1
|
Budkowska M, Ostrycharz-Jasek E, Cecerska-Heryć E, Dołęgowska K, Siennicka A, Nazarewski Ł, Rykowski P, Dołęgowska B. The Impact of Human Liver Transplantation on the Concentration of Fibroblast Growth Factors: FGF19 and FGF21. Int J Mol Sci 2025; 26:1299. [PMID: 39941067 PMCID: PMC11818808 DOI: 10.3390/ijms26031299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The multitude of processes in which the liver participates makes it vulnerable to many serious diseases, which can lead to chronic organ failure. Modern medicine bases the treatment of end-stage liver failure on liver transplantation. To ensure the proper functioning of the transplanted liver, a balance of cellular and immunological processes and appropriate concentrations of many different factors are necessary, including, among others, fibroblast growth factors (FGFs). Over the last several years, studies have focused on some FGF growth factors, i.e., FGF19 and FGF21. These two growth factors belong to the FGF19 subfamily, and we concentrate on these two factors in our work. These factors diffuse away from the site of secretion into the blood, acting as hormones. FGF19 is a growth factor with a high therapeutic potential, involved in the homeostasis of bile acids necessary to maintain the proper function of the transplanted liver. FGF21, in turn, plays an important role in regulating lipid and glucose homeostasis. This study aimed to evaluate changes in the concentration of growth factors FGF19 and FGF21 in the plasma of 84 patients before, 24 h, and 2 weeks after liver transplantation (ELISA test was used). Additionally, the correlations of the basic laboratory parameters-alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), alkaline phosphatase (ALP), total bilirubin, C-reactive protein (CRP), albumin and hemoglobin (Hb)-with FGF19 and FGF21 were determined. Our studies noted statistically significant changes in FGF19 and FGF21 concentrations before, 24 h, and 2 weeks after liver transplantation. The highest values for FGF19 before liver transplantation and the lowest values 24 h after this surgery were observed for FGF21; the highest concentrations were observed the day after liver transplantation, and the lowest were observed immediately before surgery. Observations of increases and decreases in the concentration of the examined factors at individual time points (before and after transplantation) allow us to suspect that FGF19 has an adaptive and protective function toward the transplanted liver. At the same time, FGF21 may affect the regenerative mechanisms of the damaged organ.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Ostrycharz-Jasek
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.C.-H.); (B.D.)
| | - Katarzyna Dołęgowska
- Department of Immunology Diagnostics, Pomeranian Medical University, Al. Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland; (Ł.N.); (P.R.)
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland; (Ł.N.); (P.R.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.C.-H.); (B.D.)
| |
Collapse
|
2
|
Beltran NM, Parra AN, Serrano AP, Castillo J, Castro IM, Elsey MK, Minervini V, Serafine KM. The Effects of Eating a Traditional High Fat/High Carbohydrate or a Ketogenic Diet on Sensitivity of Female Rats to Morphine. J Pharmacol Exp Ther 2024; 391:30-38. [PMID: 39060162 PMCID: PMC11415821 DOI: 10.1124/jpet.124.002188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients diagnosed with obesity are prescribed opioid medications at a higher rate than the general population; however, it is not known if eating a high fat diet might impact individual sensitivity to these medications. To explore the hypothesis that eating a high fat diet increases sensitivity of rats to the effects of morphine, 24 female Sprague-Dawley rats (n = 8/diet) ate either a standard (low fat) laboratory chow (17% kcal from fat), a high fat/low carbohydrate (ketogenic) chow (90.5% kcal from fat), or a traditional high fat/high carbohydrate chow (60% kcal from fat). Morphine-induced antinociception was assessed using a warm water tail withdrawal procedure, during which latency (in seconds) for rats to remove their tail from warm water baths was recorded following saline or morphine (0.32-56 mg/kg, i.p.) injections. Morphine was administered acutely and chronically (involving 18 days of twice-daily injections, increasing in 1/4 log dose increments every 3 days: 3.2-56 mg/kg, i.p., to induce dependence and assess tolerance). The adverse effects of morphine (i.e., tolerance, withdrawal, and changes in body temperature) were assessed throughout the study. Acute morphine induced comparable antinociception in rats eating different diets, and all rats developed tolerance following chronic morphine exposure. Observable withdrawal signs and body temperature were also comparable among rats eating different diets; however, withdrawal-induced weight loss was less severe for rats eating ketogenic chow. These results suggest that dietary manipulation might modulate the severity of withdrawal-related weight loss in ways that could be relevant for patients.
Collapse
Affiliation(s)
- Nina M Beltran
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Alyssa N Parra
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Ana Paulina Serrano
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Jazmin Castillo
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Isabella M Castro
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Madeline K Elsey
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Vanessa Minervini
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Katherine M Serafine
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| |
Collapse
|
3
|
Soto Sauza KA, Ryan KK. FGF21 mediating the Sex-dependent Response to Dietary Macronutrients. J Clin Endocrinol Metab 2024; 109:e1689-e1696. [PMID: 38801670 PMCID: PMC11319005 DOI: 10.1210/clinem/dgae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Sex is key variable influencing body composition and substrate utilization. At rest, females maintain greater adiposity than males and resist the mobilization of fat. Males maintain greater lean muscle mass and mobilize fat readily. Determining the mechanisms that direct these sex-dependent effects is important for both reproductive and metabolic health. Here, we highlight the fundamental importance of sex in shaping metabolic physiology and assess growing evidence that the hepatokine fibroblast growth factor-21 (FGF21) plays a mechanistic role to facilitate sex-dependent responses to a changing nutritional environment. First, we examine the importance of sex in modulating body composition and substrate utilization. We summarize new data that point toward sex-biased effects of pharmacologic FGF21 administration on these endpoints. When energy is not limited, metabolic responses to FGF21 mirror broader sex differences; FGF21-treated males conserve lean mass at the expense of increased lipid catabolism, whereas FGF21-treated females conserve fat mass at the expense of reduced lean mass. Next, we examine the importance of sex in modulating the endogenous secretion of FGF21 in response to changing macronutrient and energy availability. During the resting state when energy is not limited, macronutrient imbalance increases the secretion of FGF21 more so in males than females. When energy is limited, the effect of sex on both the secretion of FGF21 and its metabolic actions may be reversed. Altogether, we argue that a growing literature supports FGF21 as a plausible mechanism contributing to the sex-dependent mobilization vs preservation of lipid storage and highlight the need for further research.
Collapse
Affiliation(s)
- Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Chrysafi M, Jacovides C, Papadopoulou SK, Psara E, Vorvolakos T, Antonopoulou M, Dakanalis A, Martin M, Voulgaridou G, Pritsa A, Mentzelou M, Giaginis C. The Potential Effects of the Ketogenic Diet in the Prevention and Co-Treatment of Stress, Anxiety, Depression, Schizophrenia, and Bipolar Disorder: From the Basic Research to the Clinical Practice. Nutrients 2024; 16:1546. [PMID: 38892480 PMCID: PMC11174630 DOI: 10.3390/nu16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD) has been highly developed in the past for the treatment of epileptic pathological states in children and adults. Recently, the current re-emergence in its popularity mainly focuses on the therapy of cardiometabolic diseases. The KD can also have anti-inflammatory and neuroprotective activities which may be applied to the prevention and/or co-treatment of a diverse range of psychiatric disorders. PURPOSE This is a comprehensive literature review that intends to critically collect and scrutinize the pre-existing research basis and clinical data of the potential advantageous impacts of a KD on stress, anxiety, depression, schizophrenia and bipolar disorder. METHODS This literature review was performed to thoroughly represent the existing research in this topic, as well as to find gaps in the international scientific community. In this aspect, we carefully investigated the ultimate scientific web databases, e.g., PubMed, Scopus, and Web of Science, to derive the currently available animal and clinical human surveys by using efficient and representative keywords. RESULTS Just in recent years, an increasing amount of animal and clinical human surveys have focused on investigating the possible impacts of the KD in the prevention and co-treatment of depression, anxiety, stress, schizophrenia, and bipolar disorder. Pre-existing basic research with animal studies has consistently demonstrated promising results of the KD, showing a propensity to ameliorate symptoms of depression, anxiety, stress, schizophrenia, and bipolar disorder. However, the translation of these findings to clinical settings presents a more complex issue. The majority of the currently available clinical surveys seem to be moderate, usually not controlled, and have mainly assessed the short-term effects of a KD. In addition, some clinical surveys appear to be characterized by enormous dropout rates and significant absence of compliance measurement, as well as an elevated amount of heterogeneity in their methodological design. CONCLUSIONS Although the currently available evidence seems promising, it is highly recommended to accomplish larger, long-term, randomized, double-blind, controlled clinical trials with a prospective design, in order to derive conclusive results as to whether KD could act as a potential preventative factor or even a co-treatment agent against stress, anxiety, depression, schizophrenia, and bipolar disorder. Basic research with animal studies is also recommended to examine the molecular mechanisms of KD against the above psychiatric diseases.
Collapse
Affiliation(s)
- Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantina Jacovides
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Theophanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Marina Antonopoulou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Mato Martin
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| |
Collapse
|
5
|
Marinescu SC(N, Apetroaei MM, Nedea MI(I, Arsene AL, Velescu BȘ, Hîncu S, Stancu E, Pop AL, Drăgănescu D, Udeanu DI. Dietary Influence on Drug Efficacy: A Comprehensive Review of Ketogenic Diet-Pharmacotherapy Interactions. Nutrients 2024; 16:1213. [PMID: 38674903 PMCID: PMC11054576 DOI: 10.3390/nu16081213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients' compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases.
Collapse
Affiliation(s)
- Simona Cristina (Nicolescu) Marinescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Amethyst Radiotherapy Center, 42, Drumul Odăi, 075100 Otopeni, Romania
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Sorina Hîncu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Fundeni Clinical Institute, 258, Fundeni Street, 022328 Bucharest, Romania
| | - Emilia Stancu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Anca Lucia Pop
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| |
Collapse
|
6
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
7
|
Larson KR, Jayakrishnan D, Soto Sauza KA, Goodson ML, Chaffin AT, Davidyan A, Pathak S, Fang Y, Gonzalez Magaña D, Miller BF, Ryan KK. FGF21 Induces Skeletal Muscle Atrophy and Increases Amino Acids in Female Mice: A Potential Role for Glucocorticoids. Endocrinology 2024; 165:bqae004. [PMID: 38244215 PMCID: PMC10849119 DOI: 10.1210/endocr/bqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Fibroblast growth factor-21 (FGF21) is an intercellular signaling molecule secreted by metabolic organs, including skeletal muscle, in response to intracellular stress. FGF21 crosses the blood-brain barrier and acts via the nervous system to coordinate aspects of the adaptive starvation response, including increased lipolysis, gluconeogenesis, fatty acid oxidation, and activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Given its beneficial effects for hepatic lipid metabolism, pharmaceutical FGF21 analogues are used in clinical trials treatment of fatty liver disease. We predicted pharmacologic treatment with FGF21 increases HPA axis activity and skeletal muscle glucocorticoid signaling and induces skeletal muscle atrophy in mice. Here we found a short course of systemic FGF21 treatment decreased muscle protein synthesis and reduced tibialis anterior weight; this was driven primarily by its effect in female mice. Similarly, intracerebroventricular FGF21 reduced tibialis anterior muscle fiber cross-sectional area; this was more apparent among female mice than male littermates. In agreement with the reduced muscle mass, the topmost enriched metabolic pathways in plasma collected from FGF21-treated females were related to amino acid metabolism, and the relative abundance of plasma proteinogenic amino acids was increased up to 3-fold. FGF21 treatment increased hypothalamic Crh mRNA, plasma corticosterone, and adrenal weight, and increased expression of glucocorticoid receptor target genes known to reduce muscle protein synthesis and/or promote degradation. Given the proposed use of FGF21 analogues for the treatment of metabolic disease, the study is both physiologically relevant and may have important clinical implications.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Devi Jayakrishnan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Aki T Chaffin
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Arik Davidyan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Suraj Pathak
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Benjamin F Miller
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Smolensky IV, Zajac-Bakri K, Gass P, Inta D. Ketogenic diet for mood disorders from animal models to clinical application. J Neural Transm (Vienna) 2023; 130:1195-1205. [PMID: 36943505 PMCID: PMC10460725 DOI: 10.1007/s00702-023-02620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BD) are often resistant to current pharmacological treatment. Therefore, various alternative therapeutic approaches including diets are, therefore, under investigation. Ketogenic diet (KD) is effective for treatment-resistant epilepsy and metabolic diseases, however, only a few clinical studies suggest its beneficial effect also for mental disorders. Animal models are a useful tool to uncover the underlying mechanisms of therapeutic effects. Women have a twice-higher prevalence of mood disorders but very little is known about sex differences in nutritional psychiatry. In this review, we aim to summarize current knowledge of the sex-specific effects of KD in mood disorders. Ketone bodies improve mitochondrial functions and suppress oxidative stress, inducing neuroprotective and anti-inflammatory effects which are both beneficial for mental health. Limited data also suggest KD-induced improvement of monoaminergic circuits and hypothalamus-pituitary-adrenal axis-the key pathophysiological pathways of mood disorders. Gut microbiome is an important mediator of the beneficial and detrimental effects of diet on brain functioning and mental health. Gut microbiota composition is affected in mood disorders but its role in the therapeutic effects of different diets, including KD, remains poorly understood. Still little is known about sex differences in the effects of KD on mental health as well as on metabolism and body weight. Some animal studies used both sexes but did not find differences in behavior, body weight loss or gut microbiota composition. More studies, both on a preclinical and clinical level, are needed to better understand sex-specific effects of KD on mental health.
Collapse
Affiliation(s)
- Ilya V Smolensky
- Department for Community Health, University of Fribourg, Fribourg, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Kilian Zajac-Bakri
- Department for Community Health, University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Dragos Inta
- Department for Community Health, University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Carsia RV, McIlroy PJ, John-Alder HB. Invited review: Adrenocortical function in avian and non-avian reptiles: Insights from dispersed adrenocortical cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111424. [PMID: 37080352 DOI: 10.1016/j.cbpa.2023.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells from C. elegans. Life stage added to this complex picture of adrenal steroidogenic function. This was evident when sexually mature and immature Sceloporus lizards were subjected to a nutritional stressor, cricket restriction/deprivation. There were divergent patterns of corticosterone, aldosterone, and progesterone responses and associated sensitivities of each to corticotropin (ACTH). Finally, we provide strong evidence that there are multiple, labile subpopulations of adrenocortical cells. We conclude that the rapid (days) remodeling of adrenocortical steroidogenic function through fluctuating cell subpopulations drives the circulating corticosteroid profile of Sceloporus lizard species. Interestingly, progesterone and aldosterone may be more important with corticosterone serving as essential supportive background. In the wild, the flux in adrenocortical cell subpopulations may be adversely susceptible to climate-change related disruptions in food sources and to xenobiotic/endocrine-disrupting chemicals. We urge further studies using native lizard species as bioindicators of local pollutants and as models to examine the broader eco-exposome.
Collapse
Affiliation(s)
- Rocco V Carsia
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Patrick J McIlroy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 311 North Fifth Street, Camden, NJ 08102, United States
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, The Pinelands Field Station Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
10
|
Barrea L, Verde L, Camajani E, Šojat AS, Marina L, Savastano S, Colao A, Caprio M, Muscogiuri G. Effects of very low-calorie ketogenic diet on hypothalamic-pituitary-adrenal axis and renin-angiotensin-aldosterone system. J Endocrinol Invest 2023:10.1007/s40618-023-02068-6. [PMID: 37017918 DOI: 10.1007/s40618-023-02068-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system involved in controlling stress responses in humans under physiological and pathological conditions; cortisol is the main hormone produced by the HPA axis. It is known that calorie restriction acts as a stressor and can lead to an increase in cortisol production. Renin-angiotensin-aldosterone system (RAAS) is a complex endocrine network regulating blood pressure and hydrosaline metabolism, whose final hormonal effector is aldosterone. RAAS activation is linked to cardiometabolic diseases, such as heart failure and obesity. Obesity has become a leading worldwide pandemic, associated with serious health outcomes. Calorie restriction represents a pivotal strategy to tackle obesity. On the other hand, it is well known that an increased activity of the HPA may favour visceral adipose tissue expansion, which may jeopardize a successful diet-induced weight loss. Very low-calorie ketogenic diet (VLCKD) is a normoprotein diet with a drastic reduction of the carbohydrate content and total calorie intake. Thanks to its sustained protein content, VLCKD is extremely effective to reduce adipose tissue while preserving lean body mass and resting metabolic rate. PURPOSE The purpose of this narrative review is to gain more insights on the effects of VLCKD on the HPA axis and RAAS, in different phases of weight loss and in different clinical settings.
Collapse
Affiliation(s)
- L Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143, Naples, Italy
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - L Verde
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Public Health, Federico II University, Naples, Italy
| | - E Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - A S Šojat
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - L Marina
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - S Savastano
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - M Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166, Rome, Italy
| | - G Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy.
| |
Collapse
|
11
|
Shcherbakova K, Schwarz A, Ivleva I, Nikitina V, Krytskaya D, Apryatin S, Karpenko M, Trofimov A. Short- and long-term cognitive and metabolic effects of medium-chain triglyceride supplementation in rats. Heliyon 2023; 9:e13446. [PMID: 36825166 PMCID: PMC9941952 DOI: 10.1016/j.heliyon.2023.e13446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Medium-chain triglycerides (MCT) possess neuroprotective properties. However, the long-term metabolic consequences of supplementing a regular diet with cognition-enhancing doses of MCT are largely unknown. We studied the effects of chronic (28 days) supplementation of regular diet with different doses of MCT oil (1, 3, or 6 g/kg/day) or water (control) on working memory (Y-maze), behavior in the Open Field, spatial learning (Morris water maze), and weight of internal organs in male Wistar 2.5-m.o. Rats. In a separate experiment, we evaluated acute (single gavage) and chronic (28 days) effects of MCT or lard supplementation (3 g/kg) on blood biochemical parameters. MCT-1 and MCT-3 doses improved working memory in YM. In MWM, MCT-6 treatment improved spatial memory. Chronic MCT-1 or MCT-3 treatment did not affect internal organ weight, while MCT-6 dose increased liver weight and the brown/white adipose tissue ratio. Acutely, MCT administration elevated blood β-hydroxybutyrate and malondialdehyde levels. Chronic MCT administration (3 g/kg) did not affect the blood levels of glucose, lactate, pyruvate, acetoacetate, β-hydroxybutyrate, total and HDL cholesterol, triglycerides, malondialdehyde, and aspartate transaminase and alanine transaminase activities. Therefore, daily supplementation of standard feed with MCT resulted in mild intermittent ketosis. It improved working memory at lower concentrations without significant adverse side effects. At higher concentrations, it improved long-term spatial memory but also resulted in organ weight changes and is likely unsafe. These results highlight the importance of monitoring the metabolic effects of MCT supplementation alongside cognitive assessment in future studies of MCT's neuroprotective properties.
Collapse
Affiliation(s)
- Ksenia Shcherbakova
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 12 Akad. Pavlova St., 197022, St. Petersburg, Russia
- Corresponding author.
| | - Alexander Schwarz
- Laboratory of Molecular Mechanisms of Neuronal Interactions, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223, St. Petersburg, Russia
| | - Irina Ivleva
- Laboratory of Neurochemistry, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 12 Akad. Pavlova St., 197022, St. Petersburg, Russia
| | - Veronika Nikitina
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 12 Akad. Pavlova St., 197022, St. Petersburg, Russia
| | - Darya Krytskaya
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 12 Akad. Pavlova St., 197022, St. Petersburg, Russia
| | - Sergey Apryatin
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 12 Akad. Pavlova St., 197022, St. Petersburg, Russia
| | - Marina Karpenko
- Laboratory of Neurochemistry, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 12 Akad. Pavlova St., 197022, St. Petersburg, Russia
| | - Alexander Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 12 Akad. Pavlova St., 197022, St. Petersburg, Russia
- Corresponding author.
| |
Collapse
|
12
|
Christaki EV, Pervanidou P, Papassotiriou I, Mantzou A, Giannakakis G, Boschiero D, Chrousos GP. Circulating FGF21 vs. Stress Markers in Girls during Childhood and Adolescence, and in Their Caregivers: Intriguing Inter-Relations between Overweight/Obesity, Emotions, Behavior, and the Cared-Caregiver Relationship. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9060821. [PMID: 35740758 PMCID: PMC9221579 DOI: 10.3390/children9060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor-21 (FGF21) acts on several brain regions, including the hypothalamic paraventricular nucleus, which is involved in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis. The purpose of this study was to investigate the interrelations between FGF21 and stress indices in girls, as well as in their caregivers. 78 girls, aged between 5 and 15 years, were studied; 50 of them were overweight and obese (OB) and 28 in the control group (C). Serum FGF21 and hair and diurnal salivary cortisol were measured. Children participants filled in the Children’s Depression Inventory (CDI) and the State-Trait Anxiety Inventory for Children (STAIC), while their caregivers filled in the State-Trait Anxiety Inventory (STAI), the Perceived Stress Scale (PSS), and the Holmes-Rahe Stress Events Scale (HRSES). The OB group girls had significantly higher levels of FGF21 than the C group (p < 0.001). In contrast to the C group, in whom FGF21 levels were positively correlated with both hair and salivary AUCg cortisol concentrations (p = 0.045 and p = 0.007, respectively), no such correlations were observed in the OB group. In the caregivers of the OB group, STAI-state (r = 0.388, p = 0.008), STAI-trait (r = 0.4, p = 0.006), PSS (r = 0.388, p = 0.008), and HRSES (r = 0.358, p = 0.015) scores, all correlated positively with the FGF21 levels of the children under their care. FGF21 concentrations positively correlated with hair and salivary cortisol levels in the C group only. These findings may represent an interesting correlation dictated by bi-directional empathy links between the primary caregivers and the children under their care.
Collapse
Affiliation(s)
- Eirini V. Christaki
- Childhood Obesity Clinic, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (P.P.); (A.M.); (G.P.C.)
- Correspondence:
| | - Panagiota Pervanidou
- Childhood Obesity Clinic, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (P.P.); (A.M.); (G.P.C.)
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Aimilia Mantzou
- Childhood Obesity Clinic, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (P.P.); (A.M.); (G.P.C.)
| | - Giorgos Giannakakis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
- Institute of AgriFood and Life Sciences, University Research Centre, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | | | - George P. Chrousos
- Childhood Obesity Clinic, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (P.P.); (A.M.); (G.P.C.)
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, 11527 Athens, Greece
| |
Collapse
|
13
|
Shaw DM, Henderson L, van den Berg M. Cognitive, Sleep, and Autonomic Responses to Induction of a Ketogenic Diet in Military Personnel: A Pilot Study. Aerosp Med Hum Perform 2022; 93:507-516. [DOI: 10.3357/amhp.6015.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: This pilot study examined the effect of a 2-wk ketogenic diet (KD) compared with a carbohydrate (CHO) diet in military personnel on cognitive performance, mood, sleep, and heart rate variability (HRV).METHODS: A randomized-controlled, cross-over trial was
conducted with eight male military personnel (age, 36 ± 7 yr; body mass, 83.7 ± 9.2 kg; BMI, 26.0 ± 2.3 kg · m−2). Subjects ingested their habitual diet for 7 d (baseline), then an iso-energetic KD (∼25 g CHO/d) or CHO diet (∼285 g CHO/d)
for 14 d (adaptation), separated by a 12-d washout. HRV, fasting capillary blood D-βHB, and glucose concentration, mood, and sleep were measured daily. Cognitive performance was measured on the 7th day of baseline and the 7th and 14th days of adaptation.
Data were analyzed using a series of linear mixed models.RESULTS: Mean weekly D-βHB was higher (95% CI, +0.34 to +2.38 mmol · L−1) and glucose was lower (−0.45 to −0.21 mmol · L−1) in the KD compared with the CHO diet.
Cognitive performance (Psychomotor Vigilance Task, 2-choice reaction time, and running memory continuous performance test) and mean weekly fatigue, vigor, and sleep (sleep duration, sleep efficiency, and sleep onset latency) were similar between diets. A diet × week interaction for HRV
approached significance, with exploratory analyses suggesting HRV was lower compared with baseline during week-2 adapt (−27 to +4 ms) in the KD.DISCUSSION: A 2-wk induction to a KD in male military personnel does not appear to affect cognitive performance, mood, or sleep,
but may lower HRV, indicating increased physiological stress.Shaw DM, Henderson L, van den Berg M. Cognitive, sleep, and autonomic responses to induction of a ketogenic diet in military personnel: a pilot study. Aerosp Med Hum Perform. 2022; 93(6):507–516.
Collapse
|
14
|
Bono BS, Koziel Ly NK, Miller PA, Williams-Ikhenoba J, Dumiaty Y, Chee MJ. Spatial distribution of beta-klotho mRNA in the mouse hypothalamus, hippocampal region, subiculum, and amygdala. J Comp Neurol 2022; 530:1634-1657. [PMID: 35143049 DOI: 10.1002/cne.25306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Beta-klotho (KLB) is a co-receptor required for endocrine fibroblast growth factor (FGF) 15/19 and FGF21 signaling in the brain. Klb is prominent within the hypothalamus, which is consistent with its metabolic functions, but diverse roles for Klb are now emerging. Central Klb expression is low but discrete and may govern FGF-targeted sites. However, given its low expression, it is unclear if Klb mRNA is more widespread. We performed in situ hybridization to label Klb mRNA to generate spatial maps capturing the distribution and level of Klb within the mouse hypothalamus, hippocampal region, subiculum, and amygdala. Semi-quantitative analysis revealed that Klb-labeled cells may express low, medium, or high levels of Klb mRNA. Hypothalamic Klb hybridization was heterogeneous and varied rostrocaudally within the same region. Most Klb-labeled cells were found in the lateral hypothalamic zone, but the periventricular hypothalamic region, including the suprachiasmatic nucleus, contained the greatest proportion of cells expressing medium or high Klb levels. We also found heterogeneous Klb hybridization in the amygdala and subiculum, where Klb was especially distinct within the central amygdalar nucleus and ventral subiculum, respectively. By contrast, Klb-labeled cells in the hippocampal region only expressed low levels of Klb and were typically found in the pyramidal layer of Ammon's horn or dentate gyrus. The Klb-labeled regions identified in this study are consistent with reported roles of Klb in metabolism, taste preference, and neuroprotection. However, additional identified sites, including within the hypothalamus and amygdala, may suggest novel roles for FGF15/19 or FGF21 signaling. The central expression of beta-klotho (Klb) is essential for the physiological actions of endocrine fibroblast growth factors. Klb mRNA was widely expressed throughout the hypothalamus, hippocampus, and amygdala. However, the level of Klb expression varied between cells and contributed to a distinctive pattern of distribution within each brain structure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bianca S Bono
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Nikita K Koziel Ly
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Persephone A Miller
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Yasmina Dumiaty
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
15
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2022; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Dâmaso AR, Machado PP, Rhein SO, Masquio DCL, Oyama LM, Boldarine VT, de Oliveira GI, Tock L, Thivel D, da Silveira Campos RM. Effects of an interdisciplinary weight loss program on fibroblast growth factor 21 and inflammatory biomarkers in women with overweight and obesity. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:821-831. [PMID: 34762789 PMCID: PMC10065393 DOI: 10.20945/2359-3997000000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective To investigate the effects of an interdisciplinary intervention on biomarkers of inflammation and their relationship with fibroblast growth factor 21 (FGF21) concentrations in women with overweight and obesity. Methods Thirty-one women were enrolled in a 12-week interdisciplinary weight loss program delivered by a team comprising an endocrinologist, nutritionist and exercise physiologist. Body composition; anthropometric measures; metabolic and inflammatory markers including adiponectin, leptin, and atrial natriuretic peptide (ANP) were assessed at baseline and post-therapy. The homeostasis model assessment of insulin resistance (HOMA-IR) and the homeostasis model assessment of adiponectin (HOMA-AD) were calculated. The participants were divided into two groups: those with increased FGF21, and those with decreased FGF21. Results The sample comprised women aged 32 ± 5 years with a body mass index of 33.64 ± 3.49 kg/m2. Body weight, waist circumference and leptin concentration were decreased in the whole sample after therapy. However, only the group with an increase in FGF21 concentration presented significant improvements in adiponectin concentration and adiponectin/leptin ratio. Moreover, although there was a reduction of leptin in both groups, it was greater in the increased FGF21 groups. There was a reduction in ANP in the decreased FGF21 group. Conclusion Changes in FGF21 concentrations were different among the women participating in the weight loss program, with some having increased levels and some reduced levels. Furthermore, improvements in adiponectin and the adiponectin/leptin ratio were found only in the group with increased FGF21 concentration.
Collapse
Affiliation(s)
- Ana Raimunda Dâmaso
- Programa de Pós-graduação em Nutrição, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil,
| | - Paola Próspero Machado
- Programa de Pós-graduação em Nutrição, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Samantha Ottani Rhein
- Programa de Pós-graduação em Nutrição, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Lila Missae Oyama
- Programa de Pós-graduação em Nutrição, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Valter Tadeu Boldarine
- Programa de Pós-graduação em Nutrição, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Lian Tock
- Grupo de Estudos da Obesidade (GEO/UNIFESP), Escola Paulista de Medicina, São Paulo, SP, Brasil
| | - David Thivel
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France; CRNH-Auvergne, Clermont-Ferrand, France
| | - Raquel Munhoz da Silveira Campos
- Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, SP, Brasil, .,Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, SP, Brasil
| |
Collapse
|
17
|
Smith SJ, Teo SYM, Lopresti AL, Heritage B, Fairchild TJ. Examining the effects of calorie restriction on testosterone concentrations in men: a systematic review and meta-analysis. Nutr Rev 2021; 80:1222-1236. [PMID: 34613412 DOI: 10.1093/nutrit/nuab072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CONTEXT Testosterone concentrations decline with age, and lower testosterone concentrations are associated with several morbidities, including sexual dysfunction, obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. OBJECTIVE Because dietary habits play a critical role in weight regulation and T2DM management, the aim of this systematic review and meta-analysis was to summarize and critically evaluate the evidence from randomized controlled trials to determine the effects of calorie restriction (CR) on testosterone concentrations in men. DATA SOURCES A literature search was conducted across 4 databases, from their inception until March 2020. DATA EXTRACTION The screening and data extraction were completed by 2 authors independently, and in a blinded manner, according to a priori inclusion and exclusion criteria. DATA ANALYSIS Of the 4198 studies identified from the initial search, 7 randomized controlled trials were included for data extraction. Significant increases in total testosterone concentrations were reported in 3 of 4 studies in which CR was examined with overweight or obese men, compared with the control groups. Significant decreases in total testosterone concentrations were reported in 2 of 3 studies in which the effects of CR were examined with normal-weight, healthy men, compared with the control groups. In all 4 studies that examined the effect of CR on sex hormone-binding globulin concentrations, the intervention significantly increased sex hormone-binding globulin concentrations compared with that of the control groups irrespective of body composition. CONCLUSION This systematic review and meta-analysis provide some evidence that CR affects testosterone concentrations in men and this effect depends on their body mass index. PROSPERO registration no. CRD42020173102.
Collapse
Affiliation(s)
- Stephen J Smith
- S.J. Smith and A.L. Lopresti are with Clinical Research Australia, Perth, Western Australia, Australia. S.J. Smith, S.Y.M. Teo, A.L. Lopresti, B. Heritage, and T.J. Fairchild are with the College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Shaun Y M Teo
- S.J. Smith and A.L. Lopresti are with Clinical Research Australia, Perth, Western Australia, Australia. S.J. Smith, S.Y.M. Teo, A.L. Lopresti, B. Heritage, and T.J. Fairchild are with the College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Adrian L Lopresti
- S.J. Smith and A.L. Lopresti are with Clinical Research Australia, Perth, Western Australia, Australia. S.J. Smith, S.Y.M. Teo, A.L. Lopresti, B. Heritage, and T.J. Fairchild are with the College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Brody Heritage
- S.J. Smith and A.L. Lopresti are with Clinical Research Australia, Perth, Western Australia, Australia. S.J. Smith, S.Y.M. Teo, A.L. Lopresti, B. Heritage, and T.J. Fairchild are with the College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Timothy J Fairchild
- S.J. Smith and A.L. Lopresti are with Clinical Research Australia, Perth, Western Australia, Australia. S.J. Smith, S.Y.M. Teo, A.L. Lopresti, B. Heritage, and T.J. Fairchild are with the College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Autonomic and Perceptual Responses to Induction of a Ketogenic Diet in Free-Living Endurance Athletes: A Randomized, Crossover Trial. Int J Sports Physiol Perform 2021; 16:1603-1609. [PMID: 33873154 DOI: 10.1123/ijspp.2020-0814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Considerable interindividual heterogeneity has been observed in endurance performance responses following induction of a ketogenic diet (KD). It is plausible that a physiological stress response in the period following the dramatic dietary shift associated with transition to a KD may explain this heterogeneity. METHODS In a randomized, crossover study design, 8 trained male runners completed an incremental exercise test and ran to exhaustion at 70%VO2max before and after a 31-day rigorously controlled habitual diet or KD intervention, and recorded heart rate variability (root mean square of the sum of successive differences in R-R intervals [rMSSD]) upon waking each morning along with the recovery-stress questionnaire for athletes each week. Data were analyzed using linear mixed models. RESULTS A significant reduction in rMSSD was observed in the KD (-9.77 [4.03] ms, P = .02), along with an increase in day-to-day variability in rMSSD (2.1% [1.0%], P = .03). The reduction in rMSSD in the KD for the subgroup of individuals exhibiting impaired exercise capacity following induction of the KD approached significance (Δ -22 [15] ms, P = .06, N = 4); whereas no effect was observed in those who exhibited unchanged exercise capacity (Δ 5 [18] ms, P = .61, N = 4). No main effects were observed for recovery-stress questionnaire for athletes. CONCLUSIONS Our data suggest those working with endurance athletes transitioning onto a KD may consider using noninvasive, inexpensive resting heart rate variability measures to gain individual-level insights into the likely short-term effects on exercise capacity.
Collapse
|
19
|
Fernandez-Caggiano M, Eaton P. Heart failure-emerging roles for the mitochondrial pyruvate carrier. Cell Death Differ 2021; 28:1149-1158. [PMID: 33473180 PMCID: PMC8027425 DOI: 10.1038/s41418-020-00729-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is the entry point for the glycolytic end-product pyruvate to the mitochondria. MPC activity, which is controlled by its abundance and post-translational regulation, determines whether pyruvate is oxidised in the mitochondria or metabolised in the cytosol. MPC serves as a crucial metabolic branch point that determines the fate of pyruvate in the cell, enabling metabolic adaptations during health, such as exercise, or as a result of disease. Decreased MPC expression in several cancers limits the mitochondrial oxidation of pyruvate and contributes to lactate accumulation in the cytosol, highlighting its role as a contributing, causal mediator of the Warburg effect. Pyruvate is handled similarly in the failing heart where a large proportion of it is reduced to lactate in the cytosol instead of being fully oxidised in the mitochondria. Several recent studies have found that the MPC abundance was also reduced in failing human and mouse hearts that were characterised by maladaptive hypertrophic growth, emulating the anabolic scenario observed in some cancer cells. In this review we discuss the evidence implicating the MPC as an important, perhaps causal, mediator of heart failure progression.
Collapse
Affiliation(s)
- Mariana Fernandez-Caggiano
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Philip Eaton
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| |
Collapse
|
20
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Greco T, Vespa PM, Prins ML. Alternative substrate metabolism depends on cerebral metabolic state following traumatic brain injury. Exp Neurol 2020; 329:113289. [PMID: 32247790 PMCID: PMC8168752 DOI: 10.1016/j.expneurol.2020.113289] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Decreases in energy metabolism following traumatic brain injury (TBI) are attributed to impairment of glycolytic flux and oxidative phosphorylation. Glucose utilization post-TBI is decreased while administration of alternative substrates has been shown to be neuroprotective. Changes in energy metabolism following TBI happens in two phases; a period of hyper-metabolism followed by prolonged hypo-metabolism. It is not understood how different cerebral metabolic states may impact substrate metabolism and ultimately mitochondrial function. Adult male or female Sprague Dawley rats were given sham surgery or controlled cortical impact (CCI) and were assigned one of two administration schemes. Glucose, lactate or beta-hydroxybutyrate (BHB) were infused i.v. either starting immediately after injury or beginning 6 h post-injury for 3 h to reflect the hyper- and hypo-metabolic stages. Animals were euthanized 24 h post-injury. The peri-contusional cortex was collected and assayed for mitochondrial respiration peroxide production, and citrate synthase activity. Tissue acetyl-CoA, ATP, glycogen and HMGB1 were also quantified. Sex differences were observed in injury pattern. Administration based on cerebral metabolic state identified that only early lactate and late BHB improved mitochondrial function and peroxide production and TCA cycle intermediates in males. In contrast, both early and late BHB had deleterious effects on all aspects of metabolic measurements in females. These data stress there is no one optimal alternative substrate, but rather the fuel type used should be guided by both cerebral metabolic state and sex.
Collapse
Affiliation(s)
- Tiffany Greco
- UCLA Department of Neurosurgery, USA; UCLA Brain Injury Research Center, USA.
| | - Paul M Vespa
- UCLA Department of Neurosurgery, USA; UCLA Department of Neurology, USA
| | - Mayumi L Prins
- UCLA Department of Neurosurgery, USA; UCLA Interdepartmental Program for Neuroscience, USA; UCLA Brain Injury Research Center, USA
| |
Collapse
|
22
|
Fibroblast Growth Factor 21 and the Adaptive Response to Nutritional Challenges. Int J Mol Sci 2019; 20:ijms20194692. [PMID: 31546675 PMCID: PMC6801670 DOI: 10.3390/ijms20194692] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The Fibroblast Growth Factor 21 (FGF21) is considered an attractive therapeutic target for obesity and obesity-related disorders due to its beneficial effects in lipid and carbohydrate metabolism. FGF21 response is essential under stressful conditions and its metabolic effects depend on the inducer factor or stress condition. FGF21 seems to be the key signal which communicates and coordinates the metabolic response to reverse different nutritional stresses and restores the metabolic homeostasis. This review is focused on describing individually the FGF21-dependent metabolic response activated by some of the most common nutritional challenges, the signal pathways triggering this response, and the impact of this response on global homeostasis. We consider that this is essential knowledge to identify the potential role of FGF21 in the onset and progression of some of the most prevalent metabolic pathologies and to understand the potential of FGF21 as a target for these diseases. After this review, we conclude that more research is needed to understand the mechanisms underlying the role of FGF21 in macronutrient preference and food intake behavior, but also in β-klotho regulation and the activity of the fibroblast activation protein (FAP) to uncover its therapeutic potential as a way to increase the FGF21 signaling.
Collapse
|
23
|
Egan AE, Seemiller LR, Packard AEB, Solomon MB, Ulrich-Lai YM. Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Horm Behav 2019; 115:104557. [PMID: 31310760 PMCID: PMC6765440 DOI: 10.1016/j.yhbeh.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
Abstract
Eating tasty foods dampens responses to stress - an idea reflected in the colloquial term 'comfort foods'. To study the neurobiological mechanisms by which palatable foods provide stress relief, we previously characterized a limited sucrose intake (LSI) paradigm in which male rats are given twice-daily access to 4 ml of 30% sucrose solution (vs. water as a control), and subsequently have reduced hypothalamic-pituitary-adrenocortical (HPA) axis responsivity and anxiety-related behaviors. Notably, women may be more prone to 'comfort feeding' than men, and this may vary across the menstrual cycle, suggesting the potential for important sex and estrous cycle differences. In support of this idea, LSI reduces HPA axis responses in female rats during the proestrus/estrus (P/E), as opposed to the diestrus 1/diestrus 2 (D1/D2) estrous cycle stage. However, the effect of LSI on anxiety-related behaviors in females remains unknown. Here we show that LSI reduced stress-related behaviors in female rats in the elevated plus-maze and restraint tests, but not in the open field test, though only during P/E. LSI also decreased the HPA axis stress response primarily during P/E, consistent with prior findings. Finally, cFos immunolabeling (a marker of neuronal activation) revealed that LSI increased post-restraint cFos in the central amygdala medial subdivision (CeM) and the bed nucleus of the stria terminalis posterior subnuclei (BSTp) exclusively during P/E. These results suggest that in female rats, palatable food reduces both behavioral and neuroendocrine stress responses in an estrous cycle-dependent manner, and the CeM and BSTp are implicated as potential mediators of these effects.
Collapse
Affiliation(s)
- Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Laurel R Seemiller
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| |
Collapse
|
24
|
Chaffin ATB, Fang Y, Larson KR, Mul JD, Ryan KK. Sex-dependent effects of MC4R genotype on HPA axis tone: implications for stress-associated cardiometabolic disease. Stress 2019; 22:571-580. [PMID: 31184537 PMCID: PMC6690797 DOI: 10.1080/10253890.2019.1610742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) facilitates hypothalamic-pituitary-adrenocortical (HPA) axis responses to acute stress in male rodents and is a well known to regulator of energy balance. Mutations in the MC4R is the most common monogenic cause of obesity in humans and has been associated with sex-specific effects, but whether stress regulation by the MC4R is sex-dependent, and whether the MC4R facilitates HPA responses to chronic stress, is unknown. We hypothesized that MC4R-signaling contributes to HPA axis dysregulation and metabolic pathophysiology following chronic stress exposure. We measured changes in energy balance, HPA axis tone, and vascular remodeling during chronic variable stress (CVS) in male and female rats with MC4R loss-of-function. Rats were placed into three groups (n = 9-18/genotype/sex) and half of each group was subjected to CVS for 30 days or were non-stressed littermate controls. All rats underwent an acute restraint stress challenge on Day 30. Rats were euthanized on Day 31, adrenals collected for weight, and descending aortas fixed for morphological indices of vascular pathophysiology. We observed a marked interaction between Mc4r genotype and sex for basal HPA axis tone and acute stress responsivity. MC4R loss-of-function blunted both endpoints in males but exaggerated them in females. Contrary to our hypothesis, Mc4r genotype had no effect on either HPA axis responses or metabolic responses to chronic stress. Heightened stress reactivity of females with MC4R mutations suggests a possible mechanism for the sex-dependent effects associated with this mutation in humans and highlights how stress may differentially regulate metabolism in males and females. Lay summary The hypothalamic melanocortin system is an important regulator of energy balance and stress responses. Here, we report a sex-difference in the stress reactivity of rats with a mutation in this system. Our findings highlight how stress may regulate metabolism differently in males and females and may provide insight into sex-differences associated with this mutation in humans.
Collapse
Affiliation(s)
- Aki T-B Chaffin
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| | - Yanbin Fang
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| | - Karlton R Larson
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| | - Joram D Mul
- b Amsterdam UMC, University of Amsterdam , The Netherlands
- c Metabolism and Reward Group, Netherlands Institute for Neuroscience , Amsterdam , The Netherlands
| | - Karen K Ryan
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| |
Collapse
|
25
|
Larson KR, Chaffin ATB, Goodson ML, Fang Y, Ryan KK. Fibroblast Growth Factor-21 Controls Dietary Protein Intake in Male Mice. Endocrinology 2019; 160:1069-1080. [PMID: 30802283 PMCID: PMC6469953 DOI: 10.1210/en.2018-01056] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Whereas carbohydrates and lipids are stored as glycogen and fat, there is no analogous inert storage form of protein. Therefore, continuous adjustments in feeding behavior are needed to match amino acid supply to ongoing physiologic need. Neuroendocrine mechanisms facilitating this behavioral control of protein and amino acid homeostasis remain unclear. The hepatokine fibroblast growth factor-21 (FGF21) is well positioned for such a role, as it is robustly secreted in response to protein and/or amino acid deficit. In this study, we tested the hypothesis that FGF21 feeds back at its receptors in the nervous system to shift macronutrient selection toward protein. In a series of behavioral tests, we isolated the effect of FGF21 to influence consumption of protein, fat, and carbohydrate in male mice. First, we used a three-choice pure macronutrient-diet paradigm. In response to FGF21, mice increased consumption of protein while reducing carbohydrate intake, with no effect on fat intake. Next, to determine whether protein or carbohydrate was the primary-regulated nutrient, we used a sequence of two-choice experiments to isolate the effect of FGF21 on preference for each macronutrient. Sweetness was well controlled by holding sucrose constant across the diets. Under these conditions, FGF21 increased protein intake, and this was offset by reducing the consumption of either carbohydrate or fat. When protein was held constant, FGF21 had no effect on macronutrient intake. Lastly, the effect of FGF21 to increase protein intake required the presence of its co-receptor, β-klotho, in neurons. Taken together, these findings point to a novel liver→nervous system pathway underlying the regulation of dietary protein intake via FGF21.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California
| | - Aki T-B Chaffin
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California
- Correspondence: Karen K. Ryan, PhD, Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 1 Shields Avenue, 196 Briggs Hall, Davis, California 95616. E-mail:
| |
Collapse
|
26
|
Ling Y, Wang DD, Sun YX, Zhao DJ, Ni H. Neuro-Behavioral Status and the Hippocampal Expression of Metabolic Associated Genes in Wild-Type Rat Following a Ketogenic Diet. Front Neurol 2019; 10:65. [PMID: 30804881 PMCID: PMC6370680 DOI: 10.3389/fneur.2019.00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/17/2019] [Indexed: 01/16/2023] Open
Abstract
While a ketogenic diet (KD) is a well-established therapy for medically intractable epilepsy, clinical evidence of relevant adverse events of a KD has also been reported. We asked whether this kind of diet would have deleterious effects on wild-type brain function by evaluating KD-induced biochemical changes in the hippocampus as well as neurobehavioral changes occurring in wild-type rats. Fifty-four Sprague-Dawley rats were randomly assigned to three groups on postnatal day 28 (P28): wild-type rats fed with a KD qd (daily for 4 weeks, KD) or qod (every other day for 4 weeks, KOD), and wild-type rats fed with standard normal laboratory diet (ND). Neurobehavioral changes were observed on P35, P42, and P49. The hippocampal mossy fiber sprouting, the expression levels of zinc transporters (ZnTs) and lipid metabolism related genes were detected by Timm staining, RT-qPCR and western blot analysis, respectively, on P58. The KD-treated KOD and KD groups showed a significant delay of negative geotaxis reflex on P35, but not on P42 or P49. In the open field test, daily KD treatment only led to a reduction in exploratory activity and increased grooming times but induced no significant changes in the scores of vertical activity or delay time. KD qod treated rats (KOD) displayed a slight delay in the place navigation test on P35 compared with the KD group. There were no significant differences in Timm staining among the three groups. In parallel with these changes, KD treatment (both KD and KOD) induced significantly downregulated mRNA levels of Apoa1, Pdk4, and upregulated expression of ApoE, ANXN7, and cPLA2 in the hippocampus when compared with the ND group (except in the case of ApoE in the KOD group). Notably, both the mRNA and protein levels of cPLA2 in the KOD rats were significantly downregulated compared with the KD group but still markedly higher than in the ND group. No significant difference was found in ZnTs among the three groups. Our data suggest that early-life KD can provoke minor neurobehavioral effects in particular a delay in negative geotaxis reflex and an increase in grooming activity. The hippocampal lipid metabolism signaling pathway, especially cPLA2, may be the target of the protective effect of KD on long-term brain injury after developmental seizures.
Collapse
Affiliation(s)
- Ya Ling
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-Dan Wang
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yu-Xiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Dong-Jing Zhao
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Banfai K, Ernszt D, Pap A, Bai P, Garai K, Belharazem D, Pongracz JE, Kvell K. "Beige" Cross Talk Between the Immune System and Metabolism. Front Endocrinol (Lausanne) 2019; 10:369. [PMID: 31275241 PMCID: PMC6591453 DOI: 10.3389/fendo.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
With thymic senescence the epithelial network shrinks to be replaced by adipose tissue. Transcription factor TBX-1 controls thymus organogenesis, however, the same TBX-1 has also been reported to orchestrate beige adipose tissue development. Given these different roles of TBX-1, we have assessed if thymic TBX-1 expression persists and demonstrates this dualism during adulthood. We have also checked whether thymic adipose involution could yield beige adipose tissue. We have used adult mouse and human thymus tissue from various ages to evaluate the kinetics of TBX-1 expression, as well as mouse (TEP1) and human (1889c) thymic epithelial cells (TECs) for our studies. Electron micrographs show multi-locular lipid deposits typical of beige adipose cells. Histology staining shows the accumulation of neutral lipid deposits. qPCR measurements show persistent and/or elevating levels of beige-specific and beige-indicative markers (TBX-1, EAR-2, UCP-1, PPAR-gamma). We have performed miRNome profiling using qPCR-based QuantStudio platform and amplification-free NanoString platform. We have observed characteristic alterations, including increased miR21 level (promoting adipose tissue development) and decreased miR34a level (bias toward beige adipose tissue differentiation). Finally, using the Seahorse metabolic platform we have recorded a metabolic profile (OCR/ECAR ratio) indicative of beige adipose tissue. In summary, our results support that thymic adipose tissue emerging with senescence is bona fide beige adipose tissue. Our data show how the borders blur between a key immune tissue (the thymus) and a key metabolic tissue (beige adipose tissue) with senescence. Our work contributes to the understanding of cross talk between the immune system and metabolism.
Collapse
Affiliation(s)
- Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Bai
- Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
- MTA-DE Lendulet Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Djeda Belharazem
- Department of Pathology, University Hospital of Mannheim, Mannheim, Germany
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- *Correspondence: Krisztian Kvell
| |
Collapse
|
28
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|