotropic glutamate receptor-1a (mGluR1a). This mERα-mGluR1a signaling activates a multisynaptic lordosis-inhibiting circuit in the arcuate nucleus (ARH) that releases β-endorphin in the medial preoptic nucleus (MPN), activating μ-opioid receptors (MOP). MPN MOP activation is maintained, inhibiting lordosis for 48 hours by 2 μg EB, whereas 50 μg EB at 48 hours deactivates MPN MOP, facilitating lordosis. We hypothesized that 50 μg EB down-regulates ERα and mERα-mGluR1a complexes in the ARH to remove mERα-mGluR1a signaling. In experiment I, 48 hours after 2 μg or 50 μg EB, the number of ARH ERα-immunopositive cells was reduced compared with controls. In experiment II, compared with oil controls, total ARH ERα protein was decreased 48 hours after 50 μg EB, but the 2 μg dose was not. These results indicate that both EB doses reduced the total number of cells expressing ERα, but 2 μg EB may have maintained or increased ERα expressed per cell, whereas 50 μg EB appeared to reduce total ERα per cell. In experiment III, coimmunoprecipitation and Western blot revealed that total mERα and coimmunoprecipitated mERα with mGluR1a were greater 48 hours after 2 μg EB treatment vs rats receiving 50 μg EB. These results indicate 2 μg EB maintains but 50 μg EB down-regulates mERα-mGluR1a to regulate the lordosis circuit activity.
Collapse
Affiliation(s)
- Matthew Mahavongtrakul
- Department of Biological Sciences, California State University, Long Beach, Long Beach, California 90840–9502, USA
| | | | | | | | | |
Collapse
|
43
|
Dominguez R, Dewing P, Kuo J, Micevych P. Membrane-initiated estradiol signaling in immortalized hypothalamic N-38 neurons. Steroids 2013; 78:607-13. [PMID: 23296142 PMCID: PMC3636190 DOI: 10.1016/j.steroids.2012.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022]
Abstract
Regulation of sexual reproduction by estradiol involves the activation of estrogen receptors (ERs) in the hypothalamus. Of the two classical ERs involved in reproduction, ERα appears to be the critical isoform. The role of ERα in reproduction has been found to involve a nuclear ERα that induces a genomic mechanism of action. More recently, a plasma membrane ERα has been shown to trigger signaling pathways involved in reproduction. Mechanisms underlying membrane-initiated estradiol signaling are emerging, including evidence that activation of plasma membrane ERα involves receptor trafficking. The present study examined the insertion of ERα into the plasma membrane of N-38 neurons, an immortalized murine hypothalamic cell line. We identified, using western blotting and PCR that N-38 neurons express full-length 66kDa ERα and a 52kDa ERα spliced variant missing the fourth exon - ERαΔ4. Using surface biotinylation, we observed that treatment of N-38 neurons with estradiol or with a membrane impermeant estradiol elevated plasma membrane ERα protein levels, indicating that membrane signaling increased receptor insertion into the cell membrane. Insertion of ERα was blocked by the ER antagonist ICI 182,780 or with the protein kinase C (PKC) pathway inhibitor bisindolylmaleimide (BIS). Downstream membrane-initiated signaling was confirmed by estradiol activation of PKC-theta (PKCθ) and the release of intracellular calcium. These results indicate that membrane ERα levels in N-38 neurons are dynamically autoregulated by estradiol.
Collapse
Affiliation(s)
- Reymundo Dominguez
- Laboratory of Neuroendocrinology of the Brain Research Institute, Departments of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, United States.
| | | | | | | |
Collapse
|
44
|
Penrod NM, Moore JH. Key genes for modulating information flow play a temporal role as breast tumor coexpression networks are dynamically rewired by letrozole. BMC Med Genomics 2013; 6 Suppl 2:S2. [PMID: 23819860 PMCID: PMC3654875 DOI: 10.1186/1755-8794-6-s2-s2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Genes do not act in isolation but instead as part of complex regulatory networks. To understand how breast tumors adapt to the presence of the drug letrozole, at the molecular level, it is necessary to consider how the expression levels of genes in these networks change relative to one another. Methods Using transcriptomic data generated from sequential tumor biopsy samples, taken at diagnosis, following 10-14 days and following 90 days of letrozole treatment, and a pairwise partial correlation statistic, we build temporal gene coexpression networks. We characterize the structure of each network and identify genes that hold prominent positions for maintaining network integrity and controlling information-flow. Results Letrozole treatment leads to extensive rewiring of the breast tumor coexpression network. Approximately 20% of gene-gene relationships are conserved over time in the presence of letrozole while 80% of relationships are condition dependent. The positions of influence within the networks are transiently held with few genes stably maintaining high centrality scores across the three time points. Conclusions Genes integral for maintaining network integrity and controlling information flow are dynamically changing as the breast tumor coexpression network adapts to perturbation by the drug letrozole.
Collapse
Affiliation(s)
- Nadia M Penrod
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth College, HB7937 One Medical Center Dr., Lebanon, NH 03766, USA
| | | |
Collapse
|
45
|
Micevych P, Christensen A. Membrane-initiated estradiol actions mediate structural plasticity and reproduction. Front Neuroendocrinol 2012; 33:331-41. [PMID: 22828999 PMCID: PMC3496015 DOI: 10.1016/j.yfrne.2012.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022]
Abstract
Over the years, our ideas about estrogen signaling have greatly expanded. In addition to estradiol having direct nuclear actions that mediate transcription and translation, more recent experiments have demonstrated membrane-initiated signaling. Both direct nuclear and estradiol membrane signaling can be mediated by the classical estrogen receptors, ERα and ERβ, which are two of the numerous putative membrane estrogen receptors. Thus far, however, only ERα has been shown to play a prominent role in regulating female reproduction and sexual behavior. Because ERα is a ligand-gated transcription factor and not a typical membrane receptor, trafficking to the cell membrane requires post-translational modifications. Two necessary modifications are palmitoylation and association with caveolins, a family of scaffolding proteins. In addition to their role in trafficking, caveolin proteins also serve to determine ERα interactions with metabotropic glutamate receptors (mGluRs). It is through these complexes that ERα, which cannot by itself activate G proteins, is able to initiate intracellular signaling. Various combinations of ERα-mGluR interactions have been demonstrated throughout the nervous system from hippocampus to striatum to hypothalamus to dorsal root ganglion (DRG) in both neurons and astrocytes. These combinations of ER and mGluR allow estradiol to have both facilitative and inhibitory actions in neurons. In hypothalamic astrocytes, the estradiol-mediated release of intracellular calcium stores regulating neurosteroid synthesis requires ERα-mGluR1a interaction. In terms of estradiol regulation of female sexual receptivity, activation of ERα-mGluR1a signaling complex leads to the release of neurotransmitters and alteration of neuronal morphology. This review will examine estradiol membrane signaling (EMS) activating a limbic-hypothalamic lordosis regulating circuit, which involves ERα trafficking, internalization, and modifications of neuronal morphology in a circuit that underlies female sexual receptivity.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, United States.
| | | |
Collapse
|