1
|
Luo W, Tan Q, Li H, Ye T, Xiao T, Tian X, Wang W. Effects of Different Levels of Green Tea Powder on Performance, Antioxidant Activity, Egg Mass, Quality, and Cecal Microflora of Chickens. Animals (Basel) 2024; 14:3020. [PMID: 39457950 PMCID: PMC11505839 DOI: 10.3390/ani14203020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study was conducted to investigate the effects of different levels of Green Tea Powder on the performance, egg quality, serum immune and antioxidant indices, and cecal microflora of 300-day-old Chishui black-bone chickens during the peak laying period. A total of 360 Chishui black-bone chickens were selected as the experimental animals. They were randomly allocated into four groups: the control group (CON), trial group I (T1), trial group II (T2), and trial group III (T3), each group with six replicates and 15 hens in each replicate. The control group was fed a basal diet, and the experimental groups were fed a basal diet supplemented with 0.8%, 1.6%, and 2.4% Green Tea Powder, respectively. The accommodation period was 14 d, and the experimental period was 60 d. The statistical software SPSS was used to perform a one-way analysis of variance (ANOVA) on the experimental data, and Duncan's method was used to perform multiple comparisons among groups. The results showed the following: compared with those of the control group, the average daily gain of the laying hens significantly decreased in the 1.6% Green Tea Powder group (p < 0.05); adding Green Tea Powder significantly reduced the content of malondialdehyde in the serum (p < 0.05), and the addition of 0.8% tea leaves significantly increased the immunoglobulin M and immunoglobulin A contents (p < 0.05); the egg yolk weight, eggshell thickness, eggshell strength, and yolk color of the laying hens significantly decreased in the 1.6% Green Tea Powder group (p < 0.05), and the addition of Green Tea Powder at the level of 2.4% significantly increased the percentage of umami, essential, and total amino acids (p < 0.05); and the structure of intestinal microorganisms was improved, and the abundance of Bacteroidetes and Bacteroidaceae significantly increased, while the abundance of Firmicutes and Lachnospiraceae significantly decreased (p < 0.05).
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (W.L.); (Q.T.); (T.Y.); (T.X.); (X.T.); (W.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Weining County Animal Disease Prevention and Control Center, Bijie 553100, China
| | - Qisong Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (W.L.); (Q.T.); (T.Y.); (T.X.); (X.T.); (W.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (W.L.); (Q.T.); (T.Y.); (T.X.); (X.T.); (W.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Tao Ye
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (W.L.); (Q.T.); (T.Y.); (T.X.); (X.T.); (W.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Tao Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (W.L.); (Q.T.); (T.Y.); (T.X.); (X.T.); (W.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (W.L.); (Q.T.); (T.Y.); (T.X.); (X.T.); (W.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (W.L.); (Q.T.); (T.Y.); (T.X.); (X.T.); (W.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Kothari M, Kannan K, Sahadevan R, Retnakumar SV, Chauvin C, Bayry J, Sadhukhan S. Lipophilic derivatives of EGCG as potent α-amylase and α-glucosidase inhibitors ameliorating oxidative stress and inflammation. Bioorg Chem 2024; 153:107786. [PMID: 39244970 DOI: 10.1016/j.bioorg.2024.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Uncontrolled hyperglycemia leads to increased oxidative stress, chronic inflammation, and insulin resistance, rendering diabetes management harder to accomplish. To tackle these myriads of challenges, researchers strive to explore innovative multifaceted treatment strategies, including inhibiting carbohydrate hydrolases. Herein, we report alkyl-ether EGCG derivatives as potent α-amylase and α-glucosidase inhibitors that could simultaneously ameliorate oxidative stress and inflammation. 4″-C18 EGCG, the most promising compound, showed multifold improvement in glycaemic management compared to acarbose, with 230-fold greater inhibition (competitive) of α-glucosidase (IC50 0.81 µM) and 3-fold better inhibition of α-amylase (IC50 3.74 µM). All derivatives showed stronger antioxidant activity (IC50 6.16-15.76 µM) than vitamin C, while acarbose showed none. 4″-C18 EGCG also downregulated pro-inflammatory cytokines and showed no significant cytotoxicity up to 50 µM in primary human peripheral blood mononuclear cells (PBMC), non-cancerous cell line, 3T3-L1 and HEK 293. The in silico binding affinity analysis of 4″-C18 EGCG with α-amylase and α-glucosidase was found to exhibit a good extent of interaction as compared to acarbose. In comparison to EGCG, 4″-Cn EGCG derivatives were found to remain stable in the physiological conditions even after 24 h. Together, the reported molecules demonstrated multifaceted antidiabetic potential inhibiting carbohydrate hydrolases, reducing oxidative stress, and inflammation, which are known to aggravate diabetes.
Collapse
Affiliation(s)
- Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Karthika Kannan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Sruthi Vijaya Retnakumar
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| |
Collapse
|
3
|
Abbasi E, Hajhashemy Z, Askari G, Saneei P. Association of Herbal Tea and Follicle-Stimulating Hormone, Anthropometric Parameters, and Fasting Blood Glucose Levels Among Polycystic Ovarian Syndrome Women: A Systematic Review and Meta-Analysis of Clinical Trials. Clin Nutr Res 2024; 13:201-213. [PMID: 39165287 PMCID: PMC11333146 DOI: 10.7762/cnr.2024.13.3.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
This systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to test our hypothesis that herbal tea may improve anthropometric parameters, metabolic factors, and hormone levels in women with polycystic ovarian syndrome (PCOS). A literature search was conducted on Information Sciences Institute, Medline (PubMed), Scopus, Embase, and Google Scholar, up to March 2023 without applying language or date restrictions. RCTs that assigned herbal tea vs. placebo on PCOS women and evaluated changes in anthropometric measurements, metabolic indices, or hormonal profiles were included. Six RCTs with 235 PCOS women (119 in the intervention and 116 in the control group) were included. Meta-analysis showed that herbal tea consumption led to significant decreases in weight (weighted mean difference [WMD], -2.02 kg; 95% confidence interval [CI], -3.25, -0.80), body mass index (BMI) (WMD, -0.88 kg/m2; 95% CI, -1.47, -0.28) and fasting blood glucose (FBG) (WMD, -6.47 mg/dL; 95% CI, -8.49, -4.45), compared to the control group. Herbal tea supplementation has also significantly increased follicle-stimulating hormone (FSH) concentration (WMD, 0.56 IU/L; 95% CI, 0.17, 0.95). Meanwhile, the effect of herbal tea on the waist/hip ratio, hip circumference, waist circumference, body fat, fasting insulin, FBG/insulin ratio, luteinizing hormone, total testosterone, and dehydroepiandrosterone sulfate was not significant. Herbal tea might be a potential supplemental therapy to manage weight, BMI, FBG, and FSH in PCOS women. Further large randomized clinical trials are recommended to affirm these findings.
Collapse
Affiliation(s)
- Elahe Abbasi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Zahra Hajhashemy
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Parvane Saneei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
4
|
Martin LJ, Touaibia M. Prevention of Male Late-Onset Hypogonadism by Natural Polyphenolic Antioxidants. Nutrients 2024; 16:1815. [PMID: 38931170 PMCID: PMC11206339 DOI: 10.3390/nu16121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Androgen production primarily occurs in Leydig cells located in the interstitial compartment of the testis. In aging males, testosterone is crucial for maintaining muscle mass and strength, bone density, sexual function, metabolic health, energy levels, cognitive function, as well as overall well-being. As men age, testosterone production by Leydig cells of the testes begins to decline at a rate of approximately 1% per year starting from their 30s. This review highlights recent findings concerning the use of natural polyphenolics compounds, such as flavonoids, resveratrol, and phenolic acids, to enhance testosterone production, thereby preventing age-related degenerative conditions associated with testosterone insufficiency. Interestingly, most of the natural polyphenolic antioxidants having beneficial effects on testosterone production tend to enhance the expression of the steroidogenic acute regulatory protein (Star) gene in Leydig cells. The STAR protein facilitates the entry of the steroid precursor cholesterol inside mitochondria, a rate-limiting step for androgen biosynthesis. Natural polyphenolic compounds can also improve the activities of steroidogenic enzymes, hypothalamus-pituitary gland axis signaling, and testosterone bioavailability. Thus, many polyphenolic compounds such as luteolin, quercetin, resveratrol, ferulic acid phenethyl ester or gigantol may be promising in delaying the initiation of late-onset hypogonadism accompanying aging in males.
Collapse
Affiliation(s)
- Luc J. Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, NB E1A 3E9, Canada;
| |
Collapse
|
5
|
Almoraie NM, Shatwan IM. The Potential Effects of Dietary Antioxidants in Obesity: A Comprehensive Review of the Literature. Healthcare (Basel) 2024; 12:416. [PMID: 38391792 PMCID: PMC10887832 DOI: 10.3390/healthcare12040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Obesity has become a global health concern, with its prevalence steadily increasing in recent decades. It is associated with numerous health complications, including cardiovascular diseases, diabetes, and certain types of cancer. The aetiology of obesity is multifactorial, involving genetic, environmental, and lifestyle factors. In recent years, oxidative stress has emerged as a potential contributor to obesity and its related metabolic disorders. Dietary antioxidants, which can counteract oxidative stress, have gained significant attention for their potential role in preventing and managing obesity. This comprehensive review aims to explore the impact of dietary antioxidants on obesity and its associated metabolic dysregulations, discussing the underlying mechanisms and highlighting the potential therapeutic implications.
Collapse
Affiliation(s)
- Noha M Almoraie
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| | - Israa M Shatwan
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| |
Collapse
|
6
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Singh S, Shukla A, Sharma S. Overview of Natural Supplements for the Management of Diabetes and Obesity. Curr Diabetes Rev 2024; 20:e061123223235. [PMID: 37933216 DOI: 10.2174/0115733998262859231020071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023]
Abstract
Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Arpit Shukla
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Shiwangi Sharma
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| |
Collapse
|
8
|
Goudarzi MA, Sohrabi Z, Hashempur MH, Nosratabadi S, Namkhah Z, Clark CCT, Haghighat N. Does the Grape Products Intake has an Effect on Body Weight in Adults: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Drug Targets 2024; 25:121-134. [PMID: 38141198 DOI: 10.2174/0113894501272740231219072525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION There is a growing interest in the considerable benefits of grape products intake, as some studies have indicated that they may improve cardiometabolic risk factors. However, the widespread impact of grape products on the anthropometric indices is not fully resolved. METHOD The purpose of this systematic review and meta-analysis was to examine the effects of grape products intake on anthropometric indices in adults. Randomized controlled trials (RCT) examining the effects of grape products intake on anthropometric indices, published up to December 2021, were identified through PubMed, SCOPUS, and ISI Web of Science databases. 30 studies with 35 effect sizes, including 1284 participants (708 cases and 576 controls), were included and analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence interval (CI). RESULT The outcomes have revealed grape products intake to significantly decrease body weight (p = 0.001) and body mass index (p = 0.004) in obese participants, and also, a greater effect was observed when grape seed extract was used. CONCLUSION Our study suggests that grape products intake may help to decrease body weight in obese participants. Future large RCTs with longer duration and obese populations are needed to expand our findings.
Collapse
Affiliation(s)
| | - Zahra Sohrabi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 0098, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Nosratabadi
- Department of Nutrition, Electronic Health and Statistics Surveillance Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, U.K
| | - Neda Haghighat
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Vafaei S, Ciebiera M, Omran MM, Ghasroldasht MM, Yang Q, Leake T, Wolfe R, Ali M, Al-Hendy A. Evidence-Based Approach for Secondary Prevention of Uterine Fibroids (The ESCAPE Approach). Int J Mol Sci 2023; 24:15972. [PMID: 37958957 PMCID: PMC10648339 DOI: 10.3390/ijms242115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Uterine fibroids (UFs) are common tumors in women of reproductive age. It is imperative to comprehend UFs' associated risk factors to facilitate early detection and prevention. Simple relying on surgical/pharmacological treatment of advanced disease is not only highly expensive, but it also deprives patients of good quality of life (QOL). Unfortunately, even if the disease is discovered early, no medical intervention is traditionally initiated until the disease burden becomes high, and only then is surgical intervention performed. Furthermore, after myomectomy, the recurrence rate of UFs is extremely high with the need for additional surgeries and other interventions. This confused approach is invasive and extremely costly with an overall negative impact on women's health. Secondary prevention is the management of early disease to slow down its progression or even halt it completely. The current approach of watchful observation for early disease is considered a major missed opportunity in the literature. The aim of this article is to present an approach named the ESCAPE (Evidence-Based Approach for Secondary Prevention) of UF management. It comprises simple, inexpensive, and safe steps that can arrest the development of UFs, promote overall reproductive health, decrease the number of unnecessary surgeries, and save billions of health care systems' dollars worldwide.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszow, Poland
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Mohammad Mousaei Ghasroldasht
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Tanya Leake
- The White Dress Project, Atlanta, GA 30309, USA; (T.L.); (R.W.)
| | - Rochelle Wolfe
- The White Dress Project, Atlanta, GA 30309, USA; (T.L.); (R.W.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| |
Collapse
|
10
|
Xu Y, Jia X, Zhang W, Xie Q, Zhu M, Zhao Z, Hao J, Li H, Du J, Liu Y, Feng H, He J, Li H. The effects of Ascophyllum nodosum, Camellia sinensis-leaf extract, and their joint interventions on glycolipid and energy metabolism in obese mice. Front Nutr 2023; 10:1242157. [PMID: 37693249 PMCID: PMC10483828 DOI: 10.3389/fnut.2023.1242157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Obesity is often associated with glucolipid and/or energy metabolism disorders. Ascophyllum nodosum extract (seaweed extract, SE) and Camellia sinensis-leaf extract (tea extract, TE) have been reported to promote positive metabolic effects through different mechanisms. We investigated the effects of SE and TE on metabolic homeostasis in diet-induced obese mice and discussed their functional characteristics. Methods Male C57BL/6J mice fed with high-fat diets for 8 weeks were established as obese models and subsequently divided into different intervention groups, followed by SE, TE, and their joint interventions for 10 weeks. Body weight and food intake were monitored. Fasting glucose and oral glucose tolerance tests were interspersed during the experiment. After the intervention, the effects on obesity control were assessed based on body composition, liver pathology section, blood lipids and glucose, respiratory exchange ratio (RER), energy expenditure (EE1, EE2, and EE3), inflammatory factors, lipid anabolism enzymes, and gut flora of the obese mice. Results After continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower ~4.93 g, vs. HFD 38.02 g), peri-testicular fat masses (lower ~0.61 g, vs. HFD 1.92 g), and perirenal fat masses (lower ~0.21 g, vs. HFD mice 0.70 g). All interventions prevented diet-induced increases in plasma levels of glucose, adiponectin, leptin, and the inflammatory factors IL-1β and TNF-α. The RER was modified by the interventions, while the rhythm of the RER was not. Blood lipids (total cholesterol, triglycerides, and LDL) decreased and were associated with lower lipid anabolism enzymes. In addition, the SE and TE interventions altered the structure and abundance of specific flora. Different interventions inhibited the growth of different genera positively associated with obesity (Escherichia-Shigella, Helicobacter, etc.) and promoted the growth of Akkermansia and Bacteroides, thus affecting the chronic inflammatory state. Conclusion SE and TE both have synergistic effects on weight control and glucolipid metabolism regulation by improving insulin sensitivity and reducing lipid synthesis-related enzyme expression, whereas the combination of SE and TE (3:1) has a better effect on regulating energy metabolism and inhibiting chronic inflammation.
Collapse
Affiliation(s)
- Yuhan Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiaoling Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
- School of Public Health, Xiamen University, Xiamen, China
| | - Meizhen Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
- School of Public Health, Xiamen University, Xiamen, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hongwei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Churm R, Williams LM, Dunseath G, Prior SL, Bracken RM. The polyphenol epigallocatechin gallate lowers circulating catecholamine concentrations and alters lipid metabolism during graded exercise in man: a randomized cross-over study. Eur J Nutr 2023; 62:1517-1526. [PMID: 36695951 PMCID: PMC10030435 DOI: 10.1007/s00394-023-03092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE Physical exercise is shown to mitigate catecholamine metabolites; however, it is unknown if exercise-induced increases in sympatho-adrenal activity or catecholamine metabolites are influenced by ingestion of specific catechins found within green tea. This study explored the impact of epigallocatechin gallate (EGCG) ingestion on catecholamine metabolism during graded cycle exercise in humans. METHODS Eight males (22.4 ± 3.3 years, BMI:25.7 ± 2.4 kg.m2) performed a randomised, placebo-controlled, single-blind, cross-over trial after consumption (1450 mg) of either EGCG or placebo (PLAC) and performed graded cycling to volitional exhaustion. Venous bloods were taken at rest, 2 h post-ingestion and after every 3-min stage. Blood variables were analysed for catecholamines, catecholamine metanephrines and metabolic variables at rest, 2 h post-ingestion (POST-ING), peak rate of lipid oxidation (FATpeak), lactate threshold (LT) and peak rate of oxygen consumption (VO2peak). Data were analysed using SPSS (Version 26). RESULTS Resting catecholamine and metanephrines were similar between trials. Plasma adrenaline (AD) was lower in ECGC treatment group between trials at FATpeak (P < 0.05), LT (P < 0.001) and VO2peak (P < 0.01). Noradrenaline (NA) was lower under EGCG at POST (P < 0.05), FATpeak (P < 0.05), LT (P < 0.01) and VO2peak (P < 0.05) compared to PLAC. Metanephrines, glucose and lactate increased similarly with exercise intensity in both trials. Lipid oxidation rate was 32% lower in EGCG at FATpeak (EGCG 0.33 ± 0.14 vs. PLAC 0.49 ± 0.11 g.min-1, P < 0.05). Cycle time to exhaustion was similar (NS). CONCLUSION Acute EGCG supplementation reduced circulating catecholamines but not; metanephrine, glucose or lactates, response to graded exercise. Lower circulating catecholamines may explain a lower lipid oxidation rate.
Collapse
Affiliation(s)
- Rachel Churm
- Applied Sports Technology Exercise and Medicine Research Centre (A-STEM), College of Engineering, Faculty of Science and Engineering, Swansea University, Engineering East, Bay Campus, Swansea, SA1 8EN, UK.
- Diabetes Research Group, Swansea University, Singleton Park, Swansea, UK.
| | - Liam M Williams
- Applied Sports Technology Exercise and Medicine Research Centre (A-STEM), College of Engineering, Faculty of Science and Engineering, Swansea University, Engineering East, Bay Campus, Swansea, SA1 8EN, UK
| | - Gareth Dunseath
- Diabetes Research Group, Swansea University, Singleton Park, Swansea, UK
| | - Sarah L Prior
- Medical School, Swansea University, Grove Building, Swansea, UK
| | - Richard M Bracken
- Applied Sports Technology Exercise and Medicine Research Centre (A-STEM), College of Engineering, Faculty of Science and Engineering, Swansea University, Engineering East, Bay Campus, Swansea, SA1 8EN, UK
- Diabetes Research Group, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
12
|
Moran-Lev H, Cohen S, Zelber-Sagi S, Mazkeret Mayer E, Anafy A, Yerushalmy-Feler A, Lubetzky R. Effect of Coffee and Tea Consumption on Adolescent Weight Control: An Interventional Pilot Study. Child Obes 2023; 19:121-129. [PMID: 35639365 PMCID: PMC9986019 DOI: 10.1089/chi.2022.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background: Both catechin polyphenols and caffeine have been shown to have beneficial effects on weight control in the adult population. However, the influence of tea or coffee supplementation on body weight in adolescents has never been tested. The aim of the present study was to investigate the effect of tea and coffee consumption on body weight and body fat in adolescents with obesity. Methods: Randomized clinical trial comparing three weight-loss interventions composed of similar family-based counseling sessions on nutritional education with coffee (2 cups per day, total amount 160 mg caffeine), green tea (3 cups per day, total amount 252 mg catechin and 96 mg caffeine), or herbal tea (as placebo, 3 cups per day). Nutritional intake, BMI, and fat percentage, as measured by bioelectrical impedance, were compared between the groups at 3 and 6 months. Results: Forty-eight children were included in the final analysis: 18 in the coffee arm, 17 in the green tea arm, and 13 in the placebo arm. Nineteen (39.6%) children were males, with a median (interquartile range) age of 13 (11-14) years. There were no significant group differences in age, sex, and BMI (absolute number and percent of the 95th percentile) upon study entry. Comparison between the three interventions in total change in BMI from baseline revealed a significant advantage for coffee consumption compared with green tea and placebo (-9.2% change in BMI in the coffee group compared with -2.3% and 0.76% in the green tea and placebo group, respectively, p = 0.002). Conclusions: Dietary recommendations combined with coffee intake and, to a lesser extent, tea catechins may be associated with reduced weight and adiposity among adolescents. Clinical trial registration number: NCT05181176.
Collapse
Affiliation(s)
- Hadar Moran-Lev
- Department of Pediatrics, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Cohen
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shira Zelber-Sagi
- School of Public Health, University of Haifa, Haifa, Israel
- Department of Gastroenterology, Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Enbar Mazkeret Mayer
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Anafy
- Department of Pediatrics, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Yerushalmy-Feler
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Department of Pediatrics, Dana-Dwek Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Kisan A, Chhabra R. Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. J Cell Physiol 2023; 238:5-31. [PMID: 36326110 DOI: 10.1002/jcp.30907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The advent of high throughput techniques in the past decade has significantly advanced the field of epitranscriptomics. The internal chemical modification of the target RNA at a specific site is a basic feature of epitranscriptomics and is critical for its structural stability and functional property. More than 170 modifications at the transcriptomic level have been reported so far, among which m6A methylation is one of the more conserved internal RNA modifications, abundantly found in eukaryotic mRNAs and frequently involved in enhancing the target messenger RNA's (mRNA) stability and translation. m6A modification of mRNAs is essential for multiple physiological processes including stem cell differentiation, nervous system development and gametogenesis. Any aberration in the m6A modification can often result in a pathological condition. The deregulation of m6A methylation has already been described in inflammation, viral infection, cardiovascular diseases and cancer. The m6A modification is reversible in nature and is carried out by specialized m6A proteins including writers (m6A methyltransferases) that add methyl groups and erasers (m6A demethylases) that remove methyl groups selectively. The fate of m6A-modified mRNA is heavily reliant on the various m6A-binding proteins ("readers") which recognize and generate a functional signal from m6A-modified mRNA. In this review, we discuss the role of a family of reader proteins, "YT521-B homology domain containing family" (YTHDF) proteins, in human physiology and pathology. In addition, we critically evaluate the potential of YTHDF proteins as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Aju Kisan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
14
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
15
|
Prevention and Treatment of Obesity-Related Inflammatory Diseases by Edible and Medicinal Plants and Their Active Compounds. IMMUNO 2022. [DOI: 10.3390/immuno2040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity, defined by excessive fat mass and its associated low-grade chronic inflammation, leads to insulin resistance, diabetes, and metabolic dysfunctions. The immunomodulatory properties of natural agents have gained much interest in recent decades. Some of the plant-derived agents are known to be immunomodulators that can affect both innate and adaptive immunity, e.g., thymoquinone, curcumin, punicalagin, resveratrol, quercetin, and genistein. Natural immunomodulators may contribute to the treatment of a number of inflammatory diseases, as they have significant efficacy and safety profiles. The immunomodulatory effects of traditional Greco-Arab and Islamic diets and medicinal plants are well acknowledged in abundant in vitro studies as well as in animal studies and clinical trials. This review highlights the role of Greco-Arab and Islamic diets and medicinal plants in the management of inflammation associated with obesity. Although previously published review articles address the effects of medicinal plants and phytochemicals on obesity-related inflammation, there is no systematic review that emphasizes clinical trials of the clinical significance of these plants and phytochemicals. Given this limitation, the objective of this comprehensive review is to critically evaluate the potential of the most used herbs in the management of obesity-related inflammation based on clinical trials.
Collapse
|
16
|
Mohamadizadeh E, Arabi MS, Hojati V, Vaezi G, Hosseini SM. Comparison of antithyroid effects and hepatic complications of methimazole with catechin and its nanoencapsulation form in adult male rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:591-598. [PMID: 35918303 DOI: 10.1515/jcim-2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Methimazole is an antithyroid drug and is used clinically in hyperthyroidism. Liver dysfunction is one of the side effects of methimazole. Catechins are natural flavonoids and have antioxidant, antithyroid, and liver protection effects. Despite the wide range of biological properties of catechins, their effective use is limited due to poor water solubility, low stability, and low bioavailability. Catechin niosomal nanoencapsulation improves the properties of catechin and increases its antioxidant activities. METHODS Niosomal vesicles were synthesized by the Thin Film Hydration method and their physicochemical characteristics, morphology, and percentage of trapped catechin in them were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometry, respectively. In this study, 32 adult male rats were divided into 4 groups: control, 50 mg/kg methimazole, 100 mg/kg catechin, and 100 mg/kg nanocapsule niosomal form of catechin. The drugs were administered orally and the duration of treatment was 8 weeks. Then, the serum concentration of thyroid hormones and thyroid stimulating hormone (TSH) by enzyme-linked immunosorbent assay (ELISA) method, and serum liver function tests were performed using an autoanalyzer. The activities of hepatic oxidative enzymes were measured spectrophotometrically. RESULTS Our study showed that the percentage of catechin encapsulation in the niosome was calculated to be 51%. A significant difference was observed in the catechin and encapsulated catechin treatment groups compared to the methimazole group (p <0.0001). In all three treatment groups of methimazole, catechin, and niosomal nanocapsule catechin, serum levels of TT3, TT4, FT3, FT4, body weight and daily consumption of water and food were significantly reduced compared to the control group (p <0.0001). CONCLUSIONS The antithyroid effects of catechin and its encapsulated form were comparable to methimazole. Also, the encapsulation improved the hepatoprotective effects of catechin.
Collapse
Affiliation(s)
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Seyed Mehran Hosseini
- Department of Physiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
- Neuroscience Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| |
Collapse
|
17
|
Chen CP, Su TC, Yang MJ, Chen WT, Siao AC, Huang LR, Lin YY, Kuo YC, Chung JF, Cheng CF, Ku HC, Kao YH. Green tea epigallocatechin gallate suppresses 3T3-L1 cell growth via microRNA-143/MAPK7 pathways. Exp Biol Med (Maywood) 2022; 247:1670-1679. [PMID: 35894140 PMCID: PMC9597208 DOI: 10.1177/15353702221108925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Green tea epigallocatechin gallate (EGCG) and microRNA (miRNA) molecules modulate obesity. Nevertheless, it is still unknown whether EGCG modulates fat cell growth via miRNA-related signaling. In this study, white preadipocytes were used to examine whether the antimitogenic effect of EGCG on fat cells is regulated by the miR-143/MAPK7 pathway. We showed that EGCG upregulated the levels of miR-143, but not miR-155, in 3T3-L1 preadipocytes. Moreover, EGCG downregulated MAPK7 mRNA and protein levels time- and dose-dependently. MAPK7 expression increased during 3T3-L1 cell proliferation. miR-143 overexpression in the absence of EGCG mimicked the effects of EGCG to suppress preadipocyte growth and MAPK7 expression, whereas knockdown of miR-143 antagonized the EGCG-altered levels of miR-143, MAPK7, and pERK1/2 and reversed the EGCG-inhibited cell growth. These findings suggest that EGCG inhibits 3T3-L1 cell growth via miR-143/MAPK7 pathway.
Collapse
Affiliation(s)
- Chia-Pei Chen
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - Tsung-Chen Su
- Tea Research and Extension Station,
Council of Agriculture, Taoyuan 326
| | - Meei-Ju Yang
- Tea Research and Extension Station,
Council of Agriculture, Taoyuan 326
| | - Wen-Ting Chen
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - An-Ci Siao
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - Ling-Ru Huang
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - Yen-Yue Lin
- Department of Life Sciences, National
Central University, Taoyuan 320,Department of Emergency Medicine,
Taoyuan Armed Forces General Hospital, Taoyuan 325,Department of Emergency Medicine,
Tri-Service General Hospital, National Defense Medical Center, Taipei 114
| | - Yow-Chii Kuo
- Department of Gastroenterology,
Landseed Hospital, Taoyuan 324
| | - Jia-Fang Chung
- Department of Pediatrics, Taipei Tzu
Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu
Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142,Institute of Biomedical Sciences,
Academia Sinica, Taipei 11529,Department of Pediatrics, Tzu Chi
University, Hualien 97004
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu
Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142
| | - Yung-Hsi Kao
- Department of Life Sciences, National
Central University, Taoyuan 320,Yung-Hsi Kao.
| |
Collapse
|
18
|
Effect of Green Tea on Weight Gain and Semen Quality of Rabbit Males. Vet Sci 2022; 9:vetsci9070321. [PMID: 35878338 PMCID: PMC9322994 DOI: 10.3390/vetsci9070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
The goal of the current study was to evaluate the action of the green tea plant (Camellia sinensis, L) on male rabbit reproduction and some non-reproductive indexes. Male rabbits were fed either a standard diet (control group) or a diet enriched with green tea powder (experimental groups; E): 5 g (E1) or 20 g (E2) per 100 kg of the milled complete feed mixture. Weight gain, sperm concentration, total and progressive motility, as well as haematological, and biochemical parameters and changes in testicular tissue histomorphology were evaluated. Feeding with green tea, at both tested concentrations, decreased weight gain per week and the total average weight gain compared to the control group (p < 0.05). Furthermore, green tea decreased sperm concentration, motility and progressive motility in the group fed with a lower dose (5 g) of green tea powder (p < 0.05), whilst a higher dose (20 g) was neutral. Some haematological and biochemical indexes, like medium-size cell count (MID), mean corpuscular haemoglobin concentration (MCHC), platelet percentage (PCT), levels of phosphorus (P) and total proteins (TP) were decreased in one or both experimental groups (p < 0.05), whilst the triglyceride level (TG) was increased in the E2 group (p < 0.05). The thicknesses of the testicular seminiferous tubules and epithelial layer were not affected by any concentration of green tea powder (p > 0.05). These observations suggest that green tea in the diet may have an adverse effect on rabbit growth and sperm quality, but their effect may be potentially dose-dependent.
Collapse
|
19
|
Gu Q, Wang X, Xie L, Yao X, Qian L, Yu Z, Shen X. Green tea catechin EGCG could prevent obesity-related precocious puberty through NKB/NK3R signaling pathway. J Nutr Biochem 2022; 108:109085. [PMID: 35691596 DOI: 10.1016/j.jnutbio.2022.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to explore the potential regulatory pathways of (-)-epigallocatechin-3-gallate (EGCG) in preventing obesity-related precocious puberty. A retrospective analysis on the impact of EGCG on puberty onset in obese girls was conducted on plasma samples collected from a human randomized controlled trial. In the trial, participants consumed EGCG capsules for 12 weeks. In the animal experiment, rats were divided into four groups: normal diet control (NC) group, high-fat diet (HFD) group, NC+EGCG group, and HFD+EGCG group. Blood samples were collected on postnatal days 27, 33, and 36 to detect sexual development indicators. The hypothalamic expressions of kisspeptin/Kiss1R and neurokinin B (NKB)/NK3R signaling were measured by RT-qPCR and Western blot assay. The ovary NKB protein expression was assessed by immunohistochemical assays. Serum NKB level in the EGCG group was lower than the placebo group by 0.599 ng/mL [β=-0.599, 95% CI: (-1.005, -0.193)], at the end of intervention and after adjusting for confounders (clinical study). In the animal experiment, EGCG intervention could significantly delay the vaginal opening (VO) time of rats fed with HFD. On day 33, EGCG intervention could significantly reduce serum NKB, luteinizing hormone (LH) levels, ovarian NKB protein expression, and endometrial thickness of HFD-fed rats, while EGCG intervention could remarkably increase mRNA and protein expression of NKB/NK3R. EGCG could prevent obesity-related precocious puberty through NKB/NK3R signaling pathway, which may provide a novel insight into the role of EGCG in preventing precocious puberty in obese girls.
Collapse
Affiliation(s)
- Qiuyun Gu
- Department of Nutrition, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodi Wang
- Department of Nutrition, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyao Xie
- Department of Nutrition, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Yao
- Department of Nutrition, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Qian
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiping Yu
- Department of Nutrition and Dietetics, Brooks College of Health, University of North Florida, Jacksonville, Florida, USA
| | - Xiuhua Shen
- Department of Nutrition, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
21
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
22
|
Singh R, Dhiman M, Saklani A, Immanuel Selvaraj C, Kate AS. Isolation and characterization of a novel flavanone glycoside from an endemic plant Haplanthodes neilgherryensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:96-101. [PMID: 33555214 DOI: 10.1080/10286020.2021.1880394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The chemical characterization study of an endemic plant, Haplanthodes neilgherryensisis (Wight) R.B. Majumdar from Western Ghats of India, resulted in to the isolation of a new flavanone glycoside, 5-hydroxy-7-methoxy-8-O-β-D-glucopyranosyl-2S-flavanone (1), along with 3 known flavonoids, 7-O-methyl dihydrowogonin (2), 7-O-methyl wogonin (3), andrographidine C (4). The structure of 1 was elucidated by using 1 D and 2 D NMR and HRMS experimental data, while for the known compounds, 1H NMR and mass spectrometry data were compared with the reported literature. Compound 1 was tested in vitro to check the improvement in uptake of glucose by the L6 rat skeletal muscle tissues and the observed EC50 value was 5.8 µM, while rosiglitazone showed EC50 of 2.7 µM.
Collapse
Affiliation(s)
- Ruchi Singh
- Natural Products-Botany, Piramal Enterprises Ltd, Mumbai 400070, India
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore 632014, India
| | - Mini Dhiman
- Natural Products-Bioactivity Lab, Piramal Enterprises Ltd, Mumbai 400070, India
| | - Arvind Saklani
- Natural Products-Botany, Piramal Enterprises Ltd, Mumbai 400070, India
| | - C Immanuel Selvaraj
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore 632014, India
| | - Abhijeet S Kate
- Natural Products-Bioactivity Lab, Piramal Enterprises Ltd, Mumbai 400070, India
- National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
23
|
Ree J, Kim JI, Lee CW, Lee J, Kim HJ, Kim SC, Sohng JK, Park YI. Quinizarin suppresses the differentiation of adipocytes and lipogenesis in vitro and in vivo via downregulation of C/EBP-beta/SREBP pathway. Life Sci 2021; 287:120131. [PMID: 34767806 DOI: 10.1016/j.lfs.2021.120131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022]
Abstract
AIMS Potential anti-obesity effects of quinizarin, a plant anthraquinone, were investigated using 3 T3-L1 preadipocyte cells and high-fat diet (HD)-induced obese mice. MAIN METHOD Cell viability was determined using the MTT assay. Triglyceride (TG) and lipid accumulation were determined using a TG assay kit and Oil Red O staining, respectively. Adipogenic, lipogenic, and lipolytic gene and protein expression was measured by RT-PCR or Western blot. Serum biochemical indices, including cholesterol and blood glucose, in HD-fed obese mice were determined using corresponding assay kits. Histological analysis was performed with haematoxylin and eosin (H&E) staining. RESULTS Quinizarin (0-10 μM) significantly reduced intracellular TG and lipid droplets during the differentiation of preadipocytes. Quinizarin significantly suppressed the expression of adipocyte differentiation marker proteins, such as CCAAT/enhancer-binding protein β (C/EBP-β), C/EBP-α, PPAR-γ, and aP2, and lipogenic marker proteins, including SREBP1c, SREBP2, fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 (ACC1), reduced ACC2 expression and increased carnitine palmitoyltransferase 1 (CPT1) expression. Oral administration of quinizarin (15-30 mg/kg/day) to HD-fed mice for 6 weeks reduced the body weight gain and size of liver adipocytes and epididymal fat tissues, with significant reductions in liver TG and serum total cholesterol, blood glucose, LDL, and HDL levels. SIGNIFICANCE The results of this study indicated that quinizarin exerts anti-obesity effects by inhibiting both adipogenesis and lipogenesis and stimulating lipolysis in vitro and in vivo mainly by downregulating the SREBP signalling pathway; thus, it might be a potent candidate as a health-beneficial food or therapeutic agent to prevent or treat obesity.
Collapse
Affiliation(s)
- Jin Ree
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jun Il Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Chang Won Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Hyeon Jeong Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Seong Cheol Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam 31460, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
24
|
Nie T, Cooper GJS. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front Pharmacol 2021; 12:798329. [PMID: 34970150 PMCID: PMC8712966 DOI: 10.3389/fphar.2021.798329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenolic compounds are thought to show considerable promise for the treatment of various metabolic disorders, including type 2 diabetes mellitus (T2DM). This review addresses evidence from in vitro, in vivo, and clinical studies for the antidiabetic effects of certain polyphenolic compounds. We focus on the role of cytotoxic human amylin (hA) aggregates in the pathogenesis of T2DM, and how polyphenols can ameliorate this process by suppressing or modifying their formation. Small, soluble amylin oligomers elicit cytotoxicity in pancreatic islet β-cells and may thus cause β-cell disruption in T2DM. Amylin oligomers may also contribute to oxidative stress and inflammation that lead to the triggering of β-cell apoptosis. Polyphenols may exert antidiabetic effects via their ability to inhibit hA aggregation, and to modulate oxidative stress, inflammation, and other pathways that are β-cell-protective or insulin-sensitizing. There is evidence that their ability to inhibit and destabilize self-assembly by hA requires aromatic molecular structures that bind to misfolding monomers or oligomers, coupled with adjacent hydroxyl groups present on single phenyl rings. Thus, these multifunctional compounds have the potential to be effective against the pleiotropic mechanisms of T2DM. However, substantial further research will be required before it can be determined whether a polyphenol-based molecular entity can be used as a therapeutic for type 2 diabetes.
Collapse
Affiliation(s)
- Tina Nie
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, Faculty of Biology Medicine & Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
25
|
Zheng C, Yu LX, Jia HY, Cui SD, Tian FG, Fan ZM, Geng CZ, Cao XC, Yang ZL, Wang X, Liang H, Wang S, Jiang HC, Duan XN, Wang HB, Li GL, Wang QT, Zhang JG, Jin F, Tang JH, Li L, Zhu SG, Zuo WS, Wang F, Zhou F, Xiang YJ, Guo MM, Wang YJ, Huang SY, Liu LY, Yu ZG. Relationship Between Lifestyle Habits and Health-Related Quality of Life of Recently Diagnosed Breast Cancer Patients: A Comparison Between Younger and Older Women in China. Front Public Health 2021; 9:767151. [PMID: 34976926 PMCID: PMC8714764 DOI: 10.3389/fpubh.2021.767151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to evaluate the relationship between lifestyle habits and health-related quality of life (HRQoL) among different ages who were initially diagnosed with breast cancer (within the first 2 weeks) and to determine the contribution of lifestyle habits factors on HRQoL. Methods: Patients with breast cancer were recruited from 22 hospitals in 11 provinces or municipalities in northern and eastern China. The Functional Assessment of Cancer Therapy-Breast Cancer (FACT-B) was used to measure HRQoL. Chi-square test, ANOVA, and multivariable generalized linear models were conducted to identify the differences in HRQoL between two age groups (age <50 years and ≥50 years) and to evaluate the contribution of lifestyle habits factors on HRQoL of patients with breast cancer. Results: About 1,199 eligible patients with breast cancer were used for analysis. Younger women (aged <50 years) appeared to show lower scores than older women (aged ≥50 years) in HRQoL subscales, including emotional well-being (p = 0.003), functional well-being (p = 0.006), breast cancer subscale (p = 0.038), and FACT-B Total scores (p = 0.028). Tea and alcohol consumption and being very satisfied with sleep and current life were the strongest predictors of higher HRQoL in younger group. Meanwhile, no coffee consumption, frequent participation in physical activities, high sleep satisfaction, and current life satisfaction were the key predictors of higher HRQoL in older women with breast cancer. Conclusion: The relationship of the nine lifestyle habit items with HRQoL differed among younger and older women. The associated variable of low HRQoL can help clinicians take intervention early in order to improve the prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Li-Xiang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Hong-Ying Jia
- Center of Evidence-Based Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shu-De Cui
- Department of Breast Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Fu-Guo Tian
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Zhi-Min Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Cui-Zhi Geng
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu-Chen Cao
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhen-Lin Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiang Wang
- Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liang
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Shu Wang
- Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Hong-Chuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital, Beijing, China
| | - Xue-Ning Duan
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Hai-Bo Wang
- Breast Center, Qingdao University Affiliated Hospital, Qingdao, China
| | - Guo-Lou Li
- Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Qi-Tang Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Qingdao Medical College, Qingdao Central Hospital, Qingdao, China
| | - Jian-Guo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Liang Li
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, China
| | - Shi-Guang Zhu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Wen-Shu Zuo
- Breast Cancer Center, Shandong Cancer Hospital, Jinan, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Yu-Juan Xiang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Ming-Ming Guo
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Yong-Jiu Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Shu-Ya Huang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Li-Yuan Liu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
- *Correspondence: Li-Yuan Liu ; orcid.org/0000-0002-9862-7471
| | - Zhi-Gang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| |
Collapse
|
26
|
Haslan MA, Samsulrizal N, Hashim N, Zin NSNM, Shirazi FH, Goh YM. Ficus deltoidea ameliorates biochemical, hormonal, and histomorphometric changes in letrozole-induced polycystic ovarian syndrome rats. BMC Complement Med Ther 2021; 21:291. [PMID: 34844580 PMCID: PMC8628419 DOI: 10.1186/s12906-021-03452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/24/2021] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Insulin resistance and hormonal imbalances are key features in the pathophysiology of polycystic ovarian syndrome (PCOS). We have previously shown that Ficus deltoidea var. deltoidea Jack (Moraceae) can improve insulin sensitivity and hormonal profile in PCOS female rats. However, biological characteristics underpinning the therapeutic effects of F. deltoidea for treating PCOS remain to be clarified. This study aims to investigate the biochemical, hormonal, and histomorphometric changes in letrozole (LTZ)-induced PCOS female rats following treatment with F. deltoidea. METHODS PCOS was induced in rats except for normal control by administering LTZ at 1 mg/kg/day for 21 days. Methanolic extract of F. deltoidea leaf was then orally administered to the PCOS rats at the dose of 250, 500, or 1000 mg/kg/day, respectively for 15 consecutive days. Lipid profile was measured enzymatically in serum. The circulating concentrations of reproductive hormone and antioxidant enzymes were determined by ELISA assays. Ovarian and uterus histomorphometric changes were further observed by hematoxylin and eosin (H&E) staining. RESULTS The results showed that treatment with F. deltoidea at the dose of 500 and 1000 mg/kg/day reduced insulin resistance, obesity indices, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL), malondialdehyde (MDA), testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) to near-normal levels in PCOS rats. The levels of high-density lipoprotein cholesterol (HDL), estrogen, and superoxide dismutase (SOD) are also similar to those observed in normal control rats. Histomorphometric measurements confirmed that F. deltoidea increased the corpus luteum number and the endometrial thickness. CONCLUSIONS F. deltoidea can reverse PCOS symptoms in female rats by improving insulin sensitivity, antioxidant activities, hormonal imbalance, and histological changes. These findings suggest the potential use of F. deltoidea as an adjuvant agent in the treatment program of PCOS.
Collapse
Affiliation(s)
- Muhammad Aliff Haslan
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - Nurdiana Samsulrizal
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - Nooraain Hashim
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | | | - Farshad H. Shirazi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
27
|
Zhao L, Sun QY, Ge ZJ. Potential role of tea extract in oocyte development. Food Funct 2021; 12:10311-10323. [PMID: 34610081 DOI: 10.1039/d1fo01725j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.
Collapse
Affiliation(s)
- Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China. .,Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
| |
Collapse
|
28
|
Maleki V, Taheri E, Varshosaz P, Tabrizi FPF, Moludi J, Jafari-Vayghan H, Shadnoush M, Jabbari SHY, Seifoleslami M, Alizadeh M. A comprehensive insight into effects of green tea extract in polycystic ovary syndrome: a systematic review. Reprod Biol Endocrinol 2021; 19:147. [PMID: 34551795 PMCID: PMC8459558 DOI: 10.1186/s12958-021-00831-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), as the most common endocrine disorder in reproductive-aged women, is characterized by oxidative stress and ovarian tissue inflammation. Green tea extract (GTE) potentially possesses therapeutic effects for PCOS because of the antioxidant and anti-inflammatory compounds. This systematic review evaluates the potential roles of GTE on metabolic variables, hormone levels, and ovarian function in PCOS. METHODS A systematic review was conducted of published studies reporting the effects of GTE on PCOS. Several major databases, including PubMed, SCOPUS, and Google Scholar, were searched up from inception to April 2021. Clinical trials and animal studies that assessed the effects of GTE on PCOS were eligible for inclusion. RESULTS Of 314 articles found in the search, four human studies and four animal studies were included. All studies in humans showed the effects of GTE on weight loss. GTE's effect on decreasing testosterone levels in humans and LH levels in animals were also reported. In addition, increases in FSH and progesterone levels in animal models were observed. Although GTE improved fasting blood sugar and insulin levels, the effect of GTE on inflammatory parameters, such as TNF-alpha and IL-6 and antioxidant status, was limited to animal studies. CONCLUSION Therefore, this review suggests that GTE could be considered a potential agent to attenuate PCOS complications mainly due to its effect on weight loss and glycemic levels. However, more studies are needed to formulate conclusions about the effects and mechanisms of GTE in PCOS.
Collapse
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Cancer Research Center, Milad General Hospital, Tehran, Iran.
- Gynecology Department, Khanevade Hospital, AJA University of medical science, Tehran, Iran.
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ehsaneh Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Varshosaz
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | | | - Jalal Moludi
- Department of Nutrition, Faculty of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehri Seifoleslami
- Gynecology Department, Khanevade Hospital, AJA University of medical science, Tehran, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Svoradová A, Baláži A, Chrenek P. Effect of selected natural and synthetic substances on rabbit reproduction-A mini review. J Anim Physiol Anim Nutr (Berl) 2021; 106:622-629. [PMID: 34542913 DOI: 10.1111/jpn.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Numerous natural and synthetic substances have effects on reproduction through several mechanisms. This review aims to summarize the impact of green tea (GT), yucca schidigera (YS) extract, curcuma longa (CL), adenosine 3',5'-cyclic monophosphate (cAMP) and isobutyl-1-methyl-xanthine (IBMX) stimulators on rabbit reproduction performance. To obtain a comprehensive overview of this topic, the keywords "reproduction," "substances," "spermatogenesis," "embryogenesis,"hormonal profil", "green tea", "yucca schidigera" were searched in such databases as WOS and PubMed to obtain relevant information. Spermatozoa profile was positively effected by the GT and YS, however, cAMP inhibitors stimulated spermatozoa motility resulted in positive or negative effects depending on the doses. Similarly, embryogenesis and hormonal profile were positively influenced by the GT, YS, cAMP and IBMX in a proper administration dose. Further research is needed to improve current knowledge about these substances to identify potential effects on the other reproduction parameters. Furthermore, future studies should combine GT, YS and CL with different plant extracts to determine their effects on spermatozoa status, embryogenesis as well as hormonal profile as key outcomes. This review summarizes current knowledge about effect of natural and synthetic substances on rabbit reproduction.
Collapse
Affiliation(s)
- Andrea Svoradová
- National Agricultural and Food Centre, Research Institute for Animal Production Nitra, Nitra, Slovakia.,Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrej Baláži
- National Agricultural and Food Centre, Research Institute for Animal Production Nitra, Nitra, Slovakia
| | - Peter Chrenek
- National Agricultural and Food Centre, Research Institute for Animal Production Nitra, Nitra, Slovakia.,Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
30
|
Lua PL, Roslim NA, Ahmad A, Mansor M, Aung MMT, Hamzah F. Complementary and Alternative Therapies for Weight Loss: A Narrative Review. J Evid Based Integr Med 2021; 26:2515690X211043738. [PMID: 34496677 PMCID: PMC8436299 DOI: 10.1177/2515690x211043738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Despite various strategies, overweight and obesity problems are still increasingly prevalent worldwide with serious health outcomes. Consequently, the continuous demand for more effective, safe and acceptable therapies for reducing body weight is also escalating—including complementary and alternative therapies (CATs). The aim of this review is to provide a summary of the most commonly- and recently-used CATs, with evaluation of their safety and efficacy for weight loss. Electronic scientific databases such as Scopus, PubMed and EBSCO Host were explored for articles that reported CATs for overweight and obesity treatment from 2015 to December 2019. Only systematic reviews, meta-analysis and randomized controlled trials (RCTs) published in English were included. Studies whereby CATs were not utilized for reducing body weight were excluded. Eight systematic reviews and meta-analyses and 11 additional RCTs with 765 participants (50.2% overweight and 49.8% obese) related to hypnotherapy, acupuncture and dietary supplements met the inclusion criteria. Their results suggested that spirulina, chitosan, probiotic, EPA + DHA, vitamin D, fiber, and herbal extract supplementation may all provide small reductions in body weight (ranging from 1-10 kg). Interestingly, hypnotherapy and acupuncture reported significantly greater reduction in body weight compared with placebo (p < 0.001 and p < 0.0001, respectively). Nonetheless, the evidence is still relatively limited and not encouraging to provide a definitive conclusion due to the methodological shortcomings and the presence of adverse events in chitosan and fiber supplementation. Hence, studies of this nature need to be further replicated and improved to corroborate the efficacy and safety of the CATs to combat weight issues.
Collapse
Affiliation(s)
- Pei Lin Lua
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
| | - Nurul Afiedia Roslim
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
| | - Aryati Ahmad
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
| | - Mardiana Mansor
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
| | - Myat Moe Thwe Aung
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
| | - Farrahdilla Hamzah
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
| |
Collapse
|
31
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
32
|
Mao Q, Li B, Meng J, Gan R, Xu X, Gu Y, Wang X, Li H. Effects of several tea extracts on nonalcoholic fatty liver disease in mice fed with a high-fat diet. Food Sci Nutr 2021; 9:2954-2967. [PMID: 34136163 PMCID: PMC8194756 DOI: 10.1002/fsn3.2255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered as a severe threat to human health. It has been reported that tea has abundant bioactive compounds and beneficial effects. In our study, the effects of 12 tea extracts on NAFLD were assessed and compared at the dose of 200 mg/kg body weight in mice fed with a high-fat diet (HFD) for 15 weeks. Enshi Yulu Tea, Fenghuang Narcissus Tea, and Yihong Tea showed strong effects in suppressing the accumulation of epididymal and perirenal adipose tissue as well as the increases of body weight and liver weight. The histopathological analysis revealed that hepatic steatosis and adipocyte hypertrophy induced by a HFD could be ameliorated by tea supplementation. In addition, Enshi Yulu Tea and Qing Brick Tea exerted more remarkable functions on decreasing the level of serum triglyceride and preventing hepatic fat accumulation, respectively. Furthermore, Fenghuang Narcissus Tea, Enshi Yulu Tea, and Qing Brick Tea could reverse the abnormal change in the levels of glutathione and superoxide dismutase. Moreover, 13 phytoconstituents were detected and quantified in these teas with high-performance liquid chromatography (HPLC) method. The correlation analysis demonstrated that gallic acid might decrease MDA level, and the reduction of liver weight might be attributed to ellagic acid. However, it should be paid attention to some teas that showed hepatotoxicity with elevated levels of aspartate transaminase and alanine aminotransferase. Several teas showed strong effects in the prevention of NAFLD, which could be developed into functional foods against NAFLD.
Collapse
Affiliation(s)
- Qian‐Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Bang‐Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Jin‐Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Ren‐You Gan
- Research Center for Plants and Human HealthInstitute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs)Sichuan Engineering & Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduChina
| | - Xiao‐Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Ying‐Ying Gu
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiao‐Hui Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Hua‐Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and HealthDepartment of NutritionSchool of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
33
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Azizi A, Mumin NH, Shafqat N. Phytochemicals With Anti 5-alpha-reductase Activity: A Prospective For Prostate Cancer Treatment. F1000Res 2021; 10:221. [PMID: 34316358 PMCID: PMC8276191 DOI: 10.12688/f1000research.51066.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
Prostate cancer (CaP) is one of the leading causes of death in men worldwide. Much attention has been given on its prevention and treatment strategies, including targeting the regulation of 5-alpha-Reductase (5αR) enzyme activity, aimed to limit the progression of CaP by inhibiting the conversion of potent androgen dihydrotestosterone from testosterone that is thought to play a role in pathogenesis of CaP, by using the 5-alpha-Reductase inhibitors (5αRis) such as finasteride and dutasteride. However, 5αRis are reported to exhibit numerous adverse side effects, for instance erectile dysfunction, ejaculatory dysfunction and loss of libido. This has led to a surge of interest on plant-derived alternatives that might offer favourable side effects and less toxic profiles. Phytochemicals from plants are shown to exhibit numerous medicinal properties in various studies targeting many major illnesses including CaP. Therefore, in this review, we aim to discuss the use of phytochemicals namely phytosterols, polyphenols and fatty acids, found in various plants with proven anti-CaP properties, as an alternative herbal CaP medicines as well as to outline their inhibitory activities on 5αRs isozymes based on their structural similarities with current 5αRis as part of CaP treatment approaches.
Collapse
Affiliation(s)
- Aziemah Azizi
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei
| | - Nuramalina H Mumin
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei
| | - Naeem Shafqat
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei
| |
Collapse
|
35
|
Huang SC, Kao YH, Shih SF, Tsai MC, Lin CS, Chen LW, Chuang YP, Tsui PF, Ho LJ, Lai JH, Chen SJ. Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells. Biochem Biophys Res Commun 2021; 550:70-76. [PMID: 33689882 DOI: 10.1016/j.bbrc.2021.02.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023]
Abstract
T cells secrete several inflammatory cytokines that play a critical role in the progression of atherosclerosis. Although green tea epigallocatechin-3-gallate (EGCG) exerts anti-inflammatory and anti-atherosclerotic effects in animals, few studies have identified the mechanism underlying these effects in human primary T cells. This study investigated the pathway involved in EGCG modulation of cytokine secretion in activated human primary T cells. We pre-treated human primary T cells with EGCG (0.1, 1, 5, 10, and 20 μM) for 4 h and incubated them with or without phorbol 12-myristate 13-acetate and ionomycin (P/I) for 20 h. The cytokine production, activator protein (AP)-1 binding activity, and level of mitogen-activated protein kinase (MAPK) were assessed using enzyme-linked immunosorbent assay, electrophoretic mobility shift assay, and Western blotting, respectively. At 10 and 20 μM, EGCG decreased interleukin (IL)-2 levels by 26.0% and 38.8%, IL-4 levels by 41.5% and 55.9%, INF-γ levels by 31.3% and 34.7%, and tumor-necrosis factor (TNF)-α levels by 23.0% and 37.6%, respectively. In addition, the level of phosphorylated c-Jun N-terminal (p-JNK) and extracellular signal-regulated kinase (p-ERK) was decreased, but not the level of p-p38 MAPK. EGCG did not alter any of the total protein amounts, suggesting a selective effect on specific types of MAPKs in stimulated human T cells. EGCG tended to inactivate AP-1 DNA-binding activity. The P/I-induced production of IL-2, IL-4, INF-γ, and TNF-α by human T cells was suppressed by AP-1 inhibitor in a concentration-dependent manner. In conclusion, EGCG suppressed cytokine secretion in activated human primary T cells, and this effect was likely mediated by AP-1 inactivation through the ERK and JNK, but not p38 MAPK, pathways. These results may be related to the mechanisms through which EGCG inhibits immune- or inflammation-related atherogenesis.
Collapse
Affiliation(s)
- Shih-Chung Huang
- Division of Cardiology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, 32001, Taiwan
| | - Shao-Fu Shih
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Liv Weichien Chen
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yi-Ping Chuang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Fen Tsui
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Gueishan, Taoyuan, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
36
|
Wang Y, Alkhalidy H, Liu D. The Emerging Role of Polyphenols in the Management of Type 2 Diabetes. Molecules 2021; 26:molecules26030703. [PMID: 33572808 PMCID: PMC7866283 DOI: 10.3390/molecules26030703] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a fast-increasing health problem globally, and it results from insulin resistance and pancreatic β-cell dysfunction. The gastrointestinal (GI) tract is recognized as one of the major regulatory organs of glucose homeostasis that involves multiple gut hormones and microbiota. Notably, the incretin hormone glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells plays a pivotal role in maintaining glucose homeostasis via eliciting pleiotropic effects, which are largely mediated via its receptor. Thus, targeting the GLP-1 signaling system is a highly attractive therapeutic strategy to treatment T2D. Polyphenols, the secondary metabolites from plants, have drawn considerable attention because of their numerous health benefits, including potential anti-diabetic effects. Although the major targets and locations for the polyphenolic compounds to exert the anti-diabetic action are still unclear, the first organ that is exposed to these compounds is the GI tract in which polyphenols could modulate enzymes and hormones. Indeed, emerging evidence has shown that polyphenols can stimulate GLP-1 secretion, indicating that these natural compounds might exert metabolic action at least partially mediated by GLP-1. This review provides an overview of nutritional regulation of GLP-1 secretion and summarizes recent studies on the roles of polyphenols in GLP-1 secretion and degradation as it relates to metabolic homeostasis. In addition, the effects of polyphenols on microbiota and microbial metabolites that could indirectly modulate GLP-1 secretion are also discussed.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
- Correspondence: ; Tel.: +1-540-231-3402; Fax: +1-540-231-3916
| |
Collapse
|
37
|
Barański M, Średnicka-Tober D, Rempelos L, Hasanaliyeva G, Gromadzka-Ostrowska J, Skwarło-Sońta K, Królikowski T, Rembiałkowska E, Hajslova J, Schulzova V, Cakmak I, Ozturk L, Hallmann E, Seal C, Iversen PO, Vigar V, Leifert C. Feed Composition Differences Resulting from Organic and Conventional Farming Practices Affect Physiological Parameters in Wistar Rats-Results from a Factorial, Two-Generation Dietary Intervention Trial. Nutrients 2021; 13:377. [PMID: 33530419 PMCID: PMC7911726 DOI: 10.3390/nu13020377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recent human cohort studies reported positive associations between organic food consumption and a lower incidence of obesity, cancer, and several other diseases. However, there are very few animal and human dietary intervention studies that provide supporting evidence or a mechanistic understanding of these associations. Here we report results from a two-generation, dietary intervention study with male Wistar rats to identify the effects of feeds made from organic and conventional crops on growth, hormonal, and immune system parameters that are known to affect the risk of a number of chronic, non-communicable diseases in animals and humans. A 2 × 2 factorial design was used to separate the effects of contrasting crop protection methods (use or non-use of synthetic chemical pesticides) and fertilizers (mineral nitrogen, phosphorus and potassium (NPK) fertilizers vs. manure use) applied in conventional and organic crop production. Conventional, pesticide-based crop protection resulted in significantly lower fiber, polyphenol, flavonoid, and lutein, but higher lipid, aldicarb, and diquat concentrations in animal feeds. Conventional, mineral NPK-based fertilization resulted in significantly lower polyphenol, but higher cadmium and protein concentrations in feeds. Feed composition differences resulting from the use of pesticides and/or mineral NPK-fertilizer had a significant effect on feed intake, weight gain, plasma hormone, and immunoglobulin concentrations, and lymphocyte proliferation in both generations of rats and in the second generation also on the body weight at weaning. Results suggest that relatively small changes in dietary intakes of (a) protein, lipids, and fiber, (b) toxic and/or endocrine-disrupting pesticides and metals, and (c) polyphenols and other antioxidants (resulting from pesticide and/or mineral NPK-fertilizer use) had complex and often interactive effects on endocrine, immune systems and growth parameters in rats. However, the physiological responses to contrasting feed composition/intake profiles differed substantially between the first and second generations of rats. This may indicate epigenetic programming and/or the generation of "adaptive" phenotypes and should be investigated further.
Collapse
Affiliation(s)
- Marcin Barański
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Dominika Średnicka-Tober
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Leonidas Rempelos
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Gultakin Hasanaliyeva
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
- Department of Sustainable Crop and Food Protection, Food and Environmental Sciences, Faculty of Agriculture, Universita Catollica del Sacro Cuore, I-29122 Piacenza, Italy
| | - Joanna Gromadzka-Ostrowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Krystyna Skwarło-Sońta
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Tomasz Królikowski
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Ewa Rembiałkowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Institute of Chemical Technology, UCT Prague, 166 28 Prague, Czech Republic
| | - Vera Schulzova
- Department of Food Analysis and Nutrition, Institute of Chemical Technology, UCT Prague, 166 28 Prague, Czech Republic
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Levent Ozturk
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Ewelina Hallmann
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Chris Seal
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
| | - Vanessa Vigar
- NatMed, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| | - Carlo Leifert
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- SCU Plant Science, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| |
Collapse
|
38
|
Xie L, Tang Q, Yao D, Gu Q, Zheng H, Wang X, Yu Z, Shen X. Effect of Decaffeinated Green Tea Polyphenols on Body Fat and Precocious Puberty in Obese Girls: A Randomized Controlled Trial. Front Endocrinol (Lausanne) 2021; 12:736724. [PMID: 34712203 PMCID: PMC8546255 DOI: 10.3389/fendo.2021.736724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity has been reported to be an important contributing factor for precocious puberty, especially in girls. The effect of green tea polyphenols on weight reduction in adult population has been shown, but few related studies have been conducted in children. This study was performed to examine the effectiveness and safety of decaffeinated green tea polyphenols (DGTP) on ameliorating obesity and early sexual development in girls with obesity. DESIGN This is a double-blinded randomized controlled trial. Girls with obesity aged 6-10 years old were randomly assigned to receive 400 mg/day DGTP or isodose placebo orally for 12 weeks. During this period, all participants received the same instruction on diet and exercise from trained dietitians. Anthropometric measurements, secondary sexual characteristics, B-scan ultrasonography of uterus, ovaries and breast tissues, and related biochemical parameters were examined and assessed pre- and post-treatment. RESULTS Between August 2018 and January 2020, 62 girls with obesity (DGTP group n = 31, control group n = 31) completed the intervention and were included in analysis. After the intervention, body mass index, waist circumference, and waist-to-hip ratio significantly decreased in both groups, but the percentage of body fat (PBF), serum uric acid (UA), and the volumes of ovaries decreased significantly only within the DGTP group. After controlling confounders, DGTP showed a significantly decreased effect on the change of PBF (β = 2.932, 95% CI: 0.214 to 5.650), serum UA (β = 52.601, 95% CI: 2.520 to 102.681), and ovarian volumes (right: β = 1.881, 95% CI: 0.062 to 3.699, left: β = 0.971, 95% CI: 0.019 to 1.923) in girls with obesity. No side effect was reported in both groups during the whole period. CONCLUSION DGTP have shown beneficial effects of ameliorated obesity and postponed early sexual development in girls with obesity without any adverse effects. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/ct2/show/NCT03628937], identifier [NCT03628937].
Collapse
Affiliation(s)
- Luyao Xie
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingya Tang
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Die Yao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Gu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zheng
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodi Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiping Yu
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, United States
| | - Xiuhua Shen
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiuhua Shen,
| |
Collapse
|
39
|
Nagasawa T, Ishimaru K, Higashiyama S, Hama Y, Mitsutake S. Teadenol A in microbial fermented tea acts as a novel ligand on GPR120 to increase GLP-1 secretion. Food Funct 2020; 11:10534-10541. [PMID: 33185223 DOI: 10.1039/d0fo02442b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-fermented teas, produced by microbial fermentation, are attracting attention due to their health benefits that reduce the risk of hyperlipidemia and atherosclerosis. Although several novel polyphenols have been identified from post-fermented teas, their biological activities have not yet been fully elucidated. In this study, we found that teadenol A, a polyphenol recently isolated from Japanese post-fermented tea, acts as a novel ligand on a long-chain fatty acid receptor, GPR120. Teadenol A activated GPR120 was over-expressed in 293T cells, and this activation was inhibited by the GPR120 antagonist AH7614. Additionally, teadenol A induced Erk1/2 phosphorylation and increased the intracellular Ca2+ concentration in 293T cells, and these effects were completely dependent on GPR120 expression. Our results suggest that teadenol A binds and activates GPR120 directly. Furthermore, teadenol A enhanced the secretion of GLP-1 from intestinal endocrine STC-1 cells. GLP-1 suppresses appetite and increases insulin secretion, exhibiting anti-diabetic effects. GPR120/GLP-1 signaling is attracting attention as a potential target for pharmaceuticals against type 2 diabetes. Our results suggest that teadenol A is a key molecule in post-fermented tea responsible for beneficial effects on metabolic syndrome.
Collapse
Affiliation(s)
- Tomotaka Nagasawa
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
40
|
Aditya Rifqi M, Setyaningtyas SW, Rachmah Q. White tea drink (Camellia sinensis) improves endurance and body weight maintenance of rats. JOURNAL OF HEALTH RESEARCH 2020. [DOI: 10.1108/jhr-01-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PurposeWhite tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. White tea contains a high level of polyphenolic compounds known as catechins. Several types of evidence have suggested that tea consumption has benefits in body weight and endurance maintenance. This study was designed to evaluate the effect of white tea on body weight and endurance of animal models.Design/methodology/approachThis research was an intervention design using 20 Wistar white rats (Rattus Norvegicus) in body weight between 150 and 200 g. The rats were randomized into four groups, three groups receiving white tea drink (WTD) with different doses and the other group receiving plain water in equal volume as a control group for four weeks. The forced swim test (FST) was done to measure their struggling capacity, and digital bodyweight to measure the weight.FindingsIntervention (WTD Groups and Control) caused weight gain among except G3 with the highest doses of white tea. The result showed that WTD intake in G3 had a significant difference (p < 0.05) on body weight gain compared to control. The authors found that WTD in a specific dose (G3: 0.22 mg) tends to maintain the body weight of animals (219.2 ± 41.96; 212.6 ± 46.90, respectively), while other doses caused weight gain. WTD also significantly increased the swimming and struggling capacity of rats that represented improvements the endurance along with the test. There was a statistically significant difference in endurance among all groups (p < 0.05).Research limitations/implicationsThe results of this study can be followed as human intervention research as an input for nutritionists and sports scientists to explore the beneficial effect of white tea.Practical implicationsThe results of this study can be followed as human intervention research as an input for nutritionists and sports scientists to explore the beneficial effect of white tea.Originality/valueThis study adds more evidence and information about the advantages of white tea as potential beverages in future healthy lifestyles.
Collapse
|
41
|
Green tea consumption increases sperm concentration and viability in male rats and is safe for reproductive, liver and kidney health. Sci Rep 2020; 10:15269. [PMID: 32943691 PMCID: PMC7498455 DOI: 10.1038/s41598-020-72319-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Green tea is a popularly consumed beverage worldwide and contains polyphenols, whose antioxidant activities could improve sperm parameters and fertility thereof. We investigated the effect of green tea on the male rat reproductive system as well as its safety. Male Wistar rats were administered 2 and 5% aqueous extract of green tea for 52 days’ ad libitum, while the control group received tap water. Total polyphenol, flavanol, flavonol and soluble solids significantly increased in a concentration-dependent manner in vitro (P < 0.01). Weights of body, testis, epididymis, prostate gland, seminal vesicles, and liver, serum levels of testosterone, ferric reducing antioxidant power, creatinine, and sperm motility, remained unchanged (P > 0.05). Kidney weight, sperm concentration and vitality, spontaneous acrosome reaction increased (P < 0.05), while alanine transaminase and aspartate transaminase levels decreased (P < 0.05). Catalase, superoxide dismutase, glutathione and lipid peroxidation remained unchanged in the testes, liver and kidney (P > 0.05). Histological sections of testis, epididymis, kidney and liver showed no conspicuous alteration. Diameter and epithelial height of seminiferous tubule decreased, while caudal epididymis epithelial height increased (P < 0.01). Consumption of green tea in the conditions used in the present study seems to be safe and improved sperm parameters. However, subtle structural changes observed in the decreased diameter and epithelial height of the seminiferous tubule and increased acrosome reaction needs further investigation.
Collapse
|
42
|
Unsal V, Deveci K, Ozmen ZC, Tumer MK. Research on the effects of L-carnitine and trans-chalcone on endoplasmic reticulum stress and oxidative stress in high-fructose corn syrup-fed rats. ACTA ACUST UNITED AC 2020. [DOI: 10.1108/nfs-05-2020-0162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The debate on the metabolic effects of high fructose corn syrup (HFCS) continues. The deterioration of endoplasmic reticulum (ER) homeostasis is called ER stress. Glucose-regulated protein-78 (GRP-78) and X-box binding protein-1 (XBP-1) are key markers of ER stress and the therapeutic targets of diseases. Sterol regulatory element binding protein-1c (SREBP-1c) is the most important transcription factor that regulates the expression of enzymes for fatty acid synthesis. The purpose of this paper is to research the effects of L-carnitine and trans-chalcone on ER stress and oxidative stress parameters, and to explore the therapeutic potential of L-carnitine and trans-chalcone molecules.
Design/methodology/approach
Forty male wistar albino rats randomly selected were divided into five groups. All groups are fed with standard chow (ad libitum). While Group I was fed with drinking water, Group II, III, IV and V were fed with water containing 15% HFCS. L-carnitine was given to Group IV and trans-chalcone to Group V, and both were dissolved with DMSO and given intraperitoneally. Group III was not given anything additional.
Findings
While the amount of water consumption of HFCS-fed rats has increased, the amount of feed consumption has decreased. The weights of rats in Group II and Group III have increased significantly compared to Group I (p = 0.001, p = 0.001 respectively). In Group III, GRP78, XBP-1; malondialdehyde level (p < 0.001, p = 0.001, p = 0.041); total cholesterol, triglyceride, LDL levels (p = 0.001, p < 0.001, p = 0.009, p = 0.001, respectively) have increased significantly.
Originality/value
To the best of the authors’ knowledge, this study is the first report to show that excessive HFCS consumption causes oxidative stress and ER stress. The antioxidant and antiobesity properties of trans chalcone have been demonstrated. Extensive experimental and clinical studies should be conducted.
Collapse
|
43
|
Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism. Enzyme Microb Technol 2020; 135:109496. [DOI: 10.1016/j.enzmictec.2019.109496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
|
44
|
Saranyutanon S, Srivastava SK, Pai S, Singh S, Singh AP. Therapies Targeted to Androgen Receptor Signaling Axis in Prostate Cancer: Progress, Challenges, and Hope. Cancers (Basel) 2019; 12:cancers12010051. [PMID: 31877956 PMCID: PMC7016833 DOI: 10.3390/cancers12010051] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the mostly commonly diagnosed non-cutaneous malignancy and the second leading cause of cancer-related death affecting men in the United States. Moreover, it disproportionately affects the men of African origin, who exhibit significantly greater incidence and mortality as compared to the men of European origin. Since androgens play an important role in the growth of normal prostate and prostate tumors, targeting of androgen signaling has remained a mainstay for the treatment of aggressive prostate cancer. Over the years, multiple approaches have been evaluated to effectively target the androgen signaling pathway that include direct targeting of the androgens, androgen receptor (AR), AR co-regulators or other alternate mechanisms that impact the outcome of androgen signaling. Several of these approaches are currently in clinical practice, while some are still pending further development and clinical evaluation. This remarkable progress has resulted from extensive laboratory, pre-clinical and clinical efforts, and mechanistic learnings from the therapeutic success and failures. In this review, we describe the importance of androgen signaling in prostate cancer biology and advances made over the years to effectively target this signaling pathway. We also discuss emerging data on the resistance pathways associated with the failure of various androgen signaling- targeted therapies and potential of this knowledge for translation into future therapies for prostate cancer.
Collapse
Affiliation(s)
- Sirin Saranyutanon
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Correspondence: (S.K.S.); (A.P.S.); Tel.: +1-251-445-9874 (S.K.S.); +1-251-445-9843 (A.P.S.)
| | - Sachin Pai
- Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA;
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (S.K.S.); (A.P.S.); Tel.: +1-251-445-9874 (S.K.S.); +1-251-445-9843 (A.P.S.)
| |
Collapse
|
45
|
Ashfaq F, Butt MS, Bilal A, Awan KA, Suleria HAR. Assessing the bioefficacy of conventional solvent and supercritical fluid extracts of green tea to alleviate lifestyle related dysfunctions. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
47
|
Arora I, Sharma M, Tollefsbol TO. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int J Mol Sci 2019; 20:ijms20184567. [PMID: 31540128 PMCID: PMC6769666 DOI: 10.3390/ijms20184567] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are potent micronutrients that can be found in large quantities in various food sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases, neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in disease prevention and therapy depends on their dietary consumption and biological properties. According to American Cancer Society statistics, there will be an expected rise of 23.6 million new cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various preventive measures associated with cancer. Relatively recently, numerous studies have indicated that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy. Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that can impact various epigenetic modifications such as DNA methylation and histone modifications as well as regulation of non-coding miRNAs expression for treatment and prevention of various types of cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
48
|
Zelicha H, Kaplan A, Yaskolka Meir A, Tsaban G, Rinott E, Shelef I, Tirosh A, Brikner D, Pupkin E, Qi L, Thiery J, Stumvoll M, Kloting N, von Bergen M, Ceglarek U, Blüher M, Stampfer MJ, Shai I. The Effect of Wolffia globosa Mankai, a Green Aquatic Plant, on Postprandial Glycemic Response: A Randomized Crossover Controlled Trial. Diabetes Care 2019; 42:1162-1169. [PMID: 31076421 DOI: 10.2337/dc18-2319] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/28/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To compare the postprandial and overnight glycemic response using a novel green aquatic plant thought to provide a dietary source for high-quality protein, with an iso-carbohydrate/protein/caloric dairy shake. RESEARCH DESIGN AND METHODS This is a randomized controlled crossover trial among 20 abdominally obese participants (age 51.4 years; fasting plasma glucose 110.9 mg/dL), who were allocated to replace dinner with either, first, a green shake containing Wolffia globosa duckweed (Mankai: specific-strain) or an iso-carbohydrate/protein/calorie yogurt shake. A 2-week flash glucose-monitoring system was used to assess postmeal glucose dynamics (6 net administration days; 97 observation days in total). We further obtained from each participant dietary/daily activity/satiety scale/sleep logs. Participants were recruited from the green-Mediterranean diet arm of the 18-month Dietary Intervention Randomized Controlled Trial-Polyphenols Unprocessed (DIRECT-PLUS) study. RESULTS Wolffia globosa Mankai elicited a lower postprandial glucose peak compared with yogurt (∆peak = 13.4 ± 9.2 vs. 19.3 ± 15.1 mg/dL; P = 0.044), which occurred later (77.5 ± 29.2 vs. 59.2 ± 28.4 min; P = 0.037) and returned faster to baseline glucose levels (135.8 ± 53.1 vs. 197.5 ± 70.2 min; P = 0.012). The mean post-net incremental area under the curve (netAUC) was lower with Wolffia globosa up to 60 and 180 min (netAUC 60 min: 185.1 ± 340.1 vs. 441.4 ± 336.5 mg/dL/min, P = 0.005; netAUC 180 min: 707.9 ± 1,428.5 vs. 1,576.6 ± 1,810.1 mg/dL/min, P = 0.037). A Wolffia globosa-based shake replacing dinner resulted in lower next-morning fasting glucose levels (83.2 ± 0.8 vs. 86.6 ± 13 mg/dL; P = 0.041). Overall, postprandial glucose levels from the shake administration until the next morning were lower in the Wolffia globosa Mankai green shake compared with the yogurt shake (P < 0.001). Overnight sleep duration was similar (378.2 ± 22.4 vs. 375.9 ± 28.4 min; P = 0.72), and satiety rank was slightly higher for the Wolffia globosa shake compared with the yogurt shake (7.5 vs. 6.5; P = 0.035). CONCLUSIONS Wolffia globosa Mankai duckweed may serve as an emerging alternative plant protein source with potential beneficial postprandial glycemic effects.
Collapse
Affiliation(s)
- Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ehud Rinott
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilan Shelef
- Soroka University Medical Center, Beer Sheva, Israel
| | - Amir Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Israel; and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dov Brikner
- Department of Medicine, Nuclear Research Center Negev, Dimona, Israel
| | - Efrat Pupkin
- Department of Medicine, Nuclear Research Center Negev, Dimona, Israel
| | - Lu Qi
- Department of Epidemiology, Tulane University, New Orleans, LA
| | - Joachim Thiery
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Nora Kloting
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Uta Ceglarek
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Meir J Stampfer
- Harvard T.H. Chan School of Public Health and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
49
|
Chen PB, Kim JH, Young L, Clark JM, Park Y. Epigallocatechin gallate (EGCG) alters body fat and lean mass through sex-dependent metabolic mechanisms in Drosophila melanogaster. Int J Food Sci Nutr 2019; 70:959-969. [PMID: 31010351 DOI: 10.1080/09637486.2019.1602113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is increasing interest in the potential role of epigallocatechin gallate (EGCG) in changing body composition to lower body fat with increased lean mass. In this study, we examined the sex-dependent effect of EGCG on body composition, locomotion, feeding behaviour, sugar levels, and transcription levels of key regulators in lipid, carbohydrate, and energy metabolisms in Drosophila melanogaster. EGCG had no effects on body weights in both females and males, but decreased fat accumulation in females compared to the control, accompanied by a reduction in food intake. EGCG treatments increased lean mass and locomotor activity, and downregulated transcription levels of brummer (bmm), adipokinetic hormone (akh), and Drosophila insulin-like peptide 2 (dilp2), and upregulated spargel (srl) in males. In addition, EGCG decreased sugar levels in both females and males. In conclusion, EGCG promotes lean phenotype in D. melanogaster via sex-specific metabolic regulations.
Collapse
Affiliation(s)
- Phoebe B Chen
- Department of Food Science, University of Massachusetts , Amherst , USA
| | - Ju Hyeon Kim
- Department of Veterinary and Animal Sciences, University of Massachusetts , Amherst , USA
| | - Lynnea Young
- Department of Food Science, University of Massachusetts , Amherst , USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts , Amherst , USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts , Amherst , USA
| |
Collapse
|
50
|
Samavat H, Wu AH, Ursin G, Torkelson CJ, Wang R, Yu MC, Yee D, Kurzer MS, Yuan JM. Green Tea Catechin Extract Supplementation Does Not Influence Circulating Sex Hormones and Insulin-Like Growth Factor Axis Proteins in a Randomized Controlled Trial of Postmenopausal Women at High Risk of Breast Cancer. J Nutr 2019; 149:619-627. [PMID: 30926986 PMCID: PMC6461722 DOI: 10.1093/jn/nxy316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/15/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Consumption of green tea has been associated with reduced risk of breast cancer. Hormonal modulation has been suggested as one of the potential underlying mechanisms; however, it has yet to be fully elucidated in large, long-term human clinical trials. OBJECTIVE We investigated the effects of decaffeinated green tea extract (GTE) on circulating sex hormones and insulin-like growth factor (IGF) proteins. METHODS We conducted a placebo-controlled double-blind randomized clinical trial recruiting from 8 clinical centers in Minnesota. Participants were 538 healthy postmenopausal women randomly assigned to the GTE group (463 completed the study; mean age = 60.0 y) and 537 to the placebo group (474 completed; mean age = 59.7 y). Women in the GTE group orally took 4 decaffeinated capsules containing 1315 mg total catechins including 843 mg epigallocatechin-3-gallate daily for 1 y, whereas women in the placebo group took similar capsules containing no tea catechins. Blood sex hormones (estrone, estradiol, androstenedione, testosterone, and sex hormone-binding globulin) and IGF proteins (IGF-1 and IGF binding protein-3) were quantified at baseline and months 6 (for IGF proteins only) and 12, and were assessed as secondary outcomes of the study using a mixed-effect repeated-measures ANOVA model. RESULTS Women in the GTE group had significantly higher blood total estradiol (16%; P = 0.02) and bioavailable estradiol (21%; P = 0.03) than in the placebo group at month 12. There was a statistically significant interaction between GTE supplementation and duration of treatment on estradiol and bioavailable estradiol (both Ps for interaction = 0.001). The catechol-O-methyltransferase genotype did not influence blood sex hormones before or after GTE supplementation. The circulating concentrations of IGF proteins were comparable between GTE and placebo groups at all 3 time points. CONCLUSION These results suggest that a 12-mo GTE supplementation significantly increases circulating estradiol concentrations in healthy postmenopausal women. This trial was registered at clinicaltrials.gov as NCT00917735.
Collapse
Affiliation(s)
- Hamed Samavat
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA,Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN,Address correspondence to HS (e-mail: )
| | - Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Giske Ursin
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA,Cancer Registry of Norway, Oslo, Norway,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Carolyn J Torkelson
- Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, MN
| | - Renwei Wang
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Mimi C Yu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA (retired)
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Department of Medicine, University of Minnesota, Minneapolis, MN,Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Mindy S Kurzer
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|