1
|
Attiq A, Afzal S, Wahab HA, Ahmad W, Kandeel M, Almofti YA, Alameen AO, Wu YS. Cytokine Storm-Induced Thyroid Dysfunction in COVID-19: Insights into Pathogenesis and Therapeutic Approaches. Drug Des Devel Ther 2024; 18:4215-4240. [PMID: 39319193 PMCID: PMC11421457 DOI: 10.2147/dddt.s475005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 receptors (ACE2R) are requisite to enter the host cells for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACE2R is constitutive and functions as a type I transmembrane metallo-carboxypeptidase in the renin-angiotensin system (RAS). On thyroid follicular cells, ACE2R allows SARS-CoV-2 to invade the thyroid gland, impose cytopathic effects and produce endocrine abnormalities, including stiff back, neck pain, muscle ache, lethargy, and enlarged, inflamed thyroid gland in COVID-19 patients. Further damage is perpetuated by the sudden bursts of pro-inflammatory cytokines, which is suggestive of a life-threatening syndrome known as a "cytokine storm". IL-1β, IL-6, IFN-γ, and TNF-α are identified as the key orchestrators of the cytokine storm. These inflammatory mediators upregulate transcriptional turnover of nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK), paving the pathway for cytokine storm-induced thyroid dysfunctions including euthyroid sick syndrome, autoimmune thyroid diseases, and thyrotoxicosis in COVID-19 patients. Targeted therapies with corticosteroids (dexamethasone), JAK inhibitor (baricitinib), nucleotide analogue (remdesivir) and N-acetyl-cysteine have demonstrated effectiveness in terms of attenuating the severity and frequency of cytokine storm-induced thyroid dysfunctions, morbidity and mortality in severe COVID-19 patients. Here, we review the pathogenesis of cytokine storms and the mechanisms and pathways that establish the connection between thyroid disorder and COVID-19. Moreover, cross-talk interactions of signalling pathways and therapeutic strategies to address COVID-19-associated thyroid diseases are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrel Sheikh, 6860404, Egypt
| | - Yassir A Almofti
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Biochemistry, Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, 12217, Sudan
| | - Ahmed O Alameen
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Sudan
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
2
|
Kim B, Park YY, Lee JH. CXCL10 promotes melanoma angiogenesis and tumor growth. Anim Cells Syst (Seoul) 2024; 28:453-465. [PMID: 39268223 PMCID: PMC11391877 DOI: 10.1080/19768354.2024.2402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Upregulation of CXC motif chemokine 10 (CXCL10) in melanoma patients has been found to be associated with melanoma progression. However, the role of endogenous CXCL10 from the host in melanoma tumor growth remains unclear. In the present study, we found that host-derived endogenous CXCL10 production was dramatically augmented during subcutaneous B16F10 melanoma tumor growth and that host ablation of CXCL10 in Cxcl10-/- mice showed a decrease in both angiogenesis and tumor growth of B16F10 melanoma in vivo. Several signaling pathways involved in production of pro-angiogenic factors and tumor growth were activated by CXCL10 in B16F10 melanoma cells. CXCL10 increased expression of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor subunit-B (PDGF-B), fibroblast growth factor 2 (FGF2), hepatocyte growth factor (HGF), and angiopoietin 2 (Angpt2), in B16F10 melanoma cells, resulting in enhanced tube formation and proliferation of human umbilical vein endothelial cells in vitro. In addition, CXCL10 directly enhanced B16F10 melanoma tumor growth in an in vitro three-dimensional cell culture system. Together, our findings reveal that amplified host-derived endogenous CXCL10 is critical for B16F10 melanoma angiogenesis and tumor growth. Therefore, CXCL10 might represent a therapeutic target for melanoma.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun-Yong Park
- Department of life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
- Department of Biomedical Sciences, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
3
|
Liu J, Liu D, Sun Q, Su Y, Tang L, Liang H, Ye F, Chen Y, Zhang Q. Plasma proteomic signature of neonates in the context of placental histological chorioamnionitis. BMJ Paediatr Open 2024; 8:e002708. [PMID: 39237269 PMCID: PMC11381644 DOI: 10.1136/bmjpo-2024-002708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Placental histological chorioamnionitis (HCA) is recognised as a significant risk factor for various adverse neonatal outcomes. This study aims to explore if the inflammatory protein levels in neonates were associated with HCA. METHODS All women with singleton births from February 2020 to November 2022 were selected and divided into three groups based on maternal placental pathology results: the HCA-stage 1 group (n=24), the HCA-stage 2 group (n=16) and the control group (n=17). Olink Target 96 Inflammation Panel was used to detect the levels of 92 inflammation-related proteins in the plasma of newborns from all three groups within 24 hours after birth. We compared the protein profiles through differential protein expression analysis. RESULTS A total of six inflammation-related proteins exhibited significant differences between the HCA-stage 1 and the control group. Specifically, TRANCE and CST5 were significantly upregulated (p=0.006, p=0.025, respectively), whereas the expression of IFN-gamma, CXCL9, CXCL10 and CCL19 was significantly downregulated (p=0.040, p=0.046, p=0.007, p=0.006, respectively). HCA-stage 2 newborns had significantly elevated levels of CD5 and CD6 and decreased IFN-gamma, CXCL10 and CCL19 in comparison to controls. These differential proteins were significantly enriched in positive regulation of cytokine activity, leucocyte chemotaxis and positive regulation of T-cell activation pathway-related Gene Ontology terms. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that viral protein interaction with cytokine and cytokine receptor, interleukin-17/NF-kappa B/toll-like receptor/chemokine signalling pathway, and cytokine-cytokine receptor interaction exhibited significant differences. Spearman analysis demonstrated a significant positive connection between the levels of CD6 and CD5 proteins, not only in neonatal leucocytes but also in maternal leucocytes. Additionally, CD6 was found to be associated with neonatal birth weight. CONCLUSIONS In conclusion, placental histological changes associated with chorioamnionitis appear to influence the expression of inflammatory proteins in offspring. Notably, CD6 and CD5 proteins may potentially contribute to the pathogenesis of HCA-related neonatal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Die Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Sun
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yunchao Su
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Lijuan Tang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Haixiao Liang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Coperchini F, Greco A, Teliti M, Croce L, Chytiris S, Magri F, Gaetano C, Rotondi M. Inflamm-ageing: How cytokines and nutrition shape the trajectory of ageing. Cytokine Growth Factor Rev 2024:S1359-6101(24)00065-0. [PMID: 39237438 DOI: 10.1016/j.cytogfr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Population ageing is increasing in prevalence in most developed countries. Ageing is the decline of functional properties at the cellular, tissue, and organ level. Biochemical changes that occur in all organisms that experience biological ageing are referred to as the "Hallmarks of ageing". Inflammation is a common denominator of the hallmarks of ageing, being mechanistically involved in most age-related health consequences. Inflamm-ageing refers to age-related changes in the inflammatory and immune systems which somehow drive the ageing process towards healthy or unhealthy ageing. Current evidences, support that, reversing the age-related pro-inflammatory status of inflamm-ageing, is able to modulate most hallmarks of ageing. Inflamm-ageing is associated with increased levels of pro-inflammatory molecules (e.g. cytokines, chemokines), ultimately producing a chronic low-grade inflammatory state typically observed in older individuals. It is commonly accepted that, the balance between pro- and anti-inflammatory cytokines/chemokines is one of the factors determining whether healthy or unhealthy ageing occurs. Malnutrition and nutritional imbalances, are highly prevalent in the elderly, playing a role in driving the balance of pro- and anti-inflammatory immunoactive molecules. In particular, malnutrition is a major risk factor for sarcopenia, a phenomenon characterized by loss of muscle mass, which is often referred to as the biological basis for frailty. Given the close relationship between malnutrition and sarcopenia, there is also evidence for a link between malnutrition and frailty. Indeed, changes in cytokine/chemokine levels in elderly patients with malnutrition were demonstrated. The demonstration that specific cytokines play a role in modulating appetite and nutrient sensing and taste reception, provided further evidence for the existence of a link between inflamm-ageing, nutrition and cytokines in shaping the trajectory of ageing. The present review will overview current evidence supporting the role of specific circulating cytokines and chemokines in the relationship between ageing, inflammation, and malnutrition.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy.
| |
Collapse
|
5
|
Wu S, Yi J, Wu B. Casual associations of thyroid function with inflammatory bowel disease and the mediating role of cytokines. Front Endocrinol (Lausanne) 2024; 15:1376139. [PMID: 38872961 PMCID: PMC11169666 DOI: 10.3389/fendo.2024.1376139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Background Previous observational epidemiological studies have suggested a potential association between thyroid function and inflammatory bowel disease (IBD). However, the findings remain inconclusive, and whether this association is causal remains uncertain. The objective of this study is to investigate the causal association between thyroid function and IBD. Methods Genome-wide association studies (GWAS) involving seven indicators of thyroid function, IBD, and 41 cytokines were analyzed. Bidirectional two-sample Mendelian randomization (MR) and multivariable MR were conducted to examine the causal relationship between thyroid function and IBD and to explore the potential mechanisms underlying the associations. Results Genetically determined hypothyroidism significantly reduced the risk of CD (odds ratio [OR] = 0.761, 95% CI: 0.655-0.882, p < 0.001). Genetically determined reference-range TSH was found to have a suggestive causal effect on IBD (OR = 0.931, 95% CI: 0.888-0.976, p = 0.003), (Crohn disease) CD (OR = 0.915, 95% CI: 0.857-0.977, p = 0.008), and ulcerative colitis (UC) (OR =0.910, 95% CI: 0.830-0.997, p = 0.043). In reverse MR analysis, both IBD and CD appeared to have a suggestive causal effect on the fT3/fT4 ratio (OR = 1.002, p = 0.013 and OR = 1.001, p = 0.015, respectively). Among 41 cytokines, hypothyroidism had a significant impact on interferon-inducible protein-10 (IP-10) (OR = 1.465, 95% CI: 1.094-1.962, p = 0.010). The results of multivariable MR showed that IP-10 may mediate the causal effects of hypothyroidism with CD. Conclusion Our results suggest that an elevated TSH level reduces the risk of CD, with IP-10 potentially mediating this association. This highlights the pituitary-thyroid axis could serve as a potential therapeutic strategy for CD.
Collapse
Affiliation(s)
| | | | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
7
|
Welsh N, Disano K, Linzey M, Pike SC, Smith AD, Pachner AR, Gilli F. CXCL10/IgG1 Axis in Multiple Sclerosis as a Potential Predictive Biomarker of Disease Activity. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200200. [PMID: 38346270 DOI: 10.1212/nxi.0000000000200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a heterogeneous disease, and its course is difficult to predict. Prediction models can be established by measuring intrathecally synthesized proteins involved in inflammation, glial activation, and CNS injury. METHODS To determine how these intrathecal proteins relate to the short-term, i.e., 12 months, disease activity in relapsing-remitting MS (RRMS), we measured the intrathecal synthesis of 46 inflammatory mediators and 14 CNS injury or glial activation markers in matched serum and CSF samples from 47 patients with MS (pwMS), i.e., 23 RRMS and 24 clinically isolated syndrome (CIS), undergoing diagnostic lumbar puncture. Subsequently, all pwMS were followed for ≥12 months in a retrospective follow-up study and ultimately classified into "active", i.e., developing clinical and/or radiologic disease activity, n = 18) or "nonactive", i.e., not having disease activity, n = 29. Disease activity in patients with CIS corresponded to conversion to RRMS. Thus, patients with CIS were subclassified as "converters" or "nonconverters" based on their conversion status at the end of a 12-month follow-up. Twenty-seven patients with noninflammatory neurologic diseases were included as negative controls. Data were subjected to differential expression analysis and modeling techniques to define the connectivity arrangement (network) between neuroinflammation and CNS injury relevant to short-term disease activity in RRMS. RESULTS Lower age and/or higher CXCL13 levels positively distinguished active/converting vs nonactive/nonconverting patients. Network analysis significantly improved the prediction of short-term disease activity because active/converting patients featured a stronger positive connection between IgG1 and CXCL10. Accordingly, analysis of disease activity-free survival demonstrated that pwMS, both RRMS and CIS, with a lower or negative IgG1-CXCL10 correlation, have a higher probability of activity-free survival than the patients with a significant correlation (p < 0.0001, HR ≥ 2.87). DISCUSSION Findings indicate that a significant IgG1-CXCL10 positive correlation predicts the risk of short-term disease activity in patients with RRMS and CIS. Thus, the present results can be used to develop a predictive model for MS activity and conversion to RRMS.
Collapse
Affiliation(s)
- Nora Welsh
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Krista Disano
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Michael Linzey
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Steven C Pike
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Andrew D Smith
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Andrew R Pachner
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Francesca Gilli
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| |
Collapse
|
8
|
Shahedi F, Foma AM, Mahmoudi-Aznaveh A, Mazlomi MA, Azizi Z, Khorramizadeh MR. Differentiation of Pancreatic Beta Cells: Dual Acting of Inflammatory Factors. Curr Stem Cell Res Ther 2024; 19:832-839. [PMID: 37150985 DOI: 10.2174/1574888x18666230504093649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
In the past decades, scientists have made outstanding efforts to treat diabetes. However, diabetes treatment is still far from satisfactory due to the complex nature of the disease and the challenges encountered in resolving it. Inflammatory factors are key regulators of the immune system's response to pathological insults, organ neogenesis, rejuvenation of novel cells to replace injured cells and overwhelming disease conditions. Currently, the available treatments for type 1 diabetes include daily insulin injection, pancreatic beta cell or tissue transplantation, and gene therapy. Cell therapy, exploiting differentiation, and reprogramming various types of cells to generate pancreatic insulin-producing cells are novel approaches for the treatment of type 1 diabetes. A better understanding of the inflammatory pathways offers valuable and improved therapeutic options to provide more advanced and better treatments for diabetes. In this review, we investigated different types of inflammatory factors that participate in the pathogenesis of type 1 diabetes, their possible dual impacts on the differentiation, reprogramming, and fusion of other stem cell lines into pancreatic insulin-producing beta cells, and the possibility of applying these factors to improve the treatment of this disease.
Collapse
Affiliation(s)
- Faeze Shahedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arron Munggela Foma
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mahmoudi-Aznaveh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Dwivedi AK, Gornalusse GG, Siegel DA, Barbehenn A, Thanh C, Hoh R, Hobbs KS, Pan T, Gibson EA, Martin J, Hecht F, Pilcher C, Milush J, Busch MP, Stone M, Huang ML, Reppetti J, Vo PM, Levy CN, Roychoudhury P, Jerome KR, Hladik F, Henrich TJ, Deeks SG, Lee SA. A cohort-based study of host gene expression: tumor suppressor and innate immune/inflammatory pathways associated with the HIV reservoir size. PLoS Pathog 2023; 19:e1011114. [PMID: 38019897 PMCID: PMC10712869 DOI: 10.1371/journal.ppat.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.
Collapse
Affiliation(s)
- Ashok K. Dwivedi
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Germán G. Gornalusse
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - David A. Siegel
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Alton Barbehenn
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Cassandra Thanh
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Kristen S. Hobbs
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Tony Pan
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Erica A. Gibson
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, California, United States of America
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Jeffrey Milush
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Michael P. Busch
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Julieta Reppetti
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO- Houssay), Buenos Aires, Argentina
| | - Phuong M. Vo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Claire N. Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Timothy J. Henrich
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
11
|
Spinelli FR, Berti R, Farina G, Ceccarelli F, Conti F, Crescioli C. Exercise-induced modulation of Interferon-signature: a therapeutic route toward management of Systemic Lupus Erythematosus. Autoimmun Rev 2023; 22:103412. [PMID: 37597604 DOI: 10.1016/j.autrev.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a multisystemic autoimmune disorder characterized by flares-ups/remissions with a complex clinical picture related to disease severity and organ/tissue injury, which, if left untreated, may result in permanent damage. Enhanced fatigue and pain perception, worsened quality of life (QoL) and outcome are constant, albeit symptoms may differ. An aberrant SLE immunoprofiling, note as "interferon (IFN)α-signature", is acknowledged to break immunotolerance. Recently, a deregulated "IFNγ-signature" is suggested to silently precede/trigger IFNα profile before clinical manifestations. IFNα- and IFNγ-over-signaling merge in cytokine/chemokine overexpression exacerbating autoimmunity. Remission achievement and QoL improvement are the main goals. The current therapy (i.e., corticosteroids, immunosuppressants) aims to downregulate immune over-response. Exercise could be a safe treatment due to its ever-emerging ability to shape and re-balance immune system without harmful side-effects; in addition, it improves cardiorespiratory capacity and musculoskeletal strength/power, usually impaired in SLE. Nevertheless, exercise is not yet included in SLE care plans. Furthermore, due to the fear to worsening pain/fatigue, SLE subjects experience kinesiophobia and sedentary lifestyle, worsening physical health. Training SLE patients to exercise is mandatory to fight inactive behavior and ameliorate health. This review aims to focus the attention on the role of exercise as a non-pharmacological therapy in SLE, considering its ability to mitigate IFN-signature and rebalance (auto)immune response. To this purpose, the significance of IFNα- and IFNγ-signaling in SLE etiopathogenesis will be addressed first and discussed thereafter as biotarget of exercise. Comments are addressed on the need to make aware all SLE care professional figures to promote exercise for health patients.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Riccardo Berti
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Gabriele Farina
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Fulvia Ceccarelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Fabrizio Conti
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Clara Crescioli
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy.
| |
Collapse
|
12
|
Shin C, Baek IC, Cho WK, Kim TG, Suh BK. Comprehensive analysis of chemokine gene polymorphisms in Korean children with autoimmune thyroid disease. Sci Rep 2023; 13:15642. [PMID: 37730733 PMCID: PMC10511635 DOI: 10.1038/s41598-023-42021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Chemokines are chemotactic cytokines that can cause directed migration of leukocytes. The aim of this study was to examine differences in single nucleotide polymorphisms (SNP) of chemokine in AITD patients compared to normal controls. A total of 86 Korean pediatric patients were included in the patient group and 183 adults were included in the normal control group. To compare influences of several chemokine gene polymorphisms, 25 SNPs in 16 chemokine genes were analyzed. Genotype frequencies of CCL11(rs3744508)AA(OR = 6.9) and CCR2(rs1799864)AA(OR = 3.8) were higher in the AITD patients than in the controls, whereas CCL17(rs223828)CC was lower in the AITD patients than in the controls(OR = 0.4). In comparison between Graves' disease (GD) patients and controls, genotype frequency of CCL17(rs223828)CC(OR = 0.4) was lower in the GD group, whereas those of CCR2(rs1799864)AA(OR = 4.8) were higher in the GD group. The genotype frequency of CCL11(rs3744508)AA(OR = 11.3) was higher in Hashimoto's thyroiditis (HT) patients, whereas that of CXCL8(rs2227306)CC(OR = 0.4) was lower in HT patients. Polymorphisms of CCL11(rs3744508), CCL17(rs223828), and CCR2(rs1799864) might be associated with AITD, with CCL17(rs223828), CCR2(rs1799864) and CXCR2(rs2230054, rs1126579) affecting GD and CCL11(rs3744508) and CXCL8(rs2227306) affecting HT in Korean children.
Collapse
Affiliation(s)
- Chungwoo Shin
- Department of Pediatrics, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 065941, Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, 065941, Korea.
| | - Won Kyoung Cho
- Department of Pediatrics, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 065941, Korea.
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, 065941, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 065941, Korea
| | - Byung-Kyu Suh
- Department of Pediatrics, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 065941, Korea
| |
Collapse
|
13
|
Rahmat-Zaie R, Amini J, Haddadi M, Beyer C, Sanadgol N, Zendedel A. TNF-α/STAT1/CXCL10 mutual inflammatory axis that contributes to the pathogenesis of experimental models of multiple sclerosis: A promising signaling pathway for targeted therapies. Cytokine 2023; 168:156235. [PMID: 37267677 DOI: 10.1016/j.cyto.2023.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility. METHODS The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum. RESULTS Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1β/CXCL10 cytokines was confirmed in all models in a relatively similar pattern. CONCLUSION For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.
Collapse
Affiliation(s)
- Roya Rahmat-Zaie
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
14
|
Caetano AJ, Redhead Y, Karim F, Dhami P, Kannambath S, Nuamah R, Volponi AA, Nibali L, Booth V, D'Agostino EM, Sharpe PT. Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10. eLife 2023; 12:81525. [PMID: 36648332 PMCID: PMC9897724 DOI: 10.7554/elife.81525] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
The interplay among different cells in a tissue is essential for maintaining homeostasis. Although disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.
Collapse
Affiliation(s)
- Ana J Caetano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Farah Karim
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
- Department of Endodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Pawan Dhami
- NIHR BRC Genomics Research Platform, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London School of Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Shichina Kannambath
- NIHR BRC Genomics Research Platform, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London School of Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Rosamond Nuamah
- NIHR BRC Genomics Research Platform, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London School of Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Ana A Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Luigi Nibali
- Department of Periodontology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Veronica Booth
- Department of Periodontology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | | | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and GeneticsBrnoCzech Republic
| |
Collapse
|
15
|
Dwivedi AK, Siegel DA, Thanh C, Hoh R, Hobbs KS, Pan T, Gibson EA, Martin J, Hecht F, Pilcher C, Milush J, Busch MP, Stone M, Huang ML, Levy CN, Roychoudhury P, Hladik F, Jerome KR, Henrich TJ, Deeks SG, Lee SA. Differences in expression of tumor suppressor, innate immune, inflammasome, and potassium/gap junction channel host genes significantly predict viral reservoir size during treated HIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523535. [PMID: 36712077 PMCID: PMC9882059 DOI: 10.1101/2023.01.10.523535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective antiretroviral therapy (ART). Most prior host genetic HIV studies have focused on identifying DNA polymorphisms (e.g., CCR5Δ32 , MHC class I alleles) associated with viral load among untreated "elite controllers" (~1% of HIV+ individuals who are able to control virus without ART). However, there have been few studies evaluating host genetic predictors of viral control for the majority of people living with HIV (PLWH) on ART. We performed host RNA sequencing and HIV reservoir quantification (total DNA, unspliced RNA, intact DNA) from peripheral CD4+ T cells from 191 HIV+ ART-suppressed non-controllers. Multivariate models included covariates for timing of ART initiation, nadir CD4+ count, age, sex, and ancestry. Lower HIV total DNA (an estimate of the total reservoir) was associated with upregulation of tumor suppressor genes NBL1 (q=0.012) and P3H3 (q=0.012). Higher HIV unspliced RNA (an estimate of residual HIV transcription) was associated with downregulation of several host genes involving inflammasome ( IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9 , CXCL3, CXCL10 ) and innate immune ( TLR7 ) signaling, as well as novel associations with potassium ( KCNJ2 ) and gap junction ( GJB2 ) channels, all q<0.05. Gene set enrichment analyses identified significant associations with TLR4/microbial translocation (q=0.006), IL-1β/NRLP3 inflammasome (q=0.008), and IL-10 (q=0.037) signaling. HIV intact DNA (an estimate of the "replication-competent" reservoir) demonstrated trends with thrombin degradation ( PLGLB1 ) and glucose metabolism ( AGL ) genes, but data were (HIV intact DNA detected in only 42% of participants). Our findings demonstrate that among treated PLWH, that inflammation, innate immune responses, bacterial translocation, and tumor suppression/cell proliferation host signaling play a key role in the maintenance of the HIV reservoir during ART. Further data are needed to validate these findings, including functional genomic studies, and expanded epidemiologic studies in female, non-European cohorts. Author Summary Although lifelong HIV antiretroviral therapy (ART) suppresses virus, the major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective ART, "the HIV reservoir." HIV eradication strategies have focused on eliminating residual virus to allow for HIV remission, but HIV cure trials to date have thus far failed to show a clinically meaningful reduction in the HIV reservoir. There is an urgent need for a better understanding of the host-viral dynamics during ART suppression to identify potential novel therapeutic targets for HIV cure. This is the first epidemiologic host gene expression study to demonstrate a significant link between HIV reservoir size and several well-known immunologic pathways (e.g., IL-1β, TLR7, TNF-α signaling pathways), as well as novel associations with potassium and gap junction channels (Kir2.1, connexin 26). Further data are needed to validate these findings, including functional genomic studies and expanded epidemiologic studies in female, non-European cohorts.
Collapse
|
16
|
Chen J, Zhou Y, Sun Y, Yuan S, Kalla R, Sun J, Zhao J, Wang L, Chen X, Zhou X, Dai S, Zhang Y, Ho GT, Xia D, Cao Q, Liu Z, Larsson SC, Wang X, Ding K, Halfvarson J, Li X, Theodoratou E, Satsangi J. Bi-directional Mendelian randomization analysis provides evidence for the causal involvement of dysregulation of CXCL9, CCL11 and CASP8 in the pathogenesis of ulcerative colitis. J Crohns Colitis 2022; 17:777-785. [PMID: 36576886 PMCID: PMC10155748 DOI: 10.1093/ecco-jcc/jjac191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Systemic inflammation is well-recognized to be associated with ulcerative colitis (UC), but whether these effects are causal or consequential remains unclear. We aimed to define potential causal relationship of cytokine dysregulation with different tiers of evidence. METHODS We firstly synthesized serum proteomic profiling data from two multi-centered observational studies, in which a panel of systemic inflammatory proteins was analyzed to examine their associations with UC risk. To further dissect observed associations, we then performed a bidirectional two-sample Mendelian randomization (TSMR) analysis from both forward and reverse directions using five genome-wide association study (GWAS) summary level data for serum proteomic profiles and the largest GWAS of 28,738 European-ancestry individuals for UC risk. RESULTS Pooled analysis of serum proteomic data identified 14 proteins to be associated with the risk of UC. Forward MR analysis using only cis-acting protein quantitative trait loci (cis-pQTLs) or trans-pQTLs further validated causal associations of two chemokines and the increased risk of UC: C-X-C motif chemokine ligand 9 (CXCL9) (OR, 1.45, 95% CI, 1.08-1.95, P=.012) and C-C motif chemokine ligand 11 (CCL11) (OR, 1.14, 95%CI: 1.09-1.18, P=3.89×10 -10). Using both cis- and trans-acting pQTLs, an association of caspase-8 (CASP8) (OR, 1.04, 95% CI, 1.03-1.05, P= 7.63×10 -19) was additionally identified. Reverse MR did not find any influence of genetic predisposition to UC on any of these three inflammation proteins. CONCLUSIONS Pre-existing elevated levels of CXCL9, CCL11 and CASP8 may play a role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhao Sun
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Yuan
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Dajing Xia
- Department of Toxicology of School of Public Health, & Center of Immunology & Infection, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
17
|
Molecular Mimicry Analyses Unveiled the Human Herpes Simplex and Poxvirus Epitopes as Possible Candidates to Incite Autoimmunity. Pathogens 2022; 11:pathogens11111362. [PMID: 36422613 PMCID: PMC9696880 DOI: 10.3390/pathogens11111362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical epidemiological studies have reported that viral infections cause autoimmune pathology in humans. Host-pathogen protein sequences and structure-based molecular mimicry cause autoreactive T cells to cross-activate. The aim of the current study was to implement immunoinformatics approaches to infer sequence- and structure-based molecular mimicry between viral and human proteomic datasets. The protein sequences of all the so far known human-infecting viruses were obtained from the VIPR database, and complete human proteome data were retrieved from the NCBI repository. Based on a predefined, stringent threshold of comparative sequence analyses, 24 viral proteins were identified with significant sequence similarity to human proteins. PathDIP identified the enrichment of these homologous proteins in nine metabolic pathways with a p-value < 0.0001. Several viral and human mimic epitopes from these homologous proteins were predicted as strong binders of human HLA alleles, with IC50 < 50 nM. Downstream molecular docking analyses identified that lead virus-human homologous epitopes feasibly interact with HLA and TLR4 types of immune receptors. The vast majority of these top-hit homolog epitopic peptides belong to the herpes simplex and poxvirus families. These lead epitope biological sequences and 3D structural-based molecular mimicry may be promising for interpreting herpes simplex virus and poxvirus infection-mediated autoimmune disorders in humans.
Collapse
|
18
|
Raza S, Rajak S, Tewari A, Gupta P, Chattopadhyay N, Sinha RA, Chakravarti B. Multifaceted role of chemokines in solid tumors: From biology to therapy. Semin Cancer Biol 2022; 86:1105-1121. [PMID: 34979274 PMCID: PMC7613720 DOI: 10.1016/j.semcancer.2021.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are small secretory chemotactic cytokines that control the directed migration of immune cells. Chemokines are involved in both anti-and pro-tumorigenic immune responses. Accumulating evidence suggests that the balance between these responses is influenced by several factors such as the stage of tumorigenesis, immune cell activation, recruitment of immune activating or immunosuppressive cells in the tumor microenvironment (TME), and chemokine receptor expression on effector and regulatory target cells. Cancer cells engage in a complex network with their TME components via several factors including growth factors, cytokines and chemokines that are critical for the growth of primary tumor and metastasis. However, chemokines show a multifaceted role in tumor progression including maintenance of stem-like properties, tumor cell proliferation/survival/senescence, angiogenesis, and metastasis. The heterogeneity of solid tumors in primary and metastatic cancers presents a challenge to the development of successful cancer therapy. Despite extensive research on how solid tumors escape immune cell-mediated anti-tumor response, finding an effective therapy for metastatic cancer still remains a challenge. This review discusses the multifarious roles of chemokines in solid tumors including various chemokine signaling pathways such as CXCL8-CXCR1/2, CXCL9, 10, 11-CXCR3, CXCR4-CXCL12, CCL(X)-CCR(X) in primary and metastatic cancers. We further discuss the novel therapeutic approaches that have been developed by major breakthroughs in chemokine research to treat cancer patients by the strategic blockade/activation of these signaling axes alone or in combination with immunotherapies.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
19
|
Dynamics of Inflammatory and Neurodegenerative Biomarkers after Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231810946. [PMID: 36142860 PMCID: PMC9503241 DOI: 10.3390/ijms231810946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly efficient treatment of multiple sclerosis (MS), and hence it likely normalizes pathological and/or enhances beneficial processes in MS. The disease pathomechanisms include neuroinflammation, glial cell activation and neuronal damage. We studied biomarkers that in part reflect these, like markers for neuroinflammation (C-X-C motif chemokine ligand (CXCL) 9, CXCL10, CXCL13, and chitinase 3-like 1 (CHI3L1)), glial perturbations (glial fibrillary acidic protein (GFAP) and in part CHI3L1), and neurodegeneration (neurofilament light chain (NfL)) by enzyme-linked immunosorbent assays (ELISA) and single-molecule array assay (SIMOA) in the serum and cerebrospinal fluid (CSF) of 32 MS patients that underwent aHSCT. We sampled before and at 1, 3, 6, 12, 24 and 36 months after aHSCT for serum, as well as before and 24 months after aHSCT for CSF. We found a strong increase of serum CXCL10, NfL and GFAP one month after the transplantation, which normalized one and two years post-aHSCT. CXCL10 was particularly increased in patients that experienced reactivation of cytomegalovirus (CMV) infection, but not those with Epstein-Barr virus (EBV) reactivation. Furthermore, patients with CMV reactivation showed increased Th1 phenotype in effector memory CD4+ T cells. Changes of the other serum markers were more subtle with a trend for an increase in serum CXCL9 early post-aHSCT. In CSF, GFAP levels were increased 24 months after aHSCT, which may indicate sustained astroglia activation 24 months post-aHSCT. Other CSF markers remained largely stable. We conclude that MS-related biomarkers indicate neurotoxicity early after aHSCT that normalizes after one year while astrocyte activation appears increased beyond that, and increased serum CXCL10 likely does not reflect inflammation within the central nervous system (CNS) but rather occurs in the context of CMV reactivation or other infections post-aHSCT.
Collapse
|
20
|
Hashimoto Encephalopathy—Still More Questions than Answers. Cells 2022; 11:cells11182873. [PMID: 36139446 PMCID: PMC9496753 DOI: 10.3390/cells11182873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
The normal function of the nervous system is conditioned by the undisturbed function of the thyroid gland and its hormones. Comprehensive clinical manifestations, including neurological disorders in Hashimoto’s thyroiditis, have long been understood and, in recent years, attention has been paid to neurological symptoms in euthyroid patients. Hashimoto encephalopathy is a controversial and poorly understood disease entity and the pathogenesis of the condition remains unclear. We still derive our understanding of this condition from case reports, but on the basis of these, a clear clinical picture of this entity can be proposed. Based on a review of the recent literature, the authors present the current view on the subject, discuss controversies and questions that still remain unanswered, as well as ongoing research in this area and the results of our own work in patients with Hashimoto’s thyroiditis.
Collapse
|
21
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
22
|
Biodetection Techniques for Quantification of Chemokines. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokines are a class of cytokine whose special properties, together with their involvement and relevant role in various diseases, make them a restricted group of biomarkers suitable for diagnosis and monitoring. Despite their importance, biodetection techniques dedicated to the selective determination of one or more chemokines are very scarce. For some years now, the critical diagnosis of inflammatory diseases by detecting both cytokine and chemokine biomarkers, has had a strong impact on the development of multiple detection platforms. However, it would be desirable to implement methodologies with a higher degree of selectivity for chemokines, in order to provide more precise information. In addition, better development of biosensor technology applied to this specific field would make it possible to address the main challenges of detection methods for several diseases with a high incidence in the population, avoiding high costs and low sensitivity. Taking this into account, this review aims to present the state of the art of chemokine biodetection techniques and emphasize the role of these systems in the prevention, monitoring and treatment of various diseases associated with chemokines as a starting point for future developments that are also analyzed throughout the article.
Collapse
|
23
|
Lenti MV, Rossi CM, Melazzini F, Gastaldi M, Bugatti S, Rotondi M, Bianchi PI, Gentile A, Chiovato L, Montecucco C, Corazza GR, Di Sabatino A. Seronegative autoimmune diseases: A challenging diagnosis. Autoimmun Rev 2022; 21:103143. [PMID: 35840037 DOI: 10.1016/j.autrev.2022.103143] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases (AID) are increasingly prevalent conditions which comprise more than 100 distinct clinical entities that are responsible for a great disease burden worldwide. The early recognition of these diseases is key for preventing their complications and for tailoring proper management. In most cases, autoantibodies, regardless of their potential pathogenetic role, can be detected in the serum of patients with AID, helping clinicians in making a definitive diagnosis and allowing screening strategies for early -and sometimes pre-clinical- diagnosis. Despite their undoubted crucial role, in a minority of cases, patients with AID may not show any autoantibody, a condition that is referred to as seronegative AID. Suboptimal accuracy of the available laboratory tests, antibody absorption, immunosuppressive therapy, immunodeficiencies, antigen exhaustion, and immunosenescence are the main possible determinants of seronegative AID. Indeed, in seronegative AID, the diagnosis is more challenging and must rely on clinical features and on other available tests, often including histopathological evaluation and radiological diagnostic tests. In this review, we critically dissect, in a narrative fashion, the possible causes of seronegativity, as well as the diagnostic and management implications, in several AID including autoimmune gastritis, celiac disease, autoimmune liver disease, rheumatoid arthritis, autoimmune encephalitis, myasthenia gravis, Sjögren's syndrome, antiphospholipid syndrome, and autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Federica Melazzini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Serena Bugatti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Unit of Rheumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Paola Ilaria Bianchi
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Antonella Gentile
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Luca Chiovato
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Carlomaurizio Montecucco
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Unit of Rheumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Gino Roberto Corazza
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
24
|
Rotondi M, Chiovato L. Preexisting or Concomitant Thyroiditis in Papillary Thyroid Cancer: Something More Than a Mere Issue of Timing? J Clin Endocrinol Metab 2022; 107:e3084-e3085. [PMID: 34928387 DOI: 10.1210/clinem/dgab906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, I-27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, I-27100 Pavia, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, I-27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
25
|
Gibellini L, De Biasi S, Meschiari M, Gozzi L, Paolini A, Borella R, Mattioli M, Lo Tartaro D, Fidanza L, Neroni A, Busani S, Girardis M, Guaraldi G, Mussini C, Cozzi-Lepri A, Cossarizza A. Plasma Cytokine Atlas Reveals the Importance of TH2 Polarization and Interferons in Predicting COVID-19 Severity and Survival. Front Immunol 2022; 13:842150. [PMID: 35386702 PMCID: PMC8979161 DOI: 10.3389/fimmu.2022.842150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Although it is now widely accepted that host inflammatory response contributes to COVID-19 immunopathogenesis, the pathways and mechanisms driving disease severity and clinical outcome remain poorly understood. In the effort to identify key soluble mediators that characterize life-threatening COVID-19, we quantified 62 cytokines, chemokines and other factors involved in inflammation and immunity in plasma samples, collected at hospital admission, from 80 hospitalized patients with severe COVID-19 disease who were stratified on the basis of clinical outcome (mechanical ventilation or death by day 28). Our data confirm that age, as well as neutrophilia, lymphocytopenia, procalcitonin, D-dimer and lactate dehydrogenase are strongly associated with the risk of fatal COVID-19. In addition, we found that cytokines related to TH2 regulations (IL-4, IL-13, IL-33), cell metabolism (lep, lep-R) and interferons (IFNα, IFNβ, IFNγ) were also predictive of life-threatening COVID-19.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Licia Gozzi
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Stefano Busani
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, London, United Kingdom
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
26
|
Yin J, Wu Y, Yang X, Gan L, Xue J. Checkpoint Inhibitor Pneumonitis Induced by Anti-PD-1/PD-L1 Therapy in Non-Small-Cell Lung Cancer: Occurrence and Mechanism. Front Immunol 2022; 13:830631. [PMID: 35464480 PMCID: PMC9021596 DOI: 10.3389/fimmu.2022.830631] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Immune checkpointty inhibitors (ICIs), particularly those targeting programmed death 1 (PD-1) and anti-programmed death ligand 1 (PD-L1), enhance the antitumor effect by restoring the function of the inhibited effector T cells and produce durable responses in a large variety of metastatic and late patients with non-small-cell lung cancer. Although often well tolerated, the activation of the immune system results in side effects known as immune-related adverse events (irAEs), which can affect multiple organ systems, including the lungs. The occurrence of severe pulmonary irAEs, especially checkpoint inhibitor pneumonitis (CIP), is rare but has extremely high mortality and often overlaps with the respiratory symptoms and imaging of primary tumors. The development of CIP may be accompanied by radiation pneumonia and infectious pneumonia, leading to the simultaneous occurrence of a mixture of several types of inflammation in the lungs. However, there is a lack of authoritative diagnosis, grading criteria and clarified mechanisms of CIP. In this article, we review the incidence and median time to onset of CIP in patients with non-small-cell lung cancer treated with PD-1/PD-L1 blockade in clinical studies. We also summarize the clinical features, potential mechanisms, management and predictive biomarkers of CIP caused by PD-1/PD-L1 blockade in non-small-cell lung cancer treatment.
Collapse
Affiliation(s)
- Jianqiong Yin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanjun Wu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Olivarria G, Lane TE. Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection. Expert Rev Clin Immunol 2022; 18:57-66. [PMID: 34964406 PMCID: PMC8851429 DOI: 10.1080/1744666x.2022.2017282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Coronaviruses are a large family of positive-stranded nonsegmented RNA viruses with genomes of 26-32 kilobases in length. Human coronaviruses are commonly associated with mild respiratory illness; however, the past three decades have seen the emergence of severe acute respiratory coronavirus (SARS-CoV), middle eastern respiratory coronavirus (MERS-CoV), and SARS-CoV-2 which is the etiologic agent for COVID-19. Severe forms of COVID-19 include acute respiratory distress syndrome (ARDS) associated with cytokine release syndrome that can culminate in multiorgan failure and death. Among the proinflammatory factors associated with severe COVID-19 are the chemokines CCL2, CCL3, CXCL8, and CXCL10. Infection of susceptible mice with murine coronaviruses, such as mouse hepatitis virus (MHV), elicits a similar chemokine response profile as observed in COVID-19 patients and these in vivo models have been informative and show that targeting chemokines reduces the severity of inflammation in target organs. AREAS COVERED PubMed was used using keywords: Chemokines and coronaviruses; Chemokines and mouse hepatitis virus; Chemokines and COVID-19. Clinicaltrials.gov was used using keywords: COVID-19 and chemokines; COVID-19 and cytokines; COVID-19 and neutrophil. EXPERT OPINION Chemokines and chemokine receptors are clinically relevant therapeutic targets for reducing coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Gema Olivarria
- Department of Neurobiology & Behavior, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, University of California, Irvine 92697
- Department of Molecular Biology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Center for Virus Research, University of California, Irvine 92697
| |
Collapse
|
28
|
Coperchini F, Ricci G, Croce L, Denegri M, Ruggiero R, Villani L, Magri F, Chiovato L, Rotondi M. Modulation of ACE-2 mRNA by inflammatory cytokines in human thyroid cells: a pilot study. Endocrine 2021; 74:638-645. [PMID: 34224085 PMCID: PMC8256224 DOI: 10.1007/s12020-021-02807-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. PURPOSE Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. METHODS Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. RESULTS The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. CONCLUSIONS The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy
| | - Gianluca Ricci
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy
| | - Laura Croce
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, PV, Italy
| | - Marco Denegri
- Unit of Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Rubina Ruggiero
- Department of General and Minimally Invasive Surgery, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy
| | - Laura Villani
- Unit of Pathology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy
| | - Flavia Magri
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, PV, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, PV, Italy.
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, PV, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, PV, Italy
| |
Collapse
|
29
|
Magnusen AF, Rani R, McKay MA, Hatton SL, Nyamajenjere TC, Magnusen DNA, Köhl J, Grabowski GA, Pandey MK. C-X-C Motif Chemokine Ligand 9 and Its CXCR3 Receptor Are the Salt and Pepper for T Cells Trafficking in a Mouse Model of Gaucher Disease. Int J Mol Sci 2021; 22:ijms222312712. [PMID: 34884512 PMCID: PMC8657559 DOI: 10.3390/ijms222312712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease is a lysosomal storage disease, which happens due to mutations in GBA1/Gba1 that encodes the enzyme termed as lysosomal acid β-glucosidase. The major function of this enzyme is to catalyze glucosylceramide (GC) into glucose and ceramide. The deficiency of this enzyme and resultant abnormal accumulation of GC cause altered function of several of the innate and adaptive immune cells. For example, augmented infiltration of T cells contributes to the increased production of pro-inflammatory cytokines, (e.g., IFNγ, TNFα, IL6, IL12p40, IL12p70, IL23, and IL17A/F). This leads to tissue damage in a genetic mouse model (Gba19V/-) of Gaucher disease. The cellular mechanism(s) by which increased tissue infiltration of T cells occurs in this disease is not fully understood. Here, we delineate role of the CXCR3 receptor and its exogenous C-X-C motif chemokine ligand 9 (CXCL9) in induction of increased tissue recruitment of CD4+ T and CD8+ T cells in Gaucher disease. Intracellular FACS staining of macrophages (Mϕs) and dendritic cells (DCs) from Gba19V/- mice showed elevated production of CXCL9. Purified CD4+ T cells and the CD8+ T cells from Gba19V/- mice showed increased expression of CXCR3. Ex vivo and in vivo chemotaxis experiments showed CXCL9 involvement in the recruitment of Gba19V/- T cells. Furthermore, antibody blockade of the CXCL9 receptor (CXCR3) on T cells caused marked reduction in CXCL9- mediated chemotaxis of T cells in Gba19V/- mice. These data implicate abnormalities of the CXCL9-CXCR3 axis leading to enhanced tissue recruitment of T cells in Gaucher disease. Such results provide a rationale for blockade of the CXCL9/CXCR3 axis as potential new therapeutic targets for the treatment of inflammation in Gaucher disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Reena Rani
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Mary Ashley McKay
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Shelby Loraine Hatton
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Tsitsi Carol Nyamajenjere
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Daniel Nii Aryee Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany;
- Department of Pediatrics and Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Gregory Alex Grabowski
- Department of Molecular Genetics, Biochemistry and Microbiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Correspondence:
| |
Collapse
|
30
|
Wpływ suplementacji diety selenem na przebieg autoimmunologicznego zapalenia tarczycy – przegląd badań klinicznych przeprowadzonych w populacji europejskiej. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Wiele obserwacji wskazuje na zależność między zmniejszonymi zasobami selenowymi organizmu a różnymi schorzeniami tarczycy, w tym także autoimmunologicznym zapaleniem tarczycy (AZT). W większości prac poświęconych temu zagadnieniu zmiana stężenia przeciwciał anty-TPO była główną miarą oceny skuteczności suplementacji selenem (Se) diety pacjentów z AZT. Stężenie przeciwciał anty-TPO ma wpływ na intensywność nacieków limfocytarnych w gruczole tarczowym i stopień jego uszkodzenia, dlatego zmniejszenie ich stężenia w wyniku zwiększonego spożycia Se może się przyczynić do skuteczniejszego leczenia AZT. W części prac omówionych w artykule ewaluacja immunoregulacyjnego działania Se w przebiegu AZT została rozpatrzona w odniesieniu do szerszego zakresu parametrów biochemicznych i immunologicznych (głównie dotyczy to zmian w wytwarzaniu cytokin i chemokin). Wielu autorów potwierdziło wpływ Se na zmniejszanie stężenia przeciwciał anty-TPO, jednak wyniki wszystkich prac nie są jednoznaczne. Przyczyną rozbieżności może być odmienny stopień wysycenia tarczycy Se i jodem w różnych grupach pacjentów, różny stopień zaawansowania choroby, różne dawki Se podawanego pacjentom, stosowanie lub niestosowanie jednoczesnej terapii L-tyroksyną oraz polimorfizmy pojedynczych nukleotydów (SNP) występujące w genach kodujących poszczególne selenobiałka.
Na podstawie dostępnej literatury można wnioskować, iż zagadnienie dotyczące roli Se w AZT jest nadal słabo poznane. Istnieje potrzeba kontynuowania badań oceniających wpływ suplementacji diety Se na przebieg tej choroby, które powinny obejmować poza anty-TPO inne parametry kliniczne. Dopiero wyniki tak szeroko ujętych badań mogą być pomocne w formułowaniu nowych wytycznych dotyczących wspomagania leczenia przez odpowiednią modyfikację diety z uwzględnieniem suplementacji Se.
Collapse
|
31
|
The Involvement of CXC Motif Chemokine Ligand 10 (CXCL10) and Its Related Chemokines in the Pathogenesis of Coronary Artery Disease and in the COVID-19 Vaccination: A Narrative Review. Vaccines (Basel) 2021; 9:vaccines9111224. [PMID: 34835155 PMCID: PMC8623875 DOI: 10.3390/vaccines9111224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) and coronary heart disease (CHD) constitute two of the leading causes of death in Europe, USA and the rest of the world. According to the latest reports of the Iranian National Health Ministry, CAD is the main cause of death in Iranian patients with an age over 35 years despite a significant reduction in mortality due to early interventional treatments in the context of an acute coronary syndrome (ACS). Inflammation plays a fundamental role in coronary atherogenesis, atherosclerotic plaque formation, acute coronary thrombosis and CAD establishment. Chemokines are well-recognized mediators of inflammation involved in several bio-functions such as leucocyte migration in response to inflammatory signals and oxidative vascular injury. Different chemokines serve as chemo-attractants for a wide variety of cell types including immune cells. CXC motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10/CXLC10), is a chemokine with inflammatory features whereas CXC chemokine receptor 3 (CXCR3) serves as a shared receptor for CXCL9, 10 and 11. These chemokines mediate immune responses through the activation and recruitment of leukocytes, eosinophils, monocytes and natural killer (NK) cells. CXCL10, interleukin (IL-15) and interferon (IFN-g) are increased after a COVID-19 vaccination with a BNT162b2 mRNA (Pfizer/BioNTech) vaccine and are enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the second vaccination. The aim of the present study is the presentation of the elucidation of the crucial role of CXCL10 in the patho-physiology and pathogenesis of CAD and in identifying markers associated with the vaccination resulting in antibody development.
Collapse
|
32
|
Li M, Chen Y, Li H, Yang D, Zhou Y, Chen Z, Zhang Y. Serum CXCL10/IP-10 may be a potential biomarker for severe Mycoplasma pneumoniae pneumonia in children. BMC Infect Dis 2021; 21:909. [PMID: 34481469 PMCID: PMC8418284 DOI: 10.1186/s12879-021-06632-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background How to early distinguish the severity of Mycoplasma pneumoniae pneumonia (MPP) is a worldwide concern in clinical practice. We therefore conducted this study to assess the relationship between levels of serum inflammatory chemokines and the severity of MPP. Methods
In this prospective study, we enrolled 39 children with MPP, whose clinical information was collected, blood samples were assayed for cytokines and chemokines by ELISA. Results The levels of serum CXCL10 in children with severe MPP were significantly higher than those in children with mild MPP (2500.0 [1580.9–2500.0] vs. 675.7 [394.7–1134.9], P < 0.001). Measurement of CXCL10 levels in serum enabled the differentiation of children with severe MPP with an area under the curve (AUC) of 0.885 (95 % CI 0.779–0.991, P < 0.001), with a sensitivity of 81.0 % and a specificity of 83.3 %. Conclusions Serum CXCL10 level may be a potential biomarker for severe MPP in children.
Collapse
Affiliation(s)
- Mengyao Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ying Chen
- Department of Pediatrics, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Huihan Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dehua Yang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yunlian Zhou
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
33
|
Suchonwanit P, Kositkuljorn C, Pomsoong C. Alopecia Areata: An Autoimmune Disease of Multiple Players. Immunotargets Ther 2021; 10:299-312. [PMID: 34350136 PMCID: PMC8328385 DOI: 10.2147/itt.s266409] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia areata (AA) is an autoimmune disease of the hair follicles. It is characterized by a well-defined non-scarring alopecic patch or patches that may extend to the entire scalp or lead to total body hair loss. Due to its unpredictable clinical course, AA causes substantial psychological harm. Despite the high prevalence of this disease and extensive research, its exact pathomechanism is unclear, and current treatments have a high relapse rate that has deemed AA incurable. Over the past few decades, researchers have investigated multiple potential factors that may help alleviate its pathogenesis and provide effective treatment. Given its complex immunopathogenesis, AA is considered an autoimmune disease with multiple factors. This review gathers current evidence that emphasizes molecular mechanisms, possible causative etiologies, and targeted immunotherapies for AA. Understanding its underlying mechanisms may shed light on new strategies to effectively manage AA in the future.
Collapse
Affiliation(s)
- Poonkiat Suchonwanit
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chaninan Kositkuljorn
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Cherrin Pomsoong
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Rudzinskas S, Hoffman JF, Martinez P, Rubinow DR, Schmidt PJ, Goldman D. In vitro model of perimenopausal depression implicates steroid metabolic and proinflammatory genes. Mol Psychiatry 2021; 26:3266-3276. [PMID: 32788687 PMCID: PMC7878574 DOI: 10.1038/s41380-020-00860-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
The estimated 20-30% of women who develop perimenopausal depression (PMD) are at an increased risk of cardiovascular and all-cause mortality. The therapeutic benefits of estradiol (E2) and symptom-provoking effects of E2-withdrawal (E2-WD) suggest that a greater sensitivity to changes in E2 at the cellular level contribute to PMD. We developed an in vitro model of PMD with lymphoblastoid cell lines (LCLs) derived from participants of a prior E2-WD clinical study. LCLs from women with past PMD (n = 8) or control women (n = 9) were cultured in three experimental conditions: at vehicle baseline, during E2 treatment, and following E2-WD. Transcriptome analysis revealed significant differences in transcript expression in PMD in all experimental conditions, and significant overlap in genes that were changed in PMD regardless of experimental condition. Of these, chemokine CXCL10, previously linked to cardiovascular disease, was upregulated in women with PMD, but most so after E2-WD (p < 1.55 × 10-5). CYP7B1, an enzyme intrinsic to DHEA metabolism, was upregulated in PMD across experimental conditions (F(1,45) = 19.93, p < 0.0001). These transcripts were further validated via qRT-PCR. Gene networks dysregulated in PMD included inflammatory response, early/late E2-response, and cholesterol homeostasis. Our results provide evidence that differential behavioral responsivity to E2-WD in PMD reflects intrinsic differences in cellular gene expression. Genes such as CXCL10, CYP7B1, and corresponding proinflammatory and steroid biosynthetic gene networks, may represent biomarkers and molecular targets for intervention in PMD. Finally, this in vitro model allows for future investigations into the mechanisms of genes and gene networks involved in the vulnerability to, and consequences of, PMD.
Collapse
Affiliation(s)
- Sarah Rudzinskas
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| | - Jessica F Hoffman
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| | - Pedro Martinez
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| |
Collapse
|
35
|
Croce L, Gangemi D, Ancona G, Liboà F, Bendotti G, Minelli L, Chiovato L. The cytokine storm and thyroid hormone changes in COVID-19. J Endocrinol Invest 2021; 44:891-904. [PMID: 33559848 PMCID: PMC7871522 DOI: 10.1007/s40618-021-01506-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND COVID-19 is now a worldwide pandemic. Among the many extra-pulmonary manifestations of COVID-19, recent evidence suggested a possible occurrence of thyroid dysfunction. PURPOSE The Aim of the present review is to summarize available studies regarding thyroid function alterations in patients with COVID-19 and to overview the possible physio-pathological explanations. CONCLUSIONS The repercussions of the thyroid of COVID-19 seem to be related, in part, with the occurrence of a "cytokine storm" that would, in turn, induce a "non-thyroidal illness". Some specific cytokines and chemokines appear to have a direct role on the hypothalamus-pituitary-thyroid axis. On the other hand, some authors have observed an increased incidence of a destructive thyroiditis, either subacute or painless, in patients with COVID-19. The hypothesis of a direct infection of the thyroid by SARS-Cov-2 stems from the observation that its receptor, ACE2, is strongly expressed in thyroid tissue. Lastly, it is highly probable that some pharmaceutical agents largely used for the treatment of COVID-19 can act as confounding factors in the laboratory evaluation of thyroid function parameters.
Collapse
Affiliation(s)
- L Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- PHD Course in Experimental Medicine, University of Pavia, 27100, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - D Gangemi
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - G Ancona
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - F Liboà
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - G Bendotti
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - L Minelli
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
36
|
Rabaan AA, Al-Ahmed SH, Muhammad J, Khan A, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Al-Omari A, Dhawan M, Tiwari R, Sharun K, Mohapatra RK, Mitra S, Bilal M, Alyami SA, Emran TB, Moni MA, Dhama K. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines (Basel) 2021; 9:436. [PMID: 33946736 PMCID: PMC8145892 DOI: 10.3390/vaccines9050436] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a severe pandemic of the current century. The vicious tentacles of the disease have been disseminated worldwide with unknown complications and repercussions. Advanced COVID-19 syndrome is characterized by the uncontrolled and elevated release of pro-inflammatory cytokines and suppressed immunity, leading to the cytokine storm. The uncontrolled and dysregulated secretion of inflammatory and pro-inflammatory cytokines is positively associated with the severity of the viral infection and mortality rate. The secretion of various pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6 leads to a hyperinflammatory response by recruiting macrophages, T and B cells in the lung alveolar cells. Moreover, it has been hypothesized that immune cells such as macrophages recruit inflammatory monocytes in the alveolar cells and allow the production of large amounts of cytokines in the alveoli, leading to a hyperinflammatory response in severely ill patients with COVID-19. This cascade of events may lead to multiple organ failure, acute respiratory distress, or pneumonia. Although the disease has a higher survival rate than other chronic diseases, the incidence of complications in the geriatric population are considerably high, with more systemic complications. This review sheds light on the pivotal roles played by various inflammatory markers in COVID-19-related complications. Different molecular pathways, such as the activation of JAK and JAK/STAT signaling are crucial in the progression of cytokine storm; hence, various mechanisms, immunological pathways, and functions of cytokines and other inflammatory markers have been discussed. A thorough understanding of cytokines' molecular pathways and their activation procedures will add more insight into understanding immunopathology and designing appropriate drugs, therapies, and control measures to counter COVID-19. Recently, anti-inflammatory drugs and several antiviral drugs have been reported as effective therapeutic drug candidates to control hypercytokinemia or cytokine storm. Hence, the present review also discussed prospective anti-inflammatory and relevant immunomodulatory drugs currently in various trial phases and their possible implications.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan;
| | - Amjad Khan
- Department of Public Health/Nutrition, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan;
| | - Anupam A Sule
- Medical Director of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA;
| | - Raghavendra Tirupathi
- Department of Medicine Keystone Health, Penn State University School of Medicine, Hershey, PA 16801, USA;
- Department of Medicine, Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA 16801, USA
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Alahsa 36342, Saudi Arabia;
- College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Ministry of Health, Alahsa 31982, Saudi Arabia;
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Dr. Sulaiman Al-Habib Medical Group, Critical Care and Infection Control Department, Research Centre, Riyadh 11372, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141027, Punjab, India;
- The Trafford Group of Colleges, Manchester WA14 5PQ, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh; Pandit DeenDayal Upadhyaya PashuChikitsa Vigyan Vishwavidyalaya Evam Go AnusandhaSansthan (DUVASU), Mathura 281001, Uttar Pradesh, India;
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Mathura 281001, Uttar Pradesh, India;
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
37
|
Coperchini F, Chiovato L, Rotondi M. Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine Storm: Not One for All But All for One! Front Immunol 2021; 12:668507. [PMID: 33981314 PMCID: PMC8107352 DOI: 10.3389/fimmu.2021.668507] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-COV-2 virus is responsible for the ongoing devastating pandemic. Since the early phase of the pandemic, the "cytokine-storm" appeared a peculiar aspect of SARS-COV-2 infection which, at least in the severe cases, is responsible for respiratory treat damage and subsequent multi-organ failure. The efforts made in the last few months elucidated that the cytokine-storm results from a complex network involving cytokines/chemokines/infiltrating-immune-cells which orchestrate the aberrant immune response in COVID-19. Clinical and experimental studies aimed at depicting a potential "immune signature" of SARS-COV-2, identified three main "actors," namely the cytokine IL-6, the chemokine CXCL10 and the infiltrating immune cell type macrophages. Although other cytokines, chemokines and infiltrating immune cells are deeply involved and their role should not be neglected, based on currently available data, IL-6, CXCL10, and infiltrating macrophages could be considered prototype factors representing each component of the immune system. It rapidly became clear that a strong and continuous interplay among the three components of the immune response is mandatory in order to produce a severe clinical course of the disease. Indeed, while IL-6, CXCL10 and macrophages alone would not be able to fully drive the onset and maintenance of the cytokine-storm, the establishment of a IL-6/CXCL10/macrophages axis is crucial in driving the sequence of events characterizing this condition. The present review is specifically aimed at overviewing current evidences provided by both in vitro and in vivo studies addressing the issue of the interplay among IL-6, CXCL10 and macrophages in the onset and progression of cytokine storm. SARS-COV-2 infection and the "cytokine storm."
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Coperchini F, Chiovato L, Ricci G, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev 2021; 58:82-91. [PMID: 33573850 PMCID: PMC7837329 DOI: 10.1016/j.cytogfr.2020.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
SARS-COV-2 infection represents the greatest pandemic of the world, counting daily increasing number of subjects positive to the virus and, sadly, increasing number of deaths. Current studies reported that the cytokine/chemokine network is crucial in the onset and maintenance of the "cytokine storm", the event occurring in those patients in whom the progression of COVID-19 will progress, in most cases, to a very severe and potentially threatening disease. Detecting a possible "immune signature" in patients, as assessed by chemokines status in patients with COVID-19, could be helpful for individual risk stratification for developing a more or less severe clinical course of the disease. The present review is specifically aimed at overviewing current evidences provided by in vitro and in vivo studies addressing the issue of which chemokines seems to be involved, at least at present, in COVID-19. Currently available experimental and clinical studies regarding those chemokines more deeply studied in COVID-19, with a specific focus on their role in the cytokine storm and ultimately with their ability to predict the clinical course of the disease, will be taken into account. Moreover, similarities and differences between chemokines and cytokines, which both contribute to the onset of the pro-inflammatory loop characterizing SARS-COV-2 infection, will be briefly discussed. Future studies will rapidly accumulate in the next months and their results will hopefully provide more insights as to the complex physiopathology of COVID-19-related cytokine storm. This will likely make the present review somehow "dated" in a short time, but still the present review provides an overview of the scenario of the current knowledge on this topic.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia PV, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia PV, Italy
| | - Gianluca Ricci
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia PV, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia PV, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia PV, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia PV, Italy.
| |
Collapse
|
39
|
Wang Y, Chen Z, Wang T, Guo H, Liu Y, Dang N, Hu S, Wu L, Zhang C, Ye K, Shi B. A novel CD4+ CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of Graves' orbitopathy. Cell Mol Immunol 2021; 18:735-745. [PMID: 33514849 PMCID: PMC8027210 DOI: 10.1038/s41423-020-00615-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Graves' orbitopathy (GO), the most severe manifestation of Graves' hyperthyroidism (GH), is an autoimmune-mediated inflammatory disorder, and treatments often exhibit a low efficacy. CD4+ T cells have been reported to play vital roles in GO progression. To explore the pathogenic CD4+ T cell types that drive GO progression, we applied single-cell RNA sequencing (scRNA-Seq), T cell receptor sequencing (TCR-Seq), flow cytometry, immunofluorescence and mixed lymphocyte reaction (MLR) assays to evaluate CD4+ T cells from GO and GH patients. scRNA-Seq revealed the novel GO-specific cell type CD4+ cytotoxic T lymphocytes (CTLs), which are characterized by chemotactic and inflammatory features. The clonal expansion of this CD4+ CTL population, as demonstrated by TCR-Seq, along with their strong cytotoxic response to autoantigens, localization in orbital sites, and potential relationship with disease relapse provide strong evidence for the pathogenic roles of GZMB and IFN-γ-secreting CD4+ CTLs in GO. Therefore, cytotoxic pathways may become potential therapeutic targets for GO.
Collapse
Affiliation(s)
- Yue Wang
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.cPrecision Medicine Center, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziyi Chen
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tingjie Wang
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Liu
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.cBioBank, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ningxin Dang
- grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shiqian Hu
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liping Wu
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chengsheng Zhang
- grid.452438.cPrecision Medicine Center, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kai Ye
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Bingyin Shi
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
40
|
Ke Q, Kroger CJ, Clark M, Tisch RM. Evolving Antibody Therapies for the Treatment of Type 1 Diabetes. Front Immunol 2021; 11:624568. [PMID: 33679717 PMCID: PMC7930374 DOI: 10.3389/fimmu.2020.624568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease resulting in reduced insulin production due to dysfunction/destruction of pancreatic β cells. Currently, there continues to be a need for immunotherapies that selectively reestablish persistent β cell-specific self-tolerance for the prevention and remission of T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target specific immune cell populations inducing autoimmune-driven pathology. Several mAb have proven to be clinically safe and exhibit varying degrees of efficacy in modulating autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a targeted cell population regardless of antigenic specificity. However, this treatment strategy can prove detrimental resulting in the loss of acquired protective immunity. Nondepleting mAb have also been applied to modulate the function of immune effector cells. Recent studies have begun to define novel mechanisms associated with mAb-based immunotherapy that alter the function of targeted effector cell pools. These results suggest short course mAb therapies may have persistent effects for regaining and maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties permits the development of novel strategies to target multiple antigens and/or deliver therapeutic drugs by a single mAb molecule. Here, we discuss current and potential future therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
41
|
Zhang J, Hu D. miR-1298-5p Influences the Malignancy Phenotypes of Breast Cancer Cells by Inhibiting CXCL11. Cancer Manag Res 2021; 13:133-145. [PMID: 33469358 PMCID: PMC7810718 DOI: 10.2147/cmar.s279121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Breast cancer (BC) has deleterious effects on women's health worldwide, yet its molecular mechanism remains unclear. OBJECTIVE This study aimed to discover the underlying mechanism used by miR-1298-5p to regulate CXCL11 in BC. METHODS Microarray analysis was performed to identify the key mRNA and miRNA involved in BC. The expression of miR-1298-5p and CXCL11 mRNA in BC clinical tissues and cell lines was detected using quantitative reverse transcription PCR (RT-qPCR), while the demonstration of intra- and extra-cellular CXCL11 protein was measured using western-blotting or ELISA assay. CCK-8, BrdU ELISA, colony formation, wound healing, and cell adhesion assays were carried out to determine cell viability, cell proliferation, colony formation, cell migration and adhesion phenotypes, respectively. A dual-luciferase assay kit was also employed to confirm the predicted binding scheme between miR-1298-5p and CXCL11. RESULTS Microarray analysis confirmed miR-1298-5p and CXCL11 as the miRNA and mRNA to be further investigated in BC. After observing low-level miR-1298-5p and high-level CXCL11 in BC clinical tissues and cell lines, it was discovered that miR-1298-5p inhibited the phenotypes of BC cells, while CXCL11 promoted the tumorigenesis of BC cells. Findings indicated that miR-1298-5p attenuated the promotive effect of CXCL11 on BC cell phenotypes. CONCLUSION This research revealed that miR-1298-5p could influence the malignancy phenotypes of BC cells by inhibiting CXCL11.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Breast Surgery, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei067000, People’s Republic of China
| | - Dawei Hu
- Department of Breast Surgery, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei067000, People’s Republic of China
| |
Collapse
|
42
|
Ejtahed HS, Angoorani P, Soroush AR, Siadat SD, Shirzad N, Hasani-Ranjbar S, Larijani B. Our Little Friends with Big Roles: Alterations of the Gut Microbiota in Thyroid Disorders. Endocr Metab Immune Disord Drug Targets 2021; 20:344-350. [PMID: 31566142 DOI: 10.2174/1871530319666190930110605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The thyroid gland influences the metabolic processes in our body by producing thyroid hormones, and thyroid disorders can range from a harmless goiter to life-threatening cancer. A growing number of evidence support the link between gut microbiota composition and thyroid homeostasis. Gut dysbiosis can disrupt the normal gut barrier function, leading to immunologic and metabolic disorders. OBJECTIVE The aim of this review was to discuss the main features of gut dysbiosis associated with different thyroid disorders. RESULTS Gut microbiota contributes to thyroid hormone synthesis and hydrolysis of thyroid hormones conjugates. It has been shown that microbial metabolites may play a role in autoimmune thyroid diseases via modulating the immune system. Intestinal microbiota can contribute to the thyroid malignancies via controlling DNA damage and apoptosis and influencing inflammatory reactions by the microbiota- derived metabolites. However, the pathogenic role of altered gut microbiota in different thyroid disorders has not yet fully elucidated. CONCLUSION Further research is needed to assess the role of alterations of the gut microbiota in disease onset and development in order to achieve novel strategies for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Angoorani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:284. [PMID: 33317597 PMCID: PMC7734811 DOI: 10.1186/s13046-020-01749-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
The enthusiasm for immune checkpoint inhibitors (ICIs), an efficient tumor treatment model different from traditional treatment, is based on their unprecedented antitumor effect, but the occurrence of immune-related adverse events (irAEs) is an obstacle to the prospect of ICI treatment. IrAEs are a discrete toxicity caused by the nonspecific activation of the immune system and can affect almost all tissues and organs. Currently, research on biomarkers mainly focuses on the gastrointestinal tract, endocrine system, skin and lung. Several potential hypotheses concentrate on the overactivation of the immune system, excessive release of inflammatory cytokines, elevated levels of pre-existing autoantibodies, and presence of common antigens between tumors and normal tissues. This review lists the current biomarkers that might predict irAEs and their possible mechanisms for both nonspecific and organ-specific biomarkers. However, the prediction of irAEs remains a major clinical challenge to screen and identify patients who are susceptible to irAEs and likely to benefit from ICIs.
Collapse
|
44
|
Ai Z, Zhou S, Li W, Wang M, Wang L, Hu G, Tao R, Wang X, Shen Y, Xie L, Ba Y, Wu H, Yang Y. "Fei Yan No. 1" as a Combined Treatment for COVID-19: An Efficacy and Potential Mechanistic Study. Front Pharmacol 2020; 11:581277. [PMID: 33132913 PMCID: PMC7580177 DOI: 10.3389/fphar.2020.581277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
There has been a large global outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), representing a major public health issue. In China, combination therapy, including traditional Chinese medicine (TCM) as a treatment for COVID-19 has been used widely. “Fei Yan No. 1” (QFDYG) is a formula recommended by the Hubei Government to treat COVID-19. A retrospective study of 84 COVID-19 patients from Hubei Provincial Hospital of TCM and Renmin Hospital of Hanchuan was conducted to explore the clinical efficacy of QFDYG combination therapy. TCMSP and YaTCM databases were used to determine the components of all Chinese herbs in QFDYG. Oral bioavailability (OB) ≥ 30% and drug-like (DL) quality ≥ 0.18 were selected as criteria for screening the active compounds identified within the TCMSP database. The targets of active components in QFDYG were determined using the Swiss TargetPrediction (SIB) and Targetnet databases. The STRING database and the Network Analyzer plugin in Cytoscape were used to obtain protein-protein interaction (PPI) network topology parameters and to identify hub targets. Gene Ontology (GO) enrichment was conducted using FunRich version 3.1.3, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment using ClueGO version 2.5.6 software. PPI and compound-pathway (C-T) networks were constructed using Cytoscape 3.6.0. Compared with the control group, combined treatment with QFDYG resulted in a significantly higher rate of patients recovering from symptoms and shorter the time. After 14 days of treatment, QFDYG combined treatment increased the proportion of patients testing negative for SARS-CoV-2 nucleic acid by RT-PCR. Compared with the control group, promoting focal absorption and inflammation as viewed on CT images. GO and KEGG pathway enrichment indicated that QFDYG principally regulated biological processes, such as inflammation, an immune response, and apoptosis. The present study revealed that QFDYG combination therapy offered particular therapeutic advantages, indicating that the theoretical basis for the treatment of COVID-19 by QFDYG may play an antiviral and immune response regulation through multiple components, targets, and pathways, providing reference for the clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shanshan Zhou
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Weinan Li
- Nephrology Department, Hubei Provincial Hospital of TCM, Hanchuan, China.,Nephrology Department, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, China
| | - Mengfan Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linqun Wang
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Gangming Hu
- TCM Department, Renmin Hospital of Hanchuan, Hanchuan, China
| | - Ran Tao
- Surgical Department, Hubei Provincial Hospital of TCM, Wuhan, China.,Surgical Department, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, China
| | - Xiaoqin Wang
- Nephrology Department, Hubei Provincial Hospital of TCM, Hanchuan, China.,Nephrology Department, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, China
| | - Yinfeng Shen
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Lihan Xie
- Nephrology Department, The Central Hospital of Wuhan, Wuhan, China
| | - Yuanming Ba
- Nephrology Department, Hubei Provincial Hospital of TCM, Hanchuan, China.,Nephrology Department, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, China
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - YanFang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
45
|
Li L, Liu S, Yu J. Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective? Ther Adv Endocrinol Metab 2020; 11:2042018820958329. [PMID: 32973994 PMCID: PMC7493255 DOI: 10.1177/2042018820958329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid disease (AITD) and type 1 diabetes mellitus (T1DM) are two common autoimmune diseases that can occur concomitantly. In general, patients with diabetes have a high risk of AITD. It has been proposed that a complex genetic basis together with multiple nongenetic factors make a variable contribution to the pathogenesis of T1DM and AITD. In this paper, we summarize current knowledge in the field regarding potential pathogenic factors of T1DM and AITD, including human leukocyte antigen, autoimmune regulator, lymphoid protein tyrosine phosphatase, forkhead box protein P3, cytotoxic T lymphocyte-associated antigen, infection, vitamin D deficiency, and chemokine (C-X-C motif) ligand. These findings offer an insight into future immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Liyan Li
- Department of Endocrinology, First People’s Hospital of Jinan, Jinan, People’s Republic of China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, People’s Republic of China
| | - Junxia Yu
- Department of Endocrinology, Tengzhou Central People’s Hospital, 181 Xingtan Road, Tengzhou, Shandong Province, 277500, People’s Republic of China
| |
Collapse
|
46
|
Yao H, Lv Y, Bai X, Yu Z, Liu X. Prognostic value of CXCL17 and CXCR8 expression in patients with colon cancer. Oncol Lett 2020; 20:2711-2720. [PMID: 32782587 PMCID: PMC7400977 DOI: 10.3892/ol.2020.11819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
C-X-C motif chemokine ligand 17 (CXCL17) is a mucous chemokine and its expression is highly correlated with that of G protein-coupled receptor 35 (GPR35), which has been confirmed as its receptor and named C-X-C motif chemokine receptor 8 (CXCR8). CXCL17 is upregulated in several types of cancer. However, the biological role of this chemokine in colon cancer remains unknown. In the present study, the expression levels of CXCL17 and CXCR8 were examined using immunohistochemistry in 101 colon cancer tissues and 79 healthy tumour-adjacent tissues. CXCL17 and CXCR8 expression levels were increased in the colon cancer samples compared with tumour-adjacent samples. Patients with high CXCL17 expression had longer overall survival (OS) compared with patients with low expression of CXCL17 (log-rank test; P=0.027). However, CXCR8 expression, but not CXCL17, was an independent prognostic factor for OS in patients with colon cancer. The expression of CXCR8 correlated positively with that of CXCL17 in colon cancer samples (ρ=0.295; P=0.003). Furthermore, the combined high expression of CXCL17 and CXCR8 was a significant independent prognostic factor for OS in patients with colon cancer (P=0.001). In subgroups with a TNM stage of I–II, the patients with combined high expression of CXCL17 and CXCR8 had a longer survival compared with those without combined high expression (P=0.001). However, this difference was not observed in subgroups with a TNM stage of III–IV. Collectively, these findings suggest that CXCL17/CXCR8 signalling may be involved in colon cancer and contribute to improved patient outcomes.
Collapse
Affiliation(s)
- Hongyan Yao
- Department of Pharmacology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Nuclear Medicine Department, Jinzhou Central Hospital, Jinzhou, Liaoning 121001, P.R. China
| | - Yufeng Lv
- Department of Respiration and Critical Care, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xuefeng Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
47
|
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53:25-32. [PMID: 32446778 PMCID: PMC7211650 DOI: 10.1016/j.cytogfr.2020.05.003] [Citation(s) in RCA: 877] [Impact Index Per Article: 219.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
In 2019-2020 a new coronavirus named SARS-CoV-2 was identified as the causative agent of a several acute respiratory infection named COVID-19, which is causing a worldwide pandemic. There are still many unresolved questions regarding the pathogenesis of this disease and especially the reasons underlying the extremely different clinical course, ranging from asymptomatic forms to severe manifestations, including the Acute Respiratory Distress Syndrome (ARDS). SARS-CoV-2 showed phylogenetic similarities to both SARS-CoV and MERS-CoV viruses, and some of the clinical features are shared between COVID-19 and previously identified beta-coronavirus infections. Available evidence indicate that the so called "cytokine storm" an uncontrolled over-production of soluble markers of inflammation which, in turn, sustain an aberrant systemic inflammatory response, is a major responsible for the occurrence of ARDS. Chemokines are low molecular weight proteins with powerful chemoattractant activity which play a role in the immune cell recruitment during inflammation. This review will be aimed at providing an overview of the current knowledge on the involvement of the chemokine/chemokine-receptor system in the cytokine storm related to SARS-CoV-2 infection. Basic and clinical evidences obtained from previous SARS and MERS epidemics and available data from COVID-19 will be taken into account.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, PV, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, PV, Italy.
| |
Collapse
|
48
|
Kuranobu T, Mokuda S, Oi K, Tokunaga T, Yukawa K, Kohno H, Yoshida Y, Hirata S, Sugiyama E. Activin A Expressed in Rheumatoid Synovial Cells Downregulates TNFα-Induced CXCL10 Expression and Osteoclastogenesis. Pathobiology 2020; 87:198-207. [PMID: 32126552 DOI: 10.1159/000506260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Activin A is known to be highly expressed in rheumatoid synovium. In the present study, we investigated the effect of inflammatory cytokines on activin A production and its role in rheumatoid inflammation using freshly prepared rheumatoid synovial cells (fresh-RSC). METHODS Fresh-RSC from patients with rheumatoid arthritis were obtained and stimulated with multiple cytokines for activin A production. Gene expression levels of activin A and inflammatory cytokines were determined by quantitative PCR (qPCR) analysis. An enzyme-linked immunosorbent assay (ELISA) was used to measure activin A and CXCL10 in culture supernatants. The osteoclasts generated from human peripheral monocytes by RANKL stimulation were identified by tartrate-resistant acid phosphatase staining and bone resorption assay using Osteo plate. The expression levels of NFATc1 and cathepsin K, critical intracellular proteins for osteoclastogenesis, were determined by Western blotting. RESULTS Activin A production in fresh-RSC was markedly enhanced by the synergistic effect of TGF-β1 with inflammatory cytokines, including TNFα, IL-1β, and IL-6. Activin A inhibited TNFα-induced CXCL10, an important chemoattractant for pathogen-activated T cells and monocytes of osteoclast precursors, but it did not affect the expression of inflammatory cytokines and chemokines. In addition, activin A directly inhibited the expression of NFATc1 and cathepsin K, as well as osteoclast formation in human samples. CONCLUSION Our data indicated that TGF-β1 is involved in the expression of activin A at inflamed joints. Activin A mainly exerts an anti-inflammatory action, which prevents joint damage via the regulation of CXCL10 and osteoclastogenesis.
Collapse
Affiliation(s)
- Tatsuomi Kuranobu
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuhiro Oi
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tadahiro Tokunaga
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazutoshi Yukawa
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroki Kohno
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yusuke Yoshida
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan,
| |
Collapse
|
49
|
Lane LC, Cheetham T. Graves' disease: developments in first-line antithyroid drugs in the young. Expert Rev Endocrinol Metab 2020; 15:59-69. [PMID: 32133893 DOI: 10.1080/17446651.2020.1735359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Introduction: First-line treatment for most young people with Graves' disease (GD) will include the administration of a thionamide antithyroid medication (ATD); Carbimazole (CBZ), Methimazole (MMZ), or rarely, propylthiouracil (PTU). GD is a challenge for families and clinicians because the likelihood of remission following a course of ATD is lower in young people when compared to adults, yet the risk of adverse events is higher. An overall consensus regarding the optimal ATD treatment regimen is lacking; how ATD are prescribed, for how long and how the associated risk of adverse events is managed varies between clinicians, units and nations. This partly reflects clinician and family uncertainty regarding outcomes.Areas covered: This review will focus on some of the key articles published in the field of thionamide ATD in children. It will highlight key issues that need to be discussed with families as well as addressing the approach and controversies in the treatment of GD. This article does not reflect a formal systematic review of the literature.Expert opinion: New strategies in areas such as immunomodulation may see the development of new antithyroid drug treatments that, either in isolation or in combination with thionamide therapy, may increase the likelihood of long-term remission.
Collapse
Affiliation(s)
- Laura C Lane
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
- Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-Upon-Tyne, UK
| | - Tim Cheetham
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
- Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-Upon-Tyne, UK
| |
Collapse
|
50
|
Le M, Muntyanu A, Netchiporouk E. IncRNAs and circRNAs provide insight into discoid lupus pathogenesis and progression. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:260. [PMID: 32355704 PMCID: PMC7186711 DOI: 10.21037/atm.2020.03.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Michelle Le
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Anastasiya Muntyanu
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Elena Netchiporouk
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|