1
|
Autumn M, Zeng J, Raineri I, McMenamin SK. Experimentally Manipulating the Thyroid Hormone Axis in Zebrafish. Methods Mol Biol 2025; 2876:189-198. [PMID: 39579317 DOI: 10.1007/978-1-0716-4252-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Thyroid hormone (TH) is an endocrine factor with a diverse array of developmental, metamorphic, and metabolic functions conserved across vertebrates. Zebrafish (Danio rerio) are a tractable model for endocrinology research, and recent research efforts focus on the roles of TH in zebrafish morphogenesis, growth and behavior. Several powerful approaches have been developed in zebrafish to modulate the TH axis and peripheral sensitivity to the hormone. These approaches include gain- and loss-of-function mutations that target components of the TH signaling pathways, as well as pharmacological treatments to modulate TH synthesis and availability. Here, we review some of these approaches for generating hypo- and hyperthyroid physiology and phenotypes during post-embryonic zebrafish development. In particular, we focus on a transgenic method of producing hypothyroid fish via metronidazole-based thyroid ablation. This approach can straightforwardly generate large numbers of hypothyroid individuals along with euthyroid sibling controls, and we survey some of the research applications in which this system has been used.
Collapse
Affiliation(s)
- Melody Autumn
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Jenny Zeng
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | | |
Collapse
|
2
|
Zhang Y, Mustieles V, Korevaar T, Martin L, Sun Y, Bibi Z, Torres N, Coburn-Sanderson A, First O, Souter I, Petrozza JC, Broeren MAC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Association between per- and polyfluoroalkyl substances exposure and thyroid function biomarkers among females attending a fertility clinic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123513. [PMID: 38350534 PMCID: PMC10950513 DOI: 10.1016/j.envpol.2024.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exposure was associated with changes in thyroid function in pregnant mothers and the general population. Limited such evidence exists in other susceptible populations such as females with fertility problems. This cross-sectional study included 287 females seeking medically assisted reproduction at a fertility clinic in Massachusetts, United States, between 2005 and 2019. Six long-alkyl chain PFAS, thyroid hormones, and autoimmune antibodies were quantified in baseline serum samples. We used generalized linear models and quantile g-computation to evaluate associations of individual PFAS and their total mixture with thyroid biomarkers. Most females were White individuals (82.7%), had graduate degrees (57.8%), and nearly half had unexplained subfertility (45.9%). Serum concentrations of all examined PFAS and their mixture were significantly associated with 2.6%-5.6% lower total triiodothyronine (TT3) concentrations. Serum concentrations of perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA), and of the total mixture were associated with higher ratios of free thyroxine (FT4) to free triiodothyronine (FT3). No associations were found for PFAS and TSH or autoimmune antibodies. Our findings support the thyroid-disrupting effect of long alkyl-chain PFAS among a vulnerable population of subfertile females.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Spain. University of Granada, Center for Biomedical Research (CIBM), Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - T.I.M. Korevaar
- Department of Internal Medicine and Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Irene Souter
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - John C. Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - Maarten A. C. Broeren
- Laboratory of Clinical Chemistry and Haematology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Julianne C. Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Wang H, Kang G, Ma C, Lian H, Zhao K, Zhao B, Feng Y, Dong W. Inhibitory Effect of Acetaminophen on Ocular Pigmentation and its Relationship with Thyroxine in Zebrafish Embryos. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:39. [PMID: 38353786 DOI: 10.1007/s00128-024-03867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of the most widely used analgesics. To examine the toxicity of APAP, we used zebrafish embryos as model animals to detect the effect of APAP on the thyroid system of zebrafish embryos. The zebrafish embryos were exposed to APAP from 4 h post fertilization (4 hpf) until observation. The experimental results showed that APAP caused pericardial edema and decreased pigmentation in the zebrafish embryos or larvae. The APAP treatment caused a decrease in the expression of tpo and thrβ in the zebrafish at 36 and 72 hpf. The transcriptomic analysis found that APAP affected retinol metabolism, the metabolism of xenobiotics by cytochrome P450, and the tyrosine metabolism pathway. The harmful effect of APAP on zebrafish embryos might be due to its disrupting effect on the functional regulation of the thyroid hormone system.
Collapse
Affiliation(s)
- Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guiying Kang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
- , No. 996, Xilamulun Street, Keerqin District, Tongliao, 028000, China.
| | - Chenglong Ma
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Hua Lian
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Kexin Zhao
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuanzhou Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
- , No. 996, Xilamulun Street, Keerqin District, Tongliao, 028000, China.
| |
Collapse
|
4
|
Gao Y, Yang P. The impaired swim bladder via ROS-mediated inhibition of the Wnt / Hedgehog pathway in zebrafish embryos exposed to eight toxic chemicals and binary chemical mixtures. CHEMOSPHERE 2023; 338:139593. [PMID: 37478986 DOI: 10.1016/j.chemosphere.2023.139593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
To comprehensively explore the potential toxicity of aquatic organisms exposed to chlorinated or brominated flame retardants (BFRs) and metals mixtures, it is necessary to find a common pathway to relate local toxic targeted sites or organs. A key challenge in environmental risk assessment (ERA) is how to clarify the same or different sites or organs of toxic action in a species after exposure to individual chemicals or chemical mixtures. In this study, zebrafish embryo was used to evaluate the sub-lethal toxicity (swim bladder damage) of tris(2,3-dibromo propyl) isocyanurate (TBC), chlorinated paraffins (CPs), hexabromocyclododecane (HBCD), Cu, Cd, Pb, Ag, and Zn through optical microscopy methods, and corresponding sub-lethal molecular levels (inflammation-related enzymes [deiodinase (DIO) enzymes] and transcriptional levels of key genes) in fish through quantitative real-time PCR (qRT-PCR). The tested chemicals all caused failed inflation of the swim bladder, as indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Following embryonic exposure to respective TBC + Cu, HBCD + TBC, and Cd + Pb mixtures, as the concentration of the respective Cu, TBC, and Pb increased, the deformity of the swim bladder increased, as also indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Additionally, eight chemicals down-regulated Wnt (wnt3, wnt9b, fzd3b, wnt1, fzd5, and fdz1) signaling pathways, which were neurotoxic responses to individual chemical treatments and Hedgehog (ihh, shh, ptc1 and ptc2) signaling pathways. Moreover, excessive ROS induced by eight chemicals effectively induced defects in the swim bladder and Wnt/Hedgehog signaling, which also be proved in respective TBC + Cu, HBCD + TBC, and Cd + Pb mixture treatments. Our results first revealed that eight chemicals caused swim bladder developmental defects via ROS-mediated inhibition of the Wnt and Hedgehog pathways, which revealed the common targeted sites or organs (swim bladders) for further studying the toxic mechanisms underlying the chemical mixtures.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Pengyuan Yang
- College of Grain, Jilin Business and Technology College, Jilin, 130507, PR China
| |
Collapse
|
5
|
Farre AA, Thomas P, Huang J, Poulsen RA, Owusu Poku E, Stenkamp DL. Plasticity of cone photoreceptors in adult zebrafish revealed by thyroid hormone exposure. Sci Rep 2023; 13:15697. [PMID: 37735192 PMCID: PMC10514274 DOI: 10.1038/s41598-023-42686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Vertebrate color vision is predominantly mediated by the presence of multiple cone photoreceptor subtypes that are each maximally sensitive to different wavelengths of light. Thyroid hormone (TH) has been shown to be essential in the spatiotemporal patterning of cone subtypes in many species, including cone subtypes that express opsins that are encoded by tandemly replicated genes. TH has been shown to differentially regulate the tandemly replicated lws opsin genes in zebrafish, and exogenous treatments alter the expression levels of these genes in larvae and juveniles. In this study, we sought to determine whether gene expression in cone photoreceptors remains plastic to TH treatment in adults. We used a transgenic lws reporter line, multiplexed fluorescence hybridization chain reaction in situ hybridization, and qPCR to examine the extent to which cone gene expression can be altered by TH in adults. Our studies revealed that opsin gene expression, and the expression of other photoreceptor genes, remains plastic to TH treatment in adult zebrafish. In addition to retinal plasticity, exogenous TH treatment alters skin pigmentation patterns in adult zebrafish after 5 days. Taken together, our results show a remarkable level of TH-sensitive plasticity in the adult zebrafish.
Collapse
Affiliation(s)
- Ashley A Farre
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Preston Thomas
- WWAMI Medical Education Program, University of Washington School of Medicine, University of Idaho, Moscow, ID, USA
| | - Johnson Huang
- University of Washington School of Medicine, Spokane, WA, USA
| | | | - Emmanuel Owusu Poku
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA.
| |
Collapse
|
6
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
7
|
Dai X, Pradhan A, Liu J, Liu R, Zhai G, Zhou L, Dai J, Shao F, Yuan Z, Wang Z, Yin Z. Zebrafish gonad mutant models reveal neuroendocrine mechanisms of brain sexual dimorphism and male mating behaviors of different brain regions. Biol Sex Differ 2023; 14:53. [PMID: 37605245 PMCID: PMC10440941 DOI: 10.1186/s13293-023-00534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-free tdrd12 knockout (KO) zebrafish, and steroid synthesis enzyme cyp17a1-deficient zebrafish to investigate the differences and interplays in the brain-gonad-behavior axis, and the molecular control of brain dimorphism and male mating behaviors. METHODS Tdrd12+/-; cyp17a1+/- double heterozygous parents were crossed to obtain tdrd12-/-; cyp17a1+/+ (tdrd12 KO), tdrd12+/+; cyp17a1-/- (cyp17a1 KO), and tdrd12-/-; cyp17a1-/- (double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17β-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis. RESULTS Qualitative analysis of mating behaviors demonstrated that tdrd12-/- fish behaved in the same manner as wild-type males to trigger oviposition behavior, while cyp17a1-/- and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain-gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile of tdrd12-/- fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles of cyp17a1-/- and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish. CONCLUSIONS Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain-gonad-behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.
Collapse
Affiliation(s)
- Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebrorebro University, 70182, Örebro, Sweden
| | - Jiao Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ruolan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiyong Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Yuan M, Chen S, Zeng C, Fan Y, Ge W, Chen W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. ENVIRONMENT INTERNATIONAL 2023; 176:107976. [PMID: 37236126 DOI: 10.1016/j.envint.2023.107976] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Bisphenol A (BPA) is the most simple and predominant component of the Bisphenol family. BPA is widely present in the environment and the human body as a result of its extensive usage in the plastic and epoxy resins of consumer goods like water bottles, food containers, and tableware. Since the 1930s, when BPA's estrogenic activity was first observed, and it was labeled as a "mimic hormone of E2", studies on the endocrine-disrupting effects of BPA then have been widely conducted. As a top vertebrate model for genetic and developmental studies, the zebrafish has caught tremendous attention in the past two decades. By using the zebrafish, the negative effects of BPA either through estrogenic signaling pathways or non-estrogenic signaling pathways were largely found. In this review, we tried to draw a full picture of the current state of knowledge on the estrogenic and non-estrogenic effects of BPA with their mechanisms of action through the zebrafish model of the past two decades, which may help to fully understand the endocrine-disrupting effects of BPA and its action mechanism, and give a direction for the future studies.
Collapse
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chu Zeng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China.
| |
Collapse
|
9
|
Wei P, Xiao Y, Liu C, Yan B. Thyroid endocrine disruption induced by [C 8mim]Br: An integrated in vivo, in vitro, and in silico study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106535. [PMID: 37086652 DOI: 10.1016/j.aquatox.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Conventional thyroid-disrupting chemicals (TDCs) such as polybrominated diphenyl ethers, polychlorinated biphenyls, and bisphenols perturb animal's thyroid endocrine system by mimicking the action of endogenous thyroid hormones (THs), since they share a similar backbone structure of coupled benzene rings with THs. 1-methyl-3-octylimidazolium bromide ([C8mim]Br), a commonly used ionic liquid (IL), has no structural similarity to THs. Whether it interferes with thyroid function and how its mode of action differs from conventional TDCs is largely unknown. Herein, zebrafish embryo-larvae experiments (in vivo), GH3 cell line studies (in vitro), and molecular simulation analyses (in silico) were carried out to explore the effect of [C8mim]Br on thyroid homeostasis and its underlying mechanism. Molecular docking results suggested that [C8mim]+ likely bound to retinoid X receptors (RXRs), which may compromise the formation of TH receptor/RXR heterodimers. This then perturbed the negative regulation of thyroid-stimulating hormone β (tshβ) transcription by T3 in GH3 cell line. The resulting enhancement of tshβ expression further caused hyperthyroidism and developmental toxicity in larval zebrafish. These findings provided a crucial aspect of the ecological risks of ILs, and presented a new insight into the thyroid-disrupting mechanisms for emerging pollutants that do not have structural similarity to THs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
11
|
Horie Y, Nomura M, Ramaswamy BR, Harino H, Yap CK, Okamura H. Effects of non-phthalate plasticizer bis(2-ethylhexyl) sebacate (DEHS) on the endocrine system in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109531. [PMID: 36470400 DOI: 10.1016/j.cbpc.2022.109531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Water pollution due to plasticizers is one of the most severe environmental problems worldwide. Phthalate plasticizers can act as endocrine disruptors in vertebrates. In this study, we investigated whether the non-phthalate bis(2-ethylhexyl) sebacate (DEHS) plasticizer can act as an endocrine disruptor by evaluating changes in the expression levels of thyroid hormone-related, reproduction-related, and estrogen-responsive genes of Japanese medaka (Oryzias latipes) exposed to the plasticizer. Following the exposure, the gene expression levels of thyroid-stimulating hormone subunit beta (tshβ), deiodinase 1 (dio1), and thyroid hormone receptor alpha (trα) did not change. Meanwhile, DEHS suppressed dio2 expression, did not induce swim bladder inflation, and eventually reduced the swimming performance of Japanese medaka. These findings indicate that DEHS can potentially disrupt the thyroid hormone-related gene expression and metabolism of these fish. However, exposure to DEHS did not induce changes in the gene expression levels of kisspeptin 1 (kiss1), gonadotropin-releasing hormone (gnrh), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg) in a dose-dependent manner. This is the first report providing evidence that DEHS can disrupt thyroid hormone-related metabolism in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Miho Nomura
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Hiroya Harino
- School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo, Iwate 662-8505, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
12
|
Gao Y, Yang P, Zhu J. Particle size-dependent effects of silver nanoparticles on swim bladder damage in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114363. [PMID: 36508826 DOI: 10.1016/j.ecoenv.2022.114363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Particle size-dependent biological effects of silver nanoparticles (AgNPs) are of great interest; however, the mechanism of action of silver ions (Ag+) released from AgNPs concerning AgNP particle size remains unclear. Thus, we evaluated the influence of particle size (20, 40, 60, and 80 nm) on the acute 96-h bioaccumulation and toxicity (swim bladder damage) of AgNPs in zebrafish (Danio rerio) larvae, with a focus on the mechanism of action of Ag+ released from differently sized AgNPs. The 40- and 60-nm AgNPs were more toxic than the 20- and 80-nm versions in terms of inflammation and oxidative damage to the swim bladder, as indicated by inhibition of type 2 iodothyroxine deiodinase enzyme activity, mitochondrial injury, and reduced 30-50% adenosine triphosphate content. Furthermore, up-regulation and down-regulation of swim bladder development-related gene expression was not observed for pbx1a and anxa5, but up-regulation expression of shha and ihha was observed with no statistical significance. That 20-nm AgNPs were less toxic was attributed to their rapid elimination from larvae in comparison with the elimination of 40-, 60-, and 80-nm AgNPs; thus, less Ag+ was released in 20-nm AgNP-exposed larvae. Failed inflation of swim bladders was affected by released Ag+ rather than AgNPs themselves. Overall, we reveal the toxicity contribution of Ag+ underlying the observed size-dependent effects of AgNPs and provide a scientific basis for comprehensively assessing the ecological risk and biosafety of AgNPs.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province (Zhejiang Shuren University), Hangzhou 310015, PR China.
| | - Pengyuan Yang
- College of Grain, Jilin Business and Technology College, Jilin 130507, PR China
| | - Jingxue Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
13
|
Horie Y, Yamagishi T, Yamamoto J, Suzuki M, Onishi Y, Chiba T, Miyagawa S, Lange A, Tyler CR, Okamura H, Iguchi T. Adverse effects of thyroid-hormone-disrupting chemicals 6-propyl-2-thiouracil and tetrabromobisphenol A on Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109502. [PMID: 36368510 DOI: 10.1016/j.cbpc.2022.109502] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Thyroid-hormone-disrupting chemicals are increasingly attracting attention because of their potential harmful effects on animal health, including on fishes. Here, we investigated the effects of exposure to the thyroid-hormone-disrupting chemicals 6-propyl-2-thiouracil (PTU) and tetrabromobisphenol A (TBBPA) on swim bladder inflation, eye development, growth, swimming performance, and the expression of thyroid-related genes in Japanese medaka (Oryzias latipes). PTU exposure resulted in reductions in eye size, growth, and swim bladder inflation, and these effects led to poorer swimming performance. These phenotypic effects were accompanied by increased expression of the thyroid-stimulating hormone subunit beta (tshβ) paralog tshβ-like, but there were no significant changes in expression for tshβ, deiodinase 1 (dio1), deiodinase 2 (dio2), and thyroid hormone receptor alpha (trα) and beta (trβ). For PTU exposure, we identified the key event (swim bladder inflation reduction) and an adverse outcome (swimming performance reduction). No significant effects from TBBPA exposure were seen on swim bladder inflation, eye development, growth, or swimming performance. However, expression of tshβ-like and tshβ (significantly enhanced) and trα and trβ (significantly reduced) were affected by TBBPA exposure albeit not in dose-dependent manners. There were no effects of TBBPA on the expression of dio1 and dio2. We thus show that the two thyroid-hormone-disrupting chemicals PTU and TBBPA differ in their effect profiles with comparable effects on the studied phenotypes and thyroid-related gene expression to those reported in zebrafish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka 421-0212, Japan
| | - Mayumi Suzuki
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka 421-0212, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka 421-0212, Japan
| | - Takashi Chiba
- Department of Environmental and Symbiotic Science, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
14
|
Horie Y, Nomura M, Ramaswamy BR, Harino H, Yap CK, Okamura H. Thyroid hormone disruption by bis-(2-ethylhexyl) phthalate (DEHP) and bis-(2-ethylhexyl) adipate (DEHA) in Japanese medaka Oryzias latipes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106312. [PMID: 36174385 DOI: 10.1016/j.aquatox.2022.106312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Pollution of water bodies with plasticizers is a serious environmental problem worldwide. In this study, we investigated the effects of plasticizers bis-(2-ethylhexyl) phthalate (DEHP) and bis-(2-ethylhexyl) adipate (DEHA) in Japanese medaka (Oryzias latipes). DEHP significantly increased the expression of all the genes tested: thyroid stimulating hormone beta subunit (tshβ-like), tshβ, deiodinase 1 (dio1), deiodinase 2 (dio2), and thyroid hormone receptor alpha (trα) and beta (trβ). However, DEHA only significantly increased tshβ at 7.4 µg/L but significantly decreased dio2 expression at 25.8, 111.1, and 412.6 4 µg/L, while other genes were not significantly affected. Both chemicals reduced eye size and total body length, but did not affect embryo development, hatching time and rate, and swimming performance. DEHA alone affected swim bladder inflation and not DEHP. This is the first report that not only DEHP but also DEHA disrupt thyroid hormone activity in fish. DEHP contamination (13.2 μg/L) was detected in tap water from Kobe, Japan; thus, tap water itself may disrupt thyroid hormone activity in Japanese medaka. Importantly, the effective concentration of DEHP for thyroid hormone-related gene expression and growth was close to or lower than DEHP concentrations reported in surface water elsewhere, indicating that DEHP contamination is a serious aquatic pollution.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Miho Nomura
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Hiroya Harino
- School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo, 662-8505, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
15
|
Yadav P, Sarode LP, Gaddam RR, Kumar P, Bhatti JS, Khurana A, Navik U. Zebrafish as an emerging tool for drug discovery and development for thyroid diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 130:53-60. [PMID: 36084888 DOI: 10.1016/j.fsi.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, IA, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
16
|
Fang Y, Wan JP, Zhang RJ, Sun F, Yang L, Zhao SX, Dong M, Song HD. Tpo knockout in zebrafish partially recapitulates clinical manifestations of congenital hypothyroidism and reveals the involvement of TH in proper development of glucose homeostasis. Gen Comp Endocrinol 2022; 323-324:114033. [PMID: 35367205 DOI: 10.1016/j.ygcen.2022.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
Congenital hypothyroidism (CH) is a highly prevalent but treatable neonatal endocrine disorder. Thyroid peroxidase (TPO) catalyzes key reactions in thyroid hormone (TH) synthesis. TPO mutations have been found to underlie approximately 5% of congenital hypothyroidism in Chinese patients with more severe phenotypes, the treatment of whom usually requires a higher dose of L-thyroxine. The Tpo gene of zebrafish has 66% homology with the human TPO gene, and synteny analysis has indicated that it is likely a human TPO ortholog. In this study, we generated a tpo-/- mutant zebrafish line through knockout of tpo with CRISPR/Cas9 and investigated the associated phenotypes. Tpo-/- mutant zebrafish displayed growth retardation; an increased number of thyroid follicular cells; and abnormal extrathyroidal phenotypes including pigmentation defects, erythema in the thoracic region, delayed scale development and failure of swim bladder secondary lobe formation. All these abnormal phenotypes were reversed by 30 nM thyroxine (T4) treatment starting at 1 month of age. Tpo-/- mutants also showed increased glucose levels during larval stages, and the increases were induced at least in part by increasing glucagon and decreasing insulin expression. Our work indicates that tpo-mutant zebrafish may serve as a human congenital hypothyroidism model for studying TPO- and TH-related disease mechanisms.
Collapse
Affiliation(s)
- Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jia-Ping Wan
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui-Jia Zhang
- Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Feng Sun
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
17
|
Wang H, Wang X, Jia J, Qin Y, Chen S, Wang S, Martyniuk CJ, Yan B. Comparative toxicity of [C 8mim]Br and [C 8py]Br in early developmental stages of zebrafish (Danio rerio) with focus on oxidative stress, apoptosis, and neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103864. [PMID: 35430362 DOI: 10.1016/j.etap.2022.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/19/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The increasing production and usage of ionic liquids (ILs) have raised global ecotoxicological concerns regarding their release into the environment. While the effects of side chains on the IL-induced toxicity in various aquatic organisms have been well-recognized, the role of cationic cores in determining their ecotoxicity remains to be elucidated. Herein, the comparative bioavailability and toxicity of two ILs with different cationic cores but the same anion and side chain in zebrafish embryos were determined. 1-octyl-3-methylimidazolium bromide ([C8mim]Br) has higher accumulation in zebrafish, and triggered developmental toxicity by inducing oxidative stress and apoptosis. Meanwhile, 1-octyl-1-methylpyridium bromide ([C8py]Br) enhanced SOD activity and upregulated anti-apoptotic bcl-2 gene expression, contributing to its much lower neurodevelopmental toxicity. Our study demonstrates the vital role of cationic core in determining the developmental toxicity of ILs and highlights the need for further investigations into the toxicity of imidazolium and pyridinium based ILs in aquatic ecosystems.
Collapse
Affiliation(s)
- Huangyingzi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohong Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yingju Qin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Siying Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shenqing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
18
|
Li R, Yang L, Han J, Zou Y, Wang Y, Feng C, Zhou B. Early-life exposure to tris (1,3-dichloro-2-propyl) phosphate caused multigenerational neurodevelopmental toxicity in zebrafish via altering maternal thyroid hormones transfer and epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117471. [PMID: 34082372 DOI: 10.1016/j.envpol.2021.117471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), an alternative to brominated flame retardants, might pose an exposure risk to humans and wild animals during fetal development. Our recent study suggested that short-term TDCIPP exposure during early development caused sex-dependent behavioral alteration in adults. In the present study, multigenerational neurodevelopmental toxicity upon early-life exposure of parental zebrafish was evaluated, and the possible underlying mechanisms were further explored. Specifically, after embryonic exposure (0-10 days post-fertilization, dpf) to TDCIPP (0, 0.01, 0.10, and 1.00 μM), zebrafish larvae were cultured in clean water until the sexually matured to produce progeny (F1). The results confirmed neurodevelopmental toxicity in F1 larvae characterized by changes of developmental endpoints, reduced thigmotaxis, as well as altered transcription of genes including myelin basic protein a (mbpa), growth associated protein (gap43) and synapsin IIa (syn2a). Sex-specific changes in thyroid hormones (THs) indicated the relationship of abnormal THs levels with previously reported neurotoxicity in adult females after early-life exposure to TDCIPP. Similar changing profiles of TH levels (increased T3 and decreased T4) in adult females and F1 eggs, but not in F1 larvae, suggested that the TH disruptions were primarily inherited from the maternal fish. Further results demonstrated hypermethylation of global DNA and key genes related to TH transport including transthyretin (ttr) and solute carrier family 16 member 2 (slc16a2), which might affect the transport of THs to target tissues, thus at least partially contributing to the neurodevelopmental toxicity in F1 larvae. Overall, our results confirmed that early-life TDCIPP exposure of parental fish could affect the early neurodevelopment of F1 offspring. The underlying mechanism could involve altered TH levels inherited from maternal zebrafish and epigenetic modifications in F1 larvae.
Collapse
Affiliation(s)
- Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yu Zou
- Institute of Pharmaceutical Innovation, Medical College, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yingcai Wang
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
19
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
20
|
Functions of the Thyroid-Stimulating Hormone on Key Developmental Features Revealed in a Series of Zebrafish Dyshormonogenesis Models. Cells 2021; 10:cells10081984. [PMID: 34440752 PMCID: PMC8391828 DOI: 10.3390/cells10081984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
The hypothalamic–pituitary–thyroid (HPT) axis regulates many critical features in vertebrates. Utilizing TALENs and CRISPR/Cas9 techniques, thyroid-stimulating hormone subunit beta a (tshba), thyroglobulin (tg), and solute carrier family 16 member 2 (slc16a2) mutant zebrafish lines were generated. Among the three mutants, the earliest time point for the significantly altered T3 contents was observed in tshba mutants, which resulted in the most severe defects, including typical defects such as the retardation of inflated anterior swimming bladder (aSB), proper formation of fin ray and posterior squamation (SP), the larval-to-juvenile transition (LTJT) process, juvenile growth retardation, and mating failure. In tg mutants, which are actually compensated with an alternative splicing form, growth retardation was observed in the juvenile stage without LTJT and reproductive defects. The evident goiter phenotype was only observed in tg- and slc16a2 mutants, but not in tshba mutants. Other than goiters being observed, no other significant developmental defects were found in the slc16a2 mutants. Regarding the reproductive defects observed in tshba mutants, the defective formation of the secondary sex characteristics (SSCs) was observed, while no obvious alterations during gonad development were found. Based on our analyses, zebrafish at the 6–12 mm standard length or 16–35 days post-fertilization (dpf) should be considered to be in their LTJT phase. Using a series of zebrafish dyshormonogenesis models, this study demonstrated that the TSH function is critical for the proper promotion of zebrafish LTJT and SSC formation. In addition, the elevation of TSH levels appears to be essential for goiter appearance in zebrafish.
Collapse
|
21
|
Abstract
Iodothyronine deiodinases are enzymes capable of activating and inactivating thyroid hormones (THs) and have an important role in regulating TH action in tissues throughout the body. Three types of deiodinases (D1, D2, and D3) were originally defined based on their biochemical characteristics. Cloning of the first complementary DNAs in the 1990s (Dio1 in rat and dio2 and dio3 in frog) allowed to confirm the existence of 3 distinct enzymes. Over the years, increasing genomic information revealed that deiodinases are present in all chordates, vertebrates, and nonvertebrates and that they can even be found in some mollusks and annelids, pointing to an ancient origin. Research in nonmammalian models has substantially broadened our understanding of deiodinases. In relation to their structure, we discovered for instance that biochemical properties such as inhibition by 6-propyl-2-thiouracil, stimulation by dithiothreitol, and temperature optimum are subject to variation. Data from fish, amphibians, and birds were key in shifting our view on the relative importance of activating and inactivating deiodination pathways and in showing the impact of D2 and D3 not only in local but also whole body T3 availability. They also led to the discovery of new local functions such as the acute reciprocal changes in D2 and D3 in hypothalamic tanycytes upon photostimulation, involved in seasonal rhythmicity. With the present possibilities for rapid and precise gene silencing in any species of interest, comparative research will certainly further contribute to a better understanding of the importance of deiodinases for adequate TH action, also in humans.
Collapse
Affiliation(s)
- Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
- Correspondence: Veerle Darras, PhD, Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, PB 2464, B-3000 Leuven, Belgium.
| |
Collapse
|
22
|
Transcriptomic and metabolomic insights into the variety of sperm storage in oviduct of egg layers. Poult Sci 2021; 100:101087. [PMID: 33887680 PMCID: PMC8082553 DOI: 10.1016/j.psj.2021.101087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
In birds, the sperm storage tubules (SST) are dispersed in uterovaginal junction (UVJ) and highly correlated with differential capacity of sperm storage (SS) in and among species with unspecified mechanisms. Here, the SS duration of 252 egg layer breeders was evaluated in 5 rounds with 3 phenotypic traits to screen high- and low-SS individuals, respectively, followed with transcriptome of UVJ tissues and metabolome of serum (high-SS vs. low-SS) to decipher the candidate genes and biochemical markers correlated with differential SS capacity. Histological characterization suggested slightly higher density of SST in UVJ (high-SS vs. low-SS). Transcriptome analyses identified 596 differentially expressed genes (336 upregulated vs. 260 downregulated), which were mainly enriched in gene ontology terms of homeostasis, steroid and lipid metabolism and hormone activity, and 12 significant pathways (P < 0.05) represented by calcium, steroid, and lipid metabolism. Immunohistochemical staining of GNAQ, ST6GAL1, ADFP, and PCNA showed similar distribution in UVJ tissues between 2 groups. Several candidates (HSD11B2, DIO2, AQP3, GNAQ, NANS, ST6GAL1) combined with 4 (11β-prostaglandin F2α, prostaglandin B1, 7α-hydroxytestosterone, and N-acetylneuraminic acid) of 40 differential metabolites enriched in serum metabolome were considered as regulators and biomarkers of SS duration in egg layer breeders. The integrated transcriptome and metabolome analyses of chicken breeder hens will provide novel insights for exploration and improvement of differential SS capacity in birds.
Collapse
|
23
|
Fu J, Guo Y, Wang M, Yang L, Han J, Lee JS, Zhou B. Bioconcentration of 2,4,6-tribromophenol (TBP) and thyroid endocrine disruption in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111207. [PMID: 32871520 DOI: 10.1016/j.ecoenv.2020.111207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
2,4,6-tribromophenol (TBP) is generally used as a brominated flame retardant but is produced in the degradation of tetrabromobisphenol-A. Although TBP is frequently detected in the environment and in various biota, including fish species, we still know little about its toxicity and environmental health risk. Here we investigated the bioconcentration and effects of TBP on the thyroid endocrine system by using zebrafish as a model. Zebrafish embryos (2 h post-fertilization, hpf) were exposed to five concentrations of TBP (0, 0.3, 1, 10, and 100 μg/L) until 144 hpf. According to our chemical analysis, TBP underwent bioconcentration in zebrafish larvae. However, acute exposure to TBP did not affect the hatching of embryos or their risk of malformation, nor the growth and survival of larvae, indicating low developmental toxicity of TBP. The whole-body thyroxine (T4) contents were significantly increased in zebrafish larvae after exposure to TBP, indicating thyroid endocrine disruption occurred. Gene transcription levels in the hypothalamic-pituitary-thyroid (HPT) axis were also examined in larvae; these results revealed that the transcription of corticotrophin-releasing hormone (crh), thyrotropin-releasing hormone (trh), and thyroid-stimulating hormone (tshβ) were all significantly downregulated by exposure to TBP. Likewise, genes encoding thyronine deiodinases (dio1, dio2, and dio3a/b) and thyroid hormone receptors (trα and trβ) also had their transcription downregulated in zebrafish. Further, the gene transcription and protein expression of binding and transport protein transthyretin (TTR) were significantly increased after TBP exposure. Taken together, our results suggest the bioavailability of and potential thyroid endocrine disruption by TBP in fish.
Collapse
Affiliation(s)
- Juanjuan Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
24
|
Knapen D, Stinckens E, Cavallin JE, Ankley GT, Holbech H, Villeneuve DL, Vergauwen L. Toward an AOP Network-Based Tiered Testing Strategy for the Assessment of Thyroid Hormone Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8491-8499. [PMID: 32584560 PMCID: PMC7477622 DOI: 10.1021/acs.est.9b07205] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.
Collapse
Affiliation(s)
- Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jenna E Cavallin
- Badger Technical Services, United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Gerald T Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Henrik Holbech
- Ecotoxicology Lab, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
25
|
Stinckens E, Vergauwen L, Blackwell BR, Ankley GT, Villeneuve DL, Knapen D. Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6213-6223. [PMID: 32320227 PMCID: PMC7477623 DOI: 10.1021/acs.est.9b07204] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A set of adverse outcome pathways (AOPs) linking inhibition of thyroperoxidase and deiodinase to impaired swim bladder inflation in fish has recently been developed. These AOPs help to establish links between these thyroid hormone (TH) disrupting molecular events and adverse outcomes relevant to aquatic ecological risk assessment. Until now, very little data on the effects of TH disruption on inflation of the anterior chamber (AC) of the swim bladder were available. The present study used zebrafish exposure experiments with three model compounds with distinct thyroperoxidase and deiodinase inhibition potencies (methimazole, iopanoic acid, and propylthiouracil) to evaluate this linkage. Exposure to all three chemicals decreased whole body triiodothyronine (T3) concentrations, either through inhibition of thyroxine (T4) synthesis or through inhibition of Dio mediated conversion of T4 to T3. A quantitative relationship between reduced T3 and reduced AC inflation was established, a critical key event relationship linking impaired swim bladder inflation to TH disruption. Reduced inflation of the AC was directly linked to reductions in swimming distance compared to controls as well as to chemical-exposed fish whose ACs inflated. Together the data provide compelling support for AOPs linking TH disruption to impaired AC inflation in fish.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Brett R. Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Gerald T. Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Daniel L. Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
26
|
Couderq S, Leemans M, Fini JB. Testing for thyroid hormone disruptors, a review of non-mammalian in vivo models. Mol Cell Endocrinol 2020; 508:110779. [PMID: 32147522 DOI: 10.1016/j.mce.2020.110779] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) play critical roles in profound changes in many vertebrates, notably in mammalian neurodevelopment, although the precise molecular mechanisms of these fundamental biological processes are still being unravelled. Environmental and health concerns prompted the development of chemical safety testing and, in the context of endocrine disruption, identification of thyroid hormone axis disrupting chemicals (THADCs) remains particularly challenging. As various molecules are known to interfere with different levels of TH signalling, screening tests for THADCs may not rely solely on in vitro ligand/receptor binding to TH receptors. Therefore, alternatives to mammalian in vivo assays featuring TH-related endpoints that are more sensitive than circulatory THs and more rapid than thyroid histopathology are needed to fulfil the ambition of higher throughput screening of the myriad of environmental chemicals. After a detailed introduction of the context, we have listed current assays and parameters to assess thyroid disruption following a literature search of recent publications referring to non-mammalian models. Potential THADCs were mostly investigated in zebrafish and the frog Xenopus laevis, an amphibian model extensively used to study TH signalling.
Collapse
Affiliation(s)
- Stephan Couderq
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Michelle Leemans
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Jean-Baptiste Fini
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
27
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
28
|
Houbrechts AM, Beckers A, Vancamp P, Sergeys J, Gysemans C, Mathieu C, Darras VM. Age-Dependent Changes in Glucose Homeostasis in Male Deiodinase Type 2 Knockout Zebrafish. Endocrinology 2019; 160:2759-2772. [PMID: 31504428 DOI: 10.1210/en.2019-00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (THs) are crucial regulators of glucose metabolism and insulin sensitivity. Moreover, inactivating mutations in type 2 deiodinase (DIO2), the major TH-activating enzyme, have been associated with type 2 diabetes mellitus in both humans and mice. We studied the link between Dio2 deficiency and glucose homeostasis in fasted males of two different Dio2 knockout (KO) zebrafish lines. Young adult Dio2KO zebrafish (6 to 9 months) were hyperglycemic. Both insulin and glucagon expression were increased, whereas β and α cell numbers in the main pancreatic islet were similar to those in wild-types. Insulin receptor expression in skeletal muscle was decreased at 6 months, accompanied by a strong downregulation of hexokinase and pyruvate kinase expression. Blood glucose levels in Dio2KO zebrafish, however, normalized around 1 year of age. Older mutants (18 to 24 months) were normoglycemic, and increased insulin and glucagon expression was accompanied by a prominent increase in pancreatic islet size and β and α cell numbers. Older Dio2KO zebrafish also showed strongly decreased expression of glucagon receptors in the gastrointestinal system as well as decreased expression of glucose transporters GLUT2 and GLUT12, glucose-6-phosphatase, and glycogen synthase 2. This study shows that Dio2KO zebrafish suffer from transient hyperglycemia, which is counteracted with increasing age by a prominent hyperplasia of the endocrine pancreas together with decreases in hepatic glucagon sensitivity and intestinal glucose uptake. Further research on the mechanisms allowing compensation in older Dio2KO zebrafish may help to identify new therapeutic targets for (TH deficiency-related) hyperglycemia.
Collapse
Affiliation(s)
- Anne M Houbrechts
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jurgen Sergeys
- Laboratory of Neural Circuit Development and Regeneration, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Aging, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Aging, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Vancamp P, Houbrechts AM, Darras VM. Insights from zebrafish deficiency models to understand the impact of local thyroid hormone regulator action on early development. Gen Comp Endocrinol 2019; 279:45-52. [PMID: 30244055 DOI: 10.1016/j.ygcen.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Thyroid hormones (THs) stimulate and coordinate a wide range of processes to ensure normal development, mainly by binding of the most active TH 3,5,3'-triiodothyronine (T3) to nuclear receptors resulting in changes in gene transcription. Local TH action is monitored at three distinct levels by different types of regulators: transmembrane transporters (TH influx and efflux), deiodinases (TH activation and inactivation) and nuclear receptors (TH signalling). Since TH regulators are strongly conserved among vertebrate species, the externally and rapidly developing zebrafish (Danio rerio) has become one of the favourite models to study their role in TH-dependent development. Most regulators are expressed in zebrafish from early stages in development in a dynamic and tissue-specific pattern. Transient or permanent disruption of a given regulator severely perturbs development of multiple organs. These zebrafish deficiency models help to explain why, next to overall hypo-/hyperthyroidism, inactivating mutations in the genes encoding TH regulators such as MCT8 and THRA/B have irreversible adverse effects on human development. Zebrafish are also increasingly used as a high-throughput model to assess the toxicity of various xenobiotics and their impact on development. While adverse effects on TH metabolism and gene expression have been shown, information on direct interaction with TH regulators is scarce, albeit essential to fully understand their mechanism of action. For the future, the combination of novel gene silencing tools, fluorescent reporter lines and (single-cell) transcriptomics holds promise for new zebrafish models to further elucidate the role of each TH regulator in vertebrate development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Anne M Houbrechts
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
Houbrechts AM, Van Houcke J, Darras VM. Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. J Endocrinol 2019; 241:JOE-18-0549.R3. [PMID: 30817317 DOI: 10.1530/joe-18-0549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023]
Abstract
Thyroid hormones are crucial mediators of many aspects of vertebrate life, including reproduction. The key player is the biologically active 3,5,3'-triiodothyronine (T3), whose local bio-availability is strictly regulated by deiodinase enzymes. Deiodinase type 2 (Dio2) is present in many tissues and is the main enzyme for local T3 production. To unravel its role in different physiological processes, we generated a mutant zebrafish line, completely lacking Dio2 activity. Here we focus on the reproductive phenotype studied at the level of offspring production, gametogenesis, functioning of the hypothalamic-pituitary-gonadal axis and sex steroid production. Homozygous Dio2-deficient zebrafish were hypothyroid, displayed a delay in sexual maturity, and the duration of their reproductive period was substantially shortened. Fecundity and fertilization were also severely reduced. Gamete counts pointed to a delay in oogenesis at onset of sexual maturity and later on to an accumulation of oocytes in mutant ovaries due to inhibition of ovulation. Analysis of spermatogenesis showed a strongly decreased number of spermatogonia A at onset of sexual maturity. Investigation of the hypothalamic-pituitary-gonadal axis revealed that dysregulation was largely confined to the gonads with significant upregulation of igf3, and a strong decrease in sex steroid production concomitant with alterations in gene expression in steroidogenesis/steroid signaling pathways. Rescue of the phenotype by T3 supplementation starting at 4 weeks resulted in normalization of reproductive activity in both sexes. The combined results show that reproductive function in mutants is severely hampered in both sexes, thereby linking the loss of Dio2 activity and the resulting hypothyroidism to reproductive dysfunction.
Collapse
Affiliation(s)
- Anne M Houbrechts
- A Houbrechts, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Van Houcke
- J Van houcke, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- V Darras, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Rurale G, Cicco ED, Dentice M, Salvatore D, Persani L, Marelli F, Luongo C. Thyroid Hormone Hyposensitivity: From Genotype to Phenotype and Back. Front Endocrinol (Lausanne) 2019; 10:912. [PMID: 32038483 PMCID: PMC6992580 DOI: 10.3389/fendo.2019.00912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
Thyroid hormone action defects (THADs) have been classically considered conditions of impaired sensitivity to thyroid hormone (TH). They were originally referring to alterations in TH receptor genes (THRA and THRB), but the discovery of genetic mutations and polymorphisms causing alterations in cell membrane transport (e.g., MCT8) and metabolism (e.g., SECISBP2, DIO2) led recently to a new and broader definition of TH hyposensitivity (THH), including not only THADs but all defects that could interfere with the activity of TH. Due to the different functions and tissue-specific expression of these genes, affected patients exhibit highly variable phenotypes. Some of them are characterized by a tissue hypothyroidism or well-recognizable alterations in the thyroid function tests (TFTs), whereas others display a combination of hypo- and hyperthyroid manifestations with normal or only subtle biochemical defects. The huge effort of basic research has greatly aided the comprehension of the molecular mechanisms underlying THADs, dissecting the morphological and functional alterations on target tissues, and defining the related-changes in the biochemical profile. In this review, we describe different pictures in which a specific alteration in the TFTs (TSH, T4, and T3 levels) is caused by defects in a specific gene. Altogether these findings can help clinicians to early recognize and diagnose THH and to perform a more precise genetic screening and therapeutic intervention. On the other hand, the identification of new genetic variants will allow the generation of cell-based and animal models to give novel insight into thyroid physiology and establish new therapeutic interventions.
Collapse
Affiliation(s)
- Giuditta Rurale
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Persani
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Marelli
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Federica Marelli
| | - Cristina Luongo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Wei P, Zhao F, Zhang X, Liu W, Jiang G, Wang H, Ru S. Transgenerational thyroid endocrine disruption induced by bisphenol S affects the early development of zebrafish offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:800-808. [PMID: 30243188 DOI: 10.1016/j.envpol.2018.09.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/18/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Maternal thyroid hormones (THs) play an essential role in the embryonic and larval development of fish. Previous studies in fish have reported that parental exposure to thyroid disrupting chemicals (TDCs) changed maternal TH levels in the offspring; however, whether this transgenerational thyroid endocrine disruption can further disturb the early development of the offspring still remains largely unknown. Bisphenol S (BPS), a substitute of bisphenol A, has been reported to be a potential TDC. In this study, zebrafish (F0) were exposed to environmentally relevant concentrations (1, 10, and 100 μg/L) of BPS from 2 h post-fertilization to 120 days post-fertilization and then paired to spawn. Plasma levels of thyroxine (T4) were significantly decreased in F0 females while 3,5,3'-triiodothyronine (T3) plasma levels were significantly increased in F0 females and males; moreover, TH content in eggs (F1) spawned by exposed F0 generation exhibited similar changes as the F0 females, with significant decreases in T4 and increases in T3, demonstrating BPS-induced maternal transfer of thyroid endocrine disruption. Further, excessive levels of maternal T3 in the offspring resulted in delayed embryonic development and hatching, swim bladder inflation defect, reduction in motility, developmental neurotoxicity, and lateral stripe hypopigmentation in non-exposed F1 embryos and larvae. These results highlight the adverse effects on the early development of offspring induced by transgenerational thyroid endocrine disruption, which have been ignored by previous studies. Therefore, these results can further improve our understanding of the ecological risks of TDCs.
Collapse
Affiliation(s)
- Penghao Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Fei Zhao
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China.
| | - Wenmin Liu
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Guobin Jiang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Hongfang Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| |
Collapse
|
33
|
Stinckens E, Vergauwen L, Ankley GT, Blust R, Darras VM, Villeneuve DL, Witters H, Volz DC, Knapen D. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:1-12. [PMID: 29702435 PMCID: PMC6002951 DOI: 10.1016/j.aquatox.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
Abstract
The adverse outcome pathway (AOP) framework can be used to help support the development of alternative testing strategies aimed at predicting adverse outcomes caused by triggering specific toxicity pathways. In this paper, we present a case-study demonstrating the selection of alternative in chemico assays targeting the molecular initiating events of established AOPs, and evaluate use of the resulting data to predict higher level biological endpoints. Based on two AOPs linking inhibition of the deiodinase (DIO) enzymes to impaired posterior swim bladder inflation in fish, we used in chemico enzyme inhibition assays to measure the molecular initiating events for an array of 51 chemicals. Zebrafish embryos were then exposed to 14 compounds with different measured inhibition potentials. Effects on posterior swim bladder inflation, predicted based on the information captured by the AOPs, were evaluated. By linking the two datasets and setting thresholds, we were able to demonstrate that the in chemico dataset can be used to predict biological effects on posterior chamber inflation, with only two outliers out of the 14 tested compounds. Our results show how information organized using the AOP framework can be employed to develop or select alternative assays, and successfully forecast downstream key events along the AOP. In general, such in chemico assays could serve as a first-tier high-throughput system to screen and prioritize chemicals for subsequent acute and chronic fish testing, potentially reducing the need for long-term and costly toxicity tests requiring large numbers of animals.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerald T Ankley
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Hilda Witters
- Applied Bio & Molecular Systems (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - David C Volz
- Department of Environmental Sciences, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
34
|
Le Blay K, Préau L, Morvan-Dubois G, Demeneix B. Expression of the inactivating deiodinase, Deiodinase 3, in the pre-metamorphic tadpole retina. PLoS One 2018; 13:e0195374. [PMID: 29641587 PMCID: PMC5895027 DOI: 10.1371/journal.pone.0195374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/21/2018] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormone (TH) orchestrates amphibian metamorphosis. Thus, this developmental phase is often used to study TH-dependent responses in specific tissues. However, TH signaling appears early in development raising the question of the control of TH availability in specific cell types prior to metamorphosis. TH availability is under strict temporal and tissue-specific control by deiodinases. We examined the expression of the TH-inactivating enzyme, deiodinase type 3 (D3), during early retinal development. To this end we created a Xenopus laevis transgenic line expressing GFP from the Xenopus dio3 promoter region (pdio3) and followed pdio3-GFP expression in pre-metamorphic tadpoles. To validate retinal GFP expression in the transgenic line as a function of dio3 promoter activity, we used in situ hybridization to compare endogenous dio3 expression to reporter-driven GFP activity. Retinal expression of dio3 increased during pre-metamorphosis through stages NF41, 45 and 48. Both sets of results show dio3 to have cell-specific, dynamic expression in the pre-metamorphic retina. At stage NF48, dio3 expression co-localised with markers for photoreceptors, rods, Opsin-S cones and bipolar neurons. In contrast, in post-metamorphic juveniles dio3 expression was reduced and spatially confined to certain photoreceptors and amacrine cells. We compared dio3 expression at stages NF41 and NF48 with TH-dependent transcriptional responses using another transgenic reporter line: THbZIP-GFP and by analyzing the expression of T3-regulated genes in distinct TH availability contexts. At stage NF48, the majority of retinal cells expressing dio3 were negative for T3 signaling. Notably, most ganglion cells were virtually both dio3-free and T3-responsive. The results show that dio3 can reduce TH availability at the cellular scale. Further, a reduction in dio3 expression can trigger fine-tuned T3 action in cell-type specific maturation at the right time, as exemplified here in photoreceptor survival in the pre-metamorphic retina.
Collapse
Affiliation(s)
- Karine Le Blay
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| | - Laëtitia Préau
- Zoologisches Institut, Zell-und Entwicklungsbiologie, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ghislaine Morvan-Dubois
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| | - Barbara Demeneix
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
35
|
Manto M, Hampe CS. Endocrine disorders and the cerebellum: from neurodevelopmental injury to late-onset ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:353-368. [PMID: 29891071 DOI: 10.1016/b978-0-444-64189-2.00023-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hormonal disorders are a source of cerebellar ataxia in both children and adults. Normal development of the cerebellum is critically dependent on thyroid hormone, which crosses both the blood-brain barrier and the blood-cerebrospinal fluid barrier thanks to specific transporters, including monocarboxylate transporter 8 and the organic anion-transporting polypeptide 1C1. In particular, growth and dendritic arborization of Purkinje neurons, synaptogenesis, and myelination are dependent on thyroid hormone. Disturbances of thyroid hormone may also impact on cerebellar ataxias of other origin, decompensating or aggravating the pre-existing ataxia manifesting with motor ataxia, oculomotor ataxia, and/or Schmahmann syndrome. Parathyroid disorders are associated with a genuine cerebellar syndrome, but symptoms may be subtle. The main conditions combining diabetes and cerebellar ataxia are Friedreich ataxia, ataxia associated with anti-GAD antibodies, autoimmune polyglandular syndromes, aceruloplasminemia, and cerebellar ataxia associated with hypogonadism (especially Holmes ataxia/Boucher-Neuhäuser syndrome). The general workup of cerebellar disorders should include the evaluation of hormonal status, including thyroid-stimulating hormone and free thyroxine levels, and hormonal replacement should be considered depending on the laboratory results. Cerebellar deficits may be reversible in some cases.
Collapse
Affiliation(s)
- Mario Manto
- Neurology Service, CHU-Charleroi, Charleroi, Belgium; Neuroscience Service, Université de Mons, Mons, Belgium.
| | - Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, United States
| |
Collapse
|
36
|
Vancamp P, Darras VM. Dissecting the role of regulators of thyroid hormone availability in early brain development: Merits and potential of the chicken embryo model. Mol Cell Endocrinol 2017; 459:71-78. [PMID: 28153797 DOI: 10.1016/j.mce.2017.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormones (THs) are important mediators of vertebrate central nervous system (CNS) development, thereby regulating the expression of a wide variety of genes by binding to nuclear TH receptors. TH transporters and deiodinases are both needed to ensure appropriate intracellular TH availability, but the precise function of each of these regulators and their coaction during brain development is only partially understood. Rodent knockout models already provided some crucial insights, but their in utero development severely hampers research regarding the role of TH regulators during early embryonic stages. The establishment of novel gain- and loss-of-function techniques has boosted the position of externally developing non-mammalian vertebrates as research models in developmental endocrinology. Here, we elaborate on the chicken as a model organism to elucidate the function of TH regulators during embryonic CNS development. The fast-developing, relatively big and accessible embryo allows easy experimental manipulation, especially at early stages of brain development. Recent data on the characterisation and spatiotemporal expression pattern of different TH regulators in embryonic chicken CNS have provided the necessary background to dissect the function of each of them in more detail. We highlight some recent advances and important strategies to investigate the role of TH transporters and deiodinases in various CNS structures like the brain barriers, the cerebellum, the retina and the hypothalamus. Exploiting the advantages of this non-classical model can greatly contribute to complete our understanding of the regulation of TH bioavailability throughout embryonic CNS development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
37
|
Abstract
Next-generation sequencing technologies have revolutionized the identification of disease-causing genes, accelerating the discovery of new mutations and new candidate genes for thyroid diseases. To face this flow of novel genetic information, it is important to have suitable animal models to study the mechanisms regulating thyroid development and thyroid hormone availability and activity. Zebrafish ( Danio rerio), with its rapid external embryonic development, has been extensively used in developmental biology. To date, almost all of the components of the zebrafish thyroid axis have been characterized and are structurally and functionally comparable with those of higher vertebrates. The availability of transgenic fluorescent zebrafish lines allows the real-time analysis of thyroid organogenesis and its alterations. Transient morpholino-knockdown is a solution to silence the expression of a gene of interest and promptly obtain insights on its contribution during the development of the zebrafish thyroid axis. The recently available tools for targeted stable gene knockout have further increased the value of zebrafish to the study of thyroid disease. All of the reported zebrafish models can also be used to screen small compounds and to test new drugs and may allow the establishment of experimental proof of concept to plan subsequent clinical trials.
Collapse
Affiliation(s)
- Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
38
|
Cavallin JE, Ankley GT, Blackwell BR, Blanksma CA, Fay KA, Jensen KM, Kahl MD, Knapen D, Kosian PA, Poole S, Randolph EC, Schroeder AL, Vergauwen L, Villeneuve DL. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2942-2952. [PMID: 28488362 PMCID: PMC5733732 DOI: 10.1002/etc.3855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 05/21/2023]
Abstract
Inflation of the posterior and/or anterior swim bladder is a process previously demonstrated to be regulated by thyroid hormones. We investigated whether inhibition of deiodinases, which convert thyroxine (T4) to the more biologically active form, 3,5,3'-triiodothyronine (T3), would impact swim bladder inflation. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). First, fathead minnow embryos were exposed to 0.6, 1.9, or 6.0 mg/L or control water until 6 d postfertilization (dpf), at which time posterior swim bladder inflation was assessed. To examine anterior swim bladder inflation, a second study was conducted with 6-dpf larvae exposed to the same IOP concentrations until 21 dpf. Fish from both studies were sampled for T4/T3 measurements and gene transcription analyses. Incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole-body T4 concentrations increased and T3 concentrations decreased in all IOP treatments. Consistent with hypothesized compensatory responses, deiodinase-2 messenger ribonucleic acid (mRNA) was up-regulated in the larval study, and thyroperoxidase mRNA was down-regulated in all IOP treatments in both studies. These results support the hypothesized adverse outcome pathways linking inhibition of deiodinase activity to impaired swim bladder inflation. Environ Toxicol Chem 2017;36:2942-2952. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Jenna E. Cavallin
- Badger Technical Services, US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
- Corresponding author: Jenna Cavallin,
| | - Gerald T. Ankley
- US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Brett R. Blackwell
- US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Chad A. Blanksma
- Badger Technical Services, US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Kellie A. Fay
- University of Minnesota-Duluth, Biology Dept., US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Kathleen M. Jensen
- US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Michael D. Kahl
- US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Dries Knapen
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Patricia A. Kosian
- US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Shane Poole
- US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Eric C. Randolph
- ORISE Research Participation Program, US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Anthony L. Schroeder
- University of Minnesota - Crookston, Department of Biology, 2900 University Ave., Crookston, MN 56716, USA
| | - Lucia Vergauwen
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium
- University of Antwerp, Systemic Physiological and Ecotoxicological Research (SPHERE), Dept. Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
39
|
Romano SN, Edwards HE, Souder JP, Ryan KJ, Cui X, Gorelick DA. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish. PLoS Genet 2017; 13:e1007069. [PMID: 29065151 PMCID: PMC5669493 DOI: 10.1371/journal.pgen.1007069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/03/2017] [Accepted: 10/11/2017] [Indexed: 01/31/2023] Open
Abstract
Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. Estrogen hormones are important for the formation and function of the nervous, reproductive and cardiovascular systems. Here we report that acute exposure to estrogens increases heart rate, a previously unappreciated function of estrogens. Using zebrafish with mutations in genes that respond to estrogens, we found that heart rate is regulated not by the typical molecules that respond to estrogens–the nuclear estrogen receptors–but rather by a different molecule, the G protein-coupled estrogen receptor. We also show that estrogens increase heart rate by increasing levels of thyroid hormone. Our results reveal a new function for the G protein-coupled estrogen receptor and a new connection between estrogens and thyroid hormone. Environmental compounds that mimic estrogens can be harmful because they can influence gonad function. Our results suggest that endocrine disrupting compounds may also influence cardiac function.
Collapse
Affiliation(s)
- Shannon N. Romano
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hailey E. Edwards
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jaclyn Paige Souder
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin J. Ryan
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel A. Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
40
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
41
|
Ng L, Liu H, St. Germain DL, Hernandez A, Forrest D. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase. Endocrinology 2017; 158:1999-2010. [PMID: 28324012 PMCID: PMC5460942 DOI: 10.1210/en.2017-00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
Abstract
Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Arturo Hernandez
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|