1
|
Pasula MB, Sapkota S, Sylvester PW, Briski KP. Sex-dimorphic effects of glucose transporter-2 gene knockdown on hypothalamic primary astrocyte phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt)/mammalian target of rapamycin (mTOR) cascade protein expression and phosphorylation. Mol Cell Endocrinol 2024; 593:112341. [PMID: 39128492 PMCID: PMC11401769 DOI: 10.1016/j.mce.2024.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Glucose transporter-2 (GLUT2), a unique high capacity/low affinity, highly efficient membrane transporter and sensor, regulates hypothalamic astrocyte glucose phosphorylation and glycogen metabolism. The phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway participates in glucose homeostasis, but its sensitivity to glucose-sensory cues is unknown. Current research used a hypothalamic astrocyte primary culture model to investigate whether glucoprivation causes PI3K/Akt/mTOR pathway activation in one or both sexes by GLUT2-dependent mechanisms. Glucoprivation did not alter astrocyte PI3K levels, yet up-regulated both phosphorylated derivatives in female and down-regulated male p60 phosphoprotein expression. GLUT2 siRNA pretreatment diminished glucoprivic patterns of PI3K and phospho-PI3K expression in each sex. Astrocyte Akt and phospho-Akt/Thr308 proteins exhibited divergent, sex-contingent responses to GLUT2 gene knockdown or glucoprivation. GLUT2 siRNA pretreatment exacerbated glucoprivic-associated Akt diminution in the female, and either amplified (male) or reversed (female) glucoprivic regulation of phospho-Akt/Thr308 expression. GLUT2 gene silencing down- (male) or up-(female) regulated mTOR protein, and phospho-mTOR protein in male. Male astrocyte mTOR and phospho-mTOR profile were refractory to glucoprivation, but glucose-deprived females showed GLUT2-independent mTOR inhibition and GLUT2-dependent phospho-mTOR up-augmentation. Results identify a larger number of glucoprivic-sensitive PI3K/Akt/mTOR pathway proteins in female versus male astrocytes, and document divergent responses of common glucose-sensitive targets. GLUT2 stimulates phosphoPI3K protein expression in each sex, but imposes differential control of PI3K, Akt, phospho-Akt/Thr308, mTOR, and phospho-mTOR profiles in male versus female. Data implicate GLUT2 as a driver of distinctive pathway protein responses to glucoprivation in female, but not male.
Collapse
Affiliation(s)
- Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
2
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Marôco JL, Arrais I, Silvestre T, Pinto M, Laranjo S, Magalhães J, Santa-Clara H, Fernhall B, Melo X. Post-acute exercise cardiovagal modulation in older male adults with and without type 2 diabetes. Eur J Appl Physiol 2024; 124:1475-1486. [PMID: 38117338 PMCID: PMC11055715 DOI: 10.1007/s00421-023-05357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2023] [Accepted: 10/28/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE We examined heart rate variability (HRV) and baroreflex sensitivity (BRS) disease- and age-related response at 10-and 60-min after an acute high-intensity interval (HIIE) and moderate continuous exercise (MICE) in older adults with and without type 2 diabetes mellitus (T2DM) and healthy young adults. METHODS Twelve older male adults with (57-84 years) and without T2DM (57-76 years) and 12 healthy young male adults (20-40 years) completed an isocaloric acute bout of HIIE, MICE, and a non-exercise condition in a randomized order. Time and Wavelets-derived frequency domain indices of HRV and BRS were obtained in a supine position and offline over 2-min time-bins using Matlab. RESULTS HIIE but not MICE reduced natural logarithm root mean square of successive differences (Ln-RMSSD) (d = - 0.85; 95% CI - 1.15 to - 0.55 ms, p < 0.001), Ln-high-frequency power (d = - 1.60; 95% CI - 2.24 to - 0.97 ms2; p < 0.001), and BRS (d = - 6.32; 95% CI - 9.35 to - 3.29 ms/mmHg, p < 0.001) in adults without T2DM (averaged over young and older adults without T2DM), returning to baseline 60 min into recovery. These indices remained unchanged in older adults with T2DM after HIIE and MICE. Older adults with T2DM had lower resting Ln-RMSSD and BRS than aged-matched controls (Ln-RMSSD, d = - 0.71, 95% CI - 1.16 to - 0.262 ms, p = 0.001; BRS d = - 3.83 ms/mmHg), 95% CI - 6.90 to - 0.76, p = 0.01). CONCLUSIONS Cardiovagal modulation following acute aerobic exercise is intensity-dependent only in adults without T2DM, and appears age-independent. These findings provide evidence of cardiac autonomic impairments in older adults with T2DM at rest and following aerobic exercise.
Collapse
Affiliation(s)
- João Luís Marôco
- Integrative Human Physiology Laboratory, Manning College of Nursing & Health Sciences, University of Massachusetts Boston, Boston, MA, USA
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisbon, Portugal
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana-Universidade de Lisboa, Oeiras, Portugal
| | - Inês Arrais
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisbon, Portugal
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana-Universidade de Lisboa, Oeiras, Portugal
| | - Tiago Silvestre
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisbon, Portugal
- Faculdade de Ciências da Saúde e do Desporto, Universidade Europeia, Lisbon, Portugal
| | - Marco Pinto
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisbon, Portugal
| | - Sérgio Laranjo
- Department of Physiology, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center. NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Magalhães
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana-Universidade de Lisboa, Oeiras, Portugal
| | - Helena Santa-Clara
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisbon, Portugal
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana-Universidade de Lisboa, Oeiras, Portugal
| | - Bo Fernhall
- Integrative Human Physiology Laboratory, Manning College of Nursing & Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Xavier Melo
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana-Universidade de Lisboa, Oeiras, Portugal.
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511, Almada, Portugal.
| |
Collapse
|
4
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
5
|
Vatashchuk MV, Bayliak MM, Hurza VV, Demianchuk OI, Gospodaryov DV, Lushchak VI. Alpha-ketoglutarate partially alleviates effects of high-fat high-fructose diet in mouse muscle. EXCLI JOURNAL 2023; 22:1264-1277. [PMID: 38234967 PMCID: PMC10792174 DOI: 10.17179/excli2023-6608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/16/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
Consumption of high-calorie diets leads to excessive accumulation of storage lipids in adipose tissue. Metabolic changes occur not only in adipose tissue but in other tissues, too, such as liver, heart, muscle, and brain. This study aimed to explore the effects of high-fat high-fructose diet (HFFD) alone and in the combination with alpha-ketoglutarate (AKG), a well-known cellular metabolite, on energy metabolism in the skeletal muscle of C57BL/6J mice. Five-month-old male mice were divided into four groups - the control one fed a standard diet (10 % kcal fat), HFFD group fed a high-fat high-fructose diet (45 % kcal fat, 15 % kcal fructose), AKG group fed a standard diet with 1 % sodium AKG in drinking water, and HFFD + AKG group fed HFFD and water with 1 % sodium AKG. The dietary regimens lasted 8 weeks. Mice fed HFFD had higher levels of storage triacylglycerides, lower levels of glycogen, and total water-soluble protein, and higher activities of key glycolytic enzymes, namely hexokinase, phosphofructokinase, and pyruvate kinase, as compared with the control group. The results suggest that muscles of HFFD mice may suffer from lipotoxicity. In HFFD + AKG mice, levels of the metabolites and activities of glycolytic enzymes did not differ from the respective values in the control group, except for the activity of pyruvate kinase, which was significantly lower in HFFD + AKG group compared with the control. Thus, metabolic changes in mouse skeletal muscles, caused by HFFD, were alleviated by AKG, indicating a protective role of AKG regarding lipotoxicity.
Collapse
Affiliation(s)
- Myroslava V. Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Maria M. Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Viktoriia V. Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Oleh I. Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
- Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76018, Ukraine
| |
Collapse
|
6
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
7
|
Metaxakis A, Pavlidis M, Tavernarakis N. Neuronal atg1 Coordinates Autophagy Induction and Physiological Adaptations to Balance mTORC1 Signalling. Cells 2023; 12:2024. [PMID: 37626835 PMCID: PMC10453232 DOI: 10.3390/cells12162024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The mTORC1 nutrient-sensing pathway integrates metabolic and endocrine signals into the brain to evoke physiological responses to food deprivation, such as autophagy. Nevertheless, the impact of neuronal mTORC1 activity on neuronal circuits and organismal metabolism remains obscure. Here, we show that mTORC1 inhibition acutely perturbs serotonergic neurotransmission via proteostatic alterations evoked by the autophagy inducer atg1. Neuronal ATG1 alters the intracellular localization of the serotonin transporter, which increases the extracellular serotonin and stimulates the 5HTR7 postsynaptic receptor. 5HTR7 enhances food-searching behaviour and ecdysone-induced catabolism in Drosophila. Along similar lines, the pharmacological inhibition of mTORC1 in zebrafish also stimulates food-searching behaviour via serotonergic activity. These effects occur in parallel with neuronal autophagy induction, irrespective of the autophagic activity and the protein synthesis reduction. In addition, ectopic neuronal atg1 expression enhances catabolism via insulin pathway downregulation, impedes peptidergic secretion, and activates non-cell autonomous cAMP/PKA. The above exert diverse systemic effects on organismal metabolism, development, melanisation, and longevity. We conclude that neuronal atg1 aligns neuronal autophagy induction with distinct physiological modulations, to orchestrate a coordinated physiological response against reduced mTORC1 activity.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Michail Pavlidis
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece;
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 71110 Heraklion, Crete, Greece
| |
Collapse
|
8
|
Gleason B, Kuang A, Bain JR, Muehlbauer MJ, Ilkayeva OR, Scholtens DM, Lowe WL. Association of Maternal Metabolites and Metabolite Networks with Newborn Outcomes in a Multi-Ancestry Cohort. Metabolites 2023; 13:505. [PMID: 37110162 PMCID: PMC10145069 DOI: 10.3390/metabo13040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The in utero environment is important for newborn size at birth, which is associated with childhood adiposity. We examined associations between maternal metabolite levels and newborn birthweight, sum of skinfolds (SSF), and cord C-peptide in a multinational and multi-ancestry cohort of 2337 mother-newborn dyads. Targeted and untargeted metabolomic assays were performed on fasting and 1 h maternal serum samples collected during an oral glucose tolerance test performed at 24-32 week gestation in women participating in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Anthropometric measurements were obtained on newborns at birth. Following adjustment for maternal BMI and glucose, per-metabolite analyses demonstrated significant associations between maternal metabolite levels and birthweight, SSF, and cord C-peptide. In the fasting state, triglycerides were positively associated and several long-chain acylcarnitines were inversely associated with birthweight and SSF. At 1 h, additional metabolites including branched-chain amino acids, proline, and alanine were positively associated with newborn outcomes. Network analyses demonstrated distinct clusters of inter-connected metabolites significantly associated with newborn phenotypes. In conclusion, numerous maternal metabolites during pregnancy are significantly associated with newborn birthweight, SSF, and cord C-peptide independent of maternal BMI and glucose, suggesting that metabolites in addition to glucose contribute to newborn size at birth and adiposity.
Collapse
Affiliation(s)
- Brooke Gleason
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - Alan Kuang
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - James R. Bain
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Olga R. Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Denise M. Scholtens
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - William L. Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| |
Collapse
|
9
|
Rules for body fat interventions based on an operating point mechanism. iScience 2023; 26:106047. [PMID: 36818281 PMCID: PMC9929596 DOI: 10.1016/j.isci.2023.106047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Interventions to reduce fat are important for human health. However, they can have opposing effects such as exercise that decreases fat but increases food intake, or coherent effects such as leptin resistance which raises both. Furthermore, some interventions show an overshoot in food intake, such as recovery from a diet, whereas others do not. To explain these properties we present a graphical framework called the operating point model, based on leptin control of feeding behavior. Steady-state fat and food intake is given by the intersection of two experimental curves - steady-state fat at a given food intake and ad libitum food intake at a given fat level. Depending on which curve an intervention shifts, it has opposing or coherent effects with or without overshoot, in excellent agreement with rodent data. The model also explains the quadratic relation between leptin and fat in humans. These concepts may guide the understanding of fat regulation disorders.
Collapse
|
10
|
Jin BY, Kim HJ, Oh MJ, Ha NH, Jeong YT, Choi SH, Lee JS, Kim NH, Kim DH. Metformin acts as a dual glucose regulator in mouse brain. Front Pharmacol 2023; 14:1108660. [PMID: 37153803 PMCID: PMC10157063 DOI: 10.3389/fphar.2023.1108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Aims: Metformin improves glucose regulation through various mechanisms in the periphery. Our previous study revealed that oral intake of metformin activates several brain regions, including the hypothalamus, and directly activates hypothalamic S6 kinase in mice. In this study, we aimed to identify the direct effects of metformin on glucose regulation in the brain. Materials and methods: We investigated the role of metformin in peripheral glucose regulation by directly administering metformin intracerebroventricularly in mice. The effect of centrally administered metformin (central metformin) on peripheral glucose regulation was evaluated by oral or intraperitoneal glucose, insulin, and pyruvate tolerance tests. Hepatic gluconeogenesis and gastric emptying were assessed to elucidate the underlying mechanisms. Liver-specific and systemic sympathetic denervation were performed. Results: Central metformin improved the glycemic response to oral glucose load in mice compared to that in the control group, and worsened the response to intraperitoneal glucose load, indicating its dual role in peripheral glucose regulation. It lowered the ability of insulin to decrease serum glucose levels and worsened the glycemic response to pyruvate load relative to the control group. Furthermore, it increased the expression of hepatic G6pc and decreased the phosphorylation of STAT3, suggesting that central metformin increased hepatic glucose production. The effect was mediated by sympathetic nervous system activation. In contrast, it induced a significant delay in gastric emptying in mice, suggesting its potent role in suppressing intestinal glucose absorption. Conclusion: Central metformin improves glucose tolerance by delaying gastric emptying through the brain-gut axis, but at the same time worsens it by increasing hepatic glucose production via the brain-liver axis. However, with its ordinary intake, central metformin may effectively enhance its glucose-lowering effect through the brain-gut axis, which could surpass its effect on glucose regulation via the brain-liver axis.
Collapse
Affiliation(s)
- Bo-Yeong Jin
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun-Ju Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Mi-Jeong Oh
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Na-Hee Ha
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- *Correspondence: Dong-Hoon Kim,
| |
Collapse
|
11
|
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232214417. [PMID: 36430894 PMCID: PMC9699017 DOI: 10.3390/ijms232214417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a global concern and has become a major public health event affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue pancreas. In recent years, more and more evidence has proved that insulin regulates various functions of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin resistance, is closely related to AD, which has drawn extensive attention to the relationship between hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin administration on memory and its underlying mechanism. We also highlight the molecular link between hippocampal insulin resistance and AD and provide a theoretical basis for finding new therapeutic targets for AD in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-6273-3778; Fax: +86-10-6273-3199
| |
Collapse
|
12
|
Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Curr Drug Targets 2022; 23:692-710. [PMID: 35021971 DOI: 10.2174/1389450123666220111115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
13
|
Alaaraj N, Soliman A, Hamed N, Alyafei F, De Sanctis V. Understanding the complex role of mTORC as an intracellular critical mediator of whole-body metabolism in anorexia nervosa: A mini review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021170. [PMID: 33682848 PMCID: PMC7975969 DOI: 10.23750/abm.v92i1.11342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
Anorexia nervosa (AN) is a kind of malnutrition resulting from chronic self-induced starvation. The reported associated endocrine changes (adaptive and non-adaptive) include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1) secretion, relative hypercortisolemia, decreased leptin and insulin concentrations, and increased ghrelin, Peptide YY (PYY) and adiponectin secretion. The combined effect of malnutrition and endocrinopathy may have deleterious effects on multi-organs including bone, gonads, thyroid gland, and brain (neurocognition, anxiety, depression, and other psychopathologies). The mammalian target of rapamycin (mTOR) is a kinase that in humans is encoded by the mTOR gene. Recent studies suggest an important role of mTOR complex in integration of nutrient and hormone signals to adjust energy homeostasis. In this review, we tried to elucidate the role/s of mTOR as critical mediator of the cellular response in anorexia nervosa. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Nada Alaaraj
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | - Ashraf Soliman
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | - Noor Hamed
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | - Fawziya Alyafei
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | | |
Collapse
|
14
|
Huska B, Niccoli S, Phenix CP, Lees SJ. Leucine Potentiates Glucose-mediated 18F-FDG Uptake in Brown Adipose Tissue via β-Adrenergic Activation. Biomedicines 2020; 8:biomedicines8060159. [PMID: 32545834 PMCID: PMC7345234 DOI: 10.3390/biomedicines8060159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Significant depots of brown adipose tissue (BAT) have been identified in many adult humans through positron emission tomography (PET), with the amount of BAT being inversely correlated with obesity. As dietary activation of BAT has implications for whole body glucose metabolism, leucine was used in the present study to determine its ability to promote BAT activation resulting in increased glucose uptake. In order to assess this, 2-deoxy-2-(fluorine-18)fluoro-d-glucose (18F-FDG) uptake was measured in C57BL/6 mice using microPET after treatment with leucine, glucose, or both in interscapular BAT (IBAT). Pretreatment with propranolol (PRP) was used to determine the role of β-adrenergic activation in glucose and leucine-mediated 18F-FDG uptake. Analysis of maximum standardized uptake values (SUVMAX) determined that glucose administration increased 18F-FDG uptake in IBAT by 25.3%. While leucine did not promote 18F-FDG uptake alone, it did potentiate glucose-mediated 18F-FDG uptake, increasing 18F-FDG uptake in IBAT by 22.5%, compared to glucose alone. Pretreatment with PRP prevented the increase in IBAT 18F-FDG uptake following the combination of glucose and leucine administration. These data suggest that leucine is effective in promoting BAT 18F-FDG uptake through β-adrenergic activation in combination with glucose.
Collapse
Affiliation(s)
- Brenda Huska
- Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Sarah Niccoli
- Medical Sciences, Lakehead University Faculty of Medicine, Thunder Bay, ON P7B 5E1, Canada;
- Northern Ontario School of Medicine, Medical Sciences Division, Thunder Bay, ON P7B 5E1, Canada
| | - Christopher P. Phenix
- Northern Ontario School of Medicine, Medical Sciences Division, Thunder Bay, ON P7B 5E1, Canada
- Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7A 7T1, Canada
- Correspondence: (C.P.P.); (S.J.L.); Tel.: +1-(306)-966-4193 (C.P.P.); +1-(807)-766-7435 (S.J.L.); Fax: +1-(306)-966-4730 (C.P.P.); +1-(807)-766-7362 (S.J.L.)
| | - Simon J. Lees
- Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Medical Sciences, Lakehead University Faculty of Medicine, Thunder Bay, ON P7B 5E1, Canada;
- Northern Ontario School of Medicine, Medical Sciences Division, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: (C.P.P.); (S.J.L.); Tel.: +1-(306)-966-4193 (C.P.P.); +1-(807)-766-7435 (S.J.L.); Fax: +1-(306)-966-4730 (C.P.P.); +1-(807)-766-7362 (S.J.L.)
| |
Collapse
|
15
|
Goldberger JJ, Pelchovitz DJ, Ng J, Subacius H, Chicos AB, Banthia S, Molitch M, Goldberg RB. Exercise based assessment of cardiac autonomic function in type 1 versus type 2 diabetes mellitus. Cardiol J 2020; 29:272-283. [PMID: 32378730 PMCID: PMC9007477 DOI: 10.5603/cj.a2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2019] [Revised: 05/07/2020] [Accepted: 04/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Cardiac autonomic neuropathy (CAN) is a complication of diabetes mellitus (DM) that is associated with increased mortality. Exercise-based assessment of autonomic function has identified diminished parasympathetic reactivation after exercise in type 2 DM. It is postulated herein, that this would be more prominent among those with type 1 DM. Methods Sixteen subjects with type 1 DM (age 32.9 ± 10.1 years), 18 subjects with type 2 DM (55.4 ± 8.0 years) and 30 controls (44.0 ± 11.6 years) underwent exercise-based assessment of autonomic function. Two 16-min submaximal bicycle tests were performed followed by 45 min of recovery. On the second test, atropine (0.04 mg/kg) was administered near end-exercise so that all of the recovery occurred under parasympathetic blockade. Plasma epinephrine and norepinephrine levels were measured at rest, during exercise, and during recovery. Results There were no differences in resting or end-exercise heart rates in the three groups. Parasympathetic effect on RR-intervals during recovery (p < 0.03) and heart rate recovery (p = 0.02) were blunted in type 2 DM. Type 1 DM had higher baseline epinephrine and norepinephrine levels (p < 0.03), and exhibited persistent sympathoexcitation during recovery. Conclusions Despite a longer duration of DM in the study patients with type 1 versus type 2 DM, diminished parasympathetic reactivation was not noted in type 1 DM. Instead, elevation in resting plasma catecholamines was noted compared to type 2 DM and controls. The variable pathophysiology for exercise-induced autonomic abnormalities in type 1 versus type 2 DM may impact prognosis.
Collapse
Affiliation(s)
- Jeffrey J Goldberger
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, United States.
| | - Daniel J Pelchovitz
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Ng
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haris Subacius
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alexandru B Chicos
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Smriti Banthia
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Mark Molitch
- Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ronald B Goldberg
- Division of Endocrinology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
16
|
Tavares MR, Lemes SF, de Fante T, Saenz de Miera C, Pavan ICB, Bezerra RMN, Prada PO, Torsoni MA, Elias CF, Simabuco FM. Modulation of hypothalamic S6K1 and S6K2 alters feeding behavior and systemic glucose metabolism. J Endocrinol 2020; 244:71-82. [PMID: 31557728 PMCID: PMC8010582 DOI: 10.1530/joe-19-0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022]
Abstract
The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.
Collapse
Affiliation(s)
- Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Simone Ferreira Lemes
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Cristina Saenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Patricia Oliveira Prada
- Laboratory of Molecular Research in Obesity (LABIMO), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
17
|
Zhang X, Liu Y, Qi J, Tian Z, Tang N, Chen D, Li Z. Progress in understanding the roles of Urocortin3 (UCN3) in the control of appetite from studies using animal models. Peptides 2019; 121:170124. [PMID: 31415798 DOI: 10.1016/j.peptides.2019.170124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/02/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
Urocortin3 (UCN3), the newest member of corticotrophin releasing hormone (CRH) family polypeptides, is an anorexic factor discovered in 2001, which has a strong inhibitory effect on animal appetite regulation. UCN3 is widely distributed in various tissues of animals and has many biological functions. Based on the research progress of UCN3 on mammals and non-mammals, this paper summarized the discovery, tissue distribution, appetite regulation and mechanism of UCN3 in animals, in order to provide a reference for feeding regulation and growth in mammals and fish in further research and production.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Central administration of insulin and refeeding lead to the phosphorylation of AKT, but not FOXO1, in the hypothalamus of broiler chicks. Physiol Behav 2019; 210:112644. [PMID: 31398442 DOI: 10.1016/j.physbeh.2019.112644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 11/23/2022]
Abstract
Several studies in rodents and layer chickens have demonstrated that insulin upregulates hypothalamic AKT-mediated signaling and expression of proopiomelanocortin (POMC, the precursor of alpha-melanocyte stimulating hormone, an anorexigenic peptide) and suppresses appetite in these animals. However, a previous study has also reported that insulin fails to suppress food intake in broiler chicks. In the present study, no significant differences were observed in hypothalamic AKT and forkhead box O1 (FOXO1) phosphorylation levels between broiler and layer chicks. The phosphorylation rate of AKT, but not that of FOXO1, increased in the hypothalami of broilers refed for 1 h after a 24-h fast, with a corresponding increase in plasma insulin concentration. Intracerebroventricular (ICV) administration of 50 pmol insulin, which could decrease food intake in broiler chicks, significantly increased the AKT phosphorylation rate, whereas no significant change was observed in FOXO1 phosphorylation or POMC expression after ICV insulin administration. These findings suggest that hypothalamic AKT responds to insulin in broiler chicks, but FOXO1-mediated regulation of POMC expression is not induced by insulin, which may be one of the causes of excessive food intake in broiler chickens.
Collapse
|
19
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
20
|
Seo M, Islam SA, Moon SS. Acute anti-obesity effects of intracerebroventricular 11β-HSD1 inhibitor administration in diet-induced obese mice. J Neuroendocrinol 2018; 30:e12580. [PMID: 29418022 DOI: 10.1111/jne.12580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/20/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
The hypothalamus is the regulatory centre of both appetite and energy balance and endoplasmic reticulum (ER) stress in the hypothalamus is involved in the pathogenesis of obesity. Recently, inhibition of 11 β hydroxysteroid dehydrogenase type1 (11β-HSD1) was reported to have an anti-obesity effect by reducing fat mass. However, the link between the role of 11β-HSD1 in the hypothalamus and obesity has yet to be determined. In the present study, embryonal primary hypothalamic neurones and high-fat diet (HFD) fed mice were used to investigate the anorexigenic effects of 11β-HSD1 inhibitors both in vitro and in vivo. In hypothalamic neurones, carbenoxolone (a non selecitve 11β-HSD inhibitor) alleviated ER stress and ER stress-induced neuropeptide alterations. In HFD mice, i.c.v. administration of carbenoxolone or KR67500 (nonselective and selective 11β-HSD1 inhibitors, respectively) was associated with less weight gain compared to control mice for 24 hours after treatment, presumably by reducing food intake. Furthermore, glucose regulated protein (Grp78), spliced X-box binding protein (Xbp-1s), c/EBP homologous protein (chop) and ER DnaJ homologue protein (Erdj4) expression was decreased in the hypothalami of mice administrated 11β-HSD1 inhibitors compared to controls. Conversely, the phosphorylation of protein kinase B (PKB/Akt), signal transducer and activator of transcription 3 (Stat3), mitogen-activated protein kinase (MAPK/ERK) and S6 kinase1 (S6K1) in the hypothalamus was induced more in mice treated using the same regimes. In conclusion, acute 11β-HSD1 inhibition in the hypothalamus could reduce food intake by decreasing ER stress and increasing insulin, leptin, and mammalian target of rapamycin complex 1 (mTORC1) signalling.
Collapse
Affiliation(s)
- M Seo
- Medical Institute of Dongguk University, Gyeongju, South Korea
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, South Korea
| | - S A Islam
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - S-S Moon
- Medical Institute of Dongguk University, Gyeongju, South Korea
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| |
Collapse
|
21
|
Saneyasu T, Fujita S, Kitashiro A, Fukuzo S, Honda K, Kamisoyama H. Hypothalamic Akt-mediated signaling regulates food intake in chicks. Neurosci Lett 2018; 670:48-52. [DOI: 10.1016/j.neulet.2018.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2017] [Revised: 12/27/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
22
|
Fujita S, Honda K, Hiramoto D, Gyu M, Okuda M, Nakayama S, Yamaguchi M, Saneyasu T, Kamisoyama H. Central and peripheral administrations of insulin-like growth factor-1 suppress food intake in chicks. Physiol Behav 2017; 179:308-312. [DOI: 10.1016/j.physbeh.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022]
|
23
|
Rijnsburger M, Eggels L, Castel J, Cruciani-Guglielmacci C, Ackermans M, Luquet S, la Fleur S. A novel, double intra-carotid cannulation technique to study the effect of central nutrient sensing on glucose metabolism in the rat. J Neurosci Methods 2017; 290:79-84. [DOI: 10.1016/j.jneumeth.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
24
|
Rodrigues BDA, Kuga GK, Muñoz VR, Gaspar RC, Tavares MR, Botezelli JD, da Silva ASR, Cintra DE, de Moura LP, Simabuco FM, Ropelle ER, Pauli JR. Overexpression of Mitogen-activated protein kinase phosphatase-3 (MKP-3) reduces FoxO1 phosphorylation in mice hypothalamus. Neurosci Lett 2017; 659:14-17. [PMID: 28866049 DOI: 10.1016/j.neulet.2017.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2017] [Revised: 08/11/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
The mitogen-activated kinase phosphatase-3 (MKP-3) has gained great importance in the scientific community by acting as a regulator of the cell cycle through dephosphorylation of FoxO1, an important transcription factor involved in the insulin intracellular signaling cascade. When dephosphorylated and translocated to the nuclei, FoxO1 can promote the transcription of orexigenic neuropeptides (NPY/AgRP) in the hypothalamus, whereas insulin signaling is responsible for the disruption of this process. However, it is not understood if the hypothalamic activation of MKP-3 affects FoxO1 phosphorylation, and we hypothesized that MKP-3 overexpression reduces the capacity of the insulin signal to phosphorylate FoxO1. In the present study, we overexpressed the DUSP6 gene through an injection of adenovirus directly into the hypothalamic third ventricle of Swiss mice. The colocalization of the adenovirus was confirmed by the immunofluorescence assay. Then, MKP-3 overexpression resulted in a significant reduction of hypothalamic FoxO1 phosphorylation after insulin stimulation. This effect was independent of changes in Akt phosphorylation. Thus, the role of MKP-3 in the hypothalamus is closely associated with FoxO1 dephosphorylation and may provide a potential therapeutic target against hypothalamic disorders related to obesity and unbalanced food intake control.
Collapse
Affiliation(s)
| | - Gabriel Keine Kuga
- Post-Graduate Program in Movement Sciences, São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | - José Rodrigo Pauli
- School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
25
|
Toklu HZ, Bruce EB, Sakarya Y, Carter CS, Morgan D, Matheny MK, Kirichenko N, Scarpace PJ, Tümer N. Anorexic response to rapamycin does not appear to involve a central mechanism. Clin Exp Pharmacol Physiol 2017; 43:802-7. [PMID: 27232670 DOI: 10.1111/1440-1681.12601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2016] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
Abstract
The authors have previously demonstrated that a low and intermittent peripheral dose of rapamycin (1 mg/kg three times/week) to rats inhibited mTORC1 signalling, but avoided the hyperlipidemia and diabetes-like syndrome associated with higher doses of rapamycin. The dosing regimen reduced food intake, body weight, adiposity, serum leptin and triglycerides. mTORC1 signalling was inhibited in both liver and hypothalamus, suggesting some of the actions, in particular the decrease in food intake, may be the results of a central mechanism. To test this hypothesis, rapamycin (30 μg/day for 4 weeks) was infused into 23-25-month-old F344xBN rats by intracerebroventricular (icv) mini pumps. Our results demonstrated that central infusion did not alter food intake or body weight, although there was a tendency for a decrease in body weight towards the end of the study. mTORC1 signalling, evidenced by decreased phosphorylation of S6 protein at end of 4 weeks, was not activated in liver, hypothalamus or hindbrain. Fat and lean mass, sum of white adipose tissues, brown adipose tissue, serum glucose, insulin and leptin levels remained unchanged. Thus, these data suggest that the anorexic and body weight responses evident with peripheral rapamycin are not the result of direct central action. The tendency for decreased body weight towards the end of study, suggests that there is either a slow transport of centrally administered rapamycin into the periphery, or that there is delayed action of rapamycin at sites in the brain.
Collapse
Affiliation(s)
- Hale Z Toklu
- Veterans Affairs Geriatric Research Education & Clinical Center, Gainesville, FL, USA.,Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erin B Bruce
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Yasemin Sakarya
- Veterans Affairs Geriatric Research Education & Clinical Center, Gainesville, FL, USA.,Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Christy S Carter
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Drake Morgan
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Michael K Matheny
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Nataliya Kirichenko
- Veterans Affairs Geriatric Research Education & Clinical Center, Gainesville, FL, USA.,Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Philip J Scarpace
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Nihal Tümer
- Veterans Affairs Geriatric Research Education & Clinical Center, Gainesville, FL, USA.,Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Hellsten SV, Eriksson MM, Lekholm E, Arapi V, Perland E, Fredriksson R. The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet. PLoS One 2017; 12:e0172917. [PMID: 28235079 PMCID: PMC5325605 DOI: 10.1371/journal.pone.0172917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2016] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
SLC38A9 is characterized as a lysosomal component of the amino acid sensing Ragulator-RAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1). Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm). After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm).
Collapse
Affiliation(s)
- Sofie V. Hellsten
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
- * E-mail:
| | - Mikaela M. Eriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Emilia Lekholm
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Vasiliki Arapi
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Emelie Perland
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| |
Collapse
|
27
|
Caron A, Richard D. Neuronal systems and circuits involved in the control of food intake and adaptive thermogenesis. Ann N Y Acad Sci 2016; 1391:35-53. [PMID: 27768821 DOI: 10.1111/nyas.13263] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
With the still-growing prevalence of obesity worldwide, major efforts are made to understand the various behavioral, environmental, and genetic factors that promote excess fat gain. Obesity results from an imbalance between energy intake and energy expenditure, which emphasizes the importance of deciphering the mechanisms behind energy balance regulation to understand its physiopathology. The control of energy balance is assured by brain systems/circuits capable of generating adequate ingestive and thermogenic responses to maintain the stability of energy reserves, which implies a proper integration of the homeostatic signals that inform about the status of the energy stores. In this article, we overview the organization and functionality of key neuronal circuits or pathways involved in the control of food intake and energy expenditure. We review the role of the corticolimbic (executive and reward) and autonomic systems that integrate their activities to regulate energy balance. We also describe the mechanisms and pathways whereby homeostatic sensing is achieved in response to variations of homeostatic hormones, such as leptin, insulin, and ghrelin, while putting some emphasis on the prominent importance of the mechanistic target of the rapamycin signaling pathway in coordinating the homeostatic sensing process.
Collapse
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec and Faculty of Medicine, Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec and Faculty of Medicine, Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Kim TH, Sohn YC. Changes of Sexual Behaviors in Rapamycin-injected Cichlid Fish Astatotilapia burtoni Males. Dev Reprod 2016; 20:267-274. [PMID: 27796008 PMCID: PMC5078152 DOI: 10.12717/dr.2016.20.3.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2016] [Revised: 09/02/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
Cichlid fish species exhibit characteristic sexual behaviors according to not only reproductive stages but also social status. In a reproductive season, Astatotilapia burtoni males compete for females and a small number of dominant winners finally obtain the chance of spermiation. In addition to the characteristic behaviors, the dominant males have relatively bigger gonadotropin-releasing hormone 1 (GnRH1) neurons in the preoptic area (POA) of brain compared to those of subordinate males. Although the stimulatory effect of GnRH1 in vertebrate reproduction is well established, little is known about the triggering signal pathway to control GnRH1 neurons and GnRH1-mediated sexual behavior. In the present study, we evaluated the potential effect of TOR inhibitor rapamycin in relation to the cichlid male behaviors and GnRH1 neuron. After 14 h and 26 h of intraventricular injection of rapamycin, behavior patterns of chasing and courtship display did not show significant changes between rapamycin- and DMSO-injected males. Behaviors of spawning site entry increased in rapamycininjected fish at 26 h post-injection than at 14 h post-injection significantly (P<0.05). Meanwhile, there was a tendency that GnRH1 neurons' soma size in the POA shrank by rapamycin injection, whereas the testes did not show notable changes. Taken together, these results suggest the possible role of TOR signal on GnRH1-mediated sexual behavior in cichlid dominant males, although further biological characterization of the TOR signaling pathway will be required to clarify this matter.
Collapse
Affiliation(s)
- Tae Ha Kim
- Dept. of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Young Chang Sohn
- Dept. of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
29
|
Muta K, Morgan DA, Grobe JL, Sigmund CD, Rahmouni K. mTORC1 Signaling Contributes to Drinking But Not Blood Pressure Responses to Brain Angiotensin II. Endocrinology 2016; 157:3140-8. [PMID: 27254006 PMCID: PMC4967111 DOI: 10.1210/en.2016-1243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a molecular node that couples extracellular cues to a wide range of cellular events controlling various physiological processes. Here, we identified mTORC1 signaling as a critical mediator of angiotensin II (Ang II) action in the brain. In neuronal GT1-7 cells, we show that Ang II stimulates neuronal mTORC1 signaling in an Ang II type 1 receptor-dependent manner. In mice, a single intracerebroventricular (ICV) injection or chronic sc infusion of Ang II activated mTORC1 signaling in the subfornical organ, a critical brain region in cardiovascular control and fluid balance. Moreover, transgenic sRA mice with brain-specific overproduction of Ang II displayed increased mTORC1 signaling in the subfornical organ. To test the functional role of brain mTORC1 in mediating the action of Ang II, we examined the consequence of mTORC1 inhibition with rapamycin on Ang II-induced increase in water intake and arterial pressure. ICV pretreatment with rapamycin blocked ICV Ang II-mediated increases in the frequency, duration, and amount of water intake but did not interfere with the pressor response evoked by Ang II. In addition, ICV delivery of rapamycin significantly reduced polydipsia, but not hypertension, of sRA mice. These results demonstrate that mTORC1 is a novel downstream pathway of Ang II type 1 receptor signaling in the brain and selectively mediates the effect of Ang II on drinking behavior.
Collapse
Affiliation(s)
- Kenjiro Muta
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Donald A Morgan
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Justin L Grobe
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| | - Kamal Rahmouni
- Department of Pharmacology (K.M., D.A.M., J.L.G., C.D.S., K.R.), University of Iowa Healthcare Center for Hypertension Research (J.L.G., C.D.S., K.R.), and Fraternal Order of Eagles Diabetes Research Center (J.L.G., C.D.S., K.R.), University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
30
|
Rahmouni K. Cardiovascular Regulation by the Arcuate Nucleus of the Hypothalamus: Neurocircuitry and Signaling Systems. Hypertension 2016; 67:1064-71. [PMID: 27045026 PMCID: PMC4865428 DOI: 10.1161/hypertensionaha.115.06425] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kamal Rahmouni
- From the Department of Pharmacology and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City.
| |
Collapse
|
31
|
Hu F, Xu Y, Liu F. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. Am J Physiol Endocrinol Metab 2016; 310:E994-E1002. [PMID: 27166282 PMCID: PMC4935144 DOI: 10.1152/ajpendo.00121.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/31/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
Abstract
Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of "energy balancing" hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes.
Collapse
Affiliation(s)
- Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas; and
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
32
|
Caron A, Labbé SM, Mouchiroud M, Huard R, Lanfray D, Richard D, Laplante M. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1322-31. [PMID: 27097662 DOI: 10.1152/ajpregu.00549.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection.
Collapse
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Sébastien M Labbé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Mathilde Mouchiroud
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Renaud Huard
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Damien Lanfray
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Mathieu Laplante
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada; and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
33
|
Abstract
The etiology of hypertension, a critical public health issue affecting one in three US adults, involves the integration of the actions of multiple organ systems, including the central nervous system. Increased activation of the central nervous system, driving enhanced sympathetic outflow and increased blood pressure, has emerged as a major contributor to the pathogenesis of hypertension. The hypothalamus is a key brain site acting to integrate central and peripheral inputs to ultimately impact blood pressure in multiple disease states that evoke hypertension. This review highlights recent advances that have identified novel signal transduction mechanisms within multiple hypothalamic nuclei (e.g., paraventricular nucleus, arcuate nucleus) acting to drive the pathophysiology of hypertension in neurogenic hypertension, angiotensin II hypertension, salt-sensitive hypertension, chronic intermittent hypoxia, and obesity-induced hypertension. Increased understanding of hypothalamic activity in hypertension has the potential to identify novel targets for future therapeutic interventions designed to treat hypertension.
Collapse
|
34
|
Jeon Y, Aja S, Ronnett GV, Kim EK. D-chiro-inositol glycan reduces food intake by regulating hypothalamic neuropeptide expression via AKT-FoxO1 pathway. Biochem Biophys Res Commun 2016; 470:818-23. [PMID: 26802467 DOI: 10.1016/j.bbrc.2016.01.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
The regulation of food intake is important for body energy homeostasis. Hypothalamic insulin signaling decreases food intake by upregulating the expression of anorexigenic neuropeptides and downregulating the expression of orexigenic neuropeptides. INS-2, a Mn(2+) chelate of 4-O-(2-amino-2-deoxy-β-D-galactopyranosyl)-3-O-methyl-D-chiro-inositol, acts as an insulin mimetic and sensitizer. We found that intracerebroventricular injection of INS-2 decreased body weight and food intake in mice. In hypothalamic neuronal cell lines, INS-2 downregulated the expression of neuropeptide Y (NPY), an orexigenic neuropeptide, but upregulated the expression of proopiomelanocortin (POMC), an anorexigenic neuropeptide, via modulation of the AKT-forkhead box-containing protein-O1 (FoxO1) pathway. Pretreatment of these cells with INS-2 enhanced the action of insulin on downstream signaling, leading to a further decrease in NPY expression and increase in POMC expression. These data indicate that INS-2 reduces food intake by regulating the expression of the hypothalamic neuropeptide genes through the AKT-FoxO1 pathway downstream of insulin.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabriele V Ronnett
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea.
| |
Collapse
|
35
|
Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Mol Metab 2015; 5:102-112. [PMID: 26909318 PMCID: PMC4735664 DOI: 10.1016/j.molmet.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/02/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 01/29/2023] Open
Abstract
Background/Objective The mechanistic target of rapamycin (mTOR) is a serine–threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulate energy homeostasis. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to dampen mTORC1 function, consequently reducing mTORC1 negative feedbacks and promoting insulin signaling and Akt/PKB activation in several models. Recently, we observed that DEPTOR is expressed in several structures of the brain including the mediobasal hypothalamus (MBH), a region that regulates energy balance. Whether DEPTOR in the MBH plays a functional role in regulating energy balance and hypothalamic insulin signaling has never been tested. Methods We have generated a novel conditional transgenic mouse model based on the Cre-LoxP system allowing targeted overexpression of DEPTOR. Mice overexpressing DEPTOR in the MBH were subjected to a metabolic phenotyping and MBH insulin signaling was evaluated. Results We first report that systemic (brain and periphery) overexpression of DEPTOR prevents high-fat diet-induced obesity, improves glucose metabolism and protects against hepatic steatosis. These phenotypes were associated with a reduction in food intake and feed efficiency and an elevation in oxygen consumption. Strikingly, specific overexpression of DEPTOR in the MBH completely recapitulated these phenotypes. DEPTOR overexpression was associated with an increase in hypothalamic insulin signaling, as illustrated by elevated Akt/PKB activation. Conclusion Altogether, these results support a role for MBH DEPTOR in the regulation of energy balance and metabolism. Systemic (brain and peripheral) overexpression of DEPTOR promotes activity and improves glucose homeostasis. Systemic (brain and peripheral) overexpression of DEPTOR protects againts high-fat diet-induced obesity and metabolic alterations. Deptor is widely expressed in the mouse brain, with a high expression in the mediobasal hypothalamus (MBH), a key region of the brain that regulates energy balance. MBH-specific DEPTOR overexpression improves glucose metabolism and protects mice against obesity. MBH-specific DEPTOR overexpression promotes hypothalamic Akt/PKB signaling.
Collapse
|
36
|
Haissaguerre M, Cota D. [Role of the mTOR pathway in the central regulation of energy balance]. Biol Aujourdhui 2015; 209:295-307. [PMID: 27021048 DOI: 10.1051/jbio/2016009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2016] [Indexed: 11/14/2022]
Abstract
The pathway of the mammalian (or mechanistic) target of rapamycin kinase (mTOR) responds to different signals such as nutrients and hormones and regulates many cellular functions as the synthesis of proteins and lipids, mitochondrial activity and the organization of the cytoskeleton. At the cellular level, mTOR forms two distinct complexes: mTORC1 and mTORC2. This review intends to summarize the various recent advances on the role of these two protein complexes in the central regulation of energy balance. mTORC1 activity modulates energy balance and metabolic responses by regulating the activity of neuronal populations, such as those located in the arcuate nucleus of the hypothalamus. Recent studies have shown that activity of the hypothalamic mTORC1 pathway varies according to cell and stimulus types, and that this signaling cascade regulates food intake and body weight in response to nutrients, such as leucine, and hormones like leptin, ghrelin and triiodothyronine. On the other hand, mTORC2 seems to be involved in the regulation of neuronal morphology and synaptic activity. However, its function in the central regulation of the energy balance is less known. Dysregulation of mTORC1 and mTORC2 is described in obesity and type 2 diabetes. Therefore, a better understanding of the molecular mechanisms involved in the regulation of energy balance by mTOR may lead to the identification of new therapeutic targets for the treatment of these metabolic pathologies.
Collapse
Affiliation(s)
- Magalie Haissaguerre
- Service Endocrinologie, Hôpital Haut Lévêque, CHU Bordeaux, 33600 Pessac, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, 33000 Bordeaux, France - Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, 33000 Bordeaux, France
| |
Collapse
|