1
|
Zheng JY, Zhu J, Wang Y, Tian ZZ. Effects of acupuncture on hypothalamic-pituitary-adrenal axis: Current status and future perspectives. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:445-458. [PMID: 38955651 DOI: 10.1016/j.joim.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a critical component of the neuroendocrine system, playing a central role in regulating the body's stress response and modulating various physiological processes. Dysregulation of HPA axis function disrupts the neuroendocrine equilibrium, resulting in impaired physiological functions. Acupuncture is recognized as a non-pharmacological type of therapy which has been confirmed to play an important role in modulating the HPA axis and thus favorably targets diseases with abnormal activation of the HPA axis. With numerous studies reporting the promising efficacy of acupuncture for neuroendocrine disorders, a comprehensive review in terms of the underlying molecular mechanism for acupuncture, especially in regulating the HPA axis, is currently in need. This review fills the need and summarizes recent breakthroughs, from the basic principles and the pathological changes of HPA axis dysfunction, to the molecular mechanisms by which acupuncture regulates the HPA axis. These mechanisms include the modulation of multiple neurotransmitters and their receptors, neuropeptides and their receptors, and microRNAs in the paraventricular nucleus, hippocampus, amygdala and pituitary gland, which alleviate the hyperfunctioning of the HPA axis. This review comprehensively summarizes the mechanism of acupuncture in regulating HPA axis dysfunction for the first time, providing new targets and prospects for further exploration of acupuncture. Please cite this article as: Zheng JY, Zhu J, Wang Y, Tian ZZ. Effects of acupuncture on hypothalamic-pituitary-adrenal axis: Current status and future perspectives. J Integr Med. 2024; 22(4): 446-459.
Collapse
Affiliation(s)
- Jia-Yuan Zheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Zhu
- Department of Human Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhan-Zhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Douglass AM, Resch JM, Madara JC, Kucukdereli H, Yizhar O, Grama A, Yamagata M, Yang Z, Lowell BB. Neural basis for fasting activation of the hypothalamic-pituitary-adrenal axis. Nature 2023; 620:154-162. [PMID: 37495689 PMCID: PMC11168300 DOI: 10.1038/s41586-023-06358-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.
Collapse
Affiliation(s)
- Amelia M Douglass
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Abhinav Grama
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zongfang Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
A neural circuit to support survival in the face of starvation. Nature 2023:10.1038/d41586-023-02114-6. [PMID: 37495783 DOI: 10.1038/d41586-023-02114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
4
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
6
|
Shi Z, Bonillas AC, Wong J, Padilla SL, Brooks VL. Neuropeptide Y suppresses thermogenic and cardiovascular sympathetic nerve activity via Y1 receptors in the paraventricular nucleus and dorsomedial hypothalamus. J Neuroendocrinol 2021; 33:e13006. [PMID: 34235800 PMCID: PMC8653878 DOI: 10.1111/jne.13006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
In hungry animals, neuropeptide Y (NPY) neurones in the arcuate nucleus (ArcN) are activated to suppress energy expenditure, in part by decreasing brown adipose tissue sympathetic nerve activity (BAT SNA); however, the NPY receptor subtype and brain neurocircuitry are unclear. In the present study, we investigated the inhibition of BAT SNA by exogenous and endogenous NPY via binding to Y1 receptors (NPY1R) in the hypothalamic paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH), in anaesthetised male rats. Downstream projections of PVN/DMH NPY1R-expressing neurones were identified using male Npy1r-cre mice and localised unilateral DMH or PVN injections of an adeno-associated virus, which allows for the cre-dependent expression of a fluorescent protein (mCherry) in the cell bodies, axon fibres and nerve terminals of NPY1R-containing neurones. Nanoinjections of NPY into the DMH of cooled rats decreased BAT SNA, as well as mean arterial pressure (MAP) and heart rate (HR), and these responses were reversed by subsequent injection of the selective NPY1R antagonist, BIBO3304. In warmed rats, with little to no BAT SNA, bilateral nanoinjections of BIBO3304 into the DMH or PVN increased BAT SNA, MAP and HR. DMH NPY1R-expressing neurones projected heavily to the raphe pallidus (RPa), which houses BAT presympathetic neurones, as well as the PVN. In anaesthetised mice, DMH BIBO3304 increased splanchnic SNA, MAP and HR, all of which were reversed by nonselective blockade of the PVN with muscimol, suggesting that DMH-to-PVN connections are involved in this DMH BIBO3304 disinhibition. PVN Y1R expressing neurones also projected to the RPa, as well as to the nucleus tractus solitarius. We conclude that NPY tonically released in the DMH and PVN suppresses BAT SNA, MAP and HR via Y1R. Downstream neuropathways for BAT SNA may utilise direct projections to the RPa. Release of tonic NPY inhibition of BAT SNA may contribute to feeding- and diet-induced thermogenesis.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Alyssa C. Bonillas
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Jennifer Wong
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Stephanie L. Padilla
- Department of Biology, University of Massachusetts,
Amherst, Amherst, MA, USA 01003
| | - Virginia L. Brooks
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| |
Collapse
|
7
|
Bertocchi I, Oberto A, Longo A, Palanza P, Eva C. Conditional inactivation of Npy1r gene in mice induces sex-related differences of metabolic and behavioral functions. Horm Behav 2020; 125:104824. [PMID: 32755609 DOI: 10.1016/j.yhbeh.2020.104824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Sex hormone-driven differences in gene expression have been identified in experimental animals, highlighting brain neuronal populations implicated in dimorphism of metabolic and behavioral functions. Neuropeptide Y-Y1 receptor (NPY-Y1R) system is sexually dimorphic and sensitive to gonadal steroids. In the present study we compared the phenotype of male and female conditional knockout mice (Npy1rrfb mice), carrying the inactivation of Npy1r gene in excitatory neurons of the brain limbic system. Compared to their male control (Npy1r2lox) littermates, male Npy1rrfb mice exhibited hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis that is associated with anxiety and executive dysfunction, reduced body weight growth, after-fasting refeeding, white adipose tissue (WAT) mass and plasma leptin levels. Conversely, female Npy1rrfb mice displayed an anxious-like behavior but no differences in HPA axis activity, executive function and body weight, compared to control females. Moreover, conditional inactivation of Npy1r gene induced an increase of subcutaneous and gonadal WAT weight and plasma leptin levels and a compensatory decrease of Agouti-related protein immunoreactivity in the hypothalamic arcuate (ARC) nucleus in females, compared to their respective control littermates. Interestingly, Npy1r mRNA expression was reduced in the ARC and in the paraventricular hypothalamic nuclei of female, but not male mice. These results demonstrated that female mice are resilient to hormonal and metabolic effects of limbic Npy1r gene inactivation, suggesting the existence of an estrogen-dependent relay necessary to ensure the maintenance of the homeostasis, that can be mediated by hypothalamic Y1R.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Angela Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43100 Parma, Italy
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy.
| |
Collapse
|
8
|
Maejima Y, Kato S, Horita S, Ueta Y, Takenoshita S, Kobayashi K, Shimomura K. The hypothalamus to brainstem circuit suppresses late-onset body weight gain. Sci Rep 2019; 9:18360. [PMID: 31798010 PMCID: PMC6892811 DOI: 10.1038/s41598-019-54870-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Body weight (BW) is regulated in age-dependent manner; it continues to increase during growth period, and reaches a plateau once reaching adulthood. However, its underlying mechanism remains unknown. Regarding such mechanisms in the brain, we here report that neural circuits from the hypothalamus (paraventricular nucleus: PVN) to the brainstem (dorsal vagal complex: DVC) suppress late-onset BW gain without affecting food intake. The genetic suppression of the PVN-DVC circuit induced BW increase only in aged rats, indicating that this circuit contributes to suppress the BW at a fixed level after reaching adulthood. PVN neurons in the hypothalamus were inactive in younger rats but active in aged rats. The density of neuropeptide Y (NPY) terminal/fiber is reduced in the aged rat PVN area. The differences in neuronal activity, including oxytocin neurons in the PVN, were affected by the application of NPY or its receptor inhibitor, indicating that NPY is a possible regulator of this pathway. Our data provide new insights into understanding age-dependent BW regulation.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Seiichi Takenoshita
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
9
|
Golub Y, Schildbach EM, Touma C, Kratz O, Moll GH, von Hörsten S, Canneva F. Role of hypothalamus-pituitary-adrenal axis modulation in the stress-resilient phenotype of DPP4-deficient rats. Behav Brain Res 2019; 356:243-249. [DOI: 10.1016/j.bbr.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/30/2023]
|
10
|
Sunstrum JK, Inoue W. Heterosynaptic modulation in the paraventricular nucleus of the hypothalamus. Neuropharmacology 2018; 154:87-95. [PMID: 30408488 DOI: 10.1016/j.neuropharm.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
The stress response-originally described by Hans Selye as "the nonspecific response of the body to any demand made upon it"-is chiefly mediated by the hypothalamic-pituitary-adrenal (HPA) axis and is activated by diverse sensory stimuli that inform threats to homeostasis. The diversity of signals regulating the HPA axis is partly achieved by the complexity of afferent inputs that converge at the apex of the HPA axis: this apex is formed by a group of neurosecretory neurons that synthesize corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN). The afferent synaptic inputs onto these PVN-CRH neurons originate from a number of brain areas, and PVN-CRH neurons respond to a long list of neurotransmitters/neuropeptides. Considering this complexity, an important question is how these diverse afferent signals independently and/or in concert influence the excitability of PVN-CRH neurons. While many of these inputs directly act on the postsynaptic PVN-CRH neurons for the summation of signals, accumulating data indicates that they also modulate each other's transmission in the PVN. This mode of transmission, termed heterosynaptic modulation, points to mechanisms through which the activity of a specific modulatory input (conveying a specific sensory signal) can up- or down-regulate the efficacy of other afferent synapses (mediating other stress modalities) depending on receptor expression for and spatial proximity to the heterosynaptic signals. Here, we review examples of heterosynaptic modulation in the PVN and discuss its potential role in the regulation of PVN-CRH neurons' excitability and resulting HPA axis activity. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Julia K Sunstrum
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
11
|
Nakamura K, Nakamura Y. Hunger and Satiety Signaling: Modeling Two Hypothalamomedullary Pathways for Energy Homeostasis. Bioessays 2018; 40:e1700252. [DOI: 10.1002/bies.201700252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative PhysiologyNagoya University Graduate School of MedicineNagoya466‐8550Japan
- PRESTOJapan Science and Technology AgencyKawaguchiSaitama332‐0012Japan
| | - Yoshiko Nakamura
- Department of Integrative PhysiologyNagoya University Graduate School of MedicineNagoya466‐8550Japan
| |
Collapse
|
12
|
Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability. Pflugers Arch 2017; 470:823-837. [PMID: 29209779 PMCID: PMC5942360 DOI: 10.1007/s00424-017-2090-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
Energy homeostasis of mammals is maintained by balancing energy expenditure within the body and energy intake through feeding. Several lines of evidence indicate that brown adipose tissue (BAT), a sympathetically activated thermogenic organ, turns excess energy into heat to maintain the energy balance in rodents and humans, in addition to its thermoregulatory role for the defense of body core temperature in cold environments. Elucidating the central circuit mechanism controlling BAT thermogenesis dependent on nutritional conditions and food availability in relation to energy homeostasis is essential to understand the etiology of symptoms caused by energy imbalance, such as obesity. The central thermogenic command outflow to BAT descends through an excitatory neural pathway mediated by hypothalamic, medullary and spinal sites. This sympathoexcitatory thermogenic drive is controlled by tonic GABAergic inhibitory signaling from the thermoregulatory center in the preoptic area, whose tone is altered by body core and cutaneous thermosensory inputs. This circuit controlling BAT thermogenesis for cold defense also functions for the development of fever and psychological stress-induced hyperthermia, indicating its important role in the defense from a variety of environmental stressors. When food is unavailable, hunger-driven neural signaling from the hypothalamus activates GABAergic neurons in the medullary reticular formation, which then block the sympathoexcitatory thermogenic outflow to BAT to reduce energy expenditure and simultaneously command the masticatory motor system to promote food intake—effectively commanding responses to survive starvation. This article reviews the central mechanism controlling BAT thermogenesis in relation to the regulation of energy and thermal homeostasis dependent on food availability.
Collapse
|
13
|
Liu Q, Chen Y, Li Q, Wu L, Wen T. Dcf1 regulates neuropeptide expression and maintains energy balance. Neurosci Lett 2017; 650:1-7. [PMID: 28377324 DOI: 10.1016/j.neulet.2017.03.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/18/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023]
Abstract
Neuropeptide Y (NPY) is an important neurotransmitter in the brain that plays a pivotal role in food intake and energy storage. Although many studies have focused on these functions, the regulation of NPY expression remains unclear. Here we showed that dendritic cell factor 1 (Dcf1) regulates NPY expression and maintains energy balance. We found that NPY expression is significantly reduced in the hypothalamus of Dcf1 knockout (Dcf1-/-, KO) mice. In contrast, Dcf1 overexpression significantly increases NPY expression in the cell line. We also found that Dcf1 acts upstream of the NPY gene to regulate NPY expression and modulates the NPY-NPY receptor 1-GABA signal. Notably, we observed a significant increase in the ATP concentration in Dcf1-/- mice, suggesting a greater demand for energy in the absence of Dcf1. We studied the relationship between Dcf1 and NPY and revealed that Dcf1 plays a critical role in energy balance.
Collapse
Affiliation(s)
- Qiang Liu
- Laboratory of Molecular Neural Biology, School of Life Science, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yu Chen
- Laboratory of Molecular Neural Biology, School of Life Science, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Science, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Liang Wu
- Laboratory of Molecular Neural Biology, School of Life Science, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Science, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
14
|
Nakamura Y, Yanagawa Y, Morrison SF, Nakamura K. Medullary Reticular Neurons Mediate Neuropeptide Y-Induced Metabolic Inhibition and Mastication. Cell Metab 2017; 25:322-334. [PMID: 28065829 PMCID: PMC5299028 DOI: 10.1016/j.cmet.2016.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023]
Abstract
Hypothalamic neuropeptide Y (NPY) elicits hunger responses to increase the chances of surviving starvation: an inhibition of metabolism and an increase in feeding. Here we elucidate a key central circuit mechanism through which hypothalamic NPY signals drive these hunger responses. GABAergic neurons in the intermediate and parvicellular reticular nuclei (IRt/PCRt) of the medulla oblongata, which are activated by NPY-triggered neural signaling from the hypothalamus, potentially through the nucleus tractus solitarius, mediate the NPY-induced inhibition of metabolic thermogenesis in brown adipose tissue (BAT) via their innervation of BAT sympathetic premotor neurons. Intriguingly, the GABAergic IRt/PCRt neurons innervating the BAT sympathetic premotor region also innervate the masticatory motor region, and stimulation of the IRt/PCRt elicits mastication and increases feeding as well as inhibits BAT thermogenesis. These results indicate that GABAergic IRt/PCRt neurons mediate hypothalamus-derived hunger signaling by coordinating both autonomic and feeding motor systems to reduce energy expenditure and to promote feeding.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
15
|
Gumbs MC, van den Heuvel JK, la Fleur SE. The effect of obesogenic diets on brain Neuropeptide Y. Physiol Behav 2016; 162:161-73. [DOI: 10.1016/j.physbeh.2016.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
|
16
|
Sabban EL, Alaluf LG, Serova LI. Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 2016; 56:19-24. [PMID: 26617395 DOI: 10.1016/j.npep.2015.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
There is extensive evidence that NPY in the brain can modulate the responses to stress and play a critical role in resistance to, or recovery from, harmful effects of stress. Development of PTSD and comorbid depression following exposure to traumatic stress are associated with low NPY. This review discusses putative mechanisms for NPY's anti-stress actions. Recent preclinical data indicating potential for intranasal delivery of NPY to brain as a promising non-invasive strategy to prevent a variety of neuroendocrine, molecular and behavioral impairments in PTSD model are summarized.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| | - Lishay G Alaluf
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| |
Collapse
|
17
|
Luchtman DW, Chee MJS, Doslikova B, Marks DL, Baracos VE, Colmers WF. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus. PLoS One 2015; 10:e0139462. [PMID: 26444289 PMCID: PMC4596859 DOI: 10.1371/journal.pone.0139462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/12/2015] [Indexed: 01/15/2023] Open
Abstract
Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.
Collapse
Affiliation(s)
- Dirk W. Luchtman
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Melissa J. S. Chee
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Barbora Doslikova
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Portland, Oregon, United States of America
| | - Vickie E. Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - William F. Colmers
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Laukova M, Alaluf LG, Serova LI, Arango V, Sabban EL. Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats. Endocrinology 2014; 155:3920-33. [PMID: 25057792 DOI: 10.1210/en.2014-1192] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors. After 7 days undisturbed, hypothalamus and hippocampus, 2 structures regulating the HPA axis activity, were examined for changes in glucocorticoid receptor (GR) and CRH expression. Plasma ACTH and corticosterone, and hypothalamic CRH mRNA, were significantly higher in the vehicle but not NPY-treated group, compared with unstressed controls. Although total GR levels were not altered in hypothalamus, a significant decrease of GR phosphorylated on Ser232 and increased FK506-binding protein 5 mRNA were observed with the vehicle but not in animals infused with intranasal NPY. In contrast, in the ventral hippocampus, only vehicle-treated animals demonstrated elevated GR protein expression and increased GR phosphorylation on Ser232, specifically in the nuclear fraction. Additionally, SPS-induced increase of CRH mRNA in the ventral hippocampus was accompanied by apparent decrease of CRH peptide particularly in the CA3 subfield, both prevented by NPY. The results show that early intervention with intranasal NPY can prevent traumatic stress-triggered dysregulation of the HPA axis likely by restoring HPA axis proper negative feedback inhibition via GR. Thus, intranasal NPY has a potential as a noninvasive therapy to prevent negative effects of traumatic stress.
Collapse
Affiliation(s)
- Marcela Laukova
- Department of Biochemistry and Molecular Biology (M.L., L.G.A., L.I.S., E.L.S.), New York Medical College, Valhalla, New York 10595; and Molecular Imaging and Neuropathology Division (V.A.), New York State Psychiatric Institute, New York, New York 10032
| | | | | | | | | |
Collapse
|
19
|
Cassaglia PA, Shi Z, Li B, Reis WL, Clute-Reinig NM, Stern JE, Brooks VL. Neuropeptide Y acts in the paraventricular nucleus to suppress sympathetic nerve activity and its baroreflex regulation. J Physiol 2014; 592:1655-75. [PMID: 24535439 DOI: 10.1113/jphysiol.2013.268763] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuropeptide Y (NPY), a brain neuromodulator that has been strongly implicated in the regulation of energy balance, also acts centrally to inhibit sympathetic nerve activity (SNA); however, the site and mechanism of action are unknown. In chloralose-anaesthetized female rats, nanoinjection of NPY into the paraventricular nucleus of the hypothalamus (PVN) dose-dependently suppressed lumbar SNA (LSNA) and its baroreflex regulation, and these effects were blocked by prior inhibition of NPY Y1 or Y5 receptors. Moreover, PVN injection of Y1 and Y5 receptor antagonists in otherwise untreated rats increased basal and baroreflex control of LSNA, indicating that endogenous NPY tonically inhibits PVN presympathetic neurons. The sympathoexcitation following blockade of PVN NPY inhibition was eliminated by prior PVN nanoinjection of the melanocortin 3/4 receptor inhibitor SHU9119. Moreover, presympathetic neurons, identified immunohistochemically using cholera toxin b neuronal tract tracing from the rostral ventrolateral medulla (RVLM), express NPY Y1 receptor immunoreactivity, and patch-clamp recordings revealed that both NPY and α-melanocyte-stimulating hormone (α-MSH) inhibit and stimulate, respectively, PVN-RVLM neurons. Collectively, these data suggest that PVN NPY inputs converge with α-MSH to influence presympathetic neurons. Together these results identify endogenous NPY as a novel and potent inhibitory neuromodulator within the PVN that may contribute to changes in SNA that occur in states associated with altered energy balance, such as obesity and pregnancy.
Collapse
Affiliation(s)
- Priscila A Cassaglia
- Oregon Health & Science University, Department of Physiology and Pharmacology, 1381 SW Sam Jackson Park Rd - L334, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sohn JW, Elmquist JK, Williams KW. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 2013; 36:504-12. [PMID: 23790727 DOI: 10.1016/j.tins.2013.05.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 12/24/2022]
Abstract
Neurons within the central nervous system receive humoral and central (neurotransmitter or neuropeptide) signals that ultimately regulate ingestive behavior and metabolism. Recent advances in mouse genetics combined with neuroanatomical and electrophysiological techniques have contributed to a better understanding of these central mechanisms. This review integrates recently defined cellular mechanisms and neural circuits relevant to the regulation of feeding behavior, energy expenditure, and glucose homeostasis by metabolic signals.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | |
Collapse
|
21
|
Hsieh YS, Chen PN, Yu CH, Liao JM, Kuo DY. Inhibiting neuropeptide Y Y1 receptor modulates melanocortin receptor- and NF-κB-mediated feeding behavior in phenylpropanolamine-treated rats. Horm Behav 2013; 64:95-102. [PMID: 23707533 DOI: 10.1016/j.yhbeh.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) and nuclear factor-kappa B (NF-κB) are involved in regulating anorexia elicited by phenylpropanolamine (PPA), a sympathomimetic drug. This study explored whether NPY Y1 receptor (Y1R) is involved in this process, and a potential role for the proopiomelanocortin system was identified. Rats were given PPA once a day for 4days. Changes in the hypothalamic expression of the NPY, Y1R, NF-κB, and melanocortin receptor 4 (MC4R) levels were assessed and compared. The results indicated that food intake and NPY expression decreased, with the largest reductions observed on Day 2 (approximately 50% and 45%, respectively), whereas NF-κB, MC4R, and Y1R increased, achieving maximums on Day 2 (160%, 200%, and 280%, respectively). To determine the role of Y1R, rats were pretreated with Y1R antisense or a Y1R antagonist via intracerebroventricular injection 1h before the daily PPA dose. Y1R knockdown and inhibition reduced PPA anorexia and partially restored the normal expression of NPY, MC4R, and NF-κB. The data suggest that hypothalamic Y1R participates in the appetite-suppression from PPA by regulating MC4R and NF-κB. The results of this study increase our understanding of the molecular mechanisms in PPA-induced anorexia.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | | | | | | | | |
Collapse
|
22
|
Ovsepian SV, Dolly JO, Zaborszky L. Intrinsic voltage dynamics govern the diversity of spontaneous firing profiles in basal forebrain noncholinergic neurons. J Neurophysiol 2012; 108:406-18. [PMID: 22496531 DOI: 10.1152/jn.00642.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spontaneous firing and behavior-related changes in discharge profiles of basal forebrain (BF) neurons are well documented, albeit the mechanisms underlying the variety of activity modes and intermodal transitions remain elusive. With the use of cell-attached recordings, this study identifies a range of spiking patterns in diagonal band Broca (DBB) noncholinergic cells of rats and tentatively categorizes them into low-rate random, tonic, and cluster firing activities. It demonstrates further that the multiplicity of discharge profiles is sustained intrinsically and persists after blockade of glutamate-, glycine/GABA-, and cholinergic synaptic inputs. Stimulation of muscarinic receptors, blockade of voltage-gated Ca(2+)-, and small conductance (SK) Ca(2+)-activated K(+) currents as well as chelating of intracellular Ca(2+) concentration accelerate low-rate random and tonic firing and favor transition of neurons into cluster firing mode. A similar trend towards higher discharge rates with switch of neurons into cluster firing has been revealed by activation of neuropeptide Y (NPY) receptors with the NPY or NPY(1) receptor agonist [Leu(31),Pro(34)]-NPY. Whole cell current-clamp analysis demonstrates that the variety of spiking modes and intermodal transitions could be induced within the same neuronal population by injection of bias depolarizing or hyperpolarizing currents. Taken together, these data demonstrate the intrinsic and highly variable character of regenerative firing in BF noncholinergic cells, subject to powerful modulation by classical neurotransmitters, NPY, and small membrane currents.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.
| | | | | |
Collapse
|
23
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
24
|
Giesbrecht CJ, Mackay JP, Silveira HB, Urban JH, Colmers WF. Countervailing modulation of Ih by neuropeptide Y and corticotrophin-releasing factor in basolateral amygdala as a possible mechanism for their effects on stress-related behaviors. J Neurosci 2010; 30:16970-82. [PMID: 21159967 PMCID: PMC3432911 DOI: 10.1523/jneurosci.2306-10.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023] Open
Abstract
Stress and anxiety-related behaviors controlled by the basolateral amygdala (BLA) are regulated in vivo by neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF): NPY produces anxiolytic effects, whereas CRF produces anxiogenic effects. These opposing actions are likely mediated via regulation of excitatory output from the BLA to afferent targets. In these studies, we examined mechanisms underlying the effects of NPY and CRF in the BLA using whole-cell patch-clamp electrophysiology in rat brain slices. NPY, even with tetrodotoxin present, caused a dose-dependent membrane hyperpolarization in BLA pyramidal neurons. The hyperpolarization resulted in the inhibition of pyramidal cells, despite arising from a reduction in a voltage-dependent membrane conductance. The Y(1) receptor agonist, F(7)P(34) NPY, produced a similar membrane hyperpolarization, whereas the Y(1) antagonist, BIBO3304 [(R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N(2)-(diphenylacetyl)-argininamide trifluoroacetate], blocked the effect of NPY. The NPY-inhibited current was identified as I(h), which is active at and hyperpolarized to rest. Responses to NPY were occluded by either Cs(+) or ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride), but unaffected by the G(IRK)-preferring blockers Ba(2+) and SCH23390 [(R)-(+)-7-chloro-8-hydroxy-3-methyl-l-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride]. Application of CRF, with or without TTX present, depolarized NPY-sensitive BLA pyramidal neurons, resulting from an increase in I(h). Electrophysiological and immunocytochemical data were consistent with a major role for the HCN1 subunit. Our results indicate that NPY, via Y(1) receptors, directly inhibits BLA pyramidal neurons by suppressing a postsynaptic I(h), whereas CRF enhances resting I(h), causing an increased excitability of BLA pyramidal neurons. The opposing actions of these two peptides on the excitability of BLA output cells are consistent with the observed behavioral actions of NPY and CRF in the BLA.
Collapse
Affiliation(s)
- Chantelle J. Giesbrecht
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - James P. Mackay
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Heika B. Silveira
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Janice H. Urban
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - William F. Colmers
- Department of Pharmacology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| |
Collapse
|
25
|
Neuropeptide Y suppresses anorexigenic output from the ventromedial nucleus of the hypothalamus. J Neurosci 2010; 30:3380-90. [PMID: 20203197 DOI: 10.1523/jneurosci.4031-09.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Output from the hypothalamic ventromedial nucleus (VMN) is anorexigenic and is supported by the excitatory actions of leptin. The VMN is also highly sensitive to the orexigenic actions of Neuropeptide Y (NPY). We report that NPY robustly inhibits VMN neurons by hyperpolarizing them and decreasing their ability to fire action potentials. This action was mediated by Y(1) receptors coupled to the activation of GIRKs (G-protein-coupled inwardly rectifying potassium channels). Approximately 80% of VMN neurons expressing leptin receptors were sensitive to the actions of NPY, whereas 75% of NPY-sensitive neurons in VMN also responded to glucose by being uniformly inhibited by elevations in glucose. Interestingly, only approximately 36% of NPY-sensitive, leptin receptor b-expressing neurons were also glucosensitive. We suggest that NPY inhibits VMN neurons that are excited by leptin, thereby arresting the anorexigenic tone exerted by VMN neurons. The results further suggest a dynamic interplay between anorexigenic and orexigenic neuromodulators within the VMN to directly affect energy balance.
Collapse
|
26
|
Ma L, MacTavish D, Simonin F, Bourguignon JJ, Watanabe T, Jhamandas JH. Prolactin-releasing peptide effects in the rat brain are mediated through the Neuropeptide FF receptor. Eur J Neurosci 2009; 30:1585-93. [PMID: 19821834 DOI: 10.1111/j.1460-9568.2009.06956.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolactin-releasing peptide (PrRP), an RF amide peptide present in the brain, generates a wide variety of centrally generated autonomic responses, including increases in arterial blood pressure and heart rate. The identity of the receptor mediating the effects of PrRP is unknown. In addition to GPR10, which is its putative endogenous receptor, PrRP demonstrates a high binding affinity for Neuropeptide FF (NPFF) receptors, specifically the NPFF2 receptor. In the present study, we examined whether the central cardiovascular effects of PrRP in the intact animal and its cellular effects on parvocellular paraventricular nucleus (PVN) neurons are mediated via NPFF receptors. In conscious rats, intracerebroventricular (i.c.v.) PrRP caused an increase in arterial blood pressure and heart rate, which was blocked with RF9, a specific NPFF receptor antagonist. These PrRP-evoked cardiovascular effects were preserved in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat strain, in which the GRP10 receptor gene was mutated. In rat brain slices, whole-cell patch clamp recordings of parvocellular paraventricular nucleus neurons show PrRP caused a decrease in evoked and miniature GABAergic inhibitory postsynaptic currents (IPSCs), effects that were antagonized by RF9, but not neuropeptide Y, a putative GPR10 receptor antagonist. The effects of PrRP on IPSCs in OLETF rats were similar to those in wild-type rats. Both in vivo and in vitro data strongly suggest that certain PrRP effects in the brain are expressed via NPFF receptors, probably NPFF2, rather than the GPR10 receptor. These observations may assume clinical relevance as RF amide peptides such NPFF and PrRP become therapeutic targets for a variety of autonomically related disorders.
Collapse
Affiliation(s)
- Li Ma
- Department of Medicine (Neurology) and Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Palkovits M. Stress-induced activation of neurons in the ventromedial arcuate nucleus: a blood-brain-CSF interface of the hypothalamus. Ann N Y Acad Sci 2009; 1148:57-63. [PMID: 19120091 DOI: 10.1196/annals.1410.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In response to a pain-related acute stress, the expression of c-fos protein (Fos), a marker of acute neuronal excitation, was investigated in the hypothalamus of rats. Few Fos-immunopositive cells were seen 15 min after a single subcutaneous injection of 4% formalin in the hypothalamus, but only in the paraventricular nucleus (PVN). Fifteen minutes later, a high number of parvocellular neurons of the PVN showed Fos expression. By 60 min after injection, strong immunoreactivity appeared in the arcuate nucleus, but the Fos-positive neurons distributed almost exclusively in the ventromedial subdivision of the nucleus. Neurons in this part of the arcuate nucleus express mainly neuropeptide Y (NPY) that projects to the medial parvocellular subdivision of the PVN. It has been demonstrated by previous studies that this part of the arcuate nucleus receives blood partly from the anterior pituitary through the subependymal plexus of the median eminence, and that it establishes, together with the median eminence, a blood-brain barrier-free area in the medial basal hypothalamus. Since the PVN-projecting NPY neurons in the arcuate neurons are sensitive to alterations in circulating corticosterone levels, the existence of a possible short feedback route in the stress-activated hypothalamo-pituitary-adrenocortical system is discussed.
Collapse
Affiliation(s)
- M Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
28
|
Madden CJ, Morrison SF. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2009; 296:R831-43. [PMID: 19129373 DOI: 10.1152/ajpregu.91007.2008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVH) plays an important role in energy homeostasis, regulating neuroendocrine, behavioral, and autonomic functions. However, the role of the PVH in regulating thermogenesis and energy expenditure in brown adipose tissue (BAT) is unclear. The present study investigated the effect of activating neurons within the PVH on BAT thermogenesis. In urethane- and chloralose-anesthetized, artificially ventilated rats maintained at a core body temperature of 37.0-38.0 degrees C, microinjection of N-methyl-d-aspartate (NMDA, 12 pmol in 60 nl) in the PVH did not increase BAT sympathetic nerve activity (SNA) or BAT thermogenesis. In contrast, the increase in BAT SNA evoked by body cooling was completely reversed by microinjection of NMDA in the PVH. Additionally, the increases in BAT SNA evoked by body cooling, by microinjection of prostaglandin E(2) (170 pmol in 60 nl) in the medial preoptic area or by microinjection of bicuculline (30 pmol in 60 nl) in the dorsomedial hypothalamus were completely reversed by microinjection of bicuculline (30 pmol in 60 nl) in the PVH. Although the increases in BAT SNA and thermogenesis evoked by microinjection of NMDA (12 pmol in 60 nl) in the raphe pallidus (RPa) was markedly attenuated following microinjection of bicuculline (30 pmol) in the PVH, the increases in BAT SNA and thermogenesis evoked by microinjection of bicuculline (30 pmol in 60 nl) in the RPa were unaffected by microinjection of bicuculline in the PVH. These results demonstrate that disinhibition of neurons in the PVH inhibits BAT SNA likely via activation of a GABAergic input to BAT sympathetic premotor neurons in the RPa.
Collapse
Affiliation(s)
- C J Madden
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | |
Collapse
|
29
|
Abstract
Feeding behavior is tightly regulated by peptidergic transmission within the hypothalamus. Neuropeptide Y (NPY) is one of the most potent known stimulators of food intake and has robust effects on the hypothalamic feeding neuronal networks. A vast body of literature has documented the substantial effects of NPY on feeding behavior. However, the cellular mechanisms underlying the actions of NPY have only recently begun to be explored. The NPYergic signal, including its expression in hypothalamic neurons, its release into the synaptic space, and its direct or indirect receptor-mediated actions, is highly responsive to decreases in the metabolic state. The orexigenic NPY signal can suppress the anorexigenic drive to restore energy balance homeostasis when energy levels are low, such as after food deprivation. The NPY signal interacts with glucose- and fat-sensitive signals arriving in the hypothalamus and effects changes in anorexigenic pathways, such as those mediated by the melanocortins. Recent applications of electrophysiological methods to examine the neuronal activity and pathways engaged by NPY-mediated signaling have advanced our understanding of this orexigenic system. Furthermore, crucial roles for NPY pathways in the development of hypothalamic feeding circuitry have been identified by these means. Orexigenic NPY signaling is critical during development and its absence is lethal in adults, thus reflecting the essential role of NPY for the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Melissa J S Chee
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
30
|
Wittmann G. Regulation of hypophysiotrophic corticotrophin-releasing hormone- and thyrotrophin-releasing hormone-synthesising neurones by brainstem catecholaminergic neurones. J Neuroendocrinol 2008; 20:952-60. [PMID: 18445123 DOI: 10.1111/j.1365-2826.2008.01748.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypophysiotrophic corticotrophin-releasing hormone (CRH)- and thyrotrophin-releasing hormone (TRH)-synthesising neurones are the principal hypothalamic regulators of glucocorticoid and thyroid hormone secretion, respectively. These two neuroendocrine cell populations are closely situated in the hypothalamic paraventricular nucleus and are targets of neuronal afferent pathways that convey important signals for adapting the neurosecretory activity of CRH and TRH neurones to actual demands. The catecholaminergic afferents of CRH and TRH neurones originate from both noradrenaline- and adrenaline-synthesising cell groups located in the brainstem, and collectively represent one of the most well studied neural inputs of these neurones. The present review summarises the data obtained in recent years concerning the functional significance of the catecholaminergic innervation of hypophysiotrophic CRH and TRH neurones in rats.
Collapse
Affiliation(s)
- G Wittmann
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
31
|
Developmental switch in neuropeptide Y and melanocortin effects in the paraventricular nucleus of the hypothalamus. Neuron 2008; 56:1103-15. [PMID: 18093530 DOI: 10.1016/j.neuron.2007.10.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 09/12/2007] [Accepted: 10/18/2007] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of energy balance in rodents changes dramatically during the first 3 postnatal weeks. Neuropeptide Y (NPY) and melanocortin neurons in the arcuate nucleus, a primary energy homeostatic center in adults, do not fully innervate the paraventricular nucleus (PVN) until the third postnatal week. We have identified two classes of PVN neurons responsive to these neuropeptides, tonically firing neurosecretory (NS) and burst-firing preautonomic (PA) cells. In neonates, NPY could inhibit GABAergic inputs to nearly all NS and PA neurons, while melanocortin regulation was minimal. However, there was a dramatic, age-dependent decrease in NPY responses specifically in the PA neurons, and a 3-fold increase in melanocortin responses in NS cells. These age-dependent changes were accompanied by changes in spontaneous GABAergic currents onto these neurons. This primarily NPYergic regulation in the neonates likely promotes the positive energy balance necessary for growth, while the developmental switch correlates with maturation of homeostatic regulation of energy balance.
Collapse
|
32
|
Füzesi T, Wittmann G, Liposits Z, Lechan RM, Fekete C. Contribution of noradrenergic and adrenergic cell groups of the brainstem and agouti-related protein-synthesizing neurons of the arcuate nucleus to neuropeptide-y innervation of corticotropin-releasing hormone neurons in hypothalamic paraventricular nucleus of the rat. Endocrinology 2007; 148:5442-50. [PMID: 17690163 DOI: 10.1210/en.2007-0732] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN) integrate neuronal and hormonal inputs and serve as a final common pathway to regulate the hypothalamic-pituitary-adrenal axis. One of the neuronal regulators of CRH neurons is neuropeptide Y (NPY) contained in axons that densely innervate CRH neurons. The three main sources of NPY innervation of the PVN are the hypothalamic arcuate nucleus and the noradrenergic and adrenergic neurons of the brainstem. To elucidate the origin of the NPY-immunoreactive (NPY-IR) innervation to hypophysiotropic CRH neurons, quadruple-labeling immunocytochemistry for CRH, NPY, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyltransferase was performed. Approximately 63% of NPY-IR varicosities on the surface of CRH neurons were catecholaminergic (22% noradrenergic and 41% adrenergic), and 37% of NPY-IR boutons were noncatecholaminergic. By triple-labeling immunofluorescence detection of NPY, CRH, and agouti-related protein, a marker of NPY axons projecting from the arcuate nucleus, the noncatecholaminergic, NPY-ergic axon population was shown to arise primarily from the arcuate nucleus. When NPY was administered chronically into the cerebral ventricle of fed animals, a dramatic reduction of CRH mRNA was observed in the PVN (NPY vs. control integrated density units, 23.9 +/- 2.7 vs. 77.09 +/- 15.9). We conclude that approximately two thirds of NPY-IR innervation to hypophysiotropic CRH neurons originates from catecholaminergic neurons of the brainstem, whereas the remaining one third arises from the arcuate nucleus. The catecholaminergic NPY innervation seems to modulate the activation of CRH neurons in association with glucoprivation and infection, whereas the NPY input from the arcuate nucleus may contribute to inhibition of CRH neurons during fasting.
Collapse
Affiliation(s)
- Tamás Füzesi
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
33
|
Dimitrov EL, DeJoseph MR, Brownfield MS, Urban JH. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity. Endocrinology 2007; 148:3666-73. [PMID: 17463058 DOI: 10.1210/en.2006-1730] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.
Collapse
Affiliation(s)
- Eugene L Dimitrov
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
34
|
Heisler LK, Pronchuk N, Nonogaki K, Zhou L, Raber J, Tung L, Yeo GSH, O'Rahilly S, Colmers WF, Elmquist JK, Tecott LH. Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J Neurosci 2007; 27:6956-64. [PMID: 17596444 PMCID: PMC6672238 DOI: 10.1523/jneurosci.2584-06.2007] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dynamic interplay between serotonin [5-hydroxytryptamine (5-HT)] neurotransmission and the hypothalamic-pituitary-adrenal (HPA) axis has been extensively studied over the past 30 years, but the underlying mechanism of this interaction has not been defined. A possibility receiving little attention is that 5-HT regulates upstream corticotropin-releasing hormone (CRH) signaling systems via activation of serotonin 2C receptors (5-HT(2C)Rs) in the paraventricular nucleus of the hypothalamus (PVH). Through complementary approaches in wild-type rodents and 5-HT(2C)R-deficient mice, we determined that 5-HT(2C)Rs are necessary for 5-HT-induced HPA axis activation. We used laser-capture PVH microdissection followed by microarray analysis to compare the expression of 13 5-HTRs. Only 5-HT(2C)R and 5-HT(1D)R transcripts were consistently identified as present in the PVH, and of these, the 5-HT(2C)R was expressed at a substantially higher level. The abundant expression of 5-HT(2C)Rs in the PVH was confirmed with in situ hybridization histochemistry. Dual-neurohistochemical labeling revealed that approximately one-half of PVH CRH-containing neurons coexpressed 5-HT(2C)R mRNA. We observed that PVH CRH neurons consistently depolarized in the presence of a high-affinity 5-HT(2C)R agonist, an effect blocked by a 5-HT(2C)R antagonist. Supporting the importance of 5-HT(2C)Rs in CRH neuronal activity, genetic inactivation of 5-HT(2C)Rs produced a downregulation of CRH mRNA and blunted CRH and corticosterone release after 5-HT compound administration. These findings thus provide a mechanistic explanation for the longstanding observation of HPA axis stimulation in response to 5-HT and thereby give insight into the neural circuitry mediating the complex neuroendocrine responses to stress.
Collapse
MESH Headings
- Adrenal Cortex Hormones/metabolism
- Animals
- Corticotropin-Releasing Hormone/metabolism
- Down-Regulation/genetics
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurosecretory Systems/drug effects
- Neurosecretory Systems/metabolism
- Paraventricular Hypothalamic Nucleus/drug effects
- Paraventricular Hypothalamic Nucleus/metabolism
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1D/genetics
- Receptor, Serotonin, 5-HT1D/metabolism
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin/metabolism
- Serotonin/pharmacology
- Serotonin 5-HT2 Receptor Agonists
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Stress, Physiological/physiopathology
Collapse
Affiliation(s)
- Lora K. Heisler
- Department of Clinical Biochemistry, Addenbrooke's Hospital and the University of Cambridge, Cambridge CB2 2QR, United Kingdom
| | - Nina Pronchuk
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Katsunori Nonogaki
- Department of Psychiatry and Center for Neurobiology and Psychiatry, University of California at San Francisco, San Francisco, California 94117
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan
| | - Ligang Zhou
- Department of Clinical Biochemistry, Addenbrooke's Hospital and the University of Cambridge, Cambridge CB2 2QR, United Kingdom
| | - Jacob Raber
- Departments of Behavioral Neuroscience and Neurology, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon 97239, and
| | - Loraine Tung
- Department of Clinical Biochemistry, Addenbrooke's Hospital and the University of Cambridge, Cambridge CB2 2QR, United Kingdom
| | - Giles S. H. Yeo
- Department of Clinical Biochemistry, Addenbrooke's Hospital and the University of Cambridge, Cambridge CB2 2QR, United Kingdom
| | - Stephen O'Rahilly
- Department of Clinical Biochemistry, Addenbrooke's Hospital and the University of Cambridge, Cambridge CB2 2QR, United Kingdom
| | - William F. Colmers
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Joel K. Elmquist
- Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Laurence H. Tecott
- Department of Psychiatry and Center for Neurobiology and Psychiatry, University of California at San Francisco, San Francisco, California 94117
| |
Collapse
|
35
|
Morris MJ, Gannan E, Stroud LM, Beck-Sickinger AG, O'Brien TJ. Neuropeptide Y suppresses absence seizures in a genetic rat model primarily through effects on Y2 receptors. Eur J Neurosci 2007; 25:1136-43. [PMID: 17331209 DOI: 10.1111/j.1460-9568.2007.05348.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptide Y (NPY) potently suppresses absence seizures in a model of genetic generalized epilepsy, genetic absence epilepsy rats of Strasbourg (GAERS). Here we investigated the Y-receptor subtype(s) on which NPY exerts this anti-absence effect. A dual in vivo approach was used: the cumulative duration of seizures was quantified in adult male GAERS in 90-min electroencephalogram recordings following intracerebroventricular (i.c.v.) injection of: (i) subtype-selective agonists of Y1 ([Leu31Pro34]NPY, 2.5 nmol), Y2 (Ac[Leu(28,31)]NPY24-36, 3 nmol), Y5 receptors [hPP1(-17),Ala31,Aib32]NPY, 4 nmol), NPY (3 nmol) or vehicle; and following (ii) i.c.v. injection of antagonists of Y1 (BIBP3226, 20 nmol), Y2 (BIIE0246, 20 nmol) and Y5 (NPY5RA972, 20 nmol) receptors or vehicle, followed by NPY (3 nmol). Injection of the Y1- and Y5-selective agonists resulted in significantly less mean seizure suppression (37.4% and 53.9%, respectively) than NPY (83.2%; P < 0.05), while the Y2 agonist had similar effects to NPY (62.3% suppression, P = 0.57). Food intake was not increased following injection of the Y2 agonist, while significant increases in food intake were seen following NPY and the other Y-subtype agonists. Compared with vehicle, NPY injection suppressed seizures following the Y1 and Y5 antagonists (45.3% and 80.1%, respectively, P < 0.05), but not following the Y2 antagonist (5.1% suppression, P = 0.46). We conclude that NPY Y2 receptors are more important than Y1 and Y5 receptors in mediating the effect of NPY to suppress absence seizures in a genetic rat model. Y2 receptor agonists may represent targets for novel drugs against genetic generalized epilepsies without resulting in appetite stimulation.
Collapse
Affiliation(s)
- Margaret J Morris
- Department of Physiology and Pharmacology, University of New South Wales, Kensington, New South Wales, Australia, 2052.
| | | | | | | | | |
Collapse
|
36
|
Hart SA, Snyder MA, Smejkalova T, Woolley CS. Estrogen mobilizes a subset of estrogen receptor-alpha-immunoreactive vesicles in inhibitory presynaptic boutons in hippocampal CA1. J Neurosci 2007; 27:2102-11. [PMID: 17314305 PMCID: PMC6673535 DOI: 10.1523/jneurosci.5436-06.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 01/01/2023] Open
Abstract
Although the classical mechanism of estrogen action involves activation of nuclear transcription factor receptors, estrogen also has acute effects on neuronal signaling that occur too rapidly to involve gene expression. These rapid effects are likely to be mediated by extranuclear estrogen receptors associated with the plasma membrane and/or cytoplasmic organelles. Here we used a combination of serial-section electron microscopic immunocytochemistry, immunofluorescence, and Western blotting to show that estrogen receptor-alpha is associated with clusters of vesicles in perisomatic inhibitory boutons in hippocampal CA1 and that estrogen treatment mobilizes these vesicle clusters toward synapses. Estrogen receptor-alpha is present in approximately one-third of perisomatic inhibitory boutons, and specifically in those that express cholecystokinin, not parvalbumin. We also found a high degree of extranuclear estrogen receptor-alpha colocalization with neuropeptide Y. Our results suggest a novel mode of estrogen action in which a subset of vesicles within a specific population of inhibitory boutons responds directly to estrogen by moving toward synapses. The mobilization of these vesicles may influence acute effects of estrogen mediated by estrogen receptor-alpha signaling at inhibitory synapses.
Collapse
Affiliation(s)
- Sharron A. Hart
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Melissa A. Snyder
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Tereza Smejkalova
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Catherine S. Woolley
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
37
|
Jhamandas JH, Simonin F, Bourguignon JJ, Harris KH. Neuropeptide FF and neuropeptide VF inhibit GABAergic neurotransmission in parvocellular neurons of the rat hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1872-80. [PMID: 17289819 DOI: 10.1152/ajpregu.00407.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide FF (NPFF) and neuropeptide VF (NPVF) are octapeptides belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain, including central autonomic and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat brain, including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we examined, using whole cell patch-clamp recordings in the brain slice, the effects of NPFF and NPVF on inhibitory GABAergic synaptic input to parvocellular PVN neurons. Under voltage-clamp conditions, NPFF and NPVF reversibly and in a concentration-dependent manner reduced the evoked bicuculline-sensitive inhibitory postsynaptic currents (IPSCs) in parvocellular PVN neurons by 25 and 31%, respectively. RF9, a potent and selective NPFF receptor antagonist, blocked NPFF-induced reduction of IPSCs. Recordings of miniature IPSCs in these neurons following NPFF and NPVF applications showed a reduction in frequency but not amplitude, indicating a presynaptic locus of action for these peptides. Under current-clamp conditions, NPVF and NPFF caused depolarization (6-9 mV) of neurons that persisted in the presence of TTX but was abolished in the presence of bicuculline. Collectively, these data provide evidence for a disinhibitory role of NPFF and NPVF in the hypothalamic PVN via an attenuation of GABAergic inhibitory input to parvocellular neurons of this nucleus and explain the central autonomic effects of NPFF.
Collapse
Affiliation(s)
- Jack H Jhamandas
- Heritage Medical Research Centre, Dept of Medicine (Neurology), Univ of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
38
|
Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN. Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci 2006; 25:7406-19. [PMID: 16093392 PMCID: PMC6725307 DOI: 10.1523/jneurosci.1008-05.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fast inhibitory transmitter GABA is robustly expressed in the arcuate nucleus (ARC) and appears to play a major role in hypothalamic regulation of endocrine function and energy homeostasis. Previously, it has not been possible to record selectively from GABA cells, because they have no defining morphological or physiological characteristics. Using transgenic mice that selectively express GFP (green fluorescent protein) in GAD67 (glutamic acid decarboxylase 67)-synthesizing cells, we identified ARC GABA neurons (n > 300) and used whole-cell recording to study their physiological response to neuropeptide Y (NPY), the related peptide YY(3-36) (PYY(3-36)), and pancreatic polypeptide (PP), important modulators of ARC function. In contrast to other identified ARC cells in which NPY receptor agonists were reported to generate excitatory actions, we found that NPY consistently reduced the firing rate and hyperpolarized GABA neurons including neuroendocrine GABA neurons identified by antidromic median eminence stimulation. The inhibitory NPY actions were mediated by postsynaptic activation of G-protein-linked inwardly rectifying potassium (GIRK) and depression of voltage-gated calcium currents via Y1 and Y2 receptor subtypes. Additionally, NPY reduced spontaneous and evoked synaptic glutamate release onto GABA neurons by activation of Y1 and Y5 receptors. The peptide PYY(3-36), a peripheral endocrine signal that can act in the brain, also inhibited GABA neurons, including identified neuroendocrine cells, by activating GIRK conductances and depressing calcium currents. The endogenous Y4 agonist PP depressed the activity of GABA-expressing neurons mainly by presynaptic attenuation of glutamate release. Together, these results show that the family of neuropeptide Y modulators reduces the activity of inhibitory GABA neurons in the ARC by multiple presynaptic and postsynaptic mechanisms.
Collapse
|
39
|
Hewitt SA, Bains JS. Brain-derived neurotrophic factor silences GABA synapses onto hypothalamic neuroendocrine cells through a postsynaptic dynamin-mediated mechanism. J Neurophysiol 2006; 95:2193-8. [PMID: 16407427 DOI: 10.1152/jn.01135.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the paraventricular nucleus of the hypothalamus (PVN), experimental stress paradigms that suppress gamma-aminobutyric acid (GABA) inputs to parvocellular neuroendocrine cells (PNCs) also increase the expression of brain-derived neurotrophic factor (BDNF). In the adult CNS, BDNF regulates the efficacy of GABAergic transmission, but its contributions to functional changes at inhibitory synapses in the PVN have not been investigated. Analysis of quantal transmission revealed a decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in response to BDNF with no accompanying changes in their amplitude. These effects were completely blocked by prior inclusion of the TrKB receptor antagonist K252a in the patch pipette. Inclusion of a dynamin inhibitory peptide in the patch pipette also blocked the effects of BDNF, consistent with an all-or-none removal of clusters of postsynaptic GABAA receptors. Finally, to confirm a decrease in the availability of postsynaptic GABAA receptors, we tested the effects of BDNF on focal application of the GABAA agonist muscimol. Postsynaptic responses to muscimol were reduced after BDNF. Collectively, these data indicate that BDNF remodels functional synaptic contacts putatively by reducing the surface expression of postsynaptic GABAA receptors.
Collapse
Affiliation(s)
- Sarah A Hewitt
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, Calgary, Canada T2N 4N1
| | | |
Collapse
|
40
|
El Bahh B, Balosso S, Hamilton T, Herzog H, Beck-Sickinger AG, Sperk G, Gehlert DR, Vezzani A, Colmers WF. The anti-epileptic actions of neuropeptide Y in the hippocampus are mediated by Y2 and not Y5 receptors. Eur J Neurosci 2005; 22:1417-30. [PMID: 16190896 DOI: 10.1111/j.1460-9568.2005.04338.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuropeptide Y (NPY) potently inhibits glutamate release and seizure activity in rodent hippocampus in vitro and in vivo, but the nature of the receptor(s) mediating this action is controversial. In hippocampal slices from rats and several wild-type mice, a Y2-preferring agonist mimicked, and the Y2-specific antagonist BIIE0246 blocked, the NPY-mediated inhibition both of glutamatergic transmission and of epileptiform discharges in two different slice models of temporal lobe epilepsy, stimulus train-induced bursting (STIB) and 0-Mg2+ bursting. Whereas Y5 receptor-preferring agonists had small but significant effects in vitro, they were blocked by BIIE0246, and a Y5 receptor-specific antagonist did not affect responses to any agonist tested in any preparation. In slices from mice, NPY was without effect on evoked potentials or in either of the two slice seizure models. In vivo, intrahippocampal injections of Y2- or Y5-preferring agonists inhibited seizures caused by intrahippocampal kainate, but again the Y5 agonist effects were insensitive to a Y5 antagonist. Neither Y2- nor Y5-preferring agonists affected kainate seizures in mice. A Y5-specific antagonist did not displace the binding of two different NPY ligands in WT or mice, whereas all NPY binding was eliminated in the mouse. Thus, we show that Y2 receptors alone mediate all the anti-excitatory actions of NPY seen in the hippocampus, whereas our findings do not support a role for Y5 receptors either in vitro or in vivo. The results suggest that agonists targeting the Y2 receptor may be useful anticonvulsants.
Collapse
Affiliation(s)
- Bouchaïb El Bahh
- Department of Pharmacology, University of Alberta. Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Coppola JD, Horwitz BA, Hamilton J, Blevins JE, McDonald RB. Reduced feeding response to muscimol and neuropeptide Y in senescent F344 rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1492-8. [PMID: 15731400 DOI: 10.1152/ajpregu.00554.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many mammals experience spontaneous declines in their food intake and body weight near the end of life, a stage we refer to as senescence. We have previously demonstrated that senescent rats have blunted food intake responses to intracerebroventricular injections of neuropeptide Y (NPY). In the present study, we tested the hypothesis that responsiveness to GABA, a putative potentiator of NPY's effect, is also diminished. Young and old male F344 rats received injections of NPY, muscimol, (MUS, a GABA-A receptor agonist), combinations of these two agents, and vehicle [artificial cerebrospinal fluid (aCSF)] into the hypothalamic paraventricular nucleus (PVN). Both young and old presenescent rats increased their food intake in response to NPY, MUS, and the combination of the two (in comparison to injections of aCSF). The combination treatment was generally more effective than either NPY or MUS alone. These data are consistent with suggestions that both NPY and GABA play a role in the regulation of feeding behavior. Senescent rats exhibited an attenuated NPY-induced food intake, no increase in response to MUS, and a response to NPY + MUS that was no larger than that of NPY alone. We conclude that PVN injections of GABA, as well as NPY, are less effective in stimulating feeding in senescent rats and suggest that alterations in their signaling pathways play a role in the involuntary feeding decrease seen near the end of life.
Collapse
Affiliation(s)
- Jessica D Coppola
- Department of Nutrition, One Shields Ave., University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
42
|
Sullivan SD, Moenter SM. Gamma-aminobutyric acid neurons integrate and rapidly transmit permissive and inhibitory metabolic cues to gonadotropin-releasing hormone neurons. Endocrinology 2004; 145:1194-202. [PMID: 14645118 DOI: 10.1210/en.2003-1374] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Negative energy balance inhibits fertility by decreasing GnRH release; however, the mechanisms are not well understood. GnRH neurons can be excited by activation of gamma-aminobutyric acid (GABA)(A) receptors, and GABAergic neurons provide a major synaptic input. We hypothesized that permissive metabolic signals mediated by leptin and inhibitory signals conveyed by neuropeptide Y (NPY) and opiates rapidly alter GABA(A) receptor-mediated drive to GnRH neurons. In fed and fasted female mice, GABAergic postsynaptic currents (PSCs) were recorded from GnRH neurons before and after in vitro treatment with leptin, NPY, or met-enkephalin. Leptin increased PSC frequency in fed and fasted mice, indicating that it increased presynaptic activity. Leptin also increased PSC size. Inhibiting leptin receptor signaling pathways within GnRH neurons abolished the latter effect, indicating a direct action on these cells. In fed, but not fasted, mice, NPY and met-enkephalin decreased PSC frequency in an antagonist-reversible manner, but did not alter PSC size. NPY-1 receptor antagonists alone increased frequency in fed and fasted mice, as did opiate receptor blockade in fasted animals, suggesting that endogenous NPY and opiates modulate GABAergic drive to GnRH neurons. These data suggest that GABAergic afferents integrate metabolic signals for delivery to GnRH neurons. Decreased sensitivity to NPY and opiates in fasted mice indicate that these peptides send physiologically relevant signals regarding energy balance to GnRH neurons.
Collapse
Affiliation(s)
- Shannon D Sullivan
- Department of Internal Medicine and Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
43
|
Pronchuk N, Colmers WF. NPY presynaptic actions are reduced in the hypothalamic mpPVN of obese (fa/fa), but not lean, Zucker rats in vitro. Br J Pharmacol 2004; 141:1032-6. [PMID: 14967739 PMCID: PMC1574271 DOI: 10.1038/sj.bjp.0705699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Neuropeptide Y (NPY) profoundly enhances feeding when injected intracerebroventricularly, or directly into hypothalamic nuclei, such as the paraventricular nucleus (PVN). Paradoxically, NPY has a reduced action on feeding in obese Zucker rats relative to lean Zucker rats, although the obese rats have much higher levels of hypothalamic NPY expression. GABAergic inputs to a subpopulation of medial parvocellular PVN (mpPVN) neurons are sensitive to NPY. Here, we tested the hypothesis that the blunted eating response to NPY observed in obese Zucker rats will be reflected in a reduced NPY action at mpPVN GABAergic synapses. 2. 'Blind' whole-cell patch-clamp recordings made from mpPVN neurons in acute brain slices of lean and obese Zucker rats revealed GABAergic inhibitory postsynaptic currents (IPSC) responses which were inhibited by NPY. While the maximum response in the obese Zucker rats was significantly less than in lean Zucker or Sprague-Dawley rats, there was no difference in the EC(50). 3. Experiments using blocking concentrations of Y(1)- or Y(5)-receptor antagonists revealed no differences between lean and obese Zucker rats in the contributions of either of these receptors to the total NPY response in mpPVN. 4. NPY is less effective at the mpPVN GABA synapse in obese than in lean Zucker rats. This is not associated with a change in the proportion of Y(1) or Y(5) receptors mediating the NPY response, and is consistent with the downregulation of NPY receptors or a reduction in receptor-effector coupling, and with the reduced sensitivity of obese rats to NPY.
Collapse
Affiliation(s)
- Nina Pronchuk
- Department of Pharmacology, University of Alberta, 9-36 MSB, Edmonton, AB, Canada T6G 2H7
| | - William F Colmers
- Department of Pharmacology, University of Alberta, 9-36 MSB, Edmonton, AB, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
44
|
Wolak ML, DeJoseph MR, Cator AD, Mokashi AS, Brownfield MS, Urban JH. Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry. J Comp Neurol 2003; 464:285-311. [PMID: 12900925 DOI: 10.1002/cne.10823] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuropeptide Y (NPY) Y1 and Y5 receptor subtypes mediate many of NPY's diverse actions in the central nervous system. The present studies use polyclonal antibodies directed against the Y1 and Y5 receptors to map and compare the relative distribution of these NPY receptor subtypes within the rat brain. Antibody specificity was assessed by using Western analysis, preadsorption of the antibody with peptide, and preimmune serum controls. Immunostaining for the Y1 and Y5 receptor subtypes was present throughout the rostral-caudal aspect of the brain with many regions expressing both subtypes: cerebral cortex, hippocampus, hypothalamus, thalamus, amygdala, and brainstem. Further studies using double-label immunocytochemistry indicate that Y1R immunoreactivity (-ir) and Y5R-ir are colocalized in the cerebral cortex and caudate putamen. Y1 receptor ir was evident in the central amygdala, whereas both Y1- and Y5-immunoreactive cells and fibers were present in the basolateral amygdala. Corresponding with the physiology of NPY in the hypothalamus, both Y1R- and Y5R-ir was present within the paraventricular (PVN), supraoptic, arcuate nuclei, and lateral hypothalamus. In the PVN, Y5R-ir and Y1R-ir were detected in cells and fibers of the parvo- and magnocellular divisions. Intense immunostaining for these receptors was observed within the locus coeruleus, A1-5 and C1-3 nuclei, subnuclei of the trigeminal nerve and nucleus tractus solitarius. These data provide a detailed and comparative mapping of Y1 and Y5 receptor subtypes within cell bodies and nerve fibers in the brain which, together with physiological and electrophysiological studies, provide a better understanding of NPY neural circuitries.
Collapse
Affiliation(s)
- Michael L Wolak
- Department of Physiology and Biophysics, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
45
|
Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003; 37:649-61. [PMID: 12597862 DOI: 10.1016/s0896-6273(03)00063-1] [Citation(s) in RCA: 1164] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gastrointestinal peptide hormone ghrelin stimulates appetite in rodents and humans via hypothalamic actions. We discovered expression of ghrelin in a previously uncharacterized group of neurons adjacent to the third ventricle between the dorsal, ventral, paraventricular, and arcuate hypothalamic nuclei. These neurons send efferents onto key hypothalamic circuits, including those producing neuropeptide Y (NPY), Agouti-related protein (AGRP), proopiomelanocortin (POMC) products, and corticotropin-releasing hormone (CRH). Within the hypothalamus, ghrelin bound mostly on presynaptic terminals of NPY neurons. Using electrophysiological recordings, we found that ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH). We propose that at these sites, release of ghrelin may stimulate the release of orexigenic peptides and neurotransmitters, thus representing a novel regulatory circuit controlling energy homeostasis.
Collapse
Affiliation(s)
- Michael A Cowley
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bahh BE, Cao JQ, Beck-Sickinger AG, Colmers WF. Blockade of neuropeptide Y(2) receptors and suppression of NPY's anti-epileptic actions in the rat hippocampal slice by BIIE0246. Br J Pharmacol 2002; 136:502-9. [PMID: 12055128 PMCID: PMC1573380 DOI: 10.1038/sj.bjp.0704751] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neuropeptide Y (NPY) has been shown to suppress synaptic excitation in rat hippocampus by a presynaptic action. The Y(2) (Y(2)R) and the Y(5) (Y(5)R) receptors have both been implicated in this action. We used the non-peptide, Y(2)R-selective antagonist, BIIE0246, to test the hypothesis that the Y(2)R mediates both the presynaptic inhibitory and anti-epileptic actions of NPY in rat hippocampus in vitro. NPY and the Y(2)R-selective agonist, [ahx(5-24)]NPY, both inhibited the population excitatory postsynaptic potential (pEPSP) evoked in area CA1 by stratum radiatum stimulation in a concentration-dependent manner. BIIE0246 suppressed the inhibitory effects of both agonists, suppressing the maximal inhibition without causing a change in the agonist EC(50), in a manner inconsistent with competitive antagonism. BIIE0246 washed out from hippocampal slices extremely slowly. Application of agonist at high concentrations (1 - 3 microM) for prolonged periods did not alter the rate of washout, but did partially overcome the antagonism, inconsistent with an insurmountable antagonism by BIIE0246. In the stimulus train-induced bursting (STIB) model of ictal activity in hippocampal slices, both NPY and [ahx(5-24)]NPY inhibited primary afterdischarge (1 degrees AD) activity. BIIE0246 (100 nM) completely suppressed the actions of NPY and [ahx(5-24)]NPY in this model. In contrast, the potent Y(5)R-selective agonist, Ala(31)Aib(32)NPY, affected neither 1 degrees AD activity in the presence of BIIE0246, nor, by itself, even the pEPSP in CA1. BIIE0246 potently suppresses NPY actions in rat hippocampus, suggesting a dominant role for Y(2)R there. The apparently insurmountable antagonism observed may result from the lipophilic nature of the antagonist.
Collapse
Affiliation(s)
- Bouchaïb El Bahh
- Department of Pharmacology, University of Alberta, 9-36 Medical Science Building, Edmonton, AB, Canada, T6G 2H7
| | - Jeffrey Q Cao
- Department of Pharmacology, University of Alberta, 9-36 Medical Science Building, Edmonton, AB, Canada, T6G 2H7
| | | | - William F Colmers
- Department of Pharmacology, University of Alberta, 9-36 Medical Science Building, Edmonton, AB, Canada, T6G 2H7
- Author for correspondence:
| |
Collapse
|