1
|
Afzal S, Sattar MA, Albokhadaim I, Attiq A, Kandeel M, Manap ASA, Alhojaily SM. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. PPAR Res 2024; 2024:5868010. [PMID: 38899161 PMCID: PMC11186691 DOI: 10.1155/2024/5868010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
Partial and full PPAR-γ agonists have shown promising effects and antihypertensive and antidiabetic agents through increased plasma adiponectin concentration. This study is aimed at examining the role of PPAR-γ, alpha-adrenoceptors, and adiponectin receptors in the modulation of vasopressor responses to angiotensin II (Ang II) and adrenergic agonists, after a subset treatment of partial and full PPAR-γ agonists, each individually, and also when coupled with adiponectin in SHRs. The antioxidant potential and metabolic indices for these animals were also determined. Group I (WKY) and group II (SHR) were designated as normotensive control and hypertensive control, respectively. Groups III (SHR) and IV (SHR) received irbesartan (30 mg/kg) and pioglitazone (10 mg/kg) orally for 28 days, and groups V (SHR), VI (SHR), and VII (SHR) were treated with adiponectin (2.5 μg/kg) intraperitoneally alone, in combination with irbesartan, and in combination with pioglitazone, respectively, from days 21 to 28 only. On day 29, sodium pentobarbitone (60 mg/kg) was used to anesthetize all test animals, and systemic hemodynamic and plasma adiponectin concentrations and in vitro and in vivo antioxidant potential were measured. As compared to the WKY control, the SHR control group's noninvasive blood pressure and basal mean arterial pressure were significantly greater, along with increased arterial stiffness, lower plasma nitric oxide, adiponectin concentration, and antioxidant enzyme levels (all P < 0.05). However, they were gradually normalized by single drug treatments in all groups, and to a greater extent in the SHR + Irb + Adp group (P < 0.05). In the acute study, the dose dependant mean arterial pressure responses to intravenously administered adrenergic agonists and angiotensin-II were significantly larger in SHRs as compared to WKY by 20-25%. Adiponectin alone and in combination significantly blunted vasopressor responses to these alpha-adrenergic agonists in the SHR + Pio + Adp group by 63%, whereas attenuated responses to ANG-II administration to 70% in SHR + Irb + Adp. In conclusion, the combined treatment of adiponectin with PPAR-agonists reduced the systemic vascular responses to adrenergic agonists and improved arterial stiffness. This an evidence of the interaction of adiponectin receptors, PPAR-γ, alpha-adrenoceptors, and ANG-II in the systemic vasculature of SHRs. A significant level of synergism has also been proved among full PPAR-γ agonists and adiponectin receptors.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Munavvar Abdul Sattar
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Ali Attiq
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Sameer M. Alhojaily
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
2
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y. The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 2023; 133:176-185. [PMID: 33653215 PMCID: PMC8006265 DOI: 10.1080/00207454.2021.1897588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 12/05/2020] [Accepted: 02/14/2021] [Indexed: 02/01/2023]
Abstract
Purpose: As of November 28, 2020, COVID-19 has been reported in 220 countries with 61,036,793 confirmed cases and 1,433,316 confirmed deaths; countries became vigilant around the world. In addition to SARS-CoV-2 causing pneumonia, many studies have reported ischemic stroke in patients with COVID-19. This article describes the effects and possible underlying mechanisms of SARS-CoV-2 on ischemic stroke.Materials and methods: A literature search was performed using PubMed, Web of Science, and other COVID-dedicated databases and the combination of the keywords 'SARS-CoV-2', 'COVID-19' and 'ischemic stroke' up to November 28, 2020.Results: SARS-CoV-2 invades the host through angiotensin converting enzyme 2 (ACE2). ACE2 is expressed not only in the lungs, but also in the brain and vascular endothelial cells. SARS-CoV-2 infection might cause direct vascular disease or enhance the immunogenic thrombosis environment through several mechanisms. SARS-CoV-2 infection can modulate the host immune response and can cause inflammation, coagulation disorders, renin angiotensin system disorders, hypoxia, and stress disorders, which may lead to the occurrence of ischemic stroke.Conclusions: Some patients with COVID-19 can develop ischemic stroke. Ischemic stroke has a high risk of causing disability and is associated with a high mortality rate. It is hoped that when medical staff treat patients with COVID-19, they would pay attention to the occurrence of ischemic stroke to improve the prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Yuxia Song
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongyang Fan
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - XiaoJia Tang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuhan Luo
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Peipei Liu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
6
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
7
|
Angiotensin antagonist inhibits preferential negative memory encoding via decreasing hippocampus activation and its coupling with amygdala. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:970-978. [DOI: 10.1016/j.bpsc.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
|
8
|
Anjos PAR, Marchette RCN, Kremer R, Granzotto N, Alves TM, Fadanni GP, Mazur FG, Anton EL, da Silva-Santos JE, Linder ÁE, Izídio GS. The influence of chromosome 4 on high ethanol consumption and blood pressure. Alcohol 2022; 102:1-10. [PMID: 35500756 DOI: 10.1016/j.alcohol.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
The Spontaneously Hypertensive Rats (SHR) strain was developed through selective breeding for high systolic blood pressure. In our laboratory, we established a congenic rat strain named SHR.Lewis-Anxrr16 (SLA16). The SLA16 rat strain is genetically identical to the SHR except for the inserted Anxrr16 region in chromosome 4. Our objective was to evaluate the influence of this genomic region on ethanol consumption and blood pressure. First, we exposed SHR and SLA16 male and female rats to ethanol consumption. Results showed that, regardless of strain, females consumed more ethanol than males during forced (10% v/v) and spontaneous ethanol consumption (SEC; 2.5-20% v/v). Then, females from both strains were used to evaluate sensitivity to ethanol. No strain differences in the loss of righting reflex were observed after ethanol treatment (3 g/kg, 20% w/v, intraperitoneal [i.p.]). But, in the triple test, female SHR rats presented lower sensitivity to the ethanol (1.2 g/kg, 14% w/v, i.p.). Surprisingly, female SHR rats also presented higher blood pressure after SEC (10% v/v). Finally, losartan treatment was effective in decreasing the blood pressure of female rats of both strains, but had specific effects on SHR ethanol consumption. Our data suggest that SLA16 female rats consume less ethanol (10%), are more sensitive to its effects, and present lower blood pressure than SHR female rats. We demonstrated that the Anxrr16 locus in chromosome 4 is a genetic candidate to explain high ethanol consumption and blood pressure, at least in females.
Collapse
Affiliation(s)
| | - Renata Cristina Nunes Marchette
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Neurobiology of Addiction Section, Integrative Neuroscience Branch, National Institute on Drug Abuse Intramural Program, Baltimore, MD, United States
| | - Rafael Kremer
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Medicine - Federal University of Fronteira Sul, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natalli Granzotto
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thalita Mello Alves
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Guilherme Pasetto Fadanni
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernando Gabriel Mazur
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Elaine Leocádia Anton
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Áurea Elizabeth Linder
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Geison Souza Izídio
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
9
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Czarzasta K, Żera T. Multiple Aspects of Inappropriate Action of Renin-Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J Clin Med 2022; 11:908. [PMID: 35207180 PMCID: PMC8877782 DOI: 10.3390/jcm11040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular system and the central nervous system (CNS) closely cooperate in the regulation of primary vital functions. The autonomic nervous system and several compounds known as cardiovascular factors, especially those targeting the renin-angiotensin system (RAS), the vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with depression, Alzheimer's disease, Parkinson's disease, autism, and schizophrenia. The altered function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.W.); (A.C.-J.); (K.C.); (T.Ż.)
| | | | | | | | | |
Collapse
|
10
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
11
|
Tezcan K, Yananli HR, Demirkapu MJ, Gören MZ, Sakalli HE, Colombo G, Gülhan R. The effect of telmisartan, an angiotensin receptor blocker, on alcohol consumption and alcohol-induced dopamine release in the nucleus accumbens. Alcohol 2021; 96:73-81. [PMID: 34419631 DOI: 10.1016/j.alcohol.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Alcohol use disorder remains a major health problem. The mesocorticolimbic dopaminergic system, including the nucleus accumbens region and multiple neural circuits, is involved in its complex underlying mechanism. For instance, alcohol intake stimulates the central and peripheral renin-angiotensin system and increases angiotensin II levels, which predominantly affect angiotensin 1 receptors both in the periphery and in the brain. In this study, we aimed to investigate the effects of the intracerebroventricularly-administered angiotensin 1 receptor blocker telmisartan on the alcohol consumption of male Sardinian alcohol-preferring (sP) rats and on the alcohol-induced dopamine levels in the nucleus accumbens region in Wistar rats. Acute intracerebroventricular administration of telmisartan (100 nM) reduced the alcohol intake for 24 hours without affecting food and water consumption in sP rats. Acute intracerebroventricular injection of the opioid receptor antagonist naloxone (75 nM), tested as a reference compound, also reduced the alcohol consumption in sP rats; however, naloxone's effect lasted only for 30 minutes. In microdialysis experiments, telmisartan administered intracerebroventricularly did not change dopamine levels in the nucleus accumbens that had been induced by acute intraperitoneal alcohol administration in Wistar rats. According to these results, further studies are needed to elucidate the role of the renin-angiotensin system on alcohol use disorder pathophysiology.
Collapse
|
12
|
Balthazar L, Lages YVM, Romano VC, Landeira-Fernandez J, Krahe TE. The association between the renin-angiotensin system and the hypothalamic-pituitary-adrenal axis in anxiety disorders: A systematic review of animal studies. Psychoneuroendocrinology 2021; 132:105354. [PMID: 34329905 DOI: 10.1016/j.psyneuen.2021.105354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Anxiety is characterized as the emotional response in anticipation of a future threat. This hypervigilant state comprehends a cascade of neuroendocrine and physiological processes, involving the renin-angiotensin system (RAS) and hypothalamic-pituitary-adrenal axis (HPA). Excessive and chronic anxiety may ultimately lead to the development of anxiety disorders. This systematic review aimed to investigate experimental studies using animal models that explored the relationship between RAS and the HPA axis in anxiety disorders. A systematic search was conducted in MEDLINE/PubMed, Embase and Web of Science, and was performed according to PRISMA guidelines. The inclusion criteria was mainly the mention of RAS, HPA axis, and an anxiety disorder in the same study. Quality of studies was evaluated according to the table of risk of bias from SYRCLE. From 12 eligible studies, 7 were included. Research in rats and mice shows that the overactivation of the RAS and HPA axis triggers several neuroendocrine reactions, mainly mediated by AT1 receptors, which promote anxiety-like behaviors and positive feedback for its hyperactivation. On the contrary, the administration of antihypertensive drugs, such as angiotensin AT1 receptor blocker, propitiated the regulation of the RAS and HPA axis, maintaining homeostasis even amid aversive situations. Assessment of risk of bias revealed a pronounced unclear to high risk in several categories, which thus jeopardize the comparability and reproducibility of the results. Nonetheless, the preclinical evidence indicates that the hyperactivation of both RAS and HPA axis during stress exerts deleterious consequences, inducing anxiogenic responses. Moreover, the compiled results show that the modulation of both systems by the administration of AT1 receptor blockers produce anxiolytic effects in animal models and may constitute a new venue for the treatment of anxiety-like disorders.
Collapse
Affiliation(s)
- L Balthazar
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Y V M Lages
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - V C Romano
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - J Landeira-Fernandez
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - T E Krahe
- Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Is RAS the Link Between COVID-19 and Increased Stress in Head and Neck Cancer Patients? Front Cell Dev Biol 2021; 9:714999. [PMID: 34336866 PMCID: PMC8320172 DOI: 10.3389/fcell.2021.714999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023] Open
Abstract
The COVID-19 pandemic emerged as a largely unexplained outbreak of pneumonia cases, in Wuhan City, China and rapidly spread across the world. By 11th March 2020, WHO declared it as a global pandemic. The resulting restrictions, to contain its spread, demanded a momentous change in the lifestyle of the general population as well as cancer patients. This augmented negative effects on the mental health of patients with head and neck cancer (HNC), who already battle with the stress of cancer diagnosis and treatment. The causative agent of COVID-19, SARS-CoV2, gains entry through the Angiotensin converting enzyme 2 (ACE2) receptor, which is a component of the Renin Angiotensin System (RAS). RAS has been shown to influence cancer and stress such that it can have progressive and suppressive effects on both. This review provides an overview of SARS-CoV2, looks at how the RAS provides a mechanistic link between stress, cancer and COVID-19 and the probable activation of the RAS axis that increase stress (anxiogenic) and tumor progression (tumorigenic), when ACE2 is hijacked by SARS-CoV2. The mental health crises brought about by this pandemic have been highlighted in many studies. The emerging links between cancer and stress make it more important than ever before to assess the stress burden of cancer patients and expand the strategies for its management.
Collapse
Affiliation(s)
| | | | | | | | - Ian Ellis
- Unit of Cell and Molecular Biology, The Dental School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
14
|
Saavedra JM. Angiotensin Receptor Blockers Are Not Just for Hypertension Anymore. Physiology (Bethesda) 2021; 36:160-173. [PMID: 33904788 DOI: 10.1152/physiol.00036.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beyond blood pressure control, angiotensin receptor blockers reduce common injury mechanisms, decreasing excessive inflammation and protecting endothelial and mitochondrial function, insulin sensitivity, the coagulation cascade, immune responses, cerebrovascular flow, and cognition, properties useful to treat inflammatory, age-related, neurodegenerative, and metabolic disorders of many organs including brain and lung.
Collapse
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
15
|
The AT-1 Angiotensin Receptor is Involved in the Autonomic and Neuroendocrine Responses to Acute Restraint Stress in Male Rats. Cell Mol Neurobiol 2021; 42:109-124. [PMID: 33864194 DOI: 10.1007/s10571-021-01090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
The renin-angiotensin system (RAS) is involved in cardiovascular and hydroelectrolytic control, being associated with the development of hypertension. The restraint stress (RS) model is an aversive situation, which promotes a sustained increase in blood pressure and heart rate, and stimulation of the hypothalamic-pituitary-adrenal axis. Stress leads to an increase of angiotensin-II contents both in the circulation and the central nervous system (CNS), as well as an increased expression of AT-1 receptors in CNS structures related to stress. Stressful stimuli are associated with the modulation of autonomic nervous system, as well as baroreflex; changes in this adjustment mechanism are related to cardiovascular diseases. We hypothesized that RAS is involved in the modulation of autonomic, neuroendocrine, and functional RS-caused alterations. The intravenous (i.v) pretreatment of rats with lisinopril, an angiotensin-converting-enzyme inhibitor, reduced the RS-evoked pressor response. The doses of 0.1 and 0.3 mg/kg also reduced the RS-evoked tachycardia, while in the dose of 1 mg/kg of lisinopril potentiated the tachycardic one. Additionally, i.v. pretreatment with losartan, a selective AT-1 receptor antagonist, reduced the pressor and the tachycardic responses caused by RS. Pretreatment with lisinopril 0.3 mg/kg increased the power of the low frequency (LF) band of the systolic BP spectrum after the treatment without affecting this parameter during RS. The pretreatment with losartan 1 mg/kg increased the power of the high frequency (HF) band and reduced the LF (n.u.) and the LF/HF ratio of the pulse interval spectrum in the first hour of RS. Concerning baroreflex sensitiveness (SBR), pretreatments with losartan or lisinopril did not affect the gain of the baroreflex sequences. However, the pretreatment with losartan reduced the baroreflex effectiveness index of the total sequences in the third hour of the RS. These results indicate that Ang-II, via the AT-1 receptor, plays a facilitating influence on the cardiovascular response caused by RS; facilitates sympathetic activation and reduces parasympathetic activity related to RS; facilitates the baroreflex activation during RS and favors corticosterone release under this stress model. The impairment of Ang-II synthesis, as well as the blockade of AT-1 receptors, may constitute an important pharmacological strategy to treat cardiovascular consequences caused by stress.
Collapse
|
16
|
Afzal S, Abdul Sattar M, Johns EJ, Eseyin OA. Renoprotective and haemodynamic effects of adiponectin and peroxisome proliferator-activated receptor agonist, pioglitazone, in renal vasculature of diabetic Spontaneously hypertensive rats. PLoS One 2020; 15:e0229803. [PMID: 33170841 PMCID: PMC7654782 DOI: 10.1371/journal.pone.0229803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
Collapse
Affiliation(s)
- Sheryar Afzal
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
- Faculty of Pharmacy, MAHSA University, Selangor, Malaysia
- * E-mail:
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
- Faculty of Pharmacy, MAHSA University, Selangor, Malaysia
| | | | - Olorunfemi A. Eseyin
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Silva CC, Correa AMB, Kushmerick C, Sharma NM, Patel KP, de Almeida JFQ, Moreira FA, Ferreira AJ, Fontes MAP. Angiotensin-converting enzyme 2 activator, DIZE in the basolateral amygdala attenuates the tachycardic response to acute stress by modulating glutamatergic tone. Neuropeptides 2020; 83:102076. [PMID: 32800589 DOI: 10.1016/j.npep.2020.102076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
The basolateral amygdala (BLA) is critical in the control of the sympathetic output during stress. Studies demonstrated the involvement of the renin-angiotensin system components in the BLA. Angiotensin-(1-7) [Ang-(1-7)], acting through Mas receptors, reduces stress effects. Considering that angiotensin-converting enzyme 2 (ACE2) is the principal enzyme for the production of Ang-(1-7), here we evaluate the cardiovascular reactivity to acute stress after administration of the ACE2 activator, diminazene aceturate (DIZE) into the BLA. We also tested whether systemic treatment with DIZE could modify synaptic activity in the BLA and its effect directly on the expression of the N-methyl-d-aspartate receptors (NMDARs) in NG108 neurons in-vitro. Administration of DIZE into the BLA (200 pmol/100 nL) attenuated the tachycardia to stress (ΔHR, bpm: vehicle = 103 ± 17 vs DIZE = 49 ± 7 p = 0.018); this effect was inhibited by Ang-(1-7) antagonist, A-779 (ΔHR, bpm: DIZE = 49 ± 7 vs A-779 + DIZE = 100 ± 15 p = 0.04). Systemic treatment with DIZE attenuated the excitatory synaptic activity in the BLA (Frequency (Hz): vehicle = 2.9 ± 0.4 vs. DIZE =1.8 ± 0.3 p < 0.04). NG108 cells treated with DIZE demonstrated decreased expression of l subunit NMDAR-NR1 (NR1 expression (a.u): control = 0.534 ± 0.0593 vs. DIZE = 0.254 ± 0.0260) of NMDAR and increases of Mas receptors expression. These data demonstrate that DIZE attenuates the tachycardia evoked by acute stress. This effect results from a central action in the BLA involving activation of Mas receptors. The ACE2 activation via DIZE treatment attenuated the frequency of excitatory synaptic activity in the basolateral amygdala and this effect can be related with the decreases of the NMDAR-NR1 receptor expression.
Collapse
Affiliation(s)
- Carina Cunha Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Bernal Correa
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Neeru M Sharma
- Department of Cellular & Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, United States
| | - Kaushik P Patel
- Department of Cellular & Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, United States
| | | | - Fabrício A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson José Ferreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco Antônio Peliky Fontes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil..
| |
Collapse
|
18
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
19
|
Is there an association between anxiety symptoms and valsartan treatment? J Affect Disord 2020; 261:111-112. [PMID: 31610311 DOI: 10.1016/j.jad.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/08/2019] [Accepted: 10/07/2019] [Indexed: 01/10/2023]
|
20
|
Zhou F, Geng Y, Xin F, Li J, Feng P, Liu C, Zhao W, Feng T, Guastella AJ, Ebstein RP, Kendrick KM, Becker B. Human Extinction Learning Is Accelerated by an Angiotensin Antagonist via Ventromedial Prefrontal Cortex and Its Connections With Basolateral Amygdala. Biol Psychiatry 2019; 86:910-920. [PMID: 31471037 DOI: 10.1016/j.biopsych.2019.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deficient extinction learning and threat adaptation in the ventromedial prefrontal cortex (vmPFC)-amygdala circuitry strongly impede the efficacy of exposure-based interventions in anxiety disorders. Recent animal models suggest a regulatory role of the renin-angiotensin system in both these processes. Against this background, the present randomized placebo-controlled pharmacologic functional magnetic resonance imaging experiment aimed at determining the extinction enhancing potential of the angiotensin II type 1 receptor antagonist losartan (LT) in humans. METHODS Seventy healthy male subjects underwent Pavlovian threat conditioning and received single-dose LT (50 mg) or placebo administration before extinction. Psychophysiological threat reactivity (skin conductance response) and neural activity during extinction served as primary outcomes. Psychophysiological interaction, voxelwise mediation, and novel multivariate pattern classification analyses were used to determine the underlying neural mechanisms. RESULTS LT significantly accelerated the decline of the psychophysiological threat response during within-session extinction learning. On the neural level, the acceleration was accompanied and critically mediated by threat-specific enhancement of vmPFC activation. Furthermore, LT enhanced vmPFC-basolateral amygdala coupling and attenuated the neural threat expression, particularly in the vmPFC, during early extinction. CONCLUSIONS Overall the results indicate that LT facilitates within-session threat memory extinction by augmenting threat-specific encoding in the vmPFC and its regulatory control over the amygdala. The findings document a pivotal role of angiotensin regulation of extinction learning in humans and suggest that adjunct LT administration has the potential to facilitate the efficacy of exposure-based interventions in anxiety disorders.
Collapse
Affiliation(s)
- Feng Zhou
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yayuan Geng
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Xin
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Pan Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Congcong Liu
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Adam J Guastella
- Autism Clinic for Translational Research, Brain and Mind Centre, Central Clinical School, Faculty of Medicine, University of Sydney, Camperdown, Australia; Youth Mental Health Unit, Brain and Mind Centre, Central Clinical School, Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - Richard P Ebstein
- China Center for Behavior Economics and Finance, Southwestern University of Finance and Economics, Chengdu, China
| | - Keith M Kendrick
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Clinical Hospital of Chengdu Brain Science Institute and Ministry of Education (MOE) Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Pulcu E, Shkreli L, Holst CG, Woud ML, Craske MG, Browning M, Reinecke A. The Effects of the Angiotensin II Receptor Antagonist Losartan on Appetitive Versus Aversive Learning: A Randomized Controlled Trial. Biol Psychiatry 2019; 86:397-404. [PMID: 31155138 DOI: 10.1016/j.biopsych.2019.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/22/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exposure therapy is a first-line treatment for anxiety disorders but remains ineffective in a large proportion of patients. A proposed mechanism of exposure involves inhibitory learning whereby the association between a stimulus and an aversive outcome is suppressed by a new association with an appetitive or neutral outcome. The blood pressure medication losartan augments fear extinction in rodents and may have similar synergistic effects on human exposure therapy, but the exact cognitive mechanisms underlying these effects remain unknown. METHODS We used a reinforcement learning paradigm with compound rewards and punishments to test the prediction that losartan augments learning from appetitive relative to aversive outcomes. In a double-blind parallel design, healthy volunteers were randomly assigned to single-dose losartan (50 mg) (n = 28) versus placebo (n = 25). Participants then performed a reinforcement learning task, which simultaneously probes appetitive and aversive learning. Participant choice behavior was analyzed using both a standard reinforcement learning model and analysis of choice switching behavior. RESULTS Losartan significantly reduced learning rates from aversive events (losses) when participants were first exposed to the novel task environment, while preserving learning from positive outcomes. The same effect was seen in choice switching behavior. CONCLUSIONS This study shows that losartan enhances learning from positive relative to negative events. This effect may represent a computationally defined neurocognitive mechanism by which the drug could enhance the effect of exposure in clinical populations.
Collapse
Affiliation(s)
- Erdem Pulcu
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lorika Shkreli
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Carolina Guzman Holst
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Marcella L Woud
- Department of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health National Health Service Trust, Oxford, United Kingdom
| | - Andrea Reinecke
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
22
|
Terock J, Hannemann A, Janowitz D, Freyberger HJ, Felix SB, Dörr M, Nauck M, Völzke H, Grabe HJ. Associations of trauma exposure and post-traumatic stress disorder with the activity of the renin-angiotensin-aldosterone-system in the general population. Psychol Med 2019; 49:843-851. [PMID: 29909779 DOI: 10.1017/s0033291718001496] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies suggested that exposure to traumatic events during childhood and adulthood and post-traumatic stress disorder (PTSD) are associated with a dysregulation of different neuroendocrine systems. However, the activity of the renin-angiotensin-aldosterone-system (RAAS) in relation to trauma/PTSD has been largely neglected. METHODS Traumatization, PTSD, and plasma concentrations of renin and aldosterone were measured in 3092 individuals from the general population. Subgroups according to the status of traumatization ('without trauma'; 'trauma, without PTSD', 'PTSD') were formed and compared regarding renin and aldosterone concentrations. Additionally, we calculated the associations between the number of traumata, renin, and aldosterone concentrations. Finally, associations of PTSD with renin/aldosterone levels were controlled for the number of traumata ('trauma load'). RESULTS Levels of renin, but not aldosterone, were increased in traumatized persons without PTSD (p = 0.02) and, even stronger, with PTSD (p < 0.01). Moreover, we found a dose-response relation between the number of traumata and renin levels (β = 0.065; p < 0.001). Regression analyses showed PTSD as a significant predictor of renin (β = 0.38; p < 0.01). This effect was only slightly attenuated when controlled for trauma load (β = 0.32; p < 0.01). CONCLUSIONS Our results suggest that traumatization has lasting and cumulative effects on RAAS activity. Finding elevated renin levels in PTSD independent from trauma load supports the concept of PTSD as a disorder with specific neuroendocrine characteristics. Alternatively, elevated renin levels in traumatized persons may increase the risk for developing PTSD. Our findings contribute to explain the relationship between traumatic stress/PTSD and physical disorders.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Harald J Freyberger
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Stephan B Felix
- Department of Internal Medicine B,University Medicine Greifswald,Greifswald,Germany
| | - Marcus Dörr
- Department of Internal Medicine B,University Medicine Greifswald,Greifswald,Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| |
Collapse
|
23
|
Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019; 1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/15/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Social connections are vital to survival throughout the animal kingdom and are dynamic across the life span. There are debilitating consequences of social isolation and loneliness, and social support is increasingly a primary consideration in health care, disease prevention, and recovery. Considering social connection as an "innate need," it is hypothesized that evolutionarily conserved neural systems underlie the maintenance of social connections: alerting the individual to their absence and coordinating effector mechanisms to restore social contact. This is reminiscent of a homeostatic system designed to maintain social connection. Here, we explore the identity of neural systems regulating "social homeostasis." We review findings from rodent studies evaluating the rapid response to social deficit (in the form of acute social isolation) and propose that parallel, overlapping circuits are engaged to adapt to the vulnerabilities of isolation and restore social connection. By considering the neural systems regulating other homeostatic needs, such as energy and fluid balance, we discuss the potential attributes of social homeostatic circuitry. We reason that uncovering the identity of these circuits/mechanisms will facilitate our understanding of how loneliness perpetuates long-term disease states, which we speculate may result from sustained recruitment of social homeostatic circuits.
Collapse
Affiliation(s)
- Gillian A Matthews
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kay M Tye
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts.,The Salk Institute for Biological Sciences, La Jolla, California
| |
Collapse
|
24
|
Wang LA, de Kloet AD, Smeltzer MD, Cahill KM, Hiller H, Bruce EB, Pioquinto DJ, Ludin JA, Katovich MJ, Raizada MK, Krause EG. Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology 2018; 133:85-93. [PMID: 29360543 DOI: 10.1016/j.neuropharm.2018.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/08/2018] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
This study used mice to evaluate whether coupling expression of corticotropin-releasing hormone (CRH) and angiotensin converting enzyme 2 (ACE2) creates central interactions that blunt endocrine and behavioral responses to psychogenic stress. Central administration of diminazene aceturate, an ACE2 activator, had no effect on restraint-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis; however, mice that ubiquitously overexpress ACE2 had reduced plasma corticosterone (CORT) and pituitary expression of POMC mRNA. The Cre-LoxP system was used to restrict ACE2 overexpression to CRH synthesizing cells and probe whether HPA axis suppression was the result of central ACE2 and CRH interactions. Within the paraventricular nucleus of the hypothalamus (PVN), mice with ACE2 overexpression directed to CRH had a ≈2.5 fold increase in ACE2 mRNA, which co-localized with CRH mRNA. Relative to controls, mice overexpressing ACE2 in CRH cells had a decreased CORT response to restraint as well as decreased CRH mRNA in the PVN and CEA and POMC mRNA in the pituitary. Administration of ACTH similarly increased plasma CORT, indicating that the blunted HPA axis activation that accompanies ACE2 overexpression in CRH cells is centrally mediated. Anxiety-like behavior was assessed to determine whether the decreased HPA axis activation was predictive of anxiolysis. Mice with ACE2 overexpression directed to CRH cells displayed decreased anxiety-like behavior in the elevated plus maze and open field when compared to that of controls. Collectively, these results suggest that exogenous ACE2 suppresses CRH synthesis, which alters the central processing of psychogenic stress, thereby blunting HPA axis activation and attenuating anxiety-like behavior.
Collapse
Affiliation(s)
- Lei A Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, United States; Evelyn F. and William L. McKnight Brain Institute, University of Florida, 32611, United States
| | - Michael D Smeltzer
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, United States
| | - Karlena M Cahill
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Erin B Bruce
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - David J Pioquinto
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Jacob A Ludin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, United States; Evelyn F. and William L. McKnight Brain Institute, University of Florida, 32611, United States
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States; Evelyn F. and William L. McKnight Brain Institute, University of Florida, 32611, United States.
| |
Collapse
|
25
|
Angiotensin Regulation of Amygdala Response to Threat in High-Trait-Anxiety Individuals. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:826-835. [DOI: 10.1016/j.bpsc.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
|
26
|
Tashev R, Ivanova M. Involvement of hippocampal angiotensin 1 receptors in anxiety-like behaviour of olfactory bulbectomized rats. Pharmacol Rep 2018; 70:847-852. [DOI: 10.1016/j.pharep.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
27
|
Short-term Heat Exposure Promotes Hippocampal Neurogenesis via Activation of Angiotensin II Type 1 Receptor in Adult Rats. Neuroscience 2018; 385:121-132. [PMID: 29902505 DOI: 10.1016/j.neuroscience.2018.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Angiotensin II (Ang II) synthesized in response to body fluid loss caused by actions such as sweating and breathing is today considered as one of the essential factors for promoting hippocampal neurogenesis. Because heat stimuli, along with exercise, increase systemic levels of Ang II, the effects of short-term heat exposure on hippocampal neurogenesis were examined in adult male rats. When rats were exposed daily to a 1-h heat treatment (36.0 ± 0.1 °C) during a 7-d experimental period, the number of doublecortin-immunoreactive newborn cells in the hippocampal dentate gyrus was increased approximately 1.4-fold compared with that in controls that were exposed to a normothermic environment (25.0 ± 0.8 °C). No significant change was observed in the number of Ki-67-immunoreactive stem cells. Western blot and immunohistochemical analyses revealed an enhancement of vascular endothelial growth factor (VEGF) expression in hippocampal astrocytes following short-term heat exposure. These beneficial effects of short-term heat exposure were prevented when an antagonist for Ang II type 1 receptor (AT1R), candesartan, was given orally. These results indicate that short-term heat exposure enhances adult neurogenesis via activation of AT1R in the hippocampal dentate gyrus, in which VEGF may participate by promoting cell proliferation and/or newborn neuron survival.
Collapse
|
28
|
Diniz CR, Casarotto PC, Fred SM, Biojone C, Castrén E, Joca SR. Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN. Neuropharmacology 2018; 135:163-171. [DOI: 10.1016/j.neuropharm.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/06/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
|
29
|
Rodriguez R, Minas JN, Vazquez-Medina JP, Nakano D, Parkes DG, Nishiyama A, Ortiz RM. Chronic AT1 blockade improves glucose homeostasis in obese OLETF rats. J Endocrinol 2018; 237:271-284. [PMID: 29643115 PMCID: PMC5945211 DOI: 10.1530/joe-17-0678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Obesity is associated with the inappropriate activation of the renin-angiotensin system (RAS), which increases arterial pressure, impairs insulin secretion and decreases peripheral tissue insulin sensitivity. RAS blockade reverses these detriments; however, it is not clear whether the disease state of the organism and treatment duration determine the beneficial effects of RAS inhibition on insulin secretion and insulin sensitivity. Therefore, the objective of this study was to compare the benefits of acute vs chronic angiotensin receptor type 1 (AT1) blockade started after the onset of obesity, hyperglycemia and hypertension on pancreatic function and peripheral insulin resistance. We assessed adipocyte morphology, glucose intolerance, pancreatic redox balance and insulin secretion after 2 and 11 weeks of AT1 blockade in the following groups of rats: (1) untreated Long-Evans Tokushima Otsuka (lean control; n = 10), (2) untreated Otsuka Long-Evans Tokushima Fatty (OLETF; n = 12) and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day by oral gavage; n = 12). Regardless of treatment duration, AT1 blockade decreased systolic blood pressure and fasting plasma triglycerides, whereas chronic AT1 blockade decreased fasting plasma glucose, glucose intolerance and the relative abundance of large adipocytes by 22, 36 and 70%, respectively. AT1 blockade, however, did not improve pancreatic oxidative stress or reverse impaired insulin secretion. Collectively, these data show that AT1 blockade after the onset of obesity, hyperglycemia and hypertension improves peripheral tissue insulin sensitivity, but cannot completely reverse the metabolic derangement characterized by impaired insulin secretion once it has been compromised.
Collapse
Affiliation(s)
- Ruben Rodriguez
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| | - Jacqueline N Minas
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| | | | - Daisuke Nakano
- Department of PharmacologyKagawa University Medical School, Kagawa, Japan
| | | | - Akira Nishiyama
- Department of PharmacologyKagawa University Medical School, Kagawa, Japan
| | - Rudy M Ortiz
- Department of Molecular & Cellular BiologyUniversity of California, Merced, California, USA
| |
Collapse
|
30
|
Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci 2018; 27:301-15. [PMID: 26574890 DOI: 10.1515/revneuro-2015-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.
Collapse
|
31
|
Brasil TFS, Fassini A, Corrêa FM. AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats. Cell Mol Neurobiol 2018; 38:305-316. [PMID: 28695320 DOI: 10.1007/s10571-017-0518-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Abstract
The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Dose-Response Relationship, Drug
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- Heart Rate/drug effects
- Heart Rate/physiology
- Limbic Lobe/drug effects
- Limbic Lobe/metabolism
- Male
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/physiology
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Taíz F S Brasil
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ave. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Aline Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ave. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernando M Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ave. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
32
|
Saavedra JM, Armando I. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cell Mol Neurobiol 2018; 38:85-108. [PMID: 28884431 PMCID: PMC6668356 DOI: 10.1007/s10571-017-0533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Angiotensin II, through AT1 receptor stimulation, mediates multiple cardiovascular, metabolic, and behavioral functions including the response to stressors. Conversely, the function of Angiotensin II AT2 receptors has not been totally clarified. In adult rodents, AT2 receptor distribution is very limited but it is particularly high in the adrenal medulla. Recent results strongly indicate that AT2 receptors contribute to the regulation of the response to stress stimuli. This occurs in association with AT1 receptors, both receptor types reciprocally influencing their expression and therefore their function. AT2 receptors appear to influence the response to many types of stressors and in all components of the hypothalamic-pituitary-adrenal axis. The molecular mechanisms involved in AT2 receptor activation, the complex interactions with AT1 receptors, and additional factors participating in the control of AT2 receptor regulation and activity in response to stressors are only partially understood. Further research is necessary to close this knowledge gap and to clarify whether AT2 receptor activation may carry the potential of a major translational advance.
Collapse
Affiliation(s)
- J M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, Bldg. D, Room 287, Washington, DC, 20007, USA.
| | - I Armando
- The George Washington University School of Medicine and Health Sciences, Ross Hall Suite 738 2300 Eye Street, Washington, DC, USA
| |
Collapse
|
33
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
34
|
Living alone and activation of the renin-angiotensin-aldosterone-system: Differential effects depending on alexithymic personality features. J Psychosom Res 2017; 96:42-48. [PMID: 28545792 DOI: 10.1016/j.jpsychores.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Living alone is considered as a chronic stress factor predicting different health conditions and particularly cardiovascular disease (CVD). Alexithymia is associated with increased psychological distress, less social skills and fewer close relationships, making alexithymic subjects particularly susceptible to chronic stress imposed by "living alone". Only few studies investigated the renin-angiotensin-aldosterone-system (RAAS) activity in response to chronic stress. We aimed at evaluating the effects of "living alone" as a paradigm for chronic stress on RAAS activity and putatively differential effects depending on alexithymic personality features. METHODS Alexithymia and serum concentrations of renin and aldosterone were measured in 944 subjects from the population-based SHIP-1 study. Subgroups were formed using the median of the Toronto Alexithymia Scale-20 (TAS-20) and a cohabitation status of "living alone" or "living together". Analyses were adjusted for various psychosocial, behavioral and metabolic risk factors. RESULTS "Living alone" was associated with elevated plasma renin (p<0.01, β=0.138) but not aldosterone concentrations in the total sample. On subgroup level, we found associations of "living alone" and elevated renin concentrations only in subjects low in TAS-20 scores (p<0.01, β=0.219). Interactional effects of alexithymia×cohabitation status were found for the aldosterone-to-renin ratio (p=0.02, β=-0.234). CONCLUSIONS The association of chronic stress imposed by "living alone" with increased RAAS activity contributes to explain the relationship of this psychosocial stress condition and increased risk for CVD. In contrast, alexithymic subjects may be less affected by the deleterious effects of "living alone".
Collapse
|
35
|
Marchese NA, Paz MC, Caeiro X, Dadam FM, Baiardi G, Perez MF, Bregonzio C. Angiotensin II AT 1 receptors mediate neuronal sensitization and sustained blood pressure response induced by a single injection of amphetamine. Neuroscience 2016; 340:521-529. [PMID: 27856342 DOI: 10.1016/j.neuroscience.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 08/25/2016] [Indexed: 11/28/2022]
Abstract
A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT1 receptors (AT1-R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT1-R in these events using a two-injection protocol and to further characterize the proposed AT1-R antagonism protocol. Central effect of orally administered AT1-R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT1-R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT1-R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT1-R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT1-R blockade. Our results extend AT1-R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output.
Collapse
Affiliation(s)
- N A Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M C Paz
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - X Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - G Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET) Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M F Perez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
36
|
Uresin Y, Erbas B, Ozek M, Ozkök E, Gürol AO. Losartan may prevent the elevation of plasma glucose, corticosterone and catecholamine levels induced by chronic stress. J Renin Angiotensin Aldosterone Syst 2016; 5:93-6. [PMID: 15295722 DOI: 10.3317/jraas.2004.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Introduction Stress is a stimulus that activates the hypothalamic pituitary adrenal (HPA) axis and sympathetic nervous system (SNS). Increased activity of the SNS causes to increment or impairment in blood pressure, heart rate, body temperature and plasma glucose and adrenocorticotrophic hormone (ACTH) levels. Angiotensin II (Ang II), which is a product of the renin-angiotensin system (RAS), is an important factor affecting the activity of the SNS and responses to stress. We suggest that the blockade of Ang II may be worthwhile in the prevention and treatment of diabetes mellitus and cardiovascular diseases affected by stress. Therefore, we investigated the effects of immobilisation stress on blood glucose, norepinephrine (NE), epinephrine (E) and corticosterone levels and the effects of an Ang II receptor antagonist, losartan, on these parameters. Materials and methods The rats were kept in small cylindrical cages for 60 min/day for 10 consecutive days to perform chronic immobilisation stress. Losartan (10 mg/kg) was given daily by gavage to Losartan (L) and Losartan + Chronic Stress (L+CS) groups. Control (C) and Chronic Stress (CS) P groups received an equal volume of saline daily by gavage for 10 days. After the last stress regimen, blood samples were collected for plasma glucose, NE, E and corticosteroid measurements. Results Plasma glucose, NE, E and corticosterone levels in the CS Group increased significantly compared with the C group. In Group L+CS, the plasma glucose, NE, E and corticosterone levels decreased significantly vs. Group CS. In Group L there was no significant difference vs. Group C. Conclusion It can be speculated that chronic blockade of RAS may decrease the excess sympathetic responses to stress in cardiovascular diseases and prevent the likely development of Type II diabetes mellitus.
Collapse
Affiliation(s)
- Yağiz Uresin
- Istanbul Faculty of Medicine, Department of Pharmacology and Clinical Pharmacology, Istanbul University, Capa, Turkey.
| | | | | | | | | |
Collapse
|
37
|
Afzal S, Sattar MA, Johns EJ, Abdulla MH, Akhtar S, Hashmi F, Abdullah NA. Interaction between irbesartan, peroxisome proliferator-activated receptor (PPAR-γ), and adiponectin in the regulation of blood pressure and renal function in spontaneously hypertensive rats. J Physiol Biochem 2016; 72:593-604. [DOI: 10.1007/s13105-016-0497-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 06/08/2016] [Indexed: 01/30/2023]
|
38
|
Wincewicz D, Juchniewicz A, Waszkiewicz N, Braszko JJ. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression. Pharmacol Biochem Behav 2016; 148:108-18. [PMID: 27375198 DOI: 10.1016/j.pbb.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 01/19/2023]
Abstract
Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade.
Collapse
Affiliation(s)
- D Wincewicz
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland; Department of Psychiatry, Medical University of Bialystok, Poland.
| | - A Juchniewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Poland
| | - N Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, Poland
| | - J J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland
| |
Collapse
|
39
|
Anxiolytic- and antidepressant-like effects of angiotensin-(1–7) in hypertensive transgenic (mRen2)27 rats. Clin Sci (Lond) 2016; 130:1247-55. [DOI: 10.1042/cs20160116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/19/2016] [Indexed: 01/03/2023]
Abstract
Angiotensin-(1–7) [Ang-(1–7)], a counter-regulatory peptide of the renin–angiotensin system (RAS) exerts its effects through the G-protein-coupled receptor Mas, which is expressed in different tissues, including the brain. Ang-(1–7) has a broad range of effects beyond the well-described cardiovascular and renal actions, including the modulation of emotional and behavioural responses. In the present study we tested the hypothesis that Ang-(1–7) could attenuate the anxiety- and depression-like behaviours observed in transgenic hypertensive (mRen2)27 rats (TGRs). We also hypothesized that Ang-(1–7) could be involved in the anxiolytic-like effect induced by ACE (angiotensin-converting enzyme) treatment in these hypertensive rats. Therefore, TGRs and Sprague–Dawley rats were subjected to the Elevated Plus Maze (EPM) test, Forced Swimming Test (FST) and Novelty Suppressed Feeding (NSF). TGRs presented a decreased percentage of entries in the open arms of the EPM test, a phenotype reversed by systemic treatment with enalapril or intracerebroventricular infusion of Ang-(1–7). It is interesting that pre-treatment with A779, a selective Mas receptor antagonist, prevented the anxiolytic-like effect induced by the ACE inhibitor. In the NSF test, TGRs showed increased latency to eating, an indicative of a higher aversion in response to a new environment. These animals also showed increased immobility in the FST. Again, Ang-(1–7) reversed this phenotype. Thus, our data showed that Ang-(1–7) can modulate anxiety- and depression-like behaviours in TGRs and warrant further investigation as a new therapy for certain psychiatric disorders.
Collapse
|
40
|
Fontes MAP, Martins Lima A, Santos RASD. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides 2016; 56:9-17. [PMID: 26584971 DOI: 10.1016/j.npep.2015.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Emotional stress is now considered a risk factor for several diseases including cardiac arrhythmias and hypertension. It is well known that the activation of neuroendocrine and autonomic mechanisms features the response to emotional stress. However, its link to cardiovascular diseases and the regulatory mechanisms involved remain to be further comprehended. The renin-angiotensin system (RAS) plays an important role in homeostasis on all body systems. Specifically in the brain, the RAS regulates a number of physiological aspects. Recent data indicate that the activation of angiotensin-converting enzyme/angiotensin II/AT1 receptor axis facilitates the emotional stress responses. On the other hand, growing evidence indicates that its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/(Ang)iotensin-(1-7)/Mas axis, reduces anxiety and attenuates the physiological responses to emotional stress. The present review focuses on angiotensin-(1-7)/Mas axis as a promising target to attenuate the physiological response to emotional stress reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT - Nanobiofar), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Augusto Martins Lima
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Robson Augusto Souza dos Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT - Nanobiofar), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Institute of Cardiology, University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
41
|
Bali A, Jaggi AS. Differential role of angiotensin neuropeptides in repeated exposure of immobilization stress of varying duration in mice. Life Sci 2015; 141:90-8. [DOI: 10.1016/j.lfs.2015.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/16/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
42
|
Investigations in foot shock stress of variable intensity in mice: Adaptation and role of angiotensin II. Eur J Pharmacol 2015; 761:86-94. [DOI: 10.1016/j.ejphar.2015.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
|
43
|
Erdos B, Clifton RR, Liu M, Li H, McCowan ML, Sumners C, Scheuer DA. Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress. Am J Physiol Heart Circ Physiol 2015; 309:H634-45. [PMID: 26071542 DOI: 10.1152/ajpheart.00207.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) counteracts pressor effects of angiotensin II (ANG II) in the paraventricular nucleus of the hypothalamus (PVN) in normotensive rats, but this mechanism is absent in spontaneously hypertensive rats (SHRs) due to a lack of MIF in PVN neurons. Since endogenous ANG II in the PVN modulates stress reactivity, we tested the hypothesis that replacement of MIF in PVN neurons would reduce baseline blood pressure and inhibit stress-induced increases in blood pressure and plasma corticosterone in adult male SHRs. Radiotelemetry transmitters were implanted to measure blood pressure, and then an adeno-associated viral vector expressing either enhanced green fluorescent protein (GFP) or MIF was injected bilaterally into the PVN. Cardiovascular responses to a 15-min water stress (1-cm deep, 25°C) and a 60-min restraint stress were evaluated 3-4 wk later. MIF treatment in the PVN attenuated average restraint-induced increases in blood pressure (37.4 ± 2.0 and 27.6 ± 3.5 mmHg in GFP and MIF groups, respectively, P < 0.05) and corticosterone (42 ± 2 and 36 ± 3 μg/dl in GFP and MIF groups, respectively, P < 0.05). MIF treatment in the PVN also reduced stress-induced elevations in the number of c-Fos-positive cells in the rostral ventrolateral medulla (71 ± 5 in GFP and 47 ± 5 in MIF SHRs, P < 0.01) and corticotropin-releasing factor mRNA expression in the PVN. However, MIF had no significant effects on the cardiovascular responses to water stress in SHRs or to either stress in Sprague-Dawley rats. Therefore, viral vector-mediated restoration of MIF in PVN neurons of SHRs attenuates blood pressure and hypothalamic pituitary adrenal axis responses to stress.
Collapse
Affiliation(s)
- Benedek Erdos
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Rebekah R Clifton
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Meng Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hongwei Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Michael L McCowan
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
44
|
Tchekalarova J, Loyens E, Smolders I. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats. Epilepsy Behav 2015; 46:66-71. [PMID: 25922088 DOI: 10.1016/j.yebeh.2015.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 12/14/2022]
Abstract
In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Ellen Loyens
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
45
|
Mukuda T, Koyama Y, Hamasaki S, Kaidoh T, Furukawa Y. Systemic angiotensin II and exercise-induced neurogenesis in adult rat hippocampus. Brain Res 2014; 1588:92-103. [PMID: 25223907 DOI: 10.1016/j.brainres.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 07/27/2014] [Accepted: 09/08/2014] [Indexed: 01/19/2023]
Abstract
Physical exercise is a robust stimulus that enhances hippocampal neurogenesis via cell proliferation in rodents. We examined the role of systemic angiotensin (Ang) peptides in exercise-dependent enhancement of neurogenesis in the adult rat hippocampus. Plasma angiotensin peptide concentration increased rapidly in response to 30 min of treadmill exercise. After undertaking this exercise once daily for a week, the number of proliferating cells in the hippocampus, identified by 5-bromo-2'-deoxyuridine (BrdU) incorporation, had increased compared with controls. To mimic the increase in plasma Ang peptide concentrations brought about by exercise, rats were injected with 10(-5)M Ang II once daily for a week. The number of BrdU-incorporating cells and of doublecortin (DCX)-expressing immature neurons in the hippocampus rose approximately 1.5 and 1.9-fold compared with controls, respectively. The effects were completely abolished by an Ang II receptor subtype 1 antagonist losartan. These findings, taken together, suggest that an increased concentrations of Ang peptides in the systemic circulation during exercise may promote neurogenesis in the adult rat hippocampus.
Collapse
Affiliation(s)
- Takao Mukuda
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan; Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Yuka Koyama
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan; Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Sawako Hamasaki
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan; Laboratory of Fish Physiology, Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Japan
| | - Toshiyuki Kaidoh
- Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yasuo Furukawa
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan
| |
Collapse
|
46
|
Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. Biol Psychiatry 2014; 75:864-72. [PMID: 24094510 PMCID: PMC3975818 DOI: 10.1016/j.biopsych.2013.08.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND The current effective treatment options for posttraumatic stress disorder (PTSD) are limited, and therefore the need to explore new treatment strategies is critical. Pharmacological inhibition of the renin-angiotensin system is a common approach to treat hypertension, and emerging evidence highlights the importance of this pathway in stress and anxiety. A recent clinical study from our laboratory provides evidence supporting a role for the renin-angiotensin system in the regulation of the stress response in patients diagnosed with PTSD. METHODS With an animal model of PTSD and the selective angiotensin receptor type 1 (AT1) antagonist losartan, we investigated the acute and long-term effects of AT1 receptor inhibition on fear memory and baseline anxiety. After losartan treatment, we performed classical Pavlovian fear conditioning pairing auditory cues with footshocks and examined extinction behavior, gene expression changes in the brain, as well as neuroendocrine and cardiovascular responses. RESULTS After cued fear conditioning, both acute and 2-week administration of losartan enhanced the consolidation of extinction memory but had no effect on fear acquisition, baseline anxiety, blood pressure, and neuroendocrine stress measures. Gene expression changes in the brain were also altered in mice treated with losartan for 2 weeks, in particular reduced amygdala AT1 receptor and bed nucleus of the stria terminalis c-Fos messenger RNA levels. CONCLUSIONS These data suggest that AT1 receptor antagonism enhances the extinction of fear memory and therefore might be a beneficial therapy for PTSD patients who have impairments in extinction of aversive memories.
Collapse
|
47
|
Anil Kumar KV, Nagwar S, Thyloor R, Satyanarayana S. Anti-stress and nootropic activity of drugs affecting the renin-angiotensin system in rats based on indirect biochemical evidence. J Renin Angiotensin Aldosterone Syst 2014; 16:801-12. [PMID: 24496517 DOI: 10.1177/1470320313516173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Various stress hormones are responsible for bringing out stress-related changes and are implicated in learning and memory processes. The extensive clinical experience of angiotensin receptor blockers (ARBs) and direct renin inhibitor as antihypertensive agents provides anecdotal evidence of improvements in cognition. The neurochemical basis underlying the anti-stress and nootropic effects are unclear. This study was aimed to determine the effects of aliskiren, valsartan and their combination on the neuromediators of the central nervous system (CNS) and periphery as well as on cognitive function. MATERIALS AND METHODS Groups of rats were subjected to a forced swim stress for one hour after daily treatment with aliskiren, valsartan and their combination. The 24 h urinary excretion of vanillylmandellic acid (VMA), 5-hydroxyindoleacetic acid (5-HIAA), 6-β-hydroxycortisol (6-β-OH) cortisol and homovanillic acid (HVA) was determined in all groups under normal and stressed conditions. Nootropic activity was studied using cook's pole climbing apparatus and acetylcholinesterase (AChE) inhibitory activity by Ellman's method. RESULTS Administration of aliskiren (10 mg/kg), valsartan (20 mg/kg) and their combination at a dose of 5 and 10 mg/kg respectively reduced the urinary metabolite levels. Further, all drugs showed significant improvement in scopolamine-impaired performance and produced inhibition of the AChE enzyme. CONCLUSIONS The present study provides scientific support for the anti-stress and nootropic activities of aliskiren, valsartan and their combination.
Collapse
Affiliation(s)
- K V Anil Kumar
- Department of Pharmacology, Visveswarapura Institute of Pharmaceutical Sciences, India
| | - Shrasti Nagwar
- Department of Pharmacology, Visveswarapura Institute of Pharmaceutical Sciences, India
| | - Rama Thyloor
- Department of Biotechnology, Government Science College, India
| | | |
Collapse
|
48
|
Wang J, Pang T, Hafko R, Benicky J, Sanchez-Lemus E, Saavedra JM. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARγ activation. Neuropharmacology 2013; 79:249-61. [PMID: 24316465 DOI: 10.1016/j.neuropharm.2013.11.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/22/2023]
Abstract
Sartans (Angiotensin II AT(1) Receptor Blockers, ARBs) are powerful neuroprotective agents in vivo and protect against IL-1β neurotoxicity in vitro. The purpose of this research was to determine the extent of sartan neuroprotection against glutamate excitotoxicity, a common cause of neuronal injury and apoptosis. The results show that sartans are neuroprotective, significantly reducing glutamate-induced neuronal injury and apoptosis in cultured rat primary cerebellar granule cells (CGCs). Telmisartan was the most potent sartan studied, with an order of potency telmisartan > candesartan > losartan > valsartan. Mechanisms involved reduction of pro-apoptotic caspase-3 activation, protection of the survival PI3K/Akt/GSK-3β pathway and prevention of glutamate-induced ERK1/2 activation. NMDA receptor stimulation was essential for glutamate-induced cell injury and apoptosis. Participation of AT(1A) receptor was supported by glutamate-induced upregulation of AT(1A) gene expression and AT(1) receptor binding. Conversely, AT(1B) or AT(2) receptors played no role. Glutamate-induced neuronal injury and the neuroprotective effect of telmisartan were decreased, but not abolished, in CGCs obtained from AT(1A) knock-out mice. This indicates that although AT(1) receptors are necessary for glutamate to exert its full neurotoxic potential, part of the neuroprotective effect of telmisartan is independent of AT(1) receptor blockade. PPARγ activation was also involved in the neuroprotective effects of telmisartan, as telmisartan enhanced PPARγ nuclear translocation and the PPARγ antagonist GW9662 partially reversed the neuroprotective effects of telmisartan. The present results substantiate the therapeutic use of sartans, in particular telmisartan, in neurodegenerative diseases and traumatic brain disorders where glutamate neurotoxicity plays a significant role.
Collapse
Affiliation(s)
- Juan Wang
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA.
| | - Tao Pang
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA; New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, PR China
| | - Roman Hafko
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Julius Benicky
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA.
| | - Enrique Sanchez-Lemus
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA.
| | - Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
49
|
Angiotensin as stress mediator: Role of its receptor and interrelationships among other stress mediators and receptors. Pharmacol Res 2013; 76:49-57. [DOI: 10.1016/j.phrs.2013.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022]
|
50
|
Genaro K, Juliano MA, Prado WA, Brandão ML, Martins AR. Effects of angiotensin (5-8) microinfusions into the ventrolateral periaqueductal gray on defensive behaviors in rats. Behav Brain Res 2013; 256:537-44. [PMID: 24041538 DOI: 10.1016/j.bbr.2013.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Peptides of the renin-angiotensin system modulate blood pressure and hydro-electrolyte composition. Angiotensin (Ang) receptors are localized in brain areas related to the regulation of autonomic and endocrine control and involved in sensory perception, memory process and behavioral responses. Among these areas, the ventrolateral periaqueductal gray (vlPAG) is one of the most important structures of the neuronal circuitry controlling the autonomic and behavioral components of emotional states. Although Ang II metabolism in the vlPAG forms several Ang-peptides including Ang (5-8), the role of this tetrapeptide in the organization of defensive responses has not yet been described. To address this issue, the purpose of the present study was to determine the effects of intra-vlPAG injections of Ang (5-8) (0.2, 0.4 and 0.8 nmol/0.25 μL) in rats submitted to the elevated plus-maze (EPM) test. Additionally, it was evaluated the effects of intra-vlPAG Ang (5-8) on the expression of conditioned fear, assessed by the fear-potentiated startle and contextual conditioned freezing tests. The results showed that Ang (5-8) produced an intense, dose-related reduction in the entries into and time spent in the open arms of the EPM, decreased direct exploration and increased risk assessment behaviors. Moreover, intra-vlPAG injections of Ang (5-8) before the test session promoted pro-aversive effects in the FPS and enhanced contextual freezing. Taken together, these results point out to an important anxiogenic-like action for Ang (5-8) in the mediation of defensive behaviors organized in the vlPAG.
Collapse
Affiliation(s)
- Karina Genaro
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas, Uberaba, MG, Brazil; Universidade de São Paulo, Departamento de Farmacologia, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|