1
|
Mooradian AD, Haas MJ. Role of Thyroid Hormone in Neurodegenerative Disorders of Older People. Cells 2025; 14:140. [PMID: 39851568 PMCID: PMC11763745 DOI: 10.3390/cells14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Thyroid dysfunction is associated with a number of neuropsychiatric manifestations. Cognitive decline is a common feature of hypothyroidism and clinical or subclinical hyperthyroidism. In addition, there is a significant association between thyroid hormone (TH) levels and the degree of cognitive impairment in Parkinson's disease (PD). The pathophysiology of TH-related neurodegeneration include changes in the blood-brain barrier, increased cellular stress, altered processing of β-amyloid precursor protein and the effect of TH on neuronal cell viability. The neurotoxicity of TH is partially mediated by the thyroid hormone responsive protein (THRP). This protein is 83% homologous to mouse c-Abl-interacting protein-2 (Abi2), a c-Abl-modulating protein with tumor suppressor activity. In cell cultures, increasing THRP expression either with TH treatment or exogenously through transfecting neuronal or PC 12 cells causes cell necrosis. The expression of exogenous THRP in other cells such as the colonic epithelial cell line Caco-2 and the glial cell line U251 has no effect on cell viability. The effect of THRP on cell viability is not modulated by c-Abl tyrosine kinase. The causal relationship between specific biochemical perturbations in cerebral tissue and thyroid dysfunction remains to be elucidated.
Collapse
Affiliation(s)
- Arshag D. Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street, Jacksonville, FL 32209, USA;
| | | |
Collapse
|
2
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Cho SW. Selective Agonists of Thyroid Hormone Receptor Beta: Promising Tools for the Treatment of Nonalcoholic Fatty Liver Disease. Endocrinol Metab (Seoul) 2024; 39:285-287. [PMID: 38693819 PMCID: PMC11066439 DOI: 10.3803/enm.2024.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Sinha RA, Yen PM. Metabolic Messengers: Thyroid Hormones. Nat Metab 2024; 6:639-650. [PMID: 38671149 PMCID: PMC7615975 DOI: 10.1038/s42255-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Nemeth CL, Gӧk Ö, Tomlinson SN, Sharma A, Moser AB, Kannan S, Kannan RM, Fatemi A. Targeted Brain Delivery of Dendrimer-4-Phenylbutyrate Ameliorates Neurological Deficits in a Long-Term ABCD1-Deficient Mouse Model of X-Linked Adrenoleukodystrophy. Neurotherapeutics 2023; 20:272-283. [PMID: 36207570 PMCID: PMC9542479 DOI: 10.1007/s13311-022-01311-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
X-linked adrenoleukodystrophy (ALD) is a genetic disorder that presents neurologically as either a rapid and fatal cerebral demyelinating disease in childhood (childhood cerebral adrenoleukodystrophy; ccALD) or slow degeneration of the spinal cord in adulthood (adrenomyeloneuropathy; AMN). All forms of ALD result from mutations in the ATP Binding Cassette Subfamily D Member (ABCD) 1 gene, encoding a peroxisomal transporter responsible for the import of very long chain fatty acids (VLCFA) and results mechanistically in a complex array of dysfunction, including endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, and inflammation. Few therapeutic options exist for these patients; however, an additional peroxisomal transport protein (ABCD2) has been successfully targeted previously for compensation of dysfunctional ABCD1. 4-Phenylbutyrate (4PBA), a potent activator of the ABCD1 homolog ABCD2, is FDA approved, but use for ALD has been stymied by a short half-life and thus a need for unfeasibly high doses. We conjugated 4PBA to hydroxyl polyamidoamine (PAMAM) dendrimers (D-4PBA) to a create a long-lasting and intracellularly targeted approach which crosses the blood-brain barrier to upregulate Abcd2 and its downstream pathways. Across two studies, Abcd1 knockout mice administered D-4PBA long term showed neurobehavioral improvement and increased Abcd2 expression. Furthermore, when the conjugate was administered early, significant reduction of VLCFA and improved survival of spinal cord neurons was observed. Taken together, these data show improved efficacy of D-4PBA compared to previous studies of free 4PBA alone, and promise for D-4PBA in the treatment of complex and chronic neurodegenerative diseases using a dendrimer delivery platform that has shown successes in recent clinical trials. While recovery in our studies was partial, combined therapies on the dendrimer platform may offer a safe and complete strategy for treatment of ALD.
Collapse
Affiliation(s)
- Christina L Nemeth
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Özgül Gӧk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia N Tomlinson
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Anjali Sharma
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann B Moser
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Sujatha Kannan
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rangaramanujam M Kannan
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Wirth EK, Puengel T, Spranger J, Tacke F. Thyroid hormones as a disease modifier and therapeutic target in nonalcoholic steatohepatitis. Expert Rev Endocrinol Metab 2022; 17:425-434. [PMID: 35957531 DOI: 10.1080/17446651.2022.2110864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and closely interconnected to the metabolic syndrome. Liver-specific and systemic signaling pathways orchestrating glucose and fatty acid metabolism contribute to intrahepatic accumulation of lipids and inflammatory processes eventually causing disease progression to nonalcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. Since a high number of key regulatory genes regarding liver homeostasis are directly mediated via thyroid hormone (TH) signaling, targeting TH receptors (TRs) represent a promising therapeutic potential for the treatment of NAFLD. AREAS COVERED In this review, we elucidate the effects of TH on metabolic regulations in the liver via local availability and actions. We discuss recent advances and the potential impact of thyromimetics in basic research and clinical trials including liver-targeted and TRβ-specific agents for the treatment of NAFLD. EXPERT OPINION Unselective TR targeting can be accompanied by negative side effects due to high TRβ expression in other organs and TRα-mediated effects. Recent advances in drug development and the introduction of liver-targeted thyromimetics selectively activating TRβ such as Resmetirom (MGL-3196) and VK2809 bring new hope of translating the knowledge on local TH effects into effective hepatic lipid-clearing therapies against NASH.
Collapse
Affiliation(s)
- Eva K Wirth
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
7
|
Monternier PA, Parasar P, Theurey P, Gluais Dagorn P, Kaur N, Nagaraja TN, Fouqueray P, Bolze S, Moller DE, Singh J, Hallakou-Bozec S. Beneficial Effects of the Direct AMP-Kinase Activator PXL770 in In Vitro and In Vivo Models of X-Linked Adrenoleukodystrophy. J Pharmacol Exp Ther 2022; 382:208-222. [PMID: 35764327 PMCID: PMC11047065 DOI: 10.1124/jpet.122.001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
X-linked adrenoleukodystrophy (ALD) is a severe orphan disease caused by mutations in the peroxisomal ABCD1 transporter gene, leading to toxic accumulation of Very Long-Chain Fatty Acids (VLCFA - in particular C26:0) resulting in inflammation, mitochondrial dysfunction and demyelination. AMP-activated protein kinase (AMPK) is downregulated in ALD, and its activation is implicated as a therapeutic target. PXL770 is the first direct allosteric AMPK activator with established clinical efficacy and tolerability. Methods: We investigated its effects in ALD patient-derived fibroblasts/lymphocytes and Abcd1 KO mouse glial cells. Readouts included VLCFA levels, mitochondrial function and mRNA levels of proinflammatory genes and compensatory transporters (ABCD2-3). After PXL770 treatment in Abcd1 KO mice, we assessed VLCFA levels in tissues, sciatic nerve axonal morphology by electronic microscopy and locomotor function by open-field/balance-beam tests. Results: In patients' cells and Abcd1 KO glial cells, PXL770 substantially decreased C26:0 levels (by ∼90%), improved mitochondrial respiration, reduced expression of multiple inflammatory genes and induced expression of ABCD2-3 In Abcd1 KO mice, PXL770 treatment normalized VLCFA in plasma and significantly reduced elevated levels in brain (-25%) and spinal cord (-32%) versus untreated (P < 0.001). Abnormal sciatic nerve axonal morphology was also improved along with amelioration of locomotor function. Conclusion: Direct AMPK activation exerts beneficial effects on several hallmarks of pathology in multiple ALD models in vitro and in vivo, supporting clinical development of PXL770 for this disease. Further studies would be needed to overcome limitations including small sample size for some parameters, lack of additional in vivo biomarkers and incomplete pharmacokinetic characterization. SIGNIFICANCE STATEMENT: Adrenoleukodystrophy is a rare and debilitating condition with no approved therapies, caused by accumulation of very long-chain fatty acids. AMPK is downregulated in the disease and has been implicated as a potential therapeutic target. PXL770 is a novel clinical stage direct AMPK activator. In these studies, we used PXL770 to achieve preclinical validation of direct AMPK activation for this disease - based on correction of key biochemical and functional readouts in vitro and in vivo, thus supporting clinical development.
Collapse
Affiliation(s)
- Pierre-Axel Monternier
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Parveen Parasar
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Pierre Theurey
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Pascale Gluais Dagorn
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Navtej Kaur
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Tavarekere N Nagaraja
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Pascale Fouqueray
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Sébastien Bolze
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - David E Moller
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Jaspreet Singh
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| | - Sophie Hallakou-Bozec
- Poxel SA, Lyon, France (P.-A.M., P.T., P.G.D., P.F., S.B., D.E.M., S.H.-B.) and Departments of Neurology (P.P., N.K., J.S.) and Neurosurgery (T.N.N.), Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
8
|
Come JH, Senter TJ, Clark MP, Court JJ, Gale-Day Z, Gu W, Krueger E, Liang J, Morris M, Nanthakumar S, O'Dowd H, Maltais F, Iyer G, Andreassi J, Boucher C, Considine T, Moody CS, Taylor W, Mohanty AK, Huang Y, Zuccola H, Coll J, Bonanno KC, Gagnon KJ, Gan L, Lu F, Gao H, Chakilam A, Engtrakul J, Song B, Crawford D, Doyle E, Kramer T, Vought B, Phillips J, Kemper R, Sanders M, Swett R, Furey B, Winquist R, Bunnage ME, Jackson KL, Charifson PS, Magavi SS. Discovery and Optimization of Pyrazole Amides as Inhibitors of ELOVL1. J Med Chem 2021; 64:17753-17776. [PMID: 34748351 DOI: 10.1021/acs.jmedchem.1c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Accumulation of very long chain fatty acids (VLCFAs) due to defects in ATP binding cassette protein D1 (ABCD1) is thought to underlie the pathologies observed in adrenoleukodystrophy (ALD). Pursuing a substrate reduction approach based on the inhibition of elongation of very long chain fatty acid 1 enzyme (ELOVL1), we explored a series of thiazole amides that evolved into compound 27─a highly potent, central nervous system (CNS)-penetrant compound with favorable in vivo pharmacokinetics. Compound 27 selectively inhibits ELOVL1, reducing C26:0 VLCFA synthesis in ALD patient fibroblasts, lymphocytes, and microglia. In mouse models of ALD, compound 27 treatment reduced C26:0 VLCFA concentrations to near-wild-type levels in blood and up to 65% in the brain, a disease-relevant tissue. Preclinical safety findings in the skin, eye, and CNS precluded progression; the origin and relevance of these findings require further study. ELOVL1 inhibition is an effective approach for normalizing VLCFAs in models of ALD.
Collapse
Affiliation(s)
- Jon H Come
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Timothy J Senter
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Michael P Clark
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - John J Court
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Zachary Gale-Day
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Wenxin Gu
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Elaine Krueger
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Jianglin Liang
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Mark Morris
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Suganthini Nanthakumar
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Hardwin O'Dowd
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Francois Maltais
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Ganesh Iyer
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - John Andreassi
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Christina Boucher
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Tony Considine
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Cameron S Moody
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - William Taylor
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Arun K Mohanty
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Yulin Huang
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Harmon Zuccola
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Joyce Coll
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Kenneth C Bonanno
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Kevin J Gagnon
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Lu Gan
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Fan Lu
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Hong Gao
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Ananthisrinivas Chakilam
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Juntyma Engtrakul
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Bin Song
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Dan Crawford
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Elisabeth Doyle
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Tal Kramer
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Bryan Vought
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Jonathan Phillips
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Raymond Kemper
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Martin Sanders
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Rebecca Swett
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Brinley Furey
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Ray Winquist
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Mark E Bunnage
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Katrina L Jackson
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Paul S Charifson
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| | - Sanjay S Magavi
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, Massachusetts 02210, United States
| |
Collapse
|
9
|
Ma CY, Li C, Zhou X, Zhang Z, Jiang H, Liu H, Chen HJ, Tse HF, Liao C, Lian Q. Management of adrenoleukodystrophy: From pre-clinical studies to the development of new therapies. Biomed Pharmacother 2021; 143:112214. [PMID: 34560537 DOI: 10.1016/j.biopha.2021.112214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder associated with mutations of the ABCD1 gene that encodes a peroxisomal transmembrane protein. It results in accumulation of very long chain fatty acids in tissues and body fluid. Along with other factors such as epigenetic and environmental involvement, ABCD1 mutation-provoked disorders can present different phenotypes including cerebral adrenoleukodystrophy (cALD), adrenomyeloneuropathy (AMN), and peripheral neuropathy. cALD is the most severe form that causes death in young childhood. Bone marrow transplantation and hematopoietic stem cell gene therapy are only effective when performed at an early stage of onsets in cALD. Nonetheless, current research and development of novel therapies are hampered by a lack of in-depth understanding disease pathophysiology and a lack of reliable cALD models. The Abcd1 and Abcd1/Abcd2 knock-out mouse models as well as the deficiency of Abcd1 rabbit models created in our lab, do not develop cALD phenotypes observed in human beings. In this review, we summarize the clinical and biochemical features of X-ALD, the progress of pre-clinical and clinical studies. Challenges and perspectives for future X-ALD studies are also discussed.
Collapse
Affiliation(s)
- Chui Yan Ma
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Cheng Li
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Xiaoya Zhou
- Prenatal Diagnostic Centre and Cord Blood Bank, China
| | - Zhao Zhang
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Hua Jiang
- Department of Haematology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, the University of Chicago, IL 60637, USA
| | - Hung-Fat Tse
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Can Liao
- Prenatal Diagnostic Centre and Cord Blood Bank, China
| | - Qizhou Lian
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong; State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong; Prenatal Diagnostic Centre and Cord Blood Bank, China.
| |
Collapse
|
10
|
Peroxisomal ABC Transporters: An Update. Int J Mol Sci 2021; 22:ijms22116093. [PMID: 34198763 PMCID: PMC8201181 DOI: 10.3390/ijms22116093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed.
Collapse
|
11
|
Moser AB, Liu Y, Shi X, Schrifl U, Hiebler S, Fatemi A, Braverman NE, Steinberg SJ, Watkins PA. Drug discovery for X-linked adrenoleukodystrophy: An unbiased screen for compounds that lower very long-chain fatty acids. J Cell Biochem 2021; 122:1337-1349. [PMID: 34056752 DOI: 10.1002/jcb.30014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023]
Abstract
X-linked adrenoleukodystrophy (XALD) is a genetic neurologic disorder with multiple phenotypic presentations and limited therapeutic options. The childhood cerebral phenotype (CCALD), a fatal demyelinating disorder affecting about 35% of patients, and the adult-onset adrenomyeloneuropathy (AMN), a peripheral neuropathy affecting 40%-45% of patients, are both caused by mutations in the ABCD1 gene. Both phenotypes are characterized biochemically by elevated tissue and plasma levels of saturated very long-chain fatty acids (VLCFA), and an increase in plasma cerotic acid (C26:0), along with the clinical presentation, is diagnostic. Administration of oils containing monounsaturated fatty acids, for example, Lorenzo's oil, lowers patient VLCFA levels and reduced the frequency of development of CCALD in presymptomatic boys. However, this therapy is not currently available. Hematopoietic stem cell transplant and gene therapy remain viable therapies for boys with early progressive cerebral disease. We asked whether any existing approved drugs can lower VLCFA and thus open new therapeutic possibilities for XALD. Using SV40-transformed and telomerase-immortalized skin fibroblasts from an XALD patient, we conducted an unbiased screen of a library of approved drugs and natural products for their ability to decrease VLCFA, using measurement of C26:0 in lysophosphatidyl choline (C26-LPC) by tandem mass spectrometry as the readout. While several candidate drugs were initially identified, further testing in primary fibroblast cell lines from multiple CCALD and AMN patients narrowed the list to one drug, the anti-hypertensive drug irbesartan. In addition to lowering C26-LPC, levels of C26:0 and C28:0 in total fibroblast lipids were reduced. The effect of irbesartan was dose dependent between 2 and 10 μM. When male XALD mice received orally administered irbesartan at a dose of 10 mg/kg/day, there was no reduction in plasma C26-LPC. However, irbesartan failed to lower mouse fibroblast C26-LPC consistently. The results of these studies indicate a potential therapeutic benefit of irbesartan in XALD that should be validated by further study.
Collapse
Affiliation(s)
- Ann B Moser
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yanqiu Liu
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiaohai Shi
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ulrike Schrifl
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shandi Hiebler
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ali Fatemi
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nancy E Braverman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Steven J Steinberg
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul A Watkins
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Mohn A, Polidori N, Aiello C, Rizzo C, Giannini C, Chiarelli F, Cappa M. ABCD1 gene mutation in an Italian family with X-linkedadrenoleukodystrophy: case series. Endocrinol Diabetes Metab Case Rep 2021; 2021:EDM200125. [PMID: 34013890 PMCID: PMC8185536 DOI: 10.1530/edm-20-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/13/2021] [Indexed: 01/15/2023] Open
Abstract
SUMMARY Adrenoleukodystrophy is a peroxisomal X-linked recessive disease caused by mutations in the ABCD1 gene, located on the X-chromosome (Xq28). Gene mutations in patient with adrenoleukodystrophy induce metabolic alterations characterized by impaired peroxisomal beta-oxidation and accumulation of very long chain fatty acid (VLCFA) in plasma and in all tissues. Although nutritional intervention associated with a various mixture of oil prevents the accumulation of VLCFA, to date no causal treatment is available. Therefore, haematopoietic stem cell transplantation (HSCT) and gene therapy are allowed only for very early stages of cerebral forms diagnosed during childhood.We reported a case series describing five family members affected by X-linked adrenoleukodystrophy caused by a novel mutation of the ABCD1 gene. Particularly, three brothers were affected while the sister and mother carried the mutation of the ABCD1 gene. In this family, the disease was diagnosed at different ages and with different clinical pictures highlighting the wide range of phenotypes related to this novel mutation. In addition, these characteristics stress the relevant role of early diagnosis to properly set a patient-based follow-up. LEARNING POINTS We report a novel mutation in the ABCD1 gene documented in a family group associated to an X-ALD possible Addison only phenotype. All patients present just Addison disease but with different phenotypes despite the presence of the same mutations. Further follow-up is necessary to complete discuss the clinical development. The diagnosis of ALD needs to be included in the differential diagnosis in all patients with idiopathic PAI through accurate evaluation of VLCFA concentrations and genetic confirmation testing. Early diagnosis of neurological manifestation is important in order to refer timely to HSCT. Further follow-up of these family members is necessary to characterize the final phenotype associated with this new mutation.
Collapse
Affiliation(s)
- Angelika Mohn
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Nella Polidori
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Chiara Aiello
- Department of Neurosciences, Department of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Department of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | - Marco Cappa
- Unit of Endocrinology, Department of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
13
|
Hackenberg S, Kraus F, Scherzad A. Rare Diseases of Larynx, Trachea and Thyroid. Laryngorhinootologie 2021; 100:S1-S36. [PMID: 34352904 PMCID: PMC8363221 DOI: 10.1055/a-1337-5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review article covers data on rare diseases of the larynx, the trachea and the thyroid. In particular, congenital malformations, rare manifestations of inflammatory laryngeal disorders, benign and malignant epithelial as well as non-epithelial tumors, laryngeal and tracheal manifestations of general diseases and, finally, thyroid disorders are discussed. The individual chapters contain an overview of the data situation in the literature, the clinical appearance of each disorder, important key points for diagnosis and therapy and a statement on the prognosis of the disease. Finally, the authors indicate on study registers and self-help groups.
Collapse
Affiliation(s)
- Stephan Hackenberg
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| | - Fabian Kraus
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| | - Agmal Scherzad
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten,
plastische und ästhetische Operationen, Universitätsklinikum
Würzburg
| |
Collapse
|
14
|
Abstract
The development of thyroid hormone (TH) analogues was prompted by the attempt to exploit the effects of TH on lipid metabolism, avoiding cardiac thyrotoxicosis. Analysis of the relative distribution of the α and β subtypes of nuclear TH receptors (TRα and TRβ) showed that TRα and TRβ are responsible for cardiac and metabolic responses, respectively. Therefore, analogues with TRβ selectivity were developed, and four different compounds have been used in clinical trials: GC-1 (sobetirome), KB-2115 (eprotirome), MB07344/VK2809, and MGL-3196 (resmetirom). Each of these compounds was able to reduce low-density lipoprotein cholesterol, but a phase 3 trial with eprotirome was interrupted because of a significant increase in liver enzymes and the contemporary report of cartilage side effects in animals. As a consequence, the other projects were terminated as well. However, in recent years, TRβ agonists have raised new interest for the treatment of nonalcoholic fatty liver disease (NAFLD). After obtaining excellent results in experimental models, clinical trials have been started with MGL-3196 and VK2809, and the initial reports are encouraging. Sobetirome turned out to be effective also in experimental models of demyelinating disease. Aside TRβ agonists, TH analogues include some TH metabolites that are biologically active on their own, and their synthetic analogues. 3,5,3'-triiodothyroacetic acid has already found clinical use in the treatment of some cases of TH resistance due to TRβ mutations, and interesting results have recently been reported in patients with the Allan-Herndon-Dudley syndrome, a rare disease caused by mutations in the TH transporter MCT8. 3,5-diiodothyronine (T2) has been used with success in rat models of dyslipidemia and NAFLD, but the outcome of a clinical trial with a synthetic T2 analogue was disappointing. 3-iodothyronamine (T1AM) is the last entry in the group of active TH metabolites. Promising results have been obtained in animal models of neurological injury induced by β-amyloid or by convulsive agents, but no clinical data are available so far.
Collapse
Affiliation(s)
- Riccardo Zucchi
- Department of Pathology, University of Pisa, Pisa, Italy
- Address correspondence to: Riccardo Zucchi, MD, PhD, Department of Pathology, University of Pisa, Via Roma 55, Pisa 56126, Italy
| |
Collapse
|
15
|
Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective Thyroid Hormone Receptor-Beta (TRβ) Agonists: New Perspectives for the Treatment of Metabolic and Neurodegenerative Disorders. Front Med (Lausanne) 2020; 7:331. [PMID: 32733906 PMCID: PMC7363807 DOI: 10.3389/fmed.2020.00331] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (THs) elicit significant effects on numerous physiological processes, such as growth, development, and metabolism. A lack of thyroid hormones is not compatible with normal health. Most THs effects are mediated by two different thyroid hormone receptor (TR) isoforms, namely TRα and TRβ, with the TRβ isoform known to be responsible for the main beneficial effects of TH on liver. In brain, despite the crucial role of TRα isoform in neuronal development, TRβ has been proposed to play a role in the remyelination processes. Consequently, over the past two decades, much effort has been applied in developing thyroid hormone analogs capable of uncoupling beneficial actions on liver (triglyceride and cholesterol lowering) and central nervous system (CNS) (oligodendrocyte proliferation) from deleterious effects on the heart, muscle and bone. Sobetirome (GC-1) and subsequently Eprotirome (KB2115) were the first examples of TRβ selective thyromimetics, with Sobetirome differing from the structure of thyronines because of the absence of halogens, biaryl ether oxygen, and amino-acidic side chain. Even though both thyromimetics showed encouraging actions against hypercholesterolemia, non-alcoholic steatohepatitis (NASH) and in the stimulation of hepatocytes proliferation, they were stopped after Phase 1 and Phase 2–3 clinical trials, respectively. In recent years, advances in molecular and structural biology have facilitated the design of new selective thyroid hormone mimetics that exhibit TR isoform-selective binding, and/or liver- and tissue-selective uptake, with Resmetirom (MGL-3196) and Hep-Direct prodrug VK2809 (MB07811) probably representing two of the most promising lipid lowering agents, currently under phase 2–3 clinical trials. More recently the application of a comprehensive panel of ADME-Toxicity assays enabled the selection of novel thyromimetic IS25 and its prodrug TG68, as very powerful lipid lowering agents both in vitro and in vivo. In addition to dyslipidemia and other liver pathologies, THs analogs could also be of value for the treatment of neurodegenerative diseases, such as multiple sclerosis (MS). Sob-AM2, a CNS- selective prodrug of Sobetirome has been shown to promote significant myelin repair in the brain and spinal cord of mouse demyelinating models and it is rapidly moving into clinical trials in humans. Taken together all these findings support the great potential of selective thyromimetics in targeting a large variety of human pathologies characterized by altered metabolism and/or cellular differentiation.
Collapse
Affiliation(s)
| | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | |
Collapse
|
16
|
Grijota-Martínez C, Bárez-López S, Gómez-Andrés D, Guadaño-Ferraz A. MCT8 Deficiency: The Road to Therapies for a Rare Disease. Front Neurosci 2020; 14:380. [PMID: 32410949 PMCID: PMC7198743 DOI: 10.3389/fnins.2020.00380] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Allan-Herndon-Dudley syndrome is a rare disease caused by inactivating mutations in the SLC16A2 gene, which encodes the monocarboxylate transporter 8 (MCT8), a transmembrane transporter specific for thyroid hormones (T3 and T4). Lack of MCT8 function produces serious neurological disturbances, most likely due to impaired transport of thyroid hormones across brain barriers during development resulting in severe brain hypothyroidism. Patients also suffer from thyrotoxicity in other organs due to the presence of a high concentration of T3 in the serum. An effective therapeutic strategy should restore thyroid hormone serum levels (both T3 and T4) and should address MCT8 transporter deficiency in brain barriers and neural cells, to enable the access of thyroid hormones to target neural cells. Unfortunately, targeted therapeutic options are currently scarce and their effect is limited to an improvement in the thyrotoxic state, with no sign of any neurological improvement. The use of thyroid hormone analogs such as TRIAC, DITPA, or sobetirome, that do not require MCT8 to cross cell membranes and whose controlled thyromimetic activity could potentially restore the normal function of the affected organs, are being explored to improve the cerebral availability of these analogs. Other strategies aiming to restore the transport of THs through MCT8 at the brain barriers and the cellular membranes include gene replacement therapy and the use of pharmacological chaperones. The design of an appropriate therapeutic strategy in combination with an early diagnosis (at prenatal stages), will be key aspects to improve the devastating alterations present in these patients.
Collapse
Affiliation(s)
- Carmen Grijota-Martínez
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Soledad Bárez-López
- Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.,Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron University Hospital and VHIR (Euro-NMD, ERN-RND), Barcelona, Spain
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Hartley MD, Shokat MD, DeBell MJ, Banerji T, Kirkemo LL, Scanlan TS. Pharmacological Complementation Remedies an Inborn Error of Lipid Metabolism. Cell Chem Biol 2020; 27:551-559.e4. [PMID: 32169163 DOI: 10.1016/j.chembiol.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare, genetic disease in which increased very long chain fatty acids (VLCFAs) in the central nervous system (CNS) cause demyelination and axonopathy, leading to neurological deficits. Sobetirome, a potent thyroid hormone agonist, has been shown to lower VLCFAs in the periphery and CNS. In this study, two pharmacological strategies for enhancing the effects of sobetirome were tested in Abcd1 KO mice, a murine model with the same inborn error of metabolism as X-ALD patients. First, a sobetirome prodrug (Sob-AM2) with increased CNS penetration lowered CNS VLCFAs more potently than sobetirome and was better tolerated with reduced peripheral exposure. Second, co-administration of thyroid hormone with sobetirome enhanced VLCFA lowering in the periphery but did not produce greater lowering in the CNS. These data support the conclusion that CNS VLCFA lowering in Abcd1 knockout mice is limited by a mechanistic threshold related to slow lipid turnover.
Collapse
Affiliation(s)
- Meredith D Hartley
- Program in Chemical Biology and Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97206, USA
| | - Mitra D Shokat
- Program in Chemical Biology and Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97206, USA
| | - Margaret J DeBell
- Program in Chemical Biology and Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97206, USA
| | - Tania Banerji
- Program in Chemical Biology and Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97206, USA
| | - Lisa L Kirkemo
- Program in Chemical Biology and Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97206, USA
| | - Thomas S Scanlan
- Program in Chemical Biology and Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97206, USA.
| |
Collapse
|
18
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 2020; 80:52-72. [PMID: 31909500 PMCID: PMC7041623 DOI: 10.1002/jdn.10003] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific roles of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials and the advent of newborn screening in the USA. In ALD, very long-chain fatty acid (VLCFA) chain length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R. Turk
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Christiane Theda
- Neonatal ServicesRoyal Women's HospitalMurdoch Children's Research Institute and University of MelbourneMelbourneVICAustralia
| | - Ali Fatemi
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Ann B. Moser
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| |
Collapse
|
19
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked Adrenoleukodystrophy: Pathology, Pathophysiology, Diagnostic Testing, Newborn Screening, and Therapies. Int J Dev Neurosci 2019:S0736-5748(19)30133-9. [PMID: 31778737 DOI: 10.1016/j.ijdevneu.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific role of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials, and the advent of newborn screening in the United States. In ALD, very long chain fatty acid (VLCFA) chain-length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R Turk
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Christiane Theda
- Neonatal Services, Royal Women's Hospital, Murdoch Children's Research Institute and University of Melbourne, 20 Flemington Road, Parkville, VIC, 3052, Melbourne, Australia.
| | - Ali Fatemi
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| |
Collapse
|
20
|
Furlan FLS, Lemes MA, Suguimatsu LCF, Pires CTF, Santos MLSF. X-LINKED ADRENOLEUKODYSTROPHY IN BRAZIL: A CASE SERIES. ACTA ACUST UNITED AC 2019; 37:465-471. [PMID: 31241695 PMCID: PMC6821490 DOI: 10.1590/1984-0462/;2019;37;4;00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To describe patients with different phenotypes of X-linked adrenoleukodystrophy: pre-symptomatic, cerebral demyelinating inflammatory adrenoleukodystrophy, adrenomyeloneuropathy and adrenal insufficiency only. METHODS Specific data related to epidemiology, phenotype, diagnosis and treatment of 24 patients with X-linked adrenoleukodystrophy were collected. A qualitative cross-sectional and descriptive-exploratory analysis was performed using medical records from a reference center in Neuropediatrics in Curitiba, Brazil, as well as an electronic questionnaire. RESULTS The majority (79%) of patients had cerebral demyelinating inflammatory adrenoleukodystrophy, presenting aphasia, hyperactivity and vision disorders as the main initial symptoms. These symptoms appeared, on average, between six and seven years of age. There was a mean delay of 11 months between the onset of symptoms/signs and the diagnosis. Patients sought diagnosis mainly with neuropediatricians, and the main requested tests were dosage of very long chain fatty acids and brain magnetic resonance. CONCLUSIONS All phenotypes of X-linked adrenoleukodystrophy, except for myelopathy in women, were presented in the studied population, which mainly consisted of children and adolescents. Prevalent signs and symptoms registered in the literature were observed. Most of the patients with cerebral demyelinating inflammatory adrenoleukodystrophy were not diagnosed in time for hematopoietic stem cell transplantation.
Collapse
|
21
|
Hartley MD, Banerji T, Tagge IJ, Kirkemo LL, Chaudhary P, Calkins E, Galipeau D, Shokat MD, DeBell MJ, Van Leuven S, Miller H, Marracci G, Pocius E, Banerji T, Ferrara SJ, Meinig JM, Emery B, Bourdette D, Scanlan TS. Myelin repair stimulated by CNS-selective thyroid hormone action. JCI Insight 2019; 4:126329. [PMID: 30996143 PMCID: PMC6538346 DOI: 10.1172/jci.insight.126329] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Oligodendrocyte processes wrap axons to form neuroprotective myelin sheaths, and damage to myelin in disorders, such as multiple sclerosis (MS), leads to neurodegeneration and disability. There are currently no approved treatments for MS that stimulate myelin repair. During development, thyroid hormone (TH) promotes myelination through enhancing oligodendrocyte differentiation; however, TH itself is unsuitable as a remyelination therapy due to adverse systemic effects. This problem is overcome with selective TH agonists, sobetirome and a CNS-selective prodrug of sobetirome called Sob-AM2. We show here that TH and sobetirome stimulated remyelination in standard gliotoxin models of demyelination. We then utilized a genetic mouse model of demyelination and remyelination, in which we employed motor function tests, histology, and MRI to demonstrate that chronic treatment with sobetirome or Sob-AM2 leads to significant improvement in both clinical signs and remyelination. In contrast, chronic treatment with TH in this model inhibited the endogenous myelin repair and exacerbated disease. These results support the clinical investigation of selective CNS-penetrating TH agonists, but not TH, for myelin repair.
Collapse
Affiliation(s)
- Meredith D. Hartley
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Tania Banerji
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Lisa L. Kirkemo
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Priya Chaudhary
- VA Portland Health Care System, Portland, Oregon, USA
- Department of Neurology, and
| | - Evan Calkins
- VA Portland Health Care System, Portland, Oregon, USA
- Department of Neurology, and
| | - Danielle Galipeau
- VA Portland Health Care System, Portland, Oregon, USA
- Department of Neurology, and
| | - Mitra D. Shokat
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Margaret J. DeBell
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shelby Van Leuven
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Hannah Miller
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gail Marracci
- VA Portland Health Care System, Portland, Oregon, USA
- Department of Neurology, and
| | - Edvinas Pocius
- VA Portland Health Care System, Portland, Oregon, USA
- Department of Neurology, and
| | - Tapasree Banerji
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Skylar J. Ferrara
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - J. Matthew Meinig
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ben Emery
- Department of Neurology, and
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Dennis Bourdette
- VA Portland Health Care System, Portland, Oregon, USA
- Department of Neurology, and
| | - Thomas S. Scanlan
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
22
|
Pharmacologic normalization of pathogenic dosage underlying genetic diseases: an overview of the literature and path forward. Emerg Top Life Sci 2019; 3:53-62. [PMID: 33523192 DOI: 10.1042/etls20180099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
Most monogenic disorders are caused by a pathologic deficit or excess of a single transcript and/or protein. Given that small molecules, including drugs, can affect levels of mRNA and protein, the pharmacologic normalization of such pathogenic dosage represents a possible therapeutic approach for such conditions. Here, we review the literature exploring pharmacologic modulation of mRNA and/or protein levels for disorders with paralogous modifier genes, for haploinsufficient disorders (insufficient gene-product), as well as toxic gain-of-function disorders (surplus or pathologic gene-product). We also discuss challenges facing the development of rare disease therapy by pharmacologic modulation of mRNA and protein. Finally, we lay out guiding principles for selection of disorders which may be amenable to this approach.
Collapse
|
23
|
Hadwen J, Schock S, Mears A, Yang R, Charron P, Zhang L, Xi HS, MacKenzie A. Transcriptomic RNAseq drug screen in cerebrocortical cultures: toward novel neurogenetic disease therapies. Hum Mol Genet 2019; 27:3206-3217. [PMID: 29901742 DOI: 10.1093/hmg/ddy221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/04/2018] [Indexed: 01/19/2023] Open
Abstract
Rare monogenic diseases affect millions worldwide; although over 4500 rare disease genotypes are known, disease-modifying drugs are available for only 5% of them. The sheer number of these conditions combined with their rarity precludes traditional costly drug discovery programs. An economically viable alternative is to repurpose established drugs for rare diseases. Many genetic diseases result from increased or decreased protein activity and identification of clinically approved drugs which moderate this pathogenic dosage holds therapeutic potential. To identify such agents for neurogenetic diseases, we have generated genome-wide transcriptome profiles of mouse primary cerebrocortical cultures grown in the presence of 218 blood-brain barrier (BBB) penetrant clinic-tested drugs. RNAseq and differential expression analyses were used to generate transcriptomic profiles; therapeutically relevant drug-gene interactions related to rare neurogenetic diseases identified in this fashion were further analyzed by quantitative reverse transcriptase-polymerase chain reaction, western blot and immunofluorescence. We have created a transcriptome-wide searchable database for easy access to the gene expression data resulting from the cerebrocortical drug screen (Neuron Screen) and have mined this data to identify a novel link between thyroid hormone and expression of the peripheral neuropathy associated gene Pmp22. Our results demonstrate the utility of cerebrocortical cultures for transcriptomic drug screening, and the database we have created will foster further discovery of novel links between over 200 clinic-tested BBB penetrant drugs and genes related to diverse neurologic conditions.
Collapse
Affiliation(s)
- Jeremiah Hadwen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Alan Mears
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Robert Yang
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Philippe Charron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Liying Zhang
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Hualin S Xi
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Alex MacKenzie
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
24
|
Persani L, Campi I. Syndromes of Resistance to Thyroid Hormone Action. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:55-84. [PMID: 31588528 DOI: 10.1007/978-3-030-25905-1_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thyroid hormone (TH) action is crucial for the development of several tissues.A number of syndromes are associated with reduced responsiveness to thyroid hormones, expanding the original definition of thyroid hormone resistance, firstly described by Refetoff and collaborators in 1967, which is characterized by elevated circulating levels of T4 and T3 with measurable serum TSH concentrations, as a consequence of mutations of thyroid hormone receptor beta (TRβ), recently named as RTHβ. More recently, another form of insensitivity to TH has been identified due to mutations in the thyroid hormone receptor alpha (TRα), named RTHα. In this chapter we will focus the discussion on the phenotype of RTHβ and RTHα. These diseases share the same pathogenic mechanism caused by dominant negative mutations in TH receptor genes that reduce T3 binding or affect the recruitment of cofactors. As a consequence, thyroid hormone actions are impaired at the tissue level. The phenotypic manifestations of RTHβ and RTHα are to some extent correlated with the degree of disruption and the tissue distribution of the TRs being characterized by variable coexistence of hypothyroid or thyrotoxic manifestations in RTHβ or by a congenital hypothyroid features in RTHα despite normal TSH and borderline low free T4.
Collapse
Affiliation(s)
- Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Irene Campi
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Bárez-López S, Hartley MD, Grijota-Martínez C, Scanlan TS, Guadaño-Ferraz A. Sobetirome and its Amide Prodrug Sob-AM2 Exert Thyromimetic Actions in Mct8-Deficient Brain. Thyroid 2018; 28:1211-1220. [PMID: 29845892 PMCID: PMC6154442 DOI: 10.1089/thy.2018.0008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Loss of function mutations in the thyroid hormone (TH)-specific cell membrane transporter, the monocarboxylate transporter 8 (MCT8), lead to profound psychomotor retardation and abnormal TH serum levels, with low thyroxine (T4) and high triiodothyronine (T3). Several studies point to impaired TH transport across brain barriers as a crucial pathophysiological mechanism resulting in cerebral hypothyroidism. Treatment options for MCT8-deficient patients are limited and are focused on overcoming the brain barriers. The aim of this study was to evaluate the ability of the TH analog sobetirome and its prodrug Sob-AM2 to access the brain and exert thyromimetic actions in the absence of Mct8. METHODS Juvenile wild-type (Wt) mice and mice lacking Mct8 and deiodinase type 2 (Mct8/Dio2KO) were treated systemically with daily injections of vehicle, 1 mg of sobetirome/kg body weight/day, or 0.3 mg of Sob-AM2/kg body weight/day for seven days. Sobetirome content was measured using liquid chromatography-tandem mass spectrometry, and T4 and T3 levels by specific radioimmunoassays. The effect of sobetirome treatment in the expression of T3-dependent genes was measured in the heart, liver, and cerebral cortex by real-time polymerase chain reaction. RESULTS Sob-AM2 treatment in Mct8/Dio2KO animals led to 1.8-fold more sobetirome content in the brain and 2.5-fold less in plasma in comparison to the treatment with the parent drug sobetirome. Both sobetirome and Sob-AM2 treatments in Mct8/Dio2KO mice greatly decreased plasma T4 and T3 levels. Dio1 and Ucp2 gene expression was altered in the liver of Mct8/Dio2KO mice and was not affected by the treatments. In the heart, Hcn2 but not Atp2a2 expression was increased after treatment with the analogs. Interestingly, both sobetirome and Sob-AM2 treatments increased the expression of several T3-dependent genes in the brain such as Hr, Abcd2, Mme, and Flywch2 in Mct8/Dio2KO mice. CONCLUSIONS Sobetirome and its amide prodrug Sob-AM2 can access the brain in the absence of Mct8 and exert thyromimetic actions modulating the expression of T3-dependent genes. At the peripheral level, the administration of these TH analogs results in the depletion of circulating T4 and T3. Therefore, sobetirome and Sob-AM2 have the potential to address the cerebral hypothyroidism and the peripheral hyperthyroidism characteristic of MCT8 deficiency.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
| | - Meredith D. Hartley
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon
| | - Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon
- Address correspondence to:Thomas S. Scanlan, PhDDepartment of Physiology and Pharmacology and Program in Chemical BiologyOregon Health and Science UniversityPortland, OR 97239
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- Ana Guadaño-Ferraz, PhDDepartment of Endocrine and Nervous System PathophysiologyInstituto de Investigaciones Biomédicas Alberto SolsConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridArturo Duperier 4E-28029 MadridSpain
| |
Collapse
|
26
|
Ferrara SJ, Bourdette D, Scanlan TS. Hypothalamic-Pituitary-Thyroid Axis Perturbations in Male Mice by CNS-Penetrating Thyromimetics. Endocrinology 2018; 159:2733-2740. [PMID: 29846550 PMCID: PMC6457038 DOI: 10.1210/en.2018-00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
Thyromimetics represent a class of experimental drugs that can stimulate tissue-selective thyroid hormone action. As such, thyromimetics should have effects on the hypothalamic-pituitary-thyroid (HPT) axis, but details of this action and the subsequent effects on systemic thyroid hormone levels have not been reported to date. Here, we compare the HPT-axis effects of sobetirome, a well-studied thyromimetic, with Sob-AM2, a newly developed prodrug of sobetirome that targets sobetirome distribution to the central nervous system (CNS). Similar to endogenous thyroid hormone, administration of sobetirome and Sob-AM2 suppress HPT-axis gene transcript levels in a manner that correlates to their specific tissue distribution properties (periphery vs CNS, respectively). Dosing male C57BL/6 mice with sobetirome and Sob-AM2 at concentrations ≥10 μg/kg/d for 29 days induces a state similar to central hypothyroidism characterized by depleted circulating T4 and T3 and normal TSH levels. However, despite the systemic T4 and T3 depletion, the sobetirome- and Sob-AM2-treated mice do not show signs of hypothyroidism, which may result from the presence of the thyromimetic in the thyroid hormone-depleted background.
Collapse
Affiliation(s)
- Skylar J Ferrara
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Dennis Bourdette
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Thomas S Scanlan
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health and Science University, Portland, Oregon
- Correspondence: Thomas S. Scanlan, PhD, Department of Physiology and Pharmacology, Program in Chemical Biology, Oregon Health and Science University, 3181 Southwest Sam Jackson Road, L334, Portland, Oregon 97206. E-mail:
| |
Collapse
|
27
|
Morte B, Gil-Ibáñez P, Bernal J. Regulation of Gene Expression by Thyroid Hormone in Primary Astrocytes: Factors Influencing the Genomic Response. Endocrinology 2018; 159:2083-2092. [PMID: 29617759 DOI: 10.1210/en.2017-03084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/28/2018] [Indexed: 11/19/2022]
Abstract
Astrocytes mediate the action of thyroid hormone in the brain on other neural cells through the production of the active hormone triiodothyronine (T3) from its precursor thyroxine. T3 has also many effects on the astrocytes in vivo and in culture, but whether these actions are directly mediated by transcriptional regulation is not clear. In this work, we have analyzed the genomic response to T3 of cultured astrocytes isolated from the postnatal mouse cerebral cortex using RNA sequencing. Cultured astrocytes express relevant genes of thyroid hormone metabolism and action encoding type 2 deiodinase (Dio2), Mct8 transporter (Slc16a2), T3 receptors (Thra1 and Thrb), and nuclear corepressor (Ncor1) and coactivator (Ncoa1). T3 changed the expression of 668 genes (4.5% of expressed genes), of which 117 were responsive to T3 in the presence of cycloheximide. The Wnt and Notch pathways were downregulated at the posttranscriptional level. Comparison with the effect of T3 on astrocyte-enriched genes in mixed cerebrocortical cultures isolated from fetal cortex revealed that the response to T3 is influenced by the degree of astrocyte maturation and that, in agreement with its physiological effects, T3 promotes the transition between the fetal and adult patterns of gene expression.
Collapse
Affiliation(s)
- Beatriz Morte
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Gil-Ibáñez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Bernal
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Liu YY, Brent GA. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol Ther 2018; 186:176-185. [PMID: 29378220 DOI: 10.1016/j.pharmthera.2018.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) is essential for normal brain development and may also promote recovery and neuronal regeneration after brain injury. TH acts predominantly through the nuclear receptors, TH receptor alpha (THRA) and beta (THRB). Additional factors that impact TH action in the brain include metabolism, activation of thyroxine (T4) to triiodothyronine (T3) by the enzyme 5'-deiodinase Type 2 (Dio2), inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to reverse T3 (rT3), which occurs in glial cells, and uptake by the Mct8 transporter in neurons. Traumatic brain injury (TBI) is associated with inflammation, metabolic alterations and neural death. In clinical studies, central hypothyroidism, due to hypothalamic and pituitary dysfunction, has been found in some individuals after brain injury. TH has been shown, in animal models, to be protective for the damage incurred from brain injury and may have a role to limit injury and promote recovery. Although clinical trials have not yet been reported, findings from in vitro and in vivo models inform potential treatment strategies utilizing TH for protection and promotion of recovery after brain injury.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Gregory A Brent
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| |
Collapse
|
29
|
Devereaux J, Ferrara SJ, Scanlan TS. Quantification of Thyromimetic Sobetirome Concentration in Biological Tissue Samples. Methods Mol Biol 2018; 1801:193-206. [PMID: 29892826 DOI: 10.1007/978-1-4939-7902-8_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormone is a principal regulator of essential processes in vertebrate physiology and homeostasis. Synthetic derivatives of thyroid hormone, known as thyromimetics, display desirable therapeutic properties. Thoroughly understanding how thyromimetics distribute throughout the body is crucial for their development and this requires appropriate bioanalytical techniques to quantify drug levels in different tissues. Here, we describe a detailed protocol for the quantification of the thyromimetic sobetirome using liquid chromatography tandem-mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Jordan Devereaux
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Skylar J Ferrara
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Thomas S Scanlan
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
30
|
Columbano A, Chiellini G, Kowalik MA. GC-1: A Thyromimetic With Multiple Therapeutic Applications in Liver Disease. Gene Expr 2017; 17:265-275. [PMID: 28635586 PMCID: PMC5885148 DOI: 10.3727/105221617x14968563796227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs), namely, 3,5,3'-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodo-l-thyronine (thyroxine or T4), influence a variety of physiological processes that have important implications in fetal development, metabolism, cell growth, and proliferation. While THs elicit several beneficial effects on lipid metabolism and improve myocardial contractility, these therapeutically desirable effects are associated to a thyrotoxic state that severely limits the possible use of THs as therapeutic agents. Therefore, several efforts have been made to develop T3 analogs that could retain the beneficial actions (triglyceride, cholesterol, obesity, and body mass lowering) without the adverse TH-dependent side effects. This goal was achieved by the synthesis of TRβ-selective agonists. In this review, we summarize the current knowledge on the effects of one of the best characterized TH analogs, the TRβ1-selective thyromimetic, GC-1. In particular, we review some of the effects of GC-1 on different liver disorders, with reference to its possible clinical application. A brief comment on the possible therapeutic use of GC-1 in extrahepatic disorders is also included.
Collapse
Affiliation(s)
- Amedeo Columbano
- *Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Grazia Chiellini
- †Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa, Italy
| | - Marta Anna Kowalik
- *Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
31
|
Meinig JM, Ferrara SJ, Banerji T, Banerji T, Sanford-Crane HS, Bourdette D, Scanlan TS. Targeting Fatty-Acid Amide Hydrolase with Prodrugs for CNS-Selective Therapy. ACS Chem Neurosci 2017; 8:2468-2476. [PMID: 28756656 PMCID: PMC6342467 DOI: 10.1021/acschemneuro.7b00239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) can be a substantial impediment to achieving therapeutic levels of drugs in the CNS. Certain chemical functionality such as the carboxylic acid is a general liability for BBB permeability preventing significant CNS distribution of a drug from a systemic dose. Here, we report a strategy for CNS-selective distribution of the carboxylic acid containing thyromimetic sobetirome using prodrugs targeted to fatty-acid amide hydrolase (FAAH), which is expressed in the brain. Two amide prodrugs of sobetirome were shown to be efficient substrates of FAAH with Vmax/KM values comparable to the natural endocannabinoid FAAH substrate anandamide. In mice, a systemic dose of sobetirome prodrug leads to a substantial ∼60-fold increase in brain distribution (Kp) of sobetirome compared to an equimolar systemic dose of the parent drug. The increased delivery of sobetirome to the brain from the prodrug was diminished by both pharmacological inhibition and genetic deletion of FAAH in vivo. The increased brain exposure of sobetirome arising from the prodrug corresponds to ∼30-fold increased potency in brain target engagement compared to the parent drug. These results suggest that FAAH-targeted prodrugs can considerably increase drug exposure to the CNS with a concomitant decrease in systemic drug levels generating a desirable distribution profile for CNS acting drugs.
Collapse
Affiliation(s)
- J. Matthew Meinig
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Skylar J. Ferrara
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Tania Banerji
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Tapasree Banerji
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Hannah S. Sanford-Crane
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Dennis Bourdette
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Thomas S. Scanlan
- Department of Physiology & Pharmacology, and ‡Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
32
|
Milanesi A, Brent GA. Beam Me In: Thyroid Hormone Analog Targets Alternative Transporter in Mouse Model of X-Linked Adrenoleukodystrophy. Endocrinology 2017; 158:1116-1119. [PMID: 28609836 PMCID: PMC5460838 DOI: 10.1210/en.2017-00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Anna Milanesi
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, and Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Gregory A Brent
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, and Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| |
Collapse
|