1
|
Lundstrom EA, De Souza MJ, Canil HN, Williams NI. Sex differences and indications of metabolic compensation in within-day energy balance in elite Division 1 swimmers. Appl Physiol Nutr Metab 2023; 48:74-87. [PMID: 36260936 DOI: 10.1139/apnm-2022-0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To determine whether mismatched energy intake and expenditure across the day and associated sex differences may be related with metabolic compensation and/or negative health outcomes, we assessed total-day and hourly energy balance (TDEB and EB), total-day and hourly energy intake (TDEI and EI), total-day and hourly energy expenditure (TDEE and EE) and within-day energy balance (WDEB) in elite male and female swimmers (n = 25; 18-22 years). Total triiodothyronine (TT3), resting metabolic rate (RMR), and the ratio of actual-to-predicted RMR were determined. Males exhibited higher TDEB (+758 ± 702 kcal vs +52 ± 505 kcal, t-test; p = 0.007) than females. Males exhibited a more positive hourly EB, driven by greater hourly EI at 11:00, 13:00, 16:00, and 19:00 h (ANOVA, p < 0.05), while EE did not differ. TT3 was negatively correlated with consecutive hours of negative EB (R = -0.604, p = 0.049) and positively correlated to hours in EB (R = 0.740, p = 0.009) in those exhibiting metabolic suppression (n = 12). In individuals in TDEB (n = 21), "backloaders" (consumption of ≥50% daily kcals at or after 1700 h) had lower TT3 (79.3 ng/dL vs 92.9 ng/dL, p = 0.009) than "nonbackloaders" (n = 12). WDEB analyses indicate a greater risk of energy deficiency in females and may capture indices of metabolic compensation not evident with EB analyses alone.
Collapse
Affiliation(s)
- Emily A Lundstrom
- Womens' Health and Exercise Laboratory, Department of Kinesiology, Penn State University, University Park, USA
| | - Mary Jane De Souza
- Womens' Health and Exercise Laboratory, Department of Kinesiology, Penn State University, University Park, USA
| | - Hannah N Canil
- Department of Nutritional Sciences, Penn State University, University Park, PA, USA
| | - Nancy I Williams
- Womens' Health and Exercise Laboratory, Department of Kinesiology, Penn State University, University Park, USA
| |
Collapse
|
2
|
Ogawa-Wong A, Carmody C, Le K, Marschner RA, Larsen PR, Zavacki AM, Wajner SM. Modulation of Deiodinase Types 2 and 3 during Skeletal Muscle Regeneration. Metabolites 2022; 12:metabo12070612. [PMID: 35888735 PMCID: PMC9323706 DOI: 10.3390/metabo12070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.
Collapse
Affiliation(s)
- Ashley Ogawa-Wong
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Colleen Carmody
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Katherine Le
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Rafael Aguiar Marschner
- Endocrine Division, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 9000335, Brazil;
| | - P. Reed Larsen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Simone Magagnin Wajner
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
- Endocrine Division, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 9000335, Brazil;
- Correspondence:
| |
Collapse
|
3
|
Strączkowski M, Nikołajuk A, Stefanowicz M, Matulewicz N, Fernandez-Real JM, Karczewska-Kupczewska M. Adipose Tissue and Skeletal Muscle Expression of Genes Associated with Thyroid Hormone Action in Obesity and Insulin Resistance. Thyroid 2022; 32:206-214. [PMID: 34610751 DOI: 10.1089/thy.2021.0351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Thyroid hormone (TH) regulates metabolic pathways which may interfere with insulin action. There is limited knowledge on adipose tissue (AT) and skeletal muscle (SM) expression of genes associated with TH action in relation to insulin sensitivity. The aim of this study was to analyze AT and SM expression of the genes associated with TH action in subjects with different degree of insulin sensitivity and the regulation of these genes by insulin and free fatty acids (FFA). Methods: The study group comprised 72 euthyroid male subjects: 36 normal weight subjects and 36 overweight/obese subjects. Two-hour hyperinsulinemic-euglycemic clamp and tissue biopsies were performed. In the subgroup of 20 subjects, 9 normal weight subjects and 11 overweight/obese subjects, clamp was prolonged to 6 hours and another clamp with Intralipid/heparin infusion was performed after 1 week. Tissue biopsies were performed before and after each clamp. Results: Overweight/obese subjects had higher AT DIO2, DIO3, and NCOR1, lower AT THRA and PPARGC1A, higher SM NCOR1, and lower SM DIO2, DIO3, PPARGC1A, and ATP2A2 expression. In AT, DIO2 and PPARGC1A increased, whereas NCOR1 and FOXO1 decreased after the clamp only in normal weight individuals. DIO3 decreased in both groups. In SM, NCOR1 decreased, whereas PPARGC1A and ATP2A2 increased after the clamp only in normal weight individuals. Tissue THRA and THRB decreased in both groups. Intralipid/heparin abolished these effects. Conclusions: Alterations in AT and SM expression of TH-related gene indicate a decreased tissue TH action in obesity. Inability to increase TH-related gene expression in obesity and during FFA oversupply may contribute to the aggravation of lipotoxicity.
Collapse
Affiliation(s)
- Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Jose Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Girona, Spain
| | | |
Collapse
|
4
|
Silvestrini A, Mordente A, Martino G, Bruno C, Vergani E, Meucci E, Mancini A. The Role of Selenium in Oxidative Stress and in Nonthyroidal Illness Syndrome (NTIS): An Overview. Curr Med Chem 2020; 27:423-449. [PMID: 29421998 DOI: 10.2174/0929867325666180201111159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/28/2022]
Abstract
Selenium is a trace element, nutritionally classified as an essential micronutrient, involved in maintaining the correct function of several enzymes incorporating the selenocysteine residue, namely the selenoproteins. The human selenoproteome including 25 proteins is extensively described here. The most relevant selenoproteins, including glutathione peroxidases, thioredoxin reductases and iodothyronine deiodinases are required for the proper cellular redox homeostasis as well as for the correct thyroid function, thus preventing oxidative stress and related diseases. This review summarizes the main advances on oxidative stress with a focus on selenium metabolism and transport. Moreover, thyroid-related disorders are discussed, considering that the thyroid gland contains the highest selenium amount per gram of tissue, also for future possible therapeutic implication.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Giuseppe Martino
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Antonio Mancini
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| |
Collapse
|
5
|
Jin T, Wang L, He X, Liu M, Bai M, Rong H, He Y, Yuan D. Association between DIO2 polymorphism and the risk of Kashin-Beck disease in the Tibetan population. J Gene Med 2019; 21:e3123. [PMID: 31433532 DOI: 10.1002/jgm.3123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Kashin-Beck disease (KBD) is a local, multiple and deformable osteoarthropathy, mostly occurring in Tibet. Type 2 iodothyronine deiodinase (DIO2) is implicated in the activation of thyroid hormones to which the bones are very sensitive. Therefore, it is necessary to explore the association between KBD and DIO2 in the Tibetan population. METHODS We carried out a case-control study among 316 cases and 320 controls from a Tibetan population. Seven single nucleotide polymorphisms in DIO2 were selected and genotyped using the Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression analysis. HaploReg (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and GTEx (http://www.gtexportal.org) databases were applied for functional assessment of the polymorphisms. RESULTS The "A/C" genotype of rs1352815 (OR = 3.18, 95% CI = 1.14-8.85, p = 0.027) and the "A/G" genotype of rs1388382 (OR = 3.80, 95% CI = 1.30-11.11, p = 0.015) were associated with the susceptibility of KBD under the co-dominant model. With gender stratification analysis, rs1388382 showed obvious evidence for correlation with an elevated risk of KBD in females under the co-dominant model (OR = 3.32, 95% CI = 1.06-10.41, p = 0.039). CONCLUSIONS The results obtained in the present study indicate that DIO2 polymorphisms rs1352815 and rs1388382 were correlated with KBD susceptibility among Tibetans, which also sheds new light on the role of DIO2 in the development of KBD.
Collapse
Affiliation(s)
- Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Ming Liu
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Gynaecology and Obstetrics, Ngari Prefecture People's Hospital, Ngari Prefecture, Tibet Autonomous Region, China
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Hao Rong
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
6
|
Izkhakov E, Vaisman N, Barnes S, Barchana M, Stern N, Keinan-Boker L. Body Composition, Resting Energy Expenditure, and Metabolic Changes in Women Diagnosed with Differentiated Thyroid Carcinoma. Thyroid 2019; 29:1044-1051. [PMID: 31088334 PMCID: PMC6707037 DOI: 10.1089/thy.2018.0483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Thyroid hormones heavily impact energy expenditure, body mass, and body composition. Their role in the state of exogenous subclinical hyperthyroidism in differentiated thyroid carcinoma (DTC) patients, however, is less well defined. The first aim of this study was to assess changes in body weight, body composition, resting energy expenditure (REE), respiratory quotient (RQ), and metabolic parameters in female DTC patients, starting from the phase of a euthyroid state before total thyroidectomy through the subsequent year after thyrotropin (TSH) suppression. The second aim was to assess the relationship between these variables and thyroid function parameters. Methods: This observational case series analyzed changes in body composition, calorimetric, and metabolic parameters of 15 DTC female patients at 5 time points: (1) at initial DTC diagnosis (euthyroid state), (2) at 2-3 weeks after thyroidectomy (hypothyroid state), (3) at 2-3 months of levothyroxine (LT4) treatment (exogenous euthyroid state), (4) after 6-9 months, and (5) after 1 year of TSH suppressive LT4 therapy (exogenous subclinical hyperthyroid state). A generalized estimating equation (GEE) analysis was performed to estimate the longitudinal correlations of the total triiodothyronine (TT3)/free thyroxine (fT4) ratio (as an independent variable) with body composition, metabolic, and calorimetric parameter changes (as dependent variables). Results: REE, REE per kilogram of lean body mass (REE/LBM), pulse, and systolic and diastolic blood pressure were significantly higher after TSH suppressive LT4 therapy. The GEE analysis revealed longitudinal negative correlations between the TT3/fT4 ratio and systolic blood pressure, fasting blood glucose, body mass index, android (abdominal wall and visceral mesentery) fat distribution, trunk, and arm fat distribution, REE, and REE/LBM. There was a positive correlation with RQ. Conclusions: REE, REE/LBM, pulse, and systolic and diastolic blood pressure were significantly higher after thyroidectomy, radioiodine and TSH suppressive therapy in female DTC patients, while no changes were observed in body weight or body composition. A lower TT3/fT4 ratio longitudinally correlated with increases in REE, REE/LBM, abdominal fat distribution, systolic blood pressure, and fasting blood glucose, as well as with decreased RQ. These findings highlight the importance of judicial balancing of the benefits and detriments of TSH suppression with subsequent decreased TT3/fT4 ratios for female DTC patients.
Collapse
Affiliation(s)
- Elena Izkhakov
- Institute of Endocrinology, Metabolism and Hypertension; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Nachum Vaisman
- Unit of Clinical Nutrition, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sophie Barnes
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ultrasound Division of Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Micha Barchana
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Naftali Stern
- Institute of Endocrinology, Metabolism and Hypertension; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lital Keinan-Boker
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- National Cancer Registry, Israel Center for Disease Control, Ministry of Health, Ramat Gan, Israel
| |
Collapse
|
7
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
8
|
Carmody C, Ogawa-Wong AN, Martin C, Luongo C, Zuidwijk M, Sager B, Petersen T, Roginski Guetter A, Janssen R, Wu EY, Bogaards S, Neumann NM, Hau K, Marsili A, Boelen A, Silva JE, Dentice M, Salvatore D, Wagers AJ, Larsen PR, Simonides WS, Zavacki AM. A Global Loss of Dio2 Leads to Unexpected Changes in Function and Fiber Types of Slow Skeletal Muscle in Male Mice. Endocrinology 2019; 160:1205-1222. [PMID: 30951174 PMCID: PMC6482039 DOI: 10.1210/en.2019-00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.
Collapse
Affiliation(s)
| | | | | | - Cristina Luongo
- Brigham and Women’s Hospital, Boston, Massachusetts
- University of Naples “Federico II,” Napoli, Italy
| | - Marian Zuidwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Rob Janssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Sylvia Bogaards
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Kaman Hau
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J Enrique Silva
- Baystate Medical Center, Springfield, Massachusetts
- Tufts University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
9
|
Sloot YJE, Janssen MJR, van Herwaarden AE, Peeters RP, Netea-Maier RT, Smit JWA. The Influence of Energy Depletion by Metformin or Hypocaloric Diet on Thyroid Iodine Uptake in Healthy Volunteers: a Randomized Trial. Sci Rep 2019; 9:5396. [PMID: 30932012 PMCID: PMC6443645 DOI: 10.1038/s41598-019-41997-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
Sufficient thyroid iodine uptake is needed to ensure effective radioactive iodine (RAI) treatment, which is mediated by the sodium-iodide symporter (NIS). Activation of AMP-activated-protein-kinase (AMPK), leads to decreased NIS expression and thyroid iodine uptake in in vitro and animal models. Clinically relevant conditions that lead to AMPK activation include metformin use and hypocaloric conditions. Here, we aim to assess the effects of metformin and hypocaloric diet on thyroid iodine uptake in healthy volunteers. Healthy male volunteers were included and randomized. Group 1 (n = 8) received metformin, group 2 (n = 7) followed a hypocaloric diet (1500 kcal/day), superposed on a moderate iodine restriction diet; Baseline measurements included thyroid iodine-123 (I-123) uptake and TSH, fT4, T3 and rT3 levels. After two weeks, thyroid function and I-123 uptake measurements were repeated. Baseline characteristics were similar between groups. Levels of TSH and fT4 were similar after each intervention. T3 decreased after hypocaloric diet and metformin (-0.2 ± 0.19 nmol/L, p = 0.0327; respectively -0.13 ± 0.13 nmol/L, p = 0.0282), resulting in decreased T3/rT3 ratios. There was no significant difference in thyroid I-123 uptake after each intervention. In conclusion, metformin treatment and hypocaloric diet resulted in a significant decrease in T3 levels and T3/rT3 ratios in healthy volunteers, without significant effects on thyroid iodine uptake. We found no indications that metformin or hypocaloric diet will have clinically relevant effects on RAI uptake.
Collapse
Affiliation(s)
- Yvette J E Sloot
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands.
| | - Marcel J R Janssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525, GA, Nijmegen, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Academic centre for Thyroid Diseases, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Johannes W A Smit
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol 2018; 236:R57-R68. [PMID: 29051191 DOI: 10.1530/joe-16-0611] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) are crucial for development, growth, differentiation, metabolism and thermogenesis. Skeletal muscle (SM) contractile function, myogenesis and bioenergetic metabolism are influenced by TH. These effects depend on the presence of the TH transporters MCT8 and MCT10 in the plasma membrane, the expression of TH receptors (THRA or THRB) and hormone availability, which is determined either by the activation of thyroxine (T4) into triiodothyronine (T3) by type 2 iodothyronine deiodinases (D2) or by the inactivation of T4 into reverse T3 by deiodinases type 3 (D3). SM relaxation and contraction rates depend on T3 regulation of myosin expression and energy supplied by substrate oxidation in the mitochondria. The balance between D2 and D3 expression determines TH intracellular levels and thus influences the proliferation and differentiation of satellite cells, indicating an important role of TH in muscle repair and myogenesis. During critical illness, changes in TH levels and in THR and deiodinase expression negatively affect SM function and repair. This review will discuss the influence of TH action on SM contraction, bioenergetics metabolism, myogenesis and repair in health and illness conditions.
Collapse
Affiliation(s)
- Flavia F Bloise
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Aline Cordeiro
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
van der Spek AH, Fliers E, Boelen A. The classic pathways of thyroid hormone metabolism. Mol Cell Endocrinol 2017; 458:29-38. [PMID: 28109953 DOI: 10.1016/j.mce.2017.01.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (TH) are crucial for growth and development and play an important role in energy homeostasis. Although serum TH levels are relatively constant in the physiological state, TH bioavailability at the tissue and cellular level is dependent on local TH metabolism. Circulating TH produced by the thyroid can be metabolized by a number of different pathways resulting in 1) activation of TH 2) deactivation of TH or 3) excretion of TH and subsequent metabolites. These pathways play an essential role in determining local TH levels and action. The major classical pathways of TH metabolism are deiodination, sulfation, glucuronidation, and ether-link cleavage. This review provides an overview of these pathways, their relative contributions to TH levels in the serum and in various organs and the changes in these pathways elicited by fasting and illness.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Nicoll JX, Hatfield DL, Melanson KJ, Nasin CS. Thyroid hormones and commonly cited symptoms of overtraining in collegiate female endurance runners. Eur J Appl Physiol 2017; 118:65-73. [PMID: 29159669 DOI: 10.1007/s00421-017-3723-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/10/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Overtraining syndrome (OTS) is reported in endurance sports. Thyroid hormones (TH) regulate metabolism, mood, and energy production, and may play a role in OTS of endurance athletes. The purpose of this study was to investigate relationships in TH and symptoms of OTS in track and field endurance runners (ER). METHODS Sixteen female track and field middle distance (MD; n = 9; age: 20.2 ± 1.5 years; ht: 167.86 ± 5.04 cm; body-mass: 57.97 ± 5.05 kg; VO2MAX: 53.62 ± 6.04 ml/kg/min) and long distance (LD; n = 7; age: 20.5 ± 1.5 years; ht: 162.48 ± 6.11 cm; body-mass: 56.15 ± 5.99 kg; VO2MAX: 61.94 ± 3.29 ml/kg/min) ER participated in this descriptive study (15-weeks). Thyroid-stimulating hormone (TSH), triiodothyronine (T 3), and thyroxine (T 4), were collected at pre-(PRE) and post-season (POST). A fatigue scale was administered weekly, and percent change (PΔ) in race time (season best vs. championship performance) was calculated. Wilcoxon-sign ranked tests and Spearman's rho correlations were used to determine changes and relationships between TH and performance. RESULTS TSH, T 3 and T 4 did not change from PRE to POST. The percent change (PΔ) in T 3 from PRE to POST was correlated with running performance at the end of the season (ρ = - 0.70, p = 0.036). Fatigue at week 12 correlated with running performance at the end of the season (ρ = - 0.74, p = 0.004). CONCLUSION TH may be valuable in assessing the overall training state of ER. TH concentrations change too slowly to be a frequent marker of monitoring OTS, but are related to markers of decreased performance. Monitoring dietary intake, and fatigue may be predictive markers to assess OTS and training status of female ER.
Collapse
Affiliation(s)
- Justin X Nicoll
- Human Performance Laboratory, Department of Kinesiology, University of Rhode Island, South Kingston, RI, 02881, USA
| | - Disa L Hatfield
- Human Performance Laboratory, Department of Kinesiology, University of Rhode Island, South Kingston, RI, 02881, USA.
| | - Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, South Kingston, RI, 02881, USA
| | | |
Collapse
|
13
|
Chatzitomaris A, Hoermann R, Midgley JE, Hering S, Urban A, Dietrich B, Abood A, Klein HH, Dietrich JW. Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front Endocrinol (Lausanne) 2017; 8:163. [PMID: 28775711 PMCID: PMC5517413 DOI: 10.3389/fendo.2017.00163] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus-pituitary-thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions.
Collapse
Affiliation(s)
- Apostolos Chatzitomaris
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- *Correspondence: Apostolos Chatzitomaris,
| | - Rudolf Hoermann
- Private Consultancy, Research and Development, Yandina, QLD, Australia
| | | | - Steffen Hering
- Department for Internal Medicine, Cardiology, Endocrinology, Diabetes and Medical Intensive Care Medicine, Krankenhaus Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Aline Urban
- Department for Anesthesiology, Intensive Care and Palliative Medicine, Eastern Allgäu-Kaufbeuren Hospitals, Kaufbeuren, Germany
| | | | - Assjana Abood
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
| | - Harald H. Klein
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Johannes W. Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| |
Collapse
|
14
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
15
|
Abstract
In this review, we discuss the characteristics, pathophysiology, and therapeutic implications of the euthyroid sick syndrome. Multiple mechanisms have been identified to contribute to the development of euthyroid sick syndrome, including alterations in the iodothyronine deiodinases, thyroid-stimulating hormone secretion, thyroid hormone binding to plasma protein, transport of thyroid hormone in peripheral tissues, and thyroid hormone receptor activity. The euthyroid sick syndrome appears to be a complex mix of physiologic adaptation and pathologic response to acute illness. The underlying cause for these alterations has not yet been elucidated. Treatment of the euthyroid sick syndrome with thyroid hormone to restore normal serum thyroid hormone levels in an effort to improve disease prognosis and outcomes continues to be a focus of many clinical studies, although currently available data do not provide evidence of a clear benefit of treatment.
Collapse
Affiliation(s)
- Sun Lee
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Alan P Farwell
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Thyroid Hormones, Oxidative Stress, and Inflammation. Mediators Inflamm 2016; 2016:6757154. [PMID: 27051079 PMCID: PMC4802023 DOI: 10.1155/2016/6757154] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.
Collapse
|
17
|
Moura Neto A, Parisi MCR, Alegre SM, Pavin EJ, Tambascia MA, Zantut-Wittmann DE. Relation of thyroid hormone abnormalities with subclinical inflammatory activity in patients with type 1 and type 2 diabetes mellitus. Endocrine 2016; 51:63-71. [PMID: 26049370 DOI: 10.1007/s12020-015-0651-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/01/2015] [Indexed: 01/03/2023]
Abstract
Thyroid hormone (TH) abnormalities are common in patients with diabetes mellitus (DM). These thyroid hormone abnormalities have been associated with inflammatory activity in several conditions but this link remains unclear in DM. We assessed the influence of subclinical inflammation in TH metabolism in euthyroid diabetic patients. Cross-sectional study involving 258 subjects divided in 4 groups: 70 patients with T2DM and 55 patients with T1DM and two control groups of 70 and 63 non-diabetic individuals, respectively. Groups were paired by age, sex, and body mass index (BMI). We evaluated the association between clinical and hormonal variables [thyrotropin, reverse T3 (rT3), total and free thyroxine (T4), and triiodothyronine (T3)] with the inflammation markers C-reactive protein (hs-CRP), serum amyloid A (SAA), and interleukin-6 (IL-6). Serum T3 and free T3 were lower in patients with diabetes (all P < 0.001) compared to the control groups. Interleukin-6 showed positive correlations with rT3 in both groups (P < 0.05). IL-6 was independently associated to FT3/rT3 (B = -0.193; 95% CI -0.31; -0.076; P = 0.002) and FT4/rT3 (B = -0.107; 95% CI -0.207; -0.006; P = 0.039) in the T1DM group. In the T2DM group, SAA (B = 0.18; 95% CI 0.089; 0.271; P < 0.001) and hs-CRP (B = -0.069; 95% CI -0.132; -0.007; P = 0.03) predicted FT3 levels. SAA (B = -0.16; 95% CI -0.26; -0.061; P = 0.002) and IL6 (B = 0.123; 95% CI 0.005; 0.241; P = 0.041) were related to FT4/FT3. In DM, differences in TH levels compared to non-diabetic individuals were related to increased subclinical inflammatory activity and BMI. Altered deiodinase activity was probably involved. These findings were independent of sex, age, BMI, and HbA1c levels.
Collapse
Affiliation(s)
- Arnaldo Moura Neto
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Maria Candida Ribeiro Parisi
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Sarah Monte Alegre
- Division of Internal Medicine, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Elizabeth Joao Pavin
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Marcos Antonio Tambascia
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Denise Engelbrecht Zantut-Wittmann
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Lartey LJ, Werneck-de-Castro JP, O-Sullivan I, Unterman TG, Bianco AC. Coupling between Nutrient Availability and Thyroid Hormone Activation. J Biol Chem 2015; 290:30551-61. [PMID: 26499800 PMCID: PMC4683275 DOI: 10.1074/jbc.m115.665505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/13/2015] [Indexed: 12/18/2022] Open
Abstract
The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway.
Collapse
Affiliation(s)
- Lattoya J Lartey
- From the Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida 33136
| | - João Pedro Werneck-de-Castro
- the Department of Internal Medicine, Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois 60612, the Carlos Chagas Filho Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil, and
| | - InSug O-Sullivan
- the Jesse Brown Veterans Affairs Medical Center and the Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612
| | - Terry G Unterman
- the Jesse Brown Veterans Affairs Medical Center and the Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612
| | - Antonio C Bianco
- the Department of Internal Medicine, Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois 60612,
| |
Collapse
|
19
|
Werneck-de-Castro JP, Fonseca TL, Ignacio DL, Fernandes GW, Andrade-Feraud CM, Lartey LJ, Ribeiro MB, Ribeiro MO, Gereben B, Bianco AC. Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes. Endocrinology 2015; 156:3842-52. [PMID: 26214036 PMCID: PMC4588812 DOI: 10.1210/en.2015-1246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/23/2015] [Indexed: 01/25/2023]
Abstract
The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Animals
- Animals, Newborn
- Cells, Cultured
- Gene Expression
- Iodide Peroxidase/genetics
- Iodide Peroxidase/metabolism
- Male
- Mice, Knockout
- Mice, Transgenic
- Muscle Fibers, Skeletal/metabolism
- Muscle Strength/genetics
- Muscle Strength/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/genetics
- Physical Conditioning, Animal/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Signal Transduction
- Thyroid Hormones/metabolism
- Thyroxine/metabolism
- Time Factors
- Triiodothyronine/metabolism
- Tropomyosin/genetics
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Joao P Werneck-de-Castro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Tatiana L Fonseca
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Daniele L Ignacio
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Gustavo W Fernandes
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Cristina M Andrade-Feraud
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Lattoya J Lartey
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Marcelo B Ribeiro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Miriam O Ribeiro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Balazs Gereben
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| |
Collapse
|
20
|
Abstract
The 'sick euthyroid syndrome' or 'non-thyroidal illness syndrome' (NTIS) occurs in a large proportion of hospitalized patients and comprises a variety of alterations in the hypothalamus-pituitary-thyroid (HPT) axis that are observed during illness. One of the hallmarks of NTIS is decreased thyroid hormone (TH) serum concentrations, often viewed as an adaptive mechanism to save energy. Downregulation of hypophysiotropic TRH neurons in the paraventricular nucleus of the hypothalamus and of TSH production in the pituitary gland points to disturbed negative feedback regulation during illness. In addition to these alterations in the central component of the HPT axis, changes in TH metabolism occur in a variety of TH target tissues during NTIS, dependent on the timing, nature and severity of the illness. Cytokines, released during illness, are known to affect a variety of genes involved in TH metabolism and are therefore considered a major determinant of NTIS. The availability of in vivo and in vitro models for NTIS has elucidated part of the mechanisms involved in the sometimes paradoxical changes in the HPT axis and TH responsive tissues. However, the pathogenesis of NTIS is still incompletely understood. This review focusses on the molecular mechanisms involved in the tissue changes in TH metabolism and discusses the gaps that still require further research.
Collapse
Affiliation(s)
- Emmely M de Vries
- Department of Endocrinology and Metabolism Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Gabrielsen KM, Krokstad JS, Obregon MJ, Villanger GD, Sonne C, Dietz R, Jenssen BM. Thyroid hormones and deiodinase activities in plasma and tissues from East Greenland polar bears (Ursus maritimus) during winter season. Polar Biol 2015. [DOI: 10.1007/s00300-015-1694-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Sonne DP, Lund A, Faber J, Holst JJ, Vilsbøll T, Knop FK. On the role of gallbladder emptying and incretin hormones for nutrient-mediated TSH suppression in patients with type 2 diabetes. Endocr Connect 2014; 3:193-9. [PMID: 25277744 PMCID: PMC4201783 DOI: 10.1530/ec-14-0088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bile acids are possible candidate agents in newly identified pathways through which energy expenditure may be regulated. Preclinical studies suggest that bile acids activate the enzyme type 2 iodothyronine deiodinase, which deiodinates thyroxine (T4) to the biologically active triiodothyronine (T3). We aimed to evaluate the influence of bile acid exposure and incretin hormones on thyroid function parameters in patients with type 2 diabetes. Thyroid-stimulating hormone (TSH) and thyroid hormones (total T3 and free T4) were measured in plasma from two human studies: i) 75 g-oral glucose tolerance test (OGTT) and three isocaloric (500 kcal) and isovolaemic (350 ml) liquid meals with increasing fat content with concomitant ultrasonographic evaluation of gallbladder emptying in 15 patients with type 2 diabetes and 15 healthy age, gender and BMI-matched controls (meal-study) and ii) 50 g-OGTT and isoglycaemic intravenous glucose infusions (IIGI) alone or in combination with glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and/or GLP2, in ten patients with type 2 diabetes (IIGI-study). In both studies, TSH levels declined (P<0.01) similarly following all meal and infusion stimuli. T3 and T4 concentrations did not change in response to any of the applied stimuli. TSH levels declined independently of the degree of gallbladder emptying (meal-study), route of nutrient administration and infusion of gut hormones. In conclusion, intestinal bile flow and i.v. infusions of the gut hormones, GIP, GLP1 and/or GLP2, do not seem to affect thyroid function parameters. Thus, the presence of a 'gut-thyroid-pituitary' axis seems questionable.
Collapse
Affiliation(s)
- David P Sonne
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Asger Lund
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jens Faber
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jens J Holst
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Tina Vilsbøll
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark Department of MedicineCenter for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkDepartment of EndocrinologyHerlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
23
|
Leiria LB, Dora JM, Wajner SM, Estivalet AAF, Crispim D, Maia AL. The rs225017 polymorphism in the 3'UTR of the human DIO2 gene is associated with increased insulin resistance. PLoS One 2014; 9:e103960. [PMID: 25105294 PMCID: PMC4126657 DOI: 10.1371/journal.pone.0103960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/06/2014] [Indexed: 01/19/2023] Open
Abstract
The Thr92Ala (rs225014) polymorphism in the type 2 deiodinase (DIO2) gene has been associated with insulin resistance (IR) and decreased enzyme activity in human tissues but kinetic studies failed to detect changes in the mutant enzyme, suggesting that this variant might be a marker of abnormal DIO2 expression. Thus, we aimed to investigate whether other DIO2 polymorphisms, individually or in combination with the Thr92Ala, may contribute to IR. The entire coding-region of DIO2 gene was sequenced in 12 patients with type 2 diabetes mellitus (T2DM). Potentially informative variants were evaluated in 1077 T2DM patients and 516 nondiabetic subjects. IR was evaluated using the homeostasis model assessment (HOMA-IR) index. DIO2 gene sequencing revealed no new mutation but 5 previously described single nucleotide polymorphisms (SNPs). We observed that all T2DM patients displaying high HOMA-IR index (n = 6) were homozygous for the rs225017 (T/A) polymorphism. Further analysis showed that the median fasting plasma insulin and HOMA-IR of T2DM patients carrying the T/T genotype were higher than in patients carrying the A allele (P = 0.013 and P = 0.002, respectively). These associations were magnified in the presence of the Ala92Ala genotype of the Thr92Ala polymorphism. Moreover, the rs225017 and the Thr92Ala polymorphisms were in partial linkage disequilibrium (|D'| = 0.811; r2 = 0.365). In conclusion, the rs225017 polymorphism is associated with greater IR in T2DM and it seems to interact with the Thr92Ala polymorphism in the modulation of IR.
Collapse
Affiliation(s)
- Leonardo B. Leiria
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José M. Dora
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone M. Wajner
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline A. F. Estivalet
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Luiza Maia
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle--new insights and potential implications. Nat Rev Endocrinol 2014; 10:206-14. [PMID: 24322650 PMCID: PMC4037849 DOI: 10.1038/nrendo.2013.238] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type 2 and 3 iodothyronine deiodinases (DIO2 and DIO3, respectively) have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyses outer-ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone tri-iodothyronine (T3). T3 can remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner-ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how skeletal muscle deiodinase activity might be therapeutically harnessed to improve satellite-cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury.
Collapse
Affiliation(s)
- Domenico Salvatore
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Building 1, 1st floor, Via Pansini 5, 80131 Naples, Italy
| | - Warner S Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Centre, van der Boechorststraat 7, 1081 BT, Amsterdam, Netherlands
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Building 1, 1st floor, Via Pansini 5, 80131 Naples, Italy
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, HIM room 641, Boston, MA 02115, USA
| | - P Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, HIM room 641, Boston, MA 02115, USA
| |
Collapse
|
25
|
Dora JM, Wajner SM, Costa JD, Pinto Ribeiro RV, Leiria LB, Lopes MG, Vitali da Silva A, Crispim D, Maia AL. Type 2 deiodinase Thr92Ala polymorphism is associated with disrupted placental activity but not with dysglycemia or adverse gestational outcomes: a genetic association study. Fertil Steril 2014; 101:833-9. [PMID: 24355051 DOI: 10.1016/j.fertnstert.2013.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To study whether the D2 Thr92Ala polymorphism-a genetic marker that is associated with reduced thyroid type 2 deiodinase (D2) activity, increased insulin resistance, and risk for type 2 diabetes-is associated with disrupted placental D2 activity and with glycemic control and gestational outcomes. DESIGN Cross-sectional study. SETTING Tertiary hospital in Brazil. PATIENT(S) Consecutive singleton-pregnancy patients, 18-45 years old. INTERVENTION(S) Clinical examination and genotyping of the D2 Thr92Ala polymorphism, with placental samples collected and assayed for D2 mRNA and activity. MAIN OUTCOME MEASURE(S) Glucose homeostasis and gestational outcomes. RESULT(S) A total of 294 patients were included in the study. The clinical and laboratory characteristics were similar among the D2 genotypes. No differences were observed in D2 placental mRNA levels, but D2 activity was decreased in patients with the Ala92Ala genotype (0.35 ± 0.15 vs. 1.96 ± 1.02 fmol/mg/min.). Newborn serum thyroid-stimulating hormone levels (TSHneo) did not differ according to maternal D2 Thr92Ala genotype. Also, maternal glucose control, insulin resistance evaluated by the homeostasis model assessment (HOMA-IR), and gestational outcomes did not differ across D2 genotypes. CONCLUSION(S) The D2 Ala92Ala genotype is associated with reduced placental D2 activity but is not associated with dysglycemia, increased insulin resistance, or worse gestational outcomes.
Collapse
Affiliation(s)
- José Miguel Dora
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Simone M Wajner
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Dalla Costa
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafaela Vanin Pinto Ribeiro
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Barbosa Leiria
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariah G Lopes
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Vitali da Silva
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daisy Crispim
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Luiza Maia
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
26
|
Luo L, Xia W, Nie M, Sun Y, Jiang Y, Zhao J, He S, Xu L. Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women. Mol Biol Rep 2014; 41:3235-43. [PMID: 24481879 DOI: 10.1007/s11033-014-3186-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/18/2014] [Indexed: 01/23/2023]
Abstract
The estrogen receptor 1 (ESR1) and Chromosome 6 Open Reading Frame 97 (C6orf97) gene polymorphisms were earlier reported to be associated with osteoporosis in the European cohort. The aim of this study was to investigate the association of four single nucleotide polymorphisms (SNP) with bone mineral density (BMD), fracture, vertebral fracture, bone turnover or 25-hydroxyvitamin D [25(OH)D] in 1,753 randomly selected postmenopausal women in China. Vertebral fracture, BMD of lumbar spine (2-4), femoral neck and total hip were measured respectively. Serum N-terminal procollagen of type 1 collagen (P1NP), β-isomerized type I collagen C-telopeptide breakdown products (β-CTX) and 25(OH)D3 were also determined. Binary logistic regression revealed significant associations between fracture risk with rs1999805 (P=0.041, OR 1.633, 95%CI 1.020-2.616) and rs6929137 (P=0.005, OR 1.932, 95%CI 1.226-3.045) in recessive model. Significant association was also observed between vertebral fracture risk and rs1038304 (P=0.039, OR 0.549, 95%CI 0.311-0.969) in recessive model. Liner regression analyses showed that only the CC group of rs4870044 was significantly associated with total hip in dominant model (P=0.034). Our findings suggest that ESR1 and C6orf97 gene polymorphism is associated with fracture and vertebral fracture risk in Chinese postmenopausal women.
Collapse
Affiliation(s)
- Lianmei Luo
- Department of Obstetrics and Gynecology & Beijing Tsinghua Chang Gung Hospital of Tsinghua University, Beijing, 102218, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Martinez B, Soñanez-Organis JG, Vázquez-Medina JP, Viscarra JA, MacKenzie DS, Crocker DE, Ortiz RM. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal. J Exp Biol 2013; 216:4647-54. [PMID: 24307712 PMCID: PMC3851149 DOI: 10.1242/jeb.085290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - José G. Soñanez-Organis
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - José Pablo Vázquez-Medina
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Jose A. Viscarra
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Duncan S. MacKenzie
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Rudy M. Ortiz
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The current state of the pathophysiology, diagnosis, and therapeutic implications of the nonthyroidal illness syndrome is reviewed. RECENT FINDINGS Previous studies attributed the development of the nonthyroidal illness syndrome to alterations in three main areas of thyroid hormone metabolism: deiodinase activity, thyroid-stimulating hormone secretion, and hormone binding to serum proteins. New studies suggest that alterations in thyroid hormone transport into tissues and alterations of the nuclear thyroid hormone receptors may also play a role. Therapy of the nonthyroidal illness syndrome remains a controversial topic. SUMMARY Multiple factors lead to the development of the nonthyroidal illness syndrome, including alterations in type 1 and 3 deiodinase activity, thyrotropin-releasing hormone and thyroid-stimulating hormone secretion, hormone binding to plasma proteins, thyroid hormone transporter expression and activity, and the thyroid hormone nuclear receptor complex. These data show that acute and chronic illness affect all aspects of thyroid hormone metabolism and action. Some of these changes are physiologic and some are pharmacologic. The mediators of these alterations are still largely unclear. There continues to be no indication for thyroid hormone therapy in the vast majority of patients with the nonthyroidal illness syndrome, although interesting data suggest a possible role for treating a small subset of patients.
Collapse
Affiliation(s)
- Alan P Farwell
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts 01583, USA.
| |
Collapse
|
29
|
Lips MA, Pijl H, van Klinken JB, de Groot GH, Janssen IM, Van Ramshorst B, Van Wagensveld BA, Swank DJ, Van Dielen F, Smit JWA. Roux-en-Y gastric bypass and calorie restriction induce comparable time-dependent effects on thyroid hormone function tests in obese female subjects. Eur J Endocrinol 2013; 169:339-47. [PMID: 23811187 DOI: 10.1530/eje-13-0339] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Obesity and weight loss influence thyroid hormone physiology. The effects of weight loss by calorie restriction vs Roux-en-Y gastric bypass (RYGB) in obese subjects have not been studied in parallel. We hypothesized that differences in transient systemic inflammation and catabolic state between the intervention types could lead to differential effects on thyroid hormone physiology. DESIGN AND METHODS We recruited 12 lean and 27 obese females with normal fasting glucose (normal glucose tolerant (NGT)) and 27 obese females with type 2 diabetes mellitus (T2DM) for this study. Weight loss was achieved by restrictive treatment (gastric banding or high-protein-low-calorie diet) or by RYGB. Fasting serum leptin, TSH, triiodothyronine (T₃), reverse T₃ (rT₃), and free thyroxine (fT₄) concentrations were measured at baseline and 3 weeks and 3 months after the start of the interventions. RESULTS Obesity was associated with higher TSH, T₃, and rT₃ levels and normal fT₄ levels in all the subjects when compared with the controls. After 3 weeks, calorie restriction and RYGB induced a decline in TSH levels and a rise in rT₃ and fT₄ levels. The increase in rT₃ levels correlated with serum interleukin 8 (IL8) and IL6 levels. After 3 months, fT₄ and rT₃ levels returned to baseline levels, whereas TSH and T₃ levels were persistently decreased when compared with baseline levels. No differences in the effects on thyroid hormone parameters between the interventions or between NGT and T2DM subjects were observed at any time point. CONCLUSIONS In summary, weight loss directly influences thyroid hormone regulation, independently of the weight loss strategy used. The effects may be explained by a combination of decreased leptin levels and transient changes in peripheral thyroid hormone metabolism.
Collapse
Affiliation(s)
- Mirjam A Lips
- Department of Endocrinology and Metabolism, Leiden University Medical Center, C‐04‐R‐83, Albinusdreef 2, PO Box 9600, 2333 ZA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Drigo RA, Fonseca TL, Werneck-de-Castro JPS, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3956-64. [PMID: 22967761 PMCID: PMC4979226 DOI: 10.1016/j.bbagen.2012.08.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/11/2012] [Accepted: 08/23/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thyroid hormone signaling is critical for development, growth and metabolic control in vertebrates. Although serum concentration of thyroid hormone is remarkable stable, deiodinases modulate thyroid hormone signaling on a time- and cell-specific fashion by controlling the activation and inactivation of thyroid hormone. SCOPE OF THE REVIEW This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold-containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner. MAJOR CONCLUSIONS D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic- and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis. GENERAL SIGNIFICANCE Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Rafael Arrojo Drigo
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Tatiana L. Fonseca
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Joao Pedro Saar Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
- Instituto de Biofisica Carlos Chagas, Brazil
- Escola de Educacao Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
31
|
Soeters MR, Soeters PB, Schooneman MG, Houten SM, Romijn JA. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol Endocrinol Metab 2012; 303:E1397-407. [PMID: 23074240 DOI: 10.1152/ajpendo.00397.2012] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human organism has tools to cope with metabolic challenges like starvation that are crucial for survival. Lipolysis, lipid oxidation, ketone body synthesis, tailored endogenous glucose production and uptake, and decreased glucose oxidation serve to protect against excessive erosion of protein mass, which is the predominant supplier of carbon chains for synthesis of newly formed glucose. The starvation response shows that the adaptation to energy deficit is very effective and coordinated with different adaptations in different organs. From an evolutionary perspective, this lipid-induced effect on glucose oxidation and uptake is very strong and may therefore help to understand why insulin resistance in obesity and type 2 diabetes mellitus is difficult to treat. The importance of reciprocity in lipid and glucose metabolism during human starvation should be taken into account when studying lipid and glucose metabolism in general and in pathophysiological conditions in particular.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Marsili A, Tang D, Harney JW, Singh P, Zavacki AM, Dentice M, Salvatore D, Larsen PR. Type II iodothyronine deiodinase provides intracellular 3,5,3'-triiodothyronine to normal and regenerating mouse skeletal muscle. Am J Physiol Endocrinol Metab 2011; 301:E818-24. [PMID: 21771965 PMCID: PMC3214000 DOI: 10.1152/ajpendo.00292.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/15/2011] [Indexed: 12/30/2022]
Abstract
The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T(3) under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T(4)-to-T(3) conversion increases during differentiation in C(2)C(12) myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given (125)I-T(4) and (131)I-T(3), the intracellular (125)I-T(3)/(131)I-T(3) ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the (125)I-T(3)/(131)I-T(3) ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in (125)I-T(3)/(131)I-T(3) ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of (125)I-T(3) is doubled after skeletal muscle injury. Thus, D2-mediated T(4)-to-T(3) conversion generates significant intracellular T(3) in normal mouse skeletal muscle, with the increased T(3) required for muscle regeneration being provided by increased D2 synthesis, not by T(3) from the circulation.
Collapse
Affiliation(s)
- Alessandro Marsili
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 2011; 32:670-93. [PMID: 21791567 DOI: 10.1210/er.2011-0007] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Decreased serum thyroid hormone concentrations in severely ill patients were first reported in the 1970s, but the functional meaning of the observed changes in thyroid hormone levels, together known as nonthyroidal illness syndrome (NTIS), remains enigmatic. Although the common view was that NTIS results in overall down-regulation of metabolism in order to save energy, recent work has shown a more complex picture. NTIS comprises marked variation in transcriptional and translational activity of genes involved in thyroid hormone metabolism, ranging from inhibition to activation, dependent on the organ or tissue studied. Illness-induced changes in each of these organs appear to be very different during acute or chronic inflammation, adding an additional level of complexity. Organ- and timing-specific changes in the activity of thyroid hormone deiodinating enzymes (deiodinase types 1, 2, and 3) highlight deiodinases as proactive players in the response to illness, whereas the granulocyte is a novel and potentially important cell type involved in NTIS during bacterial infection. Although acute NTIS can be seen as an adaptive response to support the immune response, NTIS may turn disadvantageous when critical illness enters a chronic phase necessitating prolonged life support. For instance, changes in thyroid hormone metabolism in muscle during critical illness may be relevant for the pathogenesis of myopathy associated with prolonged ventilator dependence. This review focuses on NTIS as a timing-related and organ-specific response to illness, occurring independently from the decrease in serum thyroid hormone levels and potentially relevant for disease progression.
Collapse
Affiliation(s)
- Anita Boelen
- Department of Endocrinology and Metabolism, F5-165, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
34
|
Marsili A, Zavacki AM, Harney JW, Larsen PR. Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J Endocrinol Invest 2011; 34:395-407. [PMID: 21427525 PMCID: PMC3687787 DOI: 10.1007/bf03347465] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T4 is a prohormone secreted by the thyroid. T4 has a long half life in circulation and it is tightly regulated to remain constant in a variety of circumstances. However, the availability of iodothyronine selenodeiodinases allow both the initiation or the cessation of thyroid hormone action and can result in surprisingly acute changes in the intracellular concentration of the active hormone T3, in a tissue- specific and chronologically-determined fashion, in spite of the constant circulating levels of the prohormone. This fine-tuning of thyroid hormone signaling is becoming widely appreciated in the context of situations where the rapid modifications in intracellular T3 concentrations are necessary for developmental changes or tissue repair. Given the increasing availability of genetic models of deiodinase deficiency, new insights into the role of these important enzymes are being recognized. In this review, we have incorporated new information regarding the special role played by these enzymes into our current knowledge of thyroid physiology, emphasizing the clinical significance of these new insights.
Collapse
Affiliation(s)
- Alessandro Marsili
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John W. Harney
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - P. Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
van Marken Lichtenbelt WD, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol 2011; 301:R285-96. [PMID: 21490370 DOI: 10.1152/ajpregu.00652.2010] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of the metabolic syndrome has reached epidemic levels in the Western world. With respect to the energy balance, most attention has been given to reducing energy (food) intake. Increasing energy expenditure is an important alternative strategy. Facultative thermogenesis, which is the increase in energy expenditure in response to cold or diet, may be an effective way to affect the energy balance. The recent identification of functional brown adipose tissue (BAT) in adult humans promoted a renewed interest in nonshivering thermogenesis (NST). The purpose of this review is to highlight the recent insight in NST, general aspects of its regulation, the major tissues involved, and its metabolic consequences. Sustainable NST in adult humans amounts to 15% of the average daily energy expenditure. Calculations based on the limited available literature show that BAT thermogenesis can amount to 5% of the basal metabolic rate. It is likely that at least a substantial part of NST can be attributed to BAT, but it is possible that other tissues contribute to NST. Several studies on mitochondrial uncoupling indicate that skeletal muscle is another potential contributor to facultative thermogenesis in humans. The general and synergistic role of the sympathetic nervous system and the thyroid axis in relation to NST is discussed. Finally, perspectives on BAT and skeletal muscle NST are given.
Collapse
Affiliation(s)
- Wouter D van Marken Lichtenbelt
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | |
Collapse
|
36
|
Abstract
BACKGROUND The nonthyroidal illness syndrome (NTIS) is a very common clinical entity among hospitalized patients and has been reported in practically every severe illness and acute or chronic stressful event. There is a large body of data associating the presence of NTIS with the severity of the underlying disease. Most of these studies concern intensive care unit (ICU) patients, whereas the non-critically ill patients outside the ICU setting are less well studied. DESIGN We provide a review of the existing literature focusing on studies examining NTIS in non-critically ill patients and attempt to summarize the pathophysiological pathways underlying the syndrome, its prognostic role, as well as the current intervention studies mainly from a clinical standpoint. RESULTS The aetiology of the NTIS is multifactorial and varies among different groups of patients. Experimental and clinical findings suggest that inflammatory cytokines are implicated in the pathogenesis of the syndrome, whereas recent evidence re-evaluate the role of deiodinases in thyroid hormone metabolism not only in the periphery but also in the hypothalamus and the pituitary and thus in the alterations accompanying NTIS. Clinical data examining the effectiveness of thyroid hormone supplementation in NTIS remain controversial. CONCLUSIONS As long as there is no clear evidence of benefit from thyroid hormone replacement and until well-designed studies confirm its efficacy, thyroxine supplementation should not be recommended for the treatment of NTIS.
Collapse
Affiliation(s)
- Theodora A Pappa
- Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, Athens University School of Medicine, Athens, Greece
| | | | | |
Collapse
|
37
|
Marsili A, Ramadan W, Harney JW, Mulcahey M, Castroneves LA, Goemann IM, Wajner SM, Huang SA, Zavacki AM, Maia AL, Dentice M, Salvatore D, Silva JE, Larsen PR. Type 2 iodothyronine deiodinase levels are higher in slow-twitch than fast-twitch mouse skeletal muscle and are increased in hypothyroidism. Endocrinology 2010; 151:5952-60. [PMID: 20881246 PMCID: PMC2999482 DOI: 10.1210/en.2010-0631] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/30/2010] [Indexed: 12/28/2022]
Abstract
Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.
Collapse
Affiliation(s)
- Alessandro Marsili
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Havekes B, Sauerwein HP. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone? Curr Opin Clin Nutr Metab Care 2010; 13:641-6. [PMID: 20689414 DOI: 10.1097/mco.0b013e32833e341d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. RECENT FINDINGS Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. SUMMARY Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.
Collapse
Affiliation(s)
- Bas Havekes
- Department of Endocrinology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands.
| | | |
Collapse
|
39
|
Dentice M, Marsili A, Ambrosio R, Guardiola O, Sibilio A, Paik JH, Minchiotti G, DePinho RA, Fenzi G, Larsen PR, Salvatore D. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest 2010; 120:4021-30. [PMID: 20978344 PMCID: PMC2964991 DOI: 10.1172/jci43670] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/18/2010] [Indexed: 01/14/2023] Open
Abstract
The active thyroid hormone 3,5,3' triiodothyronine (T3) is a major regulator of skeletal muscle function. The deiodinase family of enzymes controls the tissue-specific activation and inactivation of the prohormone thyroxine (T4). Here we show that type 2 deiodinase (D2) is essential for normal mouse myogenesis and muscle regeneration. Indeed, D2-mediated increases in T3 were essential for the enhanced transcription of myogenic differentiation 1 (MyoD) and for execution of the myogenic program. Conversely, the expression of T3-dependent genes was reduced and after injury regeneration markedly delayed in muscles of mice null for the gene encoding D2 (Dio2), despite normal circulating T3 concentrations. Forkhead box O3 (FoxO3) was identified as a key molecule inducing D2 expression and thereby increasing intracellular T3 production. Accordingly, FoxO3-depleted primary myoblasts also had a differentiation deficit that could be rescued by high levels of T3. In conclusion, the FoxO3/D2 pathway selectively enhances intracellular active thyroid hormone concentrations in muscle, providing a striking example of how a circulating hormone can be tissue-specifically activated to influence development locally.
Collapse
Affiliation(s)
- Monica Dentice
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Alessandro Marsili
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Raffaele Ambrosio
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Ombretta Guardiola
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Annarita Sibilio
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Ji-Hye Paik
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Gabriella Minchiotti
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Ronald A. DePinho
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Gianfranco Fenzi
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - P. Reed Larsen
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Domenico Salvatore
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II,” Naples, Italy.
Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
IRCCS Fondazione SDN, Naples, Italy.
Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso,” CNR, Naples, Italy.
Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
CEINGE–Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| |
Collapse
|
40
|
Dora JM, Machado WE, Rheinheimer J, Crispim D, Maia AL. Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case-control study and meta-analysis. Eur J Endocrinol 2010; 163:427-34. [PMID: 20566590 DOI: 10.1530/eje-10-0419] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The type 2 deiodinase (D2) is a key enzyme for intracellular triiodothyronine (T(3)) generation. A single-nucleotide polymorphism in D2 (Thr92Ala) has been associated with increased insulin resistance in nondiabetic and type 2 diabetes (DM2) subjects. Our aim was to evaluate whether the D2 Thr92Ala polymorphism is associated with increased risk for DM2. DESIGN AND METHODS A case-control study with 1057 DM2 and 516 nondiabetic subjects was performed. All participants underwent genotyping of the D2 Thr92Ala polymorphism. Additionally, systematic review and meta-analysis of the literature for genetic association studies of D2 Thr92Ala polymorphism and DM2 were performed in Medline, Embase, LiLacs, and SciELO, and major meeting databases using the terms 'rs225014' odds ratio (OR) 'thr92ala' OR 'T92A' OR 'dio2 a/g'. RESULTS In the case-control study, the frequencies of D2 Ala92Ala homozygous were 16.4% (n=173) versus 12.0% (n=62) in DM2 versus controls respectively resulting in an adjusted OR of 1.41 (95% confidence intervals (CI) 1.03-1.94, P=0.03). The literature search identified three studies that analyzed the association of the D2 Thr92Ala polymorphism with DM2, with the following effect estimates: Mentuccia (OR 1.40 (95% CI 0.78-2.51)), Grarup (OR 1.09 (95% CI 0.92-1.29)), and Maia (OR 1.22 (95% CI 0.78-1.92)). The pooled effect of the four studies resulted in an OR 1.18 (95% CI 1.03-1.36, P=0.02). CONCLUSIONS Our results indicate that in a case-control study, the homozygosity for D2 Thr92Ala polymorphism is associated with increased risk for DM2. These results were confirmed by a meta-analysis including 11 033 individuals, and support a role for intracellular T(3) concentration in skeletal muscle on DM2 pathogenesis.
Collapse
Affiliation(s)
- José Miguel Dora
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
41
|
Abstract
Increasing evidence points towards a role for thyroid hormone signalling in the central nervous system with respect to the development of symptoms of thyroid disease, in addition to the well-known peripheral effects of thyroid hormone. Thyroid hormone affects target tissues directly via thyroid hormone receptors, but also indirectly through effects on the integration of the sympathetic signal in target tissues. The present review discusses these pathways and the evidence for a third pathway, that is effects of thyroid hormone on the pre-autonomic neurones in the central nervous system. The pre-autonomic neurones reside in the hypothalamus in brain nuclei such as the paraventricular nucleus of the hypothalamus where thyroid hormone receptor isoforms are expressed. Recent data from studies in transgenic mice implicate a role for thyroid hormone receptor alpha 1 in the modulation of sympathetic signalling to target tissues, thereby affecting both glucose and lipid metabolism. Focal stimulation of hypothalamic nuclei expressing thyroid hormone receptors and selective liver denervation experiments in rats have provided further evidence indicating that the metabolic changes observed during hyperthyroidism are not only a result of increased thyroid hormone signalling in the periphery, but also, at least in part, result from altered signalling in thyroid hormone sensitive neurones.
Collapse
Affiliation(s)
- A Alkemade
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Soeters MR, Lammers NM, Dubbelhuis PF, Ackermans M, Jonkers-Schuitema CF, Fliers E, Sauerwein HP, Aerts JM, Serlie MJ. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism. Am J Clin Nutr 2009; 90:1244-51. [PMID: 19776143 DOI: 10.3945/ajcn.2008.27327] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. OBJECTIVE The objective was to assess effects of IF on intermediary metabolism and energy expenditure. DESIGN Glucose, glycerol, and valine fluxes were measured after 2 wk of IF and a standard diet (SD) in 8 lean healthy volunteers in a crossover design, in the basal state and during a 2-step hyperinsulinemic euglycemic clamp, with assessment of energy expenditure and phosphorylation of muscle protein kinase B (AKT), glycogen synthase kinase (GSK), and mammalian target of rapamycine (mTOR). We hypothesized that IF selectively increases peripheral glucose uptake and lowers proteolysis, thereby protecting protein stores. RESULTS No differences in body weight were observed between the IF and SD groups. Peripheral glucose uptake and hepatic insulin sensitivity during the clamp did not significantly differ between the IF and SD groups. Likewise, lipolysis and proteolysis were not different between the IF and SD groups. IF decreased resting energy expenditure. IF had no effect on the phosphorylation of AKT but significantly increased the phosphorylation of glycogen synthase kinase. Phosphorylation of mTOR was significantly lower after IF than after the SD. CONCLUSIONS IF does not affect whole-body glucose, lipid, or protein metabolism in healthy lean men despite changes in muscle phosphorylation of GSK and mTOR. The decrease in resting energy expenditure after IF indicates the possibility of an increase in weight during IF when caloric intake is not adjusted. This study was registered at www.trialregister.nl as NTR1841.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Larsen PR. Type 2 iodothyronine deiodinase in human skeletal muscle: new insights into its physiological role and regulation. J Clin Endocrinol Metab 2009; 94:1893-5. [PMID: 19494166 PMCID: PMC2690423 DOI: 10.1210/jc.2009-0791] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 01/30/2023]
|