1
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025; 42:566-622. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 42, 566-622.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Klinhom S, Kunasol C, Sriwichaiin S, Kerdphoo S, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders. Sci Rep 2025; 15:1327. [PMID: 39779898 PMCID: PMC11711614 DOI: 10.1038/s41598-025-85495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated. Thus, this study aimed to elucidate the profiles of gut microbiota in captive elephants with different GI symptoms. Fecal samples were collected from eighteen elephants in Chiang Mai, Thailand, including seven healthy individuals, seven with impaction colic, and four with diarrhea. The samples were subjected to DNA extraction and amplification targeting the V3-V4 region of 16S rRNA gene for next-generation sequencing analysis. Elephants with GI symptoms exhibited a decreased microbial stability, as characterized by a significant reduction in microbiota diversity within individual guts and notable differences in microbial community composition when compared with healthy elephants. These changes included a decrease in the relative abundance of specific bacterial taxa, in elephants with GI symptoms such as a reduction in genera Rubrobacter, Rokubacteria, UBA1819, Nitrospira, and MND1. Conversely, an increase in genera Lysinibacillus, Bacteroidetes_BD2-2, and the family Marinifilaceae was observed when, compared with the healthy group. Variations in taxa of gut microbiota among elephants with GI disorders indicated diverse microbial characteristics associated with different GI symptoms. This study suggests that exploring gut microbiota dynamics in elephant health and GI disorders can lead to a better understanding of food and water management for maintaining a healthy gut and ensuring the longevity of the elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chanon Kunasol
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirawit Sriwichaiin
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
3
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
4
|
Jantzen L, Dumontoy S, Ramadan B, Houdayer C, Haffen E, Hichami A, Khan NA, Van Waes V, Cabeza L. Dietary linoleic acid supplementation protects against obesity-induced microglial reactivity in mice. Sci Rep 2024; 14:6644. [PMID: 38503857 PMCID: PMC10951280 DOI: 10.1038/s41598-024-56959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
We investigated whether linoleic acid (LA) supplementation could modulate emotional behavior and microglia-related neuroinflammation. For that, male mice of C57BL/6J genetic background fed either a high-fat diet (HFD) or a standard diet (STD) for 12 weeks, were treated with a vehicle or LA solution for 5 weeks before being evaluated for emotional behavior using a battery of behavioral tests. The animals were subsequently sacrificed and their brains collected and processed for immunofluorescence staining, targeting microglia-specific calcium-binding proteins (IBA-1). Neuroinflammation severity was assessed in multiple hypothalamic, cortical and subcortical brain regions. We show an anxio-depressive-like effect of sustained HFD feeding that was neither alleviated nor worsened with LA supplementation. However, increased IBA-1 expression and microgliosis in the HFD group were largely attenuated by LA supplementation. These observations demonstrate that the anti-neuroinflammatory properties of LA are not restricted to hypothalamic areas but are also evident at the cortical and subcortical levels. This study discloses that neuroinflammation plays a role in the genesis of neuropsychiatric disorders in the context of obesity, and that LA supplementation is a useful dietary strategy to alleviate the impact of obesity-related neuroinflammation.
Collapse
Affiliation(s)
- Lucas Jantzen
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Stéphanie Dumontoy
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Bahrie Ramadan
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Christophe Houdayer
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Emmanuel Haffen
- Université de Franche-Comté, UMR INSERM 1322 LINC, service de psychiatrie de l'adulte, CIC-1431 INSERM, CHU de Besançon, 25030, Besançon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR UB/Institut Agro/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR UB/Institut Agro/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne, Dijon, France
| | - Vincent Van Waes
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Lidia Cabeza
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France.
| |
Collapse
|
5
|
Li RJW, Barros DR, Kuah R, Lim YM, Gao A, Beaudry JL, Zhang SY, Lam TKT. Small intestinal CaSR-dependent and CaSR-independent protein sensing regulates feeding and glucose tolerance in rats. Nat Metab 2024; 6:39-49. [PMID: 38167726 DOI: 10.1038/s42255-023-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Proteins activate small intestinal calcium sensing receptor (CaSR) and/or peptide transporter 1 (PepT1) to increase hormone secretion1-8, but the effect of small intestinal protein sensing and the mechanistic potential of CaSR and/or PepT1 in feeding and glucose regulation remain inconclusive. Here we show that, in male rats, CaSR in the upper small intestine is required for casein infusion to increase glucose tolerance and GLP1 and GIP secretion, which was also dependent on PepT1 (ref. 9). PepT1, but not CaSR, is required for casein infusion to lower feeding. Upper small intestine casein sensing fails to regulate feeding, but not glucose tolerance, in high-fat-fed rats with decreased PepT1 but increased CaSR expression. In the ileum, a CaSR-dependent but PepT1-independent pathway is required for casein infusion to lower feeding and increase glucose tolerance in chow-fed rats, in parallel with increased PYY and GLP1 release, respectively. High fat decreases ileal CaSR expression and disrupts casein sensing on feeding but not on glucose control, suggesting an ileal CaSR-independent, glucose-regulatory pathway. In summary, we discover small intestinal CaSR- and PepT1-dependent and -independent protein sensing mechanisms that regulate gut hormone release, feeding and glucose tolerance. Our findings highlight the potential of targeting small intestinal CaSR and/or PepT1 to regulate feeding and glucose tolerance.
Collapse
Affiliation(s)
- Rosa J W Li
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Daniel R Barros
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Rachel Kuah
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Anna Gao
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Zhang H, Butoyi C, Yuan G, Jia J. Exploring the role of Gut Microbiota in Obesity and PCOS: Current updates and Future Prospects. Diabetes Res Clin Pract 2023:110781. [PMID: 37331521 DOI: 10.1016/j.diabres.2023.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine gynecological disorder, and the specific pathogenesis of PCOS has not been elucidated. Obesity is a current major public health problem, which is also vital to PCOS. It can exacerbate PCOS symptoms via insulin resistance and hyperandrogenemia. The treatment of PCOS patients depends on the prevailing symptoms. Lifestyle interventions and weight loss remain first-line treatments for women with PCOS. The gut microbiota, which is a current research hot spot, has a substantial influence on PCOS and is closely related to obesity. The present study aimed to elucidate the function of the gut microbiota in obesity and PCOS to provide new ideas for the treatment of PCOS.
Collapse
Affiliation(s)
- Hui Zhang
- First Clinical Medical College, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Claudette Butoyi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; School of Medicine , Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
8
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2022; 57:101427. [PMID: 34973469 PMCID: PMC8829807 DOI: 10.1016/j.molmet.2021.101427] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.
Collapse
Affiliation(s)
- Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy Lipuma
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Keely SJ, Urso A, Ilyaskin AV, Korbmacher C, Bunnett NW, Poole DP, Carbone SE. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. Am J Physiol Gastrointest Liver Physiol 2022; 322:G201-G222. [PMID: 34755536 PMCID: PMC8782647 DOI: 10.1152/ajpgi.00125.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Andreacarola Urso
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Christiansen CB, Veedfald S, Hartmann B, Gauguin AM, Møller S, Moritz T, Madsbad S, Holst JJ. Colonic Lactulose Fermentation Has No Impact on Glucagon-like Peptide-1 and Peptide-YY Secretion in Healthy Young Men. J Clin Endocrinol Metab 2022; 107:77-87. [PMID: 34508600 DOI: 10.1210/clinem/dgab666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/14/2023]
Abstract
CONTEXT The colon houses most of humans' gut microbiota, which ferments indigestible carbohydrates. The products of fermentation have been proposed to influence the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) from the many endocrine cells in the colonic epithelium. However, little is known about the colonic contribution to fasting or postprandial plasma levels of L-cell products. OBJECTIVE To determine the impact of colonic lactulose fermentation on gut peptide secretion and to evaluate whether colonic endocrine secretion contributes to gut hormone concentrations measurable in the fasting state. METHODS Ten healthy young men were studied on 3 occasions after an overnight fast. On 2 study days, lactulose (20 g) was given orally and compared to water intake on a third study day. For 1 of the lactulose visits, participants underwent a full colonic evacuation. Over a 6-h study protocol, lactulose fermentation was assessed by measuring exhaled hydrogen, and gut peptide secretion, paracetamol, and short-chain fatty acid levels were measured in plasma. RESULTS Colonic evacuation markedly reduced hydrogen exhalation after lactulose intake (P = 0.013). Our analysis suggests that the colon does not account for the measurable amounts of GLP-1 and PYY present in the circulation during fasting and that fermentation and peptide secretion are not acutely related. CONCLUSION Whether colonic luminal contents affect colonic L-cell secretion sufficiently to influence circulating concentrations requires further investigation. Colonic evacuation markedly reduced lactulose fermentation, but hormone releases were unchanged in the present study.
Collapse
Affiliation(s)
- Charlotte Bayer Christiansen
- Novo Nordic Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital at Hvidovre, Hvidovre, Denmark
| | - Bolette Hartmann
- Novo Nordic Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Marie Gauguin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Center for Functional and Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine 260, Copenhagen University Hospital at Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordic Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital at Hvidovre, Hvidovre, Denmark
| | - Jens Juul Holst
- Novo Nordic Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Cross-talk between peripheral tissues is essential to ensure the coordination of nutrient intake with disposition during the feeding period, thereby preventing metabolic disease. This mini-review considers the interactions between the key peripheral tissues that constitute the metabolic clock, each of which is considered in a separate mini-review in this collation of articles published in Endocrinology in 2020 and 2021, by Martchenko et al (Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones); Alvarez et al (The microbiome as a circadian coordinator of metabolism); Seshadri and Doucette (Circadian regulation of the pancreatic beta cell); McCommis et al (The importance of keeping time in the liver); Oosterman et al (The circadian clock, shift work, and tissue-specific insulin resistance); and Heyde et al (Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism). The use of positive- and negative-feedback signals, both hormonal and metabolic, between these tissues ensures that peripheral metabolic pathways are synchronized with the timing of food intake, thus optimizing nutrient disposition and preventing metabolic disease. Collectively, these articles highlight the critical role played by the circadian clock in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Correspondence: P. L. Brubaker, PhD, Departments of Physiology and Medicine, University of Toronto, Medical Sciences Bldg, Rm 3366, 1 King’s College Cir, Toronto, ON M5S 1A8, Canada.
| | | |
Collapse
|
12
|
Modvig IM, Kuhre RE, Jepsen SL, Xu SFS, Engelstoft MS, Egerod KL, Schwartz TW, Ørskov C, Rosenkilde MM, Holst JJ. Amino acids differ in their capacity to stimulate GLP-1 release from the perfused rat small intestine and stimulate secretion by different sensing mechanisms. Am J Physiol Endocrinol Metab 2021; 320:E874-E885. [PMID: 33645250 DOI: 10.1152/ajpendo.00026.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to explore individual amino acid-stimulated GLP-1 responses and the underlying stimulatory mechanisms, as well as to identify the amino acid-sensing receptors involved in amino acid-stimulated GLP-1 release. Experiments were primarily based on isolated perfused rat small intestines, which have intact epithelial polarization allowing discrimination between luminal and basolateral mechanisms as well as quantitative studies of intestinal absorption and hormone secretion. Expression analysis of amino acid sensors on isolated murine GLP-1 secreting L-cells was assessed by qPCR. We found that l-valine powerfully stimulated GLP-1 secretion but only from the luminal side (2.9-fold increase). When administered from the vascular side, l-arginine and the aromatic amino acids stimulated GLP-1 secretion equally (2.6- to 2.9-fold increases). Expression analysis revealed that Casr expression was enriched in murine GLP-1 secreting L-cells, whereas Gpr35, Gprc6a, Gpr142, Gpr93 (Lpar5), and the umami taste receptor subunits Tas1r3 and Tas1r1 were not. Consistently, activation of GPR35, GPR93, GPR142, and the umami taste receptor with specific agonists or allosteric modulators did not increase GLP-1 secretion (P > 0.05 for all experiments), whereas vascular inhibition of CaSR reduced GLP-1 secretion in response to luminal infusion of mixed amino acids. In conclusion, amino acids differ in their capacity to stimulate GLP-1 secretion. Some amino acids stimulated secretion only from the intestinal lumen, whereas other amino acids exclusively stimulated secretion from the vascular side, indicating that amino acid-stimulated GLP-1 secretion involves both apical and basolateral (postabsorptive) sensing mechanisms. Sensing of absorbed amino acids involves CaSR activation as vascular inhibition of CaSR markedly diminished amino acid stimulated GLP-1 release.NEW & NOTEWORTHY Using isolated perfused rat small intestines, we show that amino acids differ in their mechanisms and capacity of stimulating GLP-1 release. Furthermore, we demonstrate that sensing by GPR142, GPR35, GPR93, and the umami taste receptor (Tas1R1/Tas1R3) are not involved in amino acid stimulated GLP-1 release. In contrast to previous studies, this experimental model allows discrimination between the luminal and the vascular side of the intestine, which is essential when studying mechanisms of amino acid-stimulated GLP-1 secretion.
Collapse
MESH Headings
- Amino Acids/pharmacology
- Animals
- Glucagon-Like Peptide 1/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Perfusion
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Lysophosphatidic Acid/agonists
- Receptors, Lysophosphatidic Acid/metabolism
- Secretory Pathway/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ida Marie Modvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Ehrenreich Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Lind Jepsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stella Feng Sheng Xu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maja Storm Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Lihme Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue Walther Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Yao ZD, Cao YN, Peng LX, Yan ZY, Zhao G. Coarse Cereals and Legume Grains Exert Beneficial Effects through Their Interaction with Gut Microbiota: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:861-877. [PMID: 33264009 DOI: 10.1021/acs.jafc.0c05691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coarse cereals and legume grains (CCLGs) are rich in specific macro- and functional elements that are considered important dietary components for maintaining human health. Therefore, determining the precise nutritional mechanism involved in exerting the health benefits of CCLGs can help understand dietary nutrition in a better manner. Evidence suggests that gut microbiota play a crucial role in the function of CCLGs via their complicated interplay with CCLGs. First, CCLGs modulate gut microbiota and function. Second, gut microbiota convert CCLGs into compounds that perform different functions. Third, gut microbiota mediate interactions among different CCLG components. Therefore, using gut microbiota to expound the nutritional mechanism of CCLGs is important for future studies. A precise and rapid gut microbiota research model is required to screen and evaluate the quality of CCLGs. The outcomes of such research may promote the rapid discovery, classification, and evaluation of CCLG resources, thereby opening a new opportunity to guide nutrition-based development of CCLG products.
Collapse
Affiliation(s)
- Zhen-Dong Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Zhu-Yun Yan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| |
Collapse
|
15
|
Hira T, Sekishita M, Hara H. Blood Sampling From Rat Ileal Mesenteric Vein Revealed a Major Role of Dietary Protein in Meal-Induced GLP-1 Response. Front Endocrinol (Lausanne) 2021; 12:689685. [PMID: 34149624 PMCID: PMC8206781 DOI: 10.3389/fendo.2021.689685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to examine region-dependent glucagon-like peptide-1 (GLP-1) responses to "meal ingestion" under physiological (conscious and unrestrained) conditions using rats with a catheter inserted into either the portal vein (PV) or the ileal mesenteric vein (ILMV). After recovery from the cannulation surgery, blood samples were collected from either PV or ILMV catheter before and after the voluntary ingestion of test diets. After an AIN-93G standard diet ingestion, GLP-1 concentration was higher in ILMV than in PV, and postprandial responses of peptide-YY (PYY) had similar trend, while that of glucose dependent-insulinotropic polypeptide showed an opposite trend to GLP-1/PYY responses. In a separated experiment, a protein-enriched diet containing casein at 25% wt/wt transiently increased GLP-1 concentration only in ILMV; however, a protein-free diet did not increase GLP-1 concentrations in PV or ILMV. These results indicate that postprandial GLP-1 is immediately released from the distal intestine under physiological conditions, and that dietary protein has a critical role in the enhancement of postprandial GLP-1 response.
Collapse
Affiliation(s)
- Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- *Correspondence: Tohru Hira,
| | - Madoka Sekishita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroshi Hara
- Faculty of Human Life Science, Fuji Women’s University, Ishikari, Japan
| |
Collapse
|
16
|
Tough IR, Schwartz TW, Cox HM. Synthetic G protein-coupled bile acid receptor agonists and bile acids act via basolateral receptors in ileal and colonic mucosa. Neurogastroenterol Motil 2020; 32:e13943. [PMID: 32656959 DOI: 10.1111/nmo.13943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The G protein-coupled bile acid (BA) receptor, GPBA (previously named TGR5), mediates BA gastrointestinal (GI) activities. Our aim was to elucidate the mucosal and motility responses to selective GPBA agonists compared with conjugated BA (eg, taurodeoxycholate, TDCA) in mouse and human colon. METHODS Ion transport responses to GPBA agonists or BAs were measured in mucosal preparations with intact submucous innervation, from C57Bl/6, PYY-/-, or GPBA-/- mice and compared with GPBA signaling in human colon. We also investigated the mechanisms underlying GPBA agonism in mucosae and on natural fecal pellet propulsion. KEY RESULTS GPBA agonist Merck V stimulated basolateral responses involving peptide YY (PYY), cholinergic, and 5-HT mechanisms in colonic mucosa. The PYY-mediated GPBA signal was glucose-sensitive. Luminal TDCA crossed the epithelial lining via the apical sodium-dependent BA transporter (ASBT) and its inhibitor, GSK2330672 significantly reduced luminal, but not basolateral TDCA activity. Merck V also slowed natural fecal pellet progression in wild-type and PYY-/- colons but not in GPBA-/- colon, while TDCA increased motility in wild-type colon. The antimotile GPBA effect was reversed by blockade of glucagon-like peptide 1 (GLP-1) receptors or nitric oxide synthase, indicating involvement of GLP-1 and nitric oxide. CONCLUSIONS & INFERENCES We conclude that several different targets within the lamina propria express GPBA, including L cells (that release PYY and GLP-1), enterochromaffin cells and neurons (that release 5-HT), and other enteric neurons. Furthermore, luminal-conjugated BAs require transport across the epithelium via ASBT in order to activate basolateral GPBA.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Thue W Schwartz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, University of Copenhagen, Copenhagen, Denmark
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
17
|
Abstract
Neurotensin is secreted from intestinal N cells in response to the food ingestion. Influences of different dietary protein levels on neurotensin-immunoreactive cells in the chicken ileum were examined by using immunohistochemical and morphometrical techniques. The results showed that dietary protein had an obvious influence on neurotensin-immunoreactive cells in the chicken ileum. Four experimental groups were used, with dietary crude protein (CP) levels of 18% (control), 9%, 4.5% and 0%. Enteroendocrine cells showing neurotensin-immunoreactivity were located in crypts and villous epithelium in all groups. Most of the neurotensin-immunoreactive cells in the villous epithelium showed pyramidal or spindle-like shape with a long cytoplasmic process reaching the intestinal lumen, but cells with round or oval shape were found in the CP4.5% and 0% groups. Frequencies of occurrence of neurotensin-immunoreactive cells in the CP18%, 9%, 4.5% and 0% groups were 42.4±3.3, 36.6±2.2, 30.8±2.6 and 25.4±3.8 (cell count per mucosal area: cells/mm2, mean±SD), respectively. There were significant differences in neurotensin-immunoreactive cell frequency between the control and lower CP level, 4.5% and 0%, groups. A significant correlation was found between frequency of occurrence of neurotensin-immunoreactive cells and daily protein intake. These results indicate that ingested protein is likely to be a potential signal for neurotensin production and secretion of N cells in the chicken ileum.
Collapse
|
18
|
Huang WK, Xie C, Young RL, Zhao JB, Ebendorff-Heidepriem H, Jones KL, Rayner CK, Wu TZ. Development of innovative tools for investigation of nutrient-gut interaction. World J Gastroenterol 2020; 26:3562-3576. [PMID: 32742126 PMCID: PMC7366065 DOI: 10.3748/wjg.v26.i25.3562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the key interface between the ingesta and the human body. There is wide recognition that the gastrointestinal response to nutrients or bioactive compounds, particularly the secretion of numerous hormones, is critical to the regulation of appetite, body weight and blood glucose. This concept has led to an increasing focus on “gut-based” strategies for the management of metabolic disorders, including type 2 diabetes and obesity. Understanding the underlying mechanisms and downstream effects of nutrient-gut interactions is fundamental to effective translation of this knowledge to clinical practice. To this end, an array of research tools and platforms have been developed to better understand the mechanisms of gut hormone secretion from enteroendocrine cells. This review discusses the evolution of in vitro and in vivo models and the integration of innovative techniques that will ultimately enable the development of novel therapies for metabolic diseases.
Collapse
Affiliation(s)
- Wei-Kun Huang
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cong Xie
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard L Young
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Diabetes, Nutrition and Gut Health, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Jiang-Bo Zhao
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Karen L Jones
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher K Rayner
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tong-Zhi Wu
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
19
|
Casanova-Martí À, Bravo FI, Serrano J, Ardévol A, Pinent M, Muguerza B. Antihyperglycemic effect of a chicken feet hydrolysate via the incretin system: DPP-IV-inhibitory activity and GLP-1 release stimulation. Food Funct 2020; 10:4062-4070. [PMID: 31225553 DOI: 10.1039/c9fo00695h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, the potential of hydrolysates of chicken feet proteins as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors was investigated; moreover, three hydrolysates were selected due to their high DPP-IV inhibitory capacity (>80% inhibition), showing the IC50 values of around 300 μg estimated protein per mL; one of them (named p4H) was selected for the posterior analysis. In addition, its effect on glucose tolerance was investigated in two rat models (diet and age-induced) of glucose-intolerance and healthy animals; the amount of 300 mg estimated peptide per kg body weight improved the plasma glucose profile in both glucose-intolerance models. Moreover, it stimulated active GLP-1 release in the enteroendocrine STC-1 cells and rat ileum tissue. In conclusion, our results indicate that chicken feet proteins are a good source of bioactive peptides as DPP-IV inhibitors. Moreover, our results highlight the potential of the selected hydrolysate p4H in the management of type 2 diabetes due to its dual function of inhibition of the DPP-IV activity and induction of the GLP-1 release.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain
| |
Collapse
|
20
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1084] [Impact Index Per Article: 180.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
21
|
Steingoetter A, Arnold M, Scheuble N, Fedele S, Bertsch P, Liu D, Parker HL, Langhans W, Fischer P. A Rat Model of Human Lipid Emulsion Digestion. Front Nutr 2019; 6:170. [PMID: 31781572 PMCID: PMC6861183 DOI: 10.3389/fnut.2019.00170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
A better understanding of how dietary lipids are processed by the human body is necessary to allow for the control of satiation and energy intake by tailored lipid systems. To examine whether rats are a valid model of human dietary lipid processing and therefore useful for further mechanistic studies in this context, we tested in rats three lipid emulsions of different stability, which alter satiety responses in humans. Different sets of 15 adult male Sprague Dawley rats, equipped with gastric catheters alone or combined with hepatic portal vein (HPV) and vena cava (VC) catheters were maintained on a medium-fat diet and adapted to an 8 h deprivation/16 h feeding schedule. Experiments were performed in a randomized cross-over study design. After gastric infusion of the lipid emulsions, we assessed gastric emptying by the paracetamol absorption test and recorded in separate experiments food intake and plasma levels of gastrointestinal hormones and metabolites in the HPV. For an acid stable emulsion, slower gastric emptying and an enhanced release of satiating gastrointestinal (GI) hormones were observed and were associated with lower short-term energy intake in rats and less hunger in humans, respectively. The magnitude of hormonal responses was related to the acid stability and redispersibility of the emulsions and thus seems to depend on the availability of lipids for digestion. Plasma metabolite levels were unaffected by the emulsion induced changes in lipolysis. The results support that structured lipid systems are digested similarly in rats and humans. Thus unstable emulsions undergo the same intragastric destabilization in both species, i.e., increased droplet size and creaming. This work establishes the rat as a viable animal model for in vivo studies on the control of satiation and energy intake by tailored lipid systems.
Collapse
Affiliation(s)
- Andreas Steingoetter
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Nathalie Scheuble
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pascal Bertsch
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Dian Liu
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Helen L Parker
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,School of Medicine, Pharmacy and Health, Durham University, Durham, United Kingdom.,Institute of Health and Society, Newcastle University, Durham, United Kingdom
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2577] [Impact Index Per Article: 429.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s004393391500269x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
|
25
|
Assessing the effect of rate and extent of starch digestion in broiler and laying hen feeding behaviour. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Salleh SN, Fairus AAH, Zahary MN, Bhaskar Raj N, Mhd Jalil AM. Unravelling the Effects of Soluble Dietary Fibre Supplementation on Energy Intake and Perceived Satiety in Healthy Adults: Evidence from Systematic Review and Meta-Analysis of Randomised-Controlled Trials. Foods 2019; 8:E15. [PMID: 30621363 PMCID: PMC6352252 DOI: 10.3390/foods8010015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Consumption of soluble dietary fibre is recommended as part of a healthy diet. Evidence has shown that soluble dietary fibre slows gastric emptying, increases perceived satiety and plays a significant role in appetite regulation. This systematic review examined the effects of soluble dietary fibre using randomised-controlled trials (RCTs). Three different electronic databases were used, namely PubMed, Scopus® and the Cochrane Central Register of Controlled Trials (CENTRAL). Effect size (Cohen's d) was calculated based on the intergroup mean difference and standard deviation (SD) followed by Cochran's Q and I² determination. The effect size was statistically pooled in the meta-analyses and presented as a forest plot. The risk of bias was high for each study as assessed using the Jadad scale. Meta-analysis of statistically pooled data for guar gum showed a sizeable effect on post-meal energy intake, followed by β-glucan, alginate, polydextrose and pectin, with pooled effect sizes of -0.90, -0.44, -0.42, -0.36 and -0.26, respectively. Guar gum (5 g) effectively reduced energy intake when prepared in milk beverages compared with control milk (p < 0.001). Alginate, when prepared in liquid (5 g) or solid (9 g) meals, effectively reduced energy intake compared with control (p < 0.001). A high dose of polydextrose (25 g) prepared in liquid meal form significantly reduced energy intake (p = 0.01). This study suggests that soluble fibres are not all created equal. Further interventional studies are needed to determine whether combinations of these soluble fibres might have greater effects than individual fibres per se.
Collapse
Affiliation(s)
- Siti Nurshabani Salleh
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia.
| | - Ahmad Adli Hamizi Fairus
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia.
| | - Mohd Nizam Zahary
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia.
| | - Naresh Bhaskar Raj
- School of Rehabilitation Science, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia.
| | - Abbe Maleyki Mhd Jalil
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia.
| |
Collapse
|
27
|
Yang H, Yang M, Fang S, Huang X, He M, Ke S, Gao J, Wu J, Zhou Y, Fu H, Chen C, Huang L. Evaluating the profound effect of gut microbiome on host appetite in pigs. BMC Microbiol 2018; 18:215. [PMID: 30547751 PMCID: PMC6295093 DOI: 10.1186/s12866-018-1364-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background There are growing evidences showing that gut microbiota should play an important role in host appetite and feeding behavior. However, what kind of microbe(s) and how they affect porcine appetite remain unknown. Results In this study, 280 commercial Duroc pigs were raised in a testing station with the circadian feeding behavior records for a continuous period of 30–100 kg. We first analyzed the influences of host gender and genetics in porcine average daily feed intake (ADFI), but no significant effect was observed. We found that the Prevotella-predominant enterotype had a higher ADFI than the Treponema enterotype-like group. Furthermore, 12 out of the 18 OTUs positively associated with the ADFI were annotated to Prevotella, and Prevotella was the hub bacteria in the co-abundance network. These results suggested that Prevotella might be a keystone bacterial taxon for increasing host feed intake. However, some bacteria producing short-chain fatty acids (SCFAs) and lactic acid (e.g. Ruminococcaceae and Lactobacillus) showed negative associations with the ADFI. Predicted function capacity analysis showed that the genes for amino acid biosynthesis had significantly different enrichment between pigs with high and low ADFI. Conclusions The present study provided important information on the profound effect of gut microbiota on porcine appetite and feeding behavior. This will profit us to regulate porcine appetite through modulating the gut microbiome in the pig industry. Electronic supplementary material The online version of this article (10.1186/s12866-018-1364-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.,College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Co. Ltd., Xinxing, China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaochang Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shanlin Ke
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Gao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinyuan Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunyan Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hao Fu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
28
|
Ginés I, Gil-Cardoso K, Robles P, Arola L, Terra X, Blay M, Ardévol A, Pinent M. Novel ex Vivo Experimental Setup to Assay the Vectorial Transepithelial Enteroendocrine Secretions of Different Intestinal Segments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11622-11629. [PMID: 30148363 DOI: 10.1021/acs.jafc.8b03046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The enteroendocrine system coordinates gastrointestinal (GI) tract functionality and the whole organism. However, the scarcity of enteroendocrine cells and their scattered distribution make them difficult to study. Here, we glued segments of the GI wall of pigs to a silicon tube, keeping the apical and the basolateral sides separate. The fact that there was less than 1% of 70-kDa fluorescein isothiocyanate (FITC)-dextran on the basolateral side proved that the gluing was efficient. Since the lactate dehydrogenase leakage at basolateral side was lower than 0.1% (1.40 ± 0.17 nKatals) it proved that the tissue was viable. The intestinal barrier function was maintained as it is in segments mounted in Ussing chambers (the amount of Lucifer Yellow crossing it, was similar between them; respectively, % LY, 0.48 ± 0.13; 0.52 ± 0.09; p > 0.05). Finally, apical treatments with two different extract produced differential basolateral enterohormone secretions (basolateral PYY secretion vs control; animal extract, 0.35 ± 0.16; plant extract, 2.5 ± 0.74; p < 0.05). In conclusion, we report an ex vivo system called "Ap-to-Bas" for assaying vectorial transepithelial processes that makes it possible to work with several samples at the same time. It is an optimal device for enterohormone studies in the intestine.
Collapse
|
29
|
Belobrajdic DP, Jenkins CLD, Christophersen CT, Bird AR. Cereal fructan extracts alter intestinal fermentation to reduce adiposity and increase mineral retention compared to oligofructose. Eur J Nutr 2018; 58:2811-2821. [PMID: 30284066 DOI: 10.1007/s00394-018-1830-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Intestinal fermentation of inulin-type fructans, including oligofructose, can modulate adiposity, improve energy regulation, and increase mineral absorption. We aimed to determine whether cereal fructans had greater effects on reducing adiposity and improving mineral absorption compared with oligofructose. METHODS Thirty-two male Sprague-Dawley rats were randomly assigned to one of four dietary treatments that contained 0% fructan (control), or 5% fructan provided by oligofructose (OF), a barley grain fraction (BGF), or a wheat stem fraction (WSF). After 1 week on the diets, mineral absorption and retention was assessed. At 4 weeks, blood samples were collected for gut hormone analysis, adipose depots were removed and weighed, and caecal digesta was analyzed for pH and short-chain fatty acids (SCFA). RESULTS The BGF and WSF, but not OF, had lower total visceral fat weights than the Control (p < 0.05). The fructan diets all lowered caecal pH and raised caecal digesta weight and total SCFA content, in comparison to the Control. Caecal propionate levels for OF were similar to the Control and higher for WSF (p < 0.05). Plasma peptide YY and glucagon-like peptide-1 levels were elevated for all fructan groups when compared to Control (p < 0.001) and gastric inhibitory peptide was lower for the WSF compared to the other groups (p < 0.05). The fructan diets improved calcium and magnesium retention, which was highest for WSF (p < 0.05). BGF and WSF in comparison to OF showed differential effects on fermentation, gut hormone levels, and adiposity. CONCLUSIONS Cereal fructan sources have favorable metabolic effects that suggest greater improvements in energy regulation and mineral status to those reported for oligofructose.
Collapse
Affiliation(s)
| | | | | | - Anthony R Bird
- CSIRO Health and Biosecurity, PO Box 10041, Adelaide, BC, 5000, Australia
| |
Collapse
|
30
|
Moquet PCA, Salami SA, Onrust L, Hendriks WH, Kwakkel RP. Butyrate presence in distinct gastrointestinal tract segments modifies differentially digestive processes and amino acid bioavailability in young broiler chickens. Poult Sci 2018; 97:167-176. [PMID: 29077956 DOI: 10.3382/ps/pex279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/04/2017] [Indexed: 01/03/2023] Open
Abstract
The hypothesis was tested that butyrate presence in the digesta of distinct gastrointestinal tract (GIT) segments of broilers leads to differential effects on digesta retention time, gut morphology, and proteolytic enzymatic activities, ultimately resulting in differences in protein digestibility. A total of 320 male day-old Ross 308 broilers were randomly assigned to 5 dietary treatments: 1) control (no butyrate), 2) unprotected butyrate (main activity in the crop and gastric regions), 3) tributyrin (main activity in the small intestine), 4) fat-coated butyrate (activity in the whole GIT) and 5) unprotected butyrate combined with tributyrin, each replicated 8 times. Rapeseed meal was used in combination with a fine dietary particle size in order to challenge the digestive capacity of young broilers. Birds were dissected at 22, 23, and 24 d of age and samples of digesta at various GIT locations as well as tissues were collected. Butyrate concentration varied significantly across GIT segments depending on treatment, indicating that the dietary contrasts were successful. The apparent ileal digestibility of methionine tended to increase when butyrate and/or propionate was present in colonic and cecal contents, possibly due to modifications of GIT development and digesta transit time. Butyrate presence in the digesta of the crop, proventriculus and gizzard, on the contrary, decreased the apparent ileal digestibility of several amino acids (AA). In addition, butyrate presence beyond the gizzard elicited anorexic effect that might be attributable to changes in intestinal enteroendocrine L-cells secretory activities. The present study demonstrates that, in broilers, effects of butyrate on digestive processes are conditioned by the GIT segment wherein the molecule is present and indicates its influence on digestive function and bioavailability of AA.
Collapse
Affiliation(s)
- P C A Moquet
- Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - S A Salami
- Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - L Onrust
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - W H Hendriks
- Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - R P Kwakkel
- Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
31
|
Pan W, Kang Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol 2018; 50:289-299. [PMID: 28849345 DOI: 10.1007/s11255-017-1689-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/23/2017] [Indexed: 02/05/2023]
Abstract
The complicated communities of microbiota colonizing the human gastrointestinal tract exert a strong function in health maintenance and disease prevention. Indeed, accumulating evidence has indicated that the intestinal microbiota plays a key role in the pathogenesis and development of chronic kidney disease (CKD). Modulation of the gut microbiome composition in CKD may contribute to the accumulation of gut-derived uremic toxins, high circulating level of lipopolysaccharides and immune deregulation, all of which play a critical role in the pathogenesis of CKD and CKD-associated complications. In this review, we discuss the recent findings on the potential impact of gut microbiota in CKD and the underlying mechanisms by which microbiota can influence kidney diseases and vice versa. Additionally, the potential efficacy of pre-, pro- and synbiotics in the restoration of healthy gut microbia is described in detail to provide future directions for research.
Collapse
Affiliation(s)
- Wei Pan
- Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
32
|
A Narrative Review of Potential Future Antidiabetic Drugs: Should We Expect More? Indian J Clin Biochem 2017; 33:121-131. [PMID: 29651202 DOI: 10.1007/s12291-017-0668-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of diabetes mellitus, a chronic metabolic disease characterized by hyperglycemia, is growing worldwide. The majority of the cases belong to type 2 diabetes mellitus (T2DM). Globally, India ranks second in terms of diabetes prevalence among adults. Currently available classes of therapeutic agents are used alone or in combinations but seldom achieve treatment targets. Diverse pathophysiology and the need of therapeutic agents with more favourable pharmacokinetic-pharmacodynamics profile make newer drug discoveries in the field of T2DM essential. A large number of molecules, some with novel mechanisms, are in pipeline. The essence of this review is to track and discuss these potential agents, based on their developmental stages, especially those in phase 3 or phase 2. Unique molecules are being developed for existing drug classes like insulins, DPP-4 inhibitors, GLP-1 analogues; and under newer classes like dual/pan PPAR agonists, dual SGLT1/SGLT2 inhibitors, glimins, anti-inflammatory agents, glucokinase activators, G-protein coupled receptor agonists, hybrid peptide agonists, apical sodium-dependent bile acid transporter (ASBT) inhibitors, glucagon receptor antagonists etc. The heterogeneous clinical presentation and therapeutic outcomes in phenotypically similar patients is a clue to think beyond the standard treatment strategy.
Collapse
|
33
|
Kaji I, Akiba Y, Kato I, Maruta K, Kuwahara A, Kaunitz JD. Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways. J Pharmacol Exp Ther 2017; 361:151-161. [PMID: 28115552 PMCID: PMC5363776 DOI: 10.1124/jpet.116.238485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3- secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3- and Cl- secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum.
Collapse
Affiliation(s)
- Izumi Kaji
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Ikuo Kato
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Koji Maruta
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Atsukazu Kuwahara
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| |
Collapse
|
34
|
Does the Ileal Brake Contribute to Delayed Gastric Emptying After Pancreatoduodenectomy? Dig Dis Sci 2017; 62:319-335. [PMID: 27995402 DOI: 10.1007/s10620-016-4402-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Delayed gastric emptying (DGE) represents a significant cause for morbidity following pancreatoduodenectomy (PD). At a time when no specific and universally effective therapy exists to treat these patients, elucidating other potential (preventable or treatable) mechanisms for DGE is important. The aim of the manuscript was to test the hypothesis that ileal brake contributes to DGE in PD patients receiving jejunal tube feeding by systematically reviewing experimental and clinical literature. A series of clinically relevant questions were framed related to the potential role of the ileal brake in development of DGE post-PD and formed the basis of targeted literature searches. A comprehensive search of major reference databases from January 1980 to June 2015 was carried out which included human and animal studies. The ileal brake is a feedback loop neurally mediated by the vagus and sympatho-adrenergic pathways and hormonally by gut peptides including glucagon-like peptide-1, peptide YY (PYY), and neurotensin. The most potent stimulus for this inhibitory reflex is intra-ileal fat. There is evidence to indicate the role of an inhibitory reflex (on gastric emptying) mediated by PYY and CCK which, in turn, are stimulated by nutrient delivery into the distal small intestine providing indirect support to the role of ileal brake in post-PD DGE. The ileal brake is a likely factor contributing to DGE post-PD. While there has been no study to directly test this hypothesis, there is compelling indirect evidence to support it. Designing a trial that would answer such a question appears to be the most appropriate way forward.
Collapse
|
35
|
El Khoury D, Goff HD, Anderson GH. The role of alginates in regulation of food intake and glycemia: a gastroenterological perspective. Crit Rev Food Sci Nutr 2016; 55:1406-24. [PMID: 24915329 DOI: 10.1080/10408398.2012.700654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of food intake through modulation of gastrointestinal responses to ingested foods is an ever-growing component of the therapeutic approaches targeting the obesity epidemic. Alginates, viscous and gel-forming soluble fibers isolated from the cell wall of brown seaweeds and some bacteria, are recently receiving considerable attention because of their potential role in satiation, satiety, and food intake regulation in the short term. Enhancement of gastric distension, delay of gastric emptying, and attenuation of postprandial glucose responses may constitute the basis of their physiological benefits. Offering physical, chemical, sensorial, and physiological advantages over other viscous and gel-forming fibers, alginates constitute promising functional food ingredients for the food industry. Therefore, the current review explores the role of alginates in food intake and glycemic regulation, their underlying modes of action and their potential in food applications.
Collapse
Affiliation(s)
- D El Khoury
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto , Toronto , M5S 3E2 , ON , Canada
| | | | | |
Collapse
|
36
|
Zhang G, Hasek LY, Lee BH, Hamaker BR. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food Funct 2016; 6:1072-89. [PMID: 25686469 DOI: 10.1039/c4fo00803k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Collapse
Affiliation(s)
- Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
37
|
Zadeh-Tahmasebi M, Duca FA, Rasmussen BA, Bauer PV, Côté CD, Filippi BM, Lam TKT. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo. J Biol Chem 2016; 291:8816-24. [PMID: 26896795 DOI: 10.1074/jbc.m116.718460] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/14/2023] Open
Abstract
Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Melika Zadeh-Tahmasebi
- From the Toronto General Research Institute and Department of Medicine, UHN, Toronto, Ontario M5G 1L7, the Departments of Physiology and
| | - Frank A Duca
- From the Toronto General Research Institute and Department of Medicine, UHN, Toronto, Ontario M5G 1L7
| | - Brittany A Rasmussen
- From the Toronto General Research Institute and Department of Medicine, UHN, Toronto, Ontario M5G 1L7, the Departments of Physiology and
| | - Paige V Bauer
- From the Toronto General Research Institute and Department of Medicine, UHN, Toronto, Ontario M5G 1L7, the Departments of Physiology and
| | - Clémence D Côté
- From the Toronto General Research Institute and Department of Medicine, UHN, Toronto, Ontario M5G 1L7, the Departments of Physiology and
| | - Beatrice M Filippi
- From the Toronto General Research Institute and Department of Medicine, UHN, Toronto, Ontario M5G 1L7
| | - Tony K T Lam
- From the Toronto General Research Institute and Department of Medicine, UHN, Toronto, Ontario M5G 1L7, the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
38
|
Li J, Zhu W, Liu W, Wu Y, Wu B. Rifaximin for Irritable Bowel Syndrome: A Meta-Analysis of Randomized Placebo-Controlled Trials. Medicine (Baltimore) 2016; 95:e2534. [PMID: 26825893 PMCID: PMC5291563 DOI: 10.1097/md.0000000000002534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The current treatments for irritable bowel syndrome (IBS) are suboptimal. The findings of previous studies of rifaximin treatment for IBS may have differed due to variations in study design. Our study aimed to determine the therapeutic and adverse effects of rifaximin treatment for IBS based on a meta-analysis of published randomized controlled trials (RCTs). We searched the MEDLINE, EMBASE, EBSCO, Springer, Ovid, and Cochrane Library databases for RCTs investigating the effects of rifaximin on IBS. Data from each selected RCT was evaluated individually based on an intention-to-treat analysis, and a meta-analysis was performed in which the odds ratios (ORs) and 95% confidence intervals (CIs) of clinical outcomes and adverse events were calculated using fixed-effects models. Four eligible studies were identified. Overall relief of IBS symptoms in the rifaximin groups was greater than that in the placebo groups at the ends of both the treatment and follow-up periods (OR = 1.19; 95% CI: 1.08-1.32 and OR = 1.36; 95% CI: 1.18-1.58, respectively, P < 0.05 for both). Significant relief of abdominal distention was observed at the follow-up endpoint (OR = 1.69; 95% Cl: 1.27-2.23; P < 0.05), but not at the treatment endpoint (OR = 1.19; 95% CI: 0.96-1.49; P > 0.05). Abdominal pain (OR = 1.01; 95% CI: 0.98-1.03; P > 0.05), nausea (OR = 1.00; 95% CI: 0.98-1.02; P > 0.05), vomiting (OR: 0.99; 95% CI: 0.98-1.01; P > 0.05), and headache (OR = 1.01; 95% CI: 0.98-1.03; P > 0.05) did not differ significantly between the rifaximin and placebo groups. In the RCTs selected, our meta-analysis showed that the efficacy of rifaximin for the resolution of overall IBS symptoms was greater than that of the placebos, and that rifaximin was well-tolerated. The course of relief from abdominal distention in IBS patients treated with rifaximin may be delayed in some patients, compared with that of overall IBS symptom relief.
Collapse
Affiliation(s)
- Jun Li
- From the Department of Gastroenterology, Chinese PLA General Hospital, Fuxing Road (JL, WL, YW, BW); and Department of Oncology, Chinese 309th Hospital of PLA, Hei Shan Hu Road, Beijing, China (WZ)
| | | | | | | | | |
Collapse
|
39
|
Christensen LW, Kuhre RE, Janus C, Svendsen B, Holst JJ. Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine. Physiol Rep 2015; 3:e12551. [PMID: 26381015 PMCID: PMC4600392 DOI: 10.14814/phy2.12551] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) plays a central role in modern treatment of type 2 diabetes (T2DM) in the form of GLP-1 enhancers and GLP-1 mimetics. An alternative treatment strategy is to stimulate endogenous GLP-1 secretion from enteroendocrine L cells using a targeted approach. The G-protein-coupled receptor, FFAR1 (previously GPR40), expressed on L cells and activated by long-chain fatty acids (LCFAs) is a potential target. A link between FFAR1 activation and GLP-1 secretion has been demonstrated in cellular models and small-molecule FFAR1 agonists have been developed. In this study, we examined the effect of FFAR1 activation on GLP-1 secretion using isolated, perfused small intestines from rats, a physiologically relevant model allowing distinction between direct and indirect effects of FFAR1 activation. The endogenous FFAR1 ligand, linoleic acid (LA), and four synthetic FFAR1 agonists (TAK-875, AMG 837, AM-1638, and AM-5262) were administered through intraluminal and intra-arterial routes, respectively, and dynamic changes in GLP-1 secretion were evaluated. Vascular administration of 10 μmol/L TAK-875, 10 μmol/L AMG 837, 1 μmol/L and 0.1 μmol/L AM-1638, 1 μmol/L AM-6252, and 1 mmol/L LA, all significantly increased GLP-1 secretion compared to basal levels (P < 0.05), whereas luminal administration of LA and FFAR1 agonists was ineffective. Thus, both natural and small-molecule agonists of the FFAR1 receptor appear to require absorption prior to stimulating GLP-1 secretion, indicating that therapies based on activation of nutrient sensing may be more complex than hitherto expected.
Collapse
Affiliation(s)
- Louise W Christensen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Janus
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Fleischer J, Bumbalo R, Bautze V, Strotmann J, Breer H. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res 2015; 361:697-710. [DOI: 10.1007/s00441-015-2165-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
41
|
Mittermayer F, Caveney E, De Oliveira C, Gourgiotis L, Puri M, Tai LJ, Turner JR. Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev 2015; 11:17-31. [PMID: 25537454 PMCID: PMC4428473 DOI: 10.2174/1573399810666141224121927] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
The global burden of type 2 diabetes is increasing worldwide, and successful treatment of this disease needs constant provision of new drugs. Twelve classes of antidiabetic drugs are currently available, and many new drugs are under clinical development. These include compounds with known mechanisms of action but unique properties, such as once-weekly DPP4 inhibitors or oral insulin. They also include drugs with new mechanisms of action, the focus of this review. Most of these compounds are in Phase 1 and 2, with only a small number having made it to Phase 3 at this time. The new drug classes described include PPAR agonists/modulators, glucokinase activators, glucagon receptor antagonists, anti-inflammatory compounds, G-protein coupled receptor agonists, gastrointestinal peptide agonists other than GLP-1, apical sodium-dependent bile acid transporter (ASBT) inhibitors, SGLT1 and dual SGLT1/SGLT2 inhibitors, and 11beta- HSD1 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Rick Turner
- Quintiles GmbH, Stella- Klein-Low Weg 15, Rund 4, Haus B, OG 4, 1020 Vienna, Austria.
| |
Collapse
|
42
|
Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm 2014; 2014:162021. [PMID: 25214711 PMCID: PMC4151858 DOI: 10.1155/2014/162021] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/06/2014] [Indexed: 01/10/2023] Open
Abstract
In type 2 diabetes, hyperglycemia, insulin resistance, increased inflammation, and oxidative stress were shown to be associated with the progressive deterioration of beta-cell function and mass. Short-chain fatty acids (SCFAs) are organic fatty acids produced in the distal gut by bacterial fermentation of macrofibrous material that might improve type 2 diabetes features. Their main beneficial activities were identified in the decrease of serum levels of glucose, insulin resistance as well as inflammation, and increase in protective Glucagon-like peptide-1 (GLP-1) secretion. In this review, we updated evidence on the effects of SCFAs potentially improving metabolic control in type 2 diabetes.
Collapse
|
43
|
Ritze Y, Bárdos G, D’Haese JG, Ernst B, Thurnheer M, Schultes B, Bischoff SC. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PLoS One 2014; 9:e101702. [PMID: 25010715 PMCID: PMC4092057 DOI: 10.1371/journal.pone.0101702] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/10/2014] [Indexed: 01/30/2023] Open
Abstract
Objective Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. Methods Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. Results In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. Conclusions We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.
Collapse
Affiliation(s)
- Yvonne Ritze
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| | - Gyöngyi Bárdos
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jan G. D’Haese
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Ernst
- Interdisciplinary Obesity Center, Rorschach, Switzerland
| | | | - Bernd Schultes
- Interdisciplinary Obesity Center, Rorschach, Switzerland
| | - Stephan C. Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
44
|
Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells. Cell Tissue Res 2014; 357:63-9. [DOI: 10.1007/s00441-014-1886-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
|
45
|
Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br J Nutr 2014; 111 Suppl 1:S8-15. [DOI: 10.1017/s0007114513002286] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2–T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2–T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1–T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of l-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and l-amino acid sensing. The impact of exploiting T1R2–T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighted.
Collapse
|
46
|
Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2013; 25:657-70. [PMID: 24231662 DOI: 10.1681/asn.2013080905] [Citation(s) in RCA: 516] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gut harbors >100 trillion microbial cells, which influence the nutrition, metabolism, physiology, and immune function of the host. Here, we review the quantitative and qualitative changes in gut microbiota of patients with CKD that lead to disturbance of this symbiotic relationship, how this may contribute to the progression of CKD, and targeted interventions to re-establish symbiosis. Endotoxin derived from gut bacteria incites a powerful inflammatory response in the host organism. Furthermore, protein fermentation by gut microbiota generates myriad toxic metabolites, including p-cresol and indoxyl sulfate. Disruption of gut barrier function in CKD allows translocation of endotoxin and bacterial metabolites to the systemic circulation, which contributes to uremic toxicity, inflammation, progression of CKD, and associated cardiovascular disease. Several targeted interventions that aim to re-establish intestinal symbiosis, neutralize bacterial endotoxins, or adsorb gut-derived uremic toxins have been developed. Indeed, animal and human studies suggest that prebiotics and probiotics may have therapeutic roles in maintaining a metabolically-balanced gut microbiota and reducing progression of CKD and uremia-associated complications. We propose that further research should focus on using this highly efficient metabolic machinery to alleviate uremic symptoms.
Collapse
Affiliation(s)
- Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington DC
| | | |
Collapse
|
47
|
Shin HS, Ingram JR, McGill AT, Poppitt SD. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating? Physiol Behav 2013; 120:114-23. [PMID: 23911804 DOI: 10.1016/j.physbeh.2013.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/09/2013] [Accepted: 07/23/2013] [Indexed: 01/18/2023]
Abstract
The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake and suppress food intake has to date been little investigated, although both clearly have GI mediated effects. This review provides an overview of the mechanisms and mediators of activation of the ileal brake and assesses whether it may play an important role in appetite suppression.
Collapse
Affiliation(s)
- H S Shin
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
48
|
Wu Y, Aquino CJ, Cowan DJ, Anderson DL, Ambroso JL, Bishop MJ, Boros EE, Chen L, Cunningham A, Dobbins RL, Feldman PL, Harston LT, Kaldor IW, Klein R, Liang X, McIntyre MS, Merrill CL, Patterson KM, Prescott JS, Ray JS, Roller SG, Yao X, Young A, Yuen J, Collins JL. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J Med Chem 2013; 56:5094-114. [PMID: 23678871 DOI: 10.1021/jm400459m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apical sodium-dependent bile acid transporter (ASBT) transports bile salts from the lumen of the gastrointestinal (GI) tract to the liver via the portal vein. Multiple pharmaceutical companies have exploited the physiological link between ASBT and hepatic cholesterol metabolism, which led to the clinical investigation of ASBT inhibitors as lipid-lowering agents. While modest lipid effects were demonstrated, the potential utility of ASBT inhibitors for treatment of type 2 diabetes has been relatively unexplored. We initiated a lead optimization effort that focused on the identification of a potent, nonabsorbable ASBT inhibitor starting from the first-generation inhibitor 264W94 (1). Extensive SAR studies culminated in the discovery of GSK2330672 (56) as a highly potent, nonabsorbable ASBT inhibitor which lowers glucose in an animal model of type 2 diabetes and shows excellent developability properties for evaluating the potential therapeutic utility of a nonabsorbable ASBT inhibitor for treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yulin Wu
- GlaxoSmithKline Research & Development, Five Moore Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kaji I, Akiba Y, Kaunitz JD. Digestive physiology of the pig symposium: involvement of gut chemosensing in the regulation of mucosal barrier function and defense mechanisms. J Anim Sci 2013; 91:1957-62. [PMID: 23345558 DOI: 10.2527/jas.2012-5941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Meal ingestion is followed by release of numerous hormones from enteroendocrine cells interspersed among the epithelial cells lining the intestine. Recently, the de-orphanization of G protein-coupled receptor (GPCR)-type nutrient receptors, expressed on the apical membranes of enteroendocrine cells, has suggested a plausible mechanism whereby luminal nutrients trigger the release of gut hormones. Activation of nutrient receptors triggers intracellular signaling mechanisms that promote exocytosis of hormone-containing granules into the submucosal space. Hormones released by foregut enteroendocrine cells include the glucagon-like peptides (GLP) affecting glycemic control (GLP-1) and releasing pro-proliferative, hypertrophy-inducing growth factors (GLP-2). The foregut mucosa, being exposed to pulses of concentrated HCl, is protected by a system of defense mechanisms, which includes epithelial bicarbonate and mucus secretion and augmentation of mucosal blood flow. We have reported that luminal co-perfusion of AA with nucleotides in anesthetized rats releases GLP-2 into the portal vein, associated with increased bicarbonate and mucus secretion and mucosal blood flow. The GLP-2 increases bicarbonate secretion via release of vasoactive intestinal peptide (VIP) from myenteric nerves. Luminal bile acids also release gut hormones due to activation of the bile-acid receptor known as G Protein-Coupled Receptor (GPR) 131, G Protein Bile Acid Receptor (GPBAR) 1, or Takeda G Protein-Coupled Receptor (TGR) 5, also expressed on enteroendocrine cells. The GLP are metabolized by dipeptidyl peptidase IV (DPPIV), an enzyme of particular interest to pharmaceutical, because its inhibition increases plasma concentrations of GLP-1 to treat diabetes. We have also reported that DPPIV inhibition enhances the secretory effects of nutrient-evoked GLP-2. Understanding the release mechanism and the metabolic pathways of gut hormones is of potential utility to the formulation of feedstuff additives that, by increasing nutrient absorption due to increased mucosal mass, can increase yields.
Collapse
Affiliation(s)
- I Kaji
- Greater Los Angeles Veteran Affairs Healthcare System, WLAVA Medical Center
| | | | | |
Collapse
|
50
|
Brockman DA, Chen X, Gallaher DD. Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats. Nutr Metab (Lond) 2012; 9:100. [PMID: 23146593 PMCID: PMC3565887 DOI: 10.1186/1743-7075-9-100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022] Open
Abstract
Background Diets producing a high glycemic response result in exaggerated insulin secretion which induces hepatic lipogenesis, contributing to development of insulin resistance and fatty liver. Viscous dietary fibers blunt the postprandial rise in blood glucose, however their effect on type 2 diabetes and obesity are not entirely known. This study examined the effect of chronic consumption of the viscous, non-fermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), on glucose control, insulin resistance and liver lipids in an obese diabetic rat model. Methods Three groups of Zucker Diabetic Fatty (ZDF) rats were fed diets containing either 5% non-viscous cellulose (control), low viscosity HPMC (LV-HPMC) or high viscosity HPMC (HV- HPMC) for six weeks. Zucker lean littermates consuming cellulose served as a negative control. Markers of glucose control, including oral glucose tolerance test, glycated hemoglobin and urinary glucose, were measured as well as adiposity and the accumulation of liver lipids. Results The HPMC diets increased the viscosity of the small intestinal contents and reduced the postprandial rise in blood glucose. The food efficiency ratio was greater with HPMC feeding compared to the obese control and urinary excretion of glucose and ketone bodies was reduced. The two HPMC groups had lower glycated hemoglobin and kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Epididymal fat pad weight as percent of body weight was reduced in the HV-HPMC group compared to the obese control group. The HV-HPMC group also had lower concentrations of liver lipid and cholesterol and reduced liver weight. However, HV-HPMC feeding did not affect hepatic gene expression of SREBP-1c or FAS. Muscle concentration of acylcarnitines, a lipid intermediate in fatty acid β-oxidation, was not different between the HPMC groups and obese control, suggesting no change in muscle fatty acid oxidation by HPMC. Conclusions Consumption of the viscous non-fermentable fiber HPMC decreased diabetic wasting, improved glucose control and reduced insulin resistance and fatty liver in a model of obesity with diabetes.
Collapse
Affiliation(s)
- David A Brockman
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, 1334 Eckles Avenue, St, Paul, MN 55108-1038, USA.
| | | | | |
Collapse
|