1
|
Ardehjani NA, Agha-Hosseini M, Nashtaei MS, Khodarahmian M, Shabani M, Jabarpour M, Fereidouni F, Rastegar T, Amidi F. Resveratrol ameliorates mitochondrial biogenesis and reproductive outcomes in women with polycystic ovary syndrome undergoing assisted reproduction: a randomized, triple-blind, placebo-controlled clinical trial. J Ovarian Res 2024; 17:143. [PMID: 38987824 PMCID: PMC11234766 DOI: 10.1186/s13048-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND This study was designed to examine the effect of resveratrol on mitochondrial biogenesis, oxidative stress (OS), and assisted reproductive technology (ART) outcomes in individuals with polycystic ovary syndrome (PCOS). METHODS Fifty-six patients with PCOS were randomly assigned to receive 800 mg/day of resveratrol or placebo for 60 days. The primary outcome was OS in follicular fluid (FF). The secondary outcome involved assessing gene and protein expression related to mitochondrial biogenesis, mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP) content in granulosa cells (GCs). ART outcomes were evaluated at the end of the trial. RESULTS Resveratrol significantly reduced the total oxidant status (TOS) and oxidative stress index (OSI) in FF (P = 0.0142 and P = 0.0039, respectively) while increasing the total antioxidant capacity (TAC) (P < 0.0009). Resveratrol consumption also led to significant increases in the expression of critical genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and mitochondrial transcription factor A (TFAM) (P = 0.0032 and P = 0.0003, respectively). However, the effect on nuclear respiratory factor 1 (Nrf-1) expression was not statistically significant (P = 0.0611). Resveratrol significantly affected sirtuin1 (SIRT1) and PGC-1α protein levels (P < 0.0001 and P = 0.0036, respectively). Resveratrol treatment improved the mtDNA copy number (P < 0.0001) and ATP content in GCs (P = 0.0014). Clinically, the resveratrol group exhibited higher rates of oocyte maturity (P = 0.0012) and high-quality embryos (P = 0.0013) than did the placebo group. There were no significant differences between the groups in terms of chemical or clinical pregnancy rates (P > 0.05). CONCLUSIONS These findings indicate that resveratrol may be a promising therapeutic agent for patients with PCOS undergoing assisted reproduction. TRIAL REGISTRATION NUMBER http://www.irct.ir ; IRCT20221106056417N1; 2023 February 09.
Collapse
Affiliation(s)
- Negar Ajabi Ardehjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Agha-Hosseini
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoome Jabarpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Morelli AM, Scholkmann F. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Biochimie 2024; 221:99-109. [PMID: 38307246 DOI: 10.1016/j.biochi.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Olaniyi KS, Areloegbe SE. Acetate ameliorates ovarian mitochondrial dysfunction in letrozole-induced polycystic ovarian syndrome rat model by improving mitofusin-2. J Physiol Sci 2024; 74:22. [PMID: 38561673 PMCID: PMC10983676 DOI: 10.1186/s12576-024-00908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Androgen excess and metabolic abnormality largely contribute to the pathogenesis of polycystic ovarian syndrome (PCOS), which primarily precipitates ovarian dysfunction and infertility in reproductive-age women. Impaired mitochondrial function and epigenetic alteration have been linked to the development of PCOS. However, it is unknown whether acetate would exert a therapeutic effect on ovarian mitochondrial dysfunction in PCOS. Herein, the study hypothesized that acetate reverses ovarian mitochondrial dysfunction in experimental PCOS rat model, possibly through modulation of mitofusin-2 (MFn2). Eight-week-old female Wistar rats were randomized into four groups (n = 5). Induction of PCOS was performed by 1 mg/kg letrozole (p.o.), administered for 21 days. Thereafter, the rats were treated with acetate (200 mg/kg; p.o.) for 6 weeks. The PCOS rats demonstrated androgen excess, multiple ovarian cysts, elevated anti-mullerian hormone and leptin and decreased SHBG, adiponectin and 17-β estradiol with corresponding increase in ovarian transforming growth factor-β1. Additionally, inflammation (tumor growth factor and nuclear factor-kB), elevated caspase-6, decreased hypoxia-inducible factor-1α and elevated histone deacetylase-2 (HDAC2) were observed in the ovaries of PCOS rats, while mitochondrial abnormality with evidence of decreased adenosine triphosphate synthase and MFn2 was observed in rats with PCOS. Treatment with acetate reversed the alterations. The present results collectively suggest that acetate ameliorates ovarian mitochondrial abnormality, a beneficial effect that is accompanied by MFn2 with consequent normalization of reproductive-endocrine profile and ovarian function. Perhaps, the present data provide hope for PCOS individuals that suffer infertility.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria.
| | - Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| |
Collapse
|
4
|
Gao Y, Zou Y, Wu G, Zheng L. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome. Front Med (Lausanne) 2023; 10:1193749. [PMID: 37448805 PMCID: PMC10336225 DOI: 10.3389/fmed.2023.1193749] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the leading causes of anovulatory infertility in women, affecting 5%-15% of women of reproductive age worldwide. The clinical manifestations of patients include ovulation disorders, amenorrhea, hirsutism, and obesity. Life-threatening diseases, such as endometrial cancer, type 2 diabetes, hyperlipidaemia, hypertension, and cardiovascular disease, can be distant complications of PCOS. PCOS has diverse etiologies and oxidative stress (OS) plays an important role. Mitochondria, as the core organelles of energy production, are the main source of reactive oxygen species (ROS). The process of follicular growth and development is extremely complex, and the granulosa cells (GCs) are inextricably linked to follicular development. The abnormal function of GCs may directly affect follicular development and alter many symptoms of PCOS. Significantly higher levels of OS markers and abnormal mitochondrial function in GCs have been found in patients with PCOS compared to healthy subjects, suggesting that increased OS is associated with PCOS progression. Therefore, the aim of this review was to summarize and discuss the findings suggesting that OS and mitochondrial dysfunction in GCs impair ovarian function and induce PCOS.
Collapse
|
5
|
Malamouli M, Levinger I, McAinch AJ, Trewin AJ, Rodgers RJ, Moreno-Asso A. The mitochondrial profile in women with polycystic ovary syndrome: impact of exercise. J Mol Endocrinol 2022; 68:R11-R23. [PMID: 35060480 PMCID: PMC8942332 DOI: 10.1530/jme-21-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting pre-menopausal women and involves metabolic dysregulation. Despite the high prevalence of insulin resistance, the existence of mitochondrial dysregulation and its role in the pathogenesis of PCOS is not clear. Exercise is recommended as the first-line therapy for women with PCOS. In particular, high-intensity interval training (HIIT) is known to improve metabolic health and enhance mitochondrial characteristics. In this narrative review, the existing knowledge of mitochondrial characteristics in skeletal muscle and adipose tissue of women with PCOS and the effect of exercise interventions in ameliorating metabolic and mitochondrial health in these women are discussed. Even though the evidence on mitochondrial dysfunction in PCOS is limited, some studies point to aberrant mitochondrial functions mostly in skeletal muscle, while there is very little research in adipose tissue. Although most exercise intervention studies in PCOS report improvements in metabolic health, they show diverse and inconclusive findings in relation to mitochondrial characteristics. A limitation of the current study is the lack of comprehensive mitochondrial analyses and the diversity in exercise modalities, with only one study investigating the impact of HIIT alone. Therefore, further comprehensive large-scale exercise intervention studies are required to understand the association between metabolic dysfunction and aberrant mitochondrial profile, and the molecular mechanisms underlying the exercise-induced metabolic adaptations in women with PCOS.
Collapse
Affiliation(s)
- Melpomeni Malamouli
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University, Victoria, Australia
| | - Itamar Levinger
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Raymond J Rodgers
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University, Victoria, Australia
| |
Collapse
|
6
|
Moreno-Asso A, Altıntaş A, McIlvenna LC, Patten RK, Botella J, McAinch AJ, Rodgers RJ, Barrès R, Stepto NK. Non-cell autonomous mechanisms control mitochondrial gene dysregulation in polycystic ovary syndrome. J Mol Endocrinol 2021; 68:63-76. [PMID: 34752415 PMCID: PMC8679849 DOI: 10.1530/jme-21-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with insulin resistance and impaired energy metabolism in skeletal muscle, the aetiology of which is currently unclear. Here, we mapped the gene expression profile of skeletal muscle from women with PCOS and determined if cultured primary myotubes retain the gene expression signature of PCOS in vivo. Transcriptomic analysis of vastus lateralis biopsies collected from PCOS women showed lower expression of genes associated with mitochondrial function, while the expression of genes associated with the extracellular matrix was higher compared to controls. Altered skeletal muscle mRNA expression of mitochondrial-associated genes in PCOS was associated with lower protein expression of mitochondrial complex II-V, but not complex I, with no difference in mitochondrial DNA content. Transcriptomic analysis of primary myotube cultures established from biopsies did not display any differentially expressed genes between controls and PCOS. Comparison of gene expression profiles in skeletal muscle biopsies and primary myotube cultures showed lower expression of mitochondrial and energy metabolism-related genes in vitro, irrespective of the group. Together, our results show that the altered mitochondrial-associated gene expression in skeletal muscle in PCOS is not preserved in cultured myotubes, indicating that the in vivo extracellular milieu, rather than genetic or epigenetic factors, may drive this alteration. Dysregulation of mitochondrial-associated genes in skeletal muscle by extracellular factors may contribute to the impaired energy metabolism associated with PCOS.
Collapse
Affiliation(s)
- Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
- Correspondence should be addressed to A Moreno-Asso or R Barrès: or
| | - Ali Altıntaş
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke C McIlvenna
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Rhiannon K Patten
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Javier Botella
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Andrew J McAinch
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| | - Raymond J Rodgers
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to A Moreno-Asso or R Barrès: or
| | - Nigel K Stepto
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| |
Collapse
|
7
|
Ravera S, Bartolucci M, Calzia D, Morelli AM, Panfoli I. Efficient extra-mitochondrial aerobic ATP synthesis in neuronal membrane systems. J Neurosci Res 2021; 99:2250-2260. [PMID: 34085315 DOI: 10.1002/jnr.24865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
The nervous system displays high energy consumption, apparently not fulfilled by mitochondria, which are underrepresented therein. The oxidative phosphorylation (OxPhos) activity, a mitochondrial process that aerobically provides ATP, has also been reported also in the myelin sheath and the rod outer segment (OS) disks. Thus, commonalities and differences between the extra-mitochondrial and mitochondrial aerobic metabolism were evaluated in bovine isolated myelin (IM), rod OS, and mitochondria-enriched fractions (MIT). The subcellular fraction quality and the absence of contamination fractions have been estimated by western blot analysis. Oxygen consumption and ATP synthesis were stimulated by conventional (pyruvate + malate or succinate) and unconventional (NADH) substrates, observing that oxygen consumption and ATP synthesis by IM and rod OS are more efficient than by MIT, in the presence of both kinds of respiratory substrates. Mitochondria did not utilize NADH as a respiring substrate. When ATP synthesis by either sample was assayed in the presence of 10-100 µM ATP in the assay medium, only in IM and OS it was not inhibited, suggesting that the ATP exportation by the mitochondria is limited by extravesicular ATP concentration. Interestingly, IM and OS but not mitochondria appear able to synthesize ATP at a later time with respect to exposure to respiratory substrates, supporting the hypothesis that the proton gradient produced by the electron transport chain is buffered by membrane phospholipids. The putative transfer mode of the OxPhos molecular machinery from mitochondria to the extra-mitochondrial structures is also discussed, opening new perspectives in the field of neurophysiology.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Martina Bartolucci
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genoa, Italy.,Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | | | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
Puttabyatappa M, Ciarelli JN, Chatoff AG, Padmanabhan V. Developmental programming: Metabolic tissue-specific changes in endoplasmic reticulum stress, mitochondrial oxidative and telomere length status induced by prenatal testosterone excess in the female sheep. Mol Cell Endocrinol 2021; 526:111207. [PMID: 33607270 PMCID: PMC8005473 DOI: 10.1016/j.mce.2021.111207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Prenatal testosterone (T) excess-induced metabolic dysfunctions involve tissue specific changes in insulin sensitivity with insulin resistant, oxidative and lipotoxic state in liver/muscle and insulin sensitive but inflammatory and oxidative state in visceral adipose tissues (VAT). We hypothesized that mitochondrial dysfunction, endoplasmic reticulum (ER) stress and premature cellular senescence are contributors to the tissue-specific changes in insulin sensitivity. Markers of mitochondrial number, function, and oxidative phosphorylation (OxPhos), ER stress and cellular senescence (telomere length) were assessed in liver, muscle and 4 adipose (VAT, subcutaneous [SAT], epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep at 21 months of age. Prenatal T treatment led to: (a) reduction in mitochondrial number and OxPhos complexes and increase in ER stress markers in muscle; (b) increase in fibrosis with trend towards increase in short telomere fragments in liver (c) depot-specific mitochondrial changes with OxPhos complexes namely increase in SAT and reduction in PRAT and increase in mitochondrial number in ECAT; (d) depot-specific ER stress marker changes with increase in VAT, reduction in SAT, contrasting changes in ECAT and no changes in PRAT; and (d) reduced shorter telomere fragments in SAT, ECAT and PRAT. These changes indicate insulin resistance may be driven by mitochondrial and ER dysfunction in muscle, fibrosis and premature senescence in liver, and depot-specific changes in mitochondrial function and ER stress without involving cellular senescence in adipose tissue. These findings provide mechanistic insights into pathophysiology of metabolic dysfunction among female offspring from hyperandrogenic pregnancies.
Collapse
Affiliation(s)
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Chatoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
9
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
10
|
McIlvenna LC, Patten RK, McAinch AJ, Rodgers RJ, Stepto NK, Moreno-Asso A. Transforming Growth Factor Beta 1 Alters Glucose Uptake but Not Insulin Signalling in Human Primary Myotubes From Women With and Without Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:732338. [PMID: 34707569 PMCID: PMC8544291 DOI: 10.3389/fendo.2021.732338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS), commonly have profound skeletal muscle insulin resistance which can worsen other clinical features. The heterogeneity of the condition has made it challenging to identify the precise mechanisms that cause this insulin resistance. A possible explanation for the underlying insulin resistance may be the dysregulation of Transforming Growth Factor-beta (TGFβ) signalling. TGFβ signalling contributes to the remodelling of reproductive and hepatic tissues in women with PCOS. Given the systemic nature of TGFβ signalling and its role in skeletal muscle homeostasis, it may be possible that these adverse effects extend to other peripheral tissues. We aimed to determine if TGFβ1 could negatively regulate glucose uptake and insulin signalling in skeletal muscle of women with PCOS. We show that both myotubes from women with PCOS and healthy women displayed an increase in glucose uptake, independent of changes in insulin signalling, following short term (16 hr) TGFβ1 treatment. This increase occurred despite pro-fibrotic signalling increasing via SMAD3 and connective tissue growth factor in both groups following treatment with TGFβ1. Collectively, our findings show that short-term treatment with TGFβ1 does not appear to influence insulin signalling or promote insulin resistance in myotubes. These findings suggest that aberrant TGFβ signalling is unlikely to directly contribute to skeletal muscle insulin resistance in women with PCOS in the short term but does not rule out indirect or longer-term effects.
Collapse
Affiliation(s)
- Luke C. McIlvenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Rhiannon K. Patten
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nigel K. Stepto
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
- *Correspondence: Alba Moreno-Asso,
| |
Collapse
|
11
|
Yin L, Luo M, Wang R, Ye J, Wang X. Mitochondria in Sex Hormone-Induced Disorder of Energy Metabolism in Males and Females. Front Endocrinol (Lausanne) 2021; 12:749451. [PMID: 34987473 PMCID: PMC8721233 DOI: 10.3389/fendo.2021.749451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Androgens have a complex role in the regulation of insulin sensitivity in the pathogenesis of type 2 diabetes. In male subjects, a reduction in androgens increases the risk for insulin resistance, which is improved by androgen injections. However, in female subjects with polycystic ovary syndrome (PCOS), androgen excess becomes a risk factor for insulin resistance. The exact mechanism underlying the complex activities of androgens remains unknown. In this review, a hormone synergy-based view is proposed for understanding this complexity. Mitochondrial overactivation by substrate influx is a mechanism of insulin resistance in obesity. This concept may apply to the androgen-induced insulin resistance in PCOS. Androgens and estrogens both exhibit activities in the induction of mitochondrial oxidative phosphorylation. The two hormones may synergize in mitochondria to induce overproduction of ATP. ATP surplus in the pancreatic β-cells and α-cells causes excess secretion of insulin and glucagon, respectively, leading to peripheral insulin resistance in the early phase of type 2 diabetes. In the skeletal muscle and liver, the ATP surplus contributes to insulin resistance through suppression of AMPK and activation of mTOR. Consistent ATP surplus leads to mitochondrial dysfunction as a consequence of mitophagy inhibition, which provides a potential mechanism for mitochondrial dysfunction in β-cells and brown adipocytes in PCOS. The hormone synergy-based view provides a basis for the overactivation and dysfunction of mitochondria in PCOS-associated type 2 diabetes. The molecular mechanism for the synergy is discussed in this review with a focus on transcriptional regulation. This view suggests a unifying mechanism for the distinct metabolic roles of androgens in the control of insulin action in men with hypogonadism and women with PCOS.
Collapse
Affiliation(s)
- Lijun Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Man Luo
- Metabolism Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianping Ye
- Metabolism Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jianping Ye, ; Xiaohui Wang,
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jianping Ye, ; Xiaohui Wang,
| |
Collapse
|
12
|
Ravera S, Morelli AM, Panfoli I. Myelination increases chemical energy support to the axon without modifying the basic physicochemical mechanism of nerve conduction. Neurochem Int 2020; 141:104883. [PMID: 33075435 DOI: 10.1016/j.neuint.2020.104883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023]
Abstract
The existence of different conductive patterns in unmyelinated and myelinated axons is uncertain. It seems that considering exclusively physical electrical phenomena may be an oversimplification. A novel interpretation of the mechanism of nerve conduction in myelinated nerves is proposed, to explain how the basic mechanism of nerve conduction has been adapted to myelinated conditions. The neurilemma would bear the voltage-gated channels and Na+/K+-ATPase in both unmyelinated and myelinated conditions, the only difference being the sheath wrapping it. The dramatic increase in conduction speed of the myelinated axons would essentially depend on an increment in ATP availability within the internode: myelin would be an aerobic ATP supplier to the axoplasm, through connexons. In fact, neurons rely on aerobic metabolism and on trophic support from oligodendrocytes, that do not normally duplicate after infancy in humans. Such comprehensive framework of nerve impulse propagation in axons may shed new light on the pathophysiology of nervous system disease in humans, seemingly strictly dependent on the viability of the pre-existing oligodendrocyte.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, I 16132, Italy
| | - Alessandro Maria Morelli
- Laboratory of Biochemistry, Department of Pharmacy-DIFAR, University of Genoa, Genoa, I 16132, Italy.
| | - Isabella Panfoli
- Laboratory of Biochemistry, Department of Pharmacy-DIFAR, University of Genoa, Genoa, I 16132, Italy
| |
Collapse
|
13
|
Zeng X, Huang Q, Long SL, Zhong Q, Mo Z. Mitochondrial Dysfunction in Polycystic Ovary Syndrome. DNA Cell Biol 2020; 39:1401-1409. [PMID: 32077751 DOI: 10.1089/dna.2019.5172] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common female reproductive metabolisms. It is an endocrine disease that affects reproductive women and often exhibits with hyperandrogenemia, insulin resistance (IR), low inflammation, and an increased risk of type 2 diabetes mellitus, metabolic syndrome, and cardiovascular events such as hypertension and dyslipidemia in patients. However, the molecular mechanism of PCOS is still unclear. Recently, an increasing number of studies have shown that the oxidative stress induced by mitochondrial dysfunction has negative effects on IR, lipid metabolism, and follicular development, suggesting that mitochondrial dysfunction plays an essential role in the development of PCOS. Abnormal mitochondrial DNA copy number in patients with PCOS, and mitochondrial gene mutations, has been the focus of research in recent years, and functional mitochondrial diseases have been gradually accepted as a related factor in PCOS. This review is intended to summarize and discuss previous and recent studies and findings on the connections between mitochondrial dysfunction and PCOS.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Huang
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuang Lian Long
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiaoqing Zhong
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Basic Medical Sciences, Guilin Medical University, Guangxi, Guilin, China
| |
Collapse
|
14
|
Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion 2020; 52:24-39. [PMID: 32081727 DOI: 10.1016/j.mito.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/31/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by irregular menstrual cycles, hyperandrogenism and subfertility. Due to its complex manifestation, the pathogenic mechanism of PCOS is not well defined. Cumulative effect of altered genetic and epigenetic factors along with environmental factors may play a role in the manifestation of PCOS leading to systemic malfunction. With failure of genome-wide association study (GWAS) and other studies performed on nuclear genome to provide any clue for precise mechanism of PCOS pathogenesis, attention has been diverted to mitochondria. Mitochondrion plays an important role in cellular metabolic functions and is linked to Insulin Resistance (IR). Recently, increasing reports suggest that mitochondrial dysfunction may be a contributing factor in the pathogenesis of PCOS. Hence, in this review, we have discussed mitochondrial biology in brief and emphasizes on genetic and epigenetic aspects of mitochondrial dysfunction studied in PCOS women and PCOS-like animal models. We also highlight underlying mechanism behind mitochondrial dysfunction contributing to PCOS and its related complications such as obesity, diabetes, cardiovascular diseases, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and cancer. Furthermore, contrasting remarks against involvement of mitochondrial dysfunction in PCOS pathophysiology have also been presented. This review enhances our understanding in relation to mitochondrial dysfunction in the etiology of PCOS and stimulates further research to explore a clear link between mitochondrial dysfunction and PCOS pathogenesis and progression. Understanding pathogenic mechanisms underlying PCOS will open new windows to develop promising therapeutic strategies against PCOS.
Collapse
|
15
|
Shen Q, Bi H, Yu F, Fan L, Zhu M, Jia X, Kang J. Nontargeted metabolomic analysis of skeletal muscle in a dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Mol Reprod Dev 2019; 86:370-378. [PMID: 30633842 DOI: 10.1002/mrd.23111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/08/2019] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy and an important metabolic disorder in women of reproductive age. Insulin resistance (IR) is one of its most important clinical features in patients with PCOS. Androgen excess-induced mitochondrial dysfunction contributes to skeletal muscle IR in dehydroepiandrosterone (DHEA)-induced PCOS mice. The effect of androgen excess on the skeletal muscle, however, is incompletely characterized. A nontargeted metabolomics approach was thus applied to analyze the metabolites in skeletal muscle of DHEA-induced PCOS mice. Data from metabolomic analysis revealed the significant changes in 32 metabolites and the marked impact of five metabolic pathways. ATP production was also found to be significantly reduced in skeletal muscle of DHEA mice. Combined with the quantification of type I and II myofibers and lipid measurement in the skeletal muscle of the mice, the results from the present study supported the role of mitochondrial impairment rather than lipid accumulation in the pathogenesis of skeletal muscle IR in DHEA-induced PCOS mice. In summary, we show here for the first time the profile of the metabolites in the skeletal muscle of DHEA-induced PCOS mice which exhibit IR. The work would help better understand the pathology of skeletal muscle IR in PCOS.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hai Bi
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Fuhai Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liting Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Menliang Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiao Jia
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jihong Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
16
|
Ilie IR. Advances in PCOS Pathogenesis and Progression-Mitochondrial Mutations and Dysfunction. Adv Clin Chem 2018; 86:127-155. [PMID: 30144838 DOI: 10.1016/bs.acc.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common female endocrine disorder, which still remains largely unsolved in terms of etiology and pathogenesis despite important advances in our understanding of its genetic, epigenetic, or environmental factor implications. It is a heterogeneous disease, frequently associated with insulin resistance, chronic inflammation, and oxidative stress and probably accompanied with subclinical cardiovascular disease (CVD) and some malignant lesions as well, such as endometrial cancer. Discrepancies in the clinical phenotype and progression of PCOS exist between different population groups, which nuclear genetic studies have so far failed to explain. Over the last years, mitochondrial dysfunction has been increasingly recognized as an important contributor to an array of diseases. Because mitochondria are under the dual genetic control of both the mitochondrial and nuclear genomes, mutations within either DNA molecule may result in deficiency in respiratory chain function that leads to a reduced ability to produce cellular adenosine-5'-triphosphate and to an excessive production of reactive oxygen species. However, the association between variants in mitochondrial genome, mitochondrial dysfunction, and PCOS has been investigated to a lesser extent. May mutations in mitochondrial DNA (mtDNA) become an additional target of investigations on the missing PCOS heritability? Are mutations in mtDNA implicated in the initiation and progression of PCOS complications, e.g., CVDs, diabetes mellitus, cancers?
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy 'Iuliu-Hatieganu', Cluj-Napoca, Romania; E-mail:
| |
Collapse
|
17
|
Ravera S, Signorello MG, Bartolucci M, Ferrando S, Manni L, Caicci F, Calzia D, Panfoli I, Morelli A, Leoncini G. Extramitochondrial energy production in platelets. Biol Cell 2018. [PMID: 29537672 DOI: 10.1111/boc.201700025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. RESULTS Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the β subunit of F1 Fo -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. CONCLUSIONS Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. SIGNIFICANCE This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | | | - Martina Bartolucci
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Sara Ferrando
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Lucia Manni
- Department of Biology, Università di Padova, Padova, Italy
| | | | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Alessandro Morelli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| |
Collapse
|
18
|
Cassar S, Misso ML, Hopkins WG, Shaw CS, Teede HJ, Stepto NK. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic–hyperinsulinaemic clamp studies. Hum Reprod 2016; 31:2619-2631. [DOI: 10.1093/humrep/dew243] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
|
19
|
Rissanen APE, Koskela-Koivisto T, Hägglund H, Koponen AS, Aho JM, Pöyhönen-Alho M, Tiitinen A, Tikkanen HO, Peltonen JE. Altered cardiorespiratory response to exercise in overweight and obese women with polycystic ovary syndrome. Physiol Rep 2016; 4:e12719. [PMID: 26884479 PMCID: PMC4759046 DOI: 10.14814/phy2.12719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022] Open
Abstract
In polycystic ovary syndrome (PCOS), cardiovascular risk is increased. Peak O2 uptake (V˙O2peak) predicts the cardiovascular risk. We were the first to examine the contribution of systemic O2 delivery and arteriovenous O2 difference to V˙O2peak in overweight and obese women with PCOS. Fifteen overweight or obese PCOS women and 15 age-, anthropometry-, and physical activity-matched control women performed a maximal incremental cycling exercise test. Alveolar gas exchange (volume turbine and mass spectrometry), arterial O2 saturation (pulse oximetry), and cardiac output (CO) (impedance cardiography) were monitored. Hb concentration was determined. Arterial O2 content and arteriovenous O2 difference (C(a-v)O2) (Fick equation) were calculated. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR). PCOS women had lower V˙O2peak than controls (40 ± 6 vs. 46 ± 5 mL/min/kg fat-free mass [FFM], P = 0.011). Arterial O2 content was similarly maintained in the groups throughout the exercise test (P > 0.05). Linear regression analysis revealed a pronounced response of CO to increasing V˙O2 in PCOS women during the exercise test: A ∆CO/∆V˙O2 slope was steeper in PCOS women than in controls (β = 5.84 vs. β = 5.21, P = 0.004). Eventually, the groups attained similar peak CO and peak CO scaled to FFM (P > 0.05). Instead, C(a-v)O2 at peak exercise was lower in PCOS women than in controls (13.2 ± 1.6 vs. 14.8 ± 2.4 mL O2/100 mL blood, P = 0.044). HOMA-IR was similar in the groups (P > 0.05). The altered cardiorespiratory responses to exercise in overweight and obese PCOS women indicate that PCOS per se is associated with alterations in peripheral adjustments to exercise rather than with limitations of systemic O2 delivery.
Collapse
Affiliation(s)
- Antti-Pekka E Rissanen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Tiina Koskela-Koivisto
- Department of Obstetrics and Gynecology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Harriet Hägglund
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Anne S Koponen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Jyrki M Aho
- Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Maritta Pöyhönen-Alho
- Department of Obstetrics and Gynecology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Aila Tiitinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Heikki O Tikkanen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha E Peltonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| |
Collapse
|
20
|
Pazderska A, Gibney J. Metabolic and lipoprotein aspects of polycystic ovarian syndrome. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Konopka AR, Asante A, Lanza IR, Robinson MM, Johnson ML, Dalla Man C, Cobelli C, Amols MH, Irving BA, Nair KS. Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training. Diabetes 2015; 64:2104-15. [PMID: 25605809 PMCID: PMC4439568 DOI: 10.2337/db14-1701] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/13/2015] [Indexed: 01/06/2023]
Abstract
The notion that mitochondria contribute to obesity-induced insulin resistance is highly debated. Therefore, we determined whether obese (BMI 33 kg/m(2)), insulin-resistant women with polycystic ovary syndrome had aberrant skeletal muscle mitochondrial physiology compared with lean, insulin-sensitive women (BMI 23 kg/m(2)). Maximal whole-body and mitochondrial oxygen consumption were not different between obese and lean women. However, obese women exhibited lower mitochondrial coupling and phosphorylation efficiency and elevated mitochondrial H2O2 (mtH2O2) emissions compared with lean women. We further evaluated the impact of 12 weeks of aerobic exercise on obesity-related impairments in insulin sensitivity and mitochondrial energetics in the fasted state and after a high-fat mixed meal. Exercise training reversed obesity-related mitochondrial derangements as evidenced by enhanced mitochondrial bioenergetics efficiency and decreased mtH2O2 production. A concomitant increase in catalase antioxidant activity and decreased DNA oxidative damage indicate improved cellular redox status and a potential mechanism contributing to improved insulin sensitivity. mtH2O2 emissions were refractory to a high-fat meal at baseline, but after exercise, mtH2O2 emissions increased after the meal, which resembles previous findings in lean individuals. We demonstrate that obese women exhibit impaired mitochondrial bioenergetics in the form of decreased efficiency and impaired mtH2O2 emissions, while exercise effectively restores mitochondrial physiology toward that of lean, insulin-sensitive individuals.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Albert Asante
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Ian R Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew M Robinson
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew L Johnson
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mark H Amols
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Brian A Irving
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - K S Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
22
|
Cree-Green M, Newcomer BR, Coe G, Newnes L, Baumgartner A, Brown MS, Pyle L, Reusch JE, Nadeau KJ. Peripheral insulin resistance in obese girls with hyperandrogenism is related to oxidative phosphorylation and elevated serum free fatty acids. Am J Physiol Endocrinol Metab 2015; 308:E726-33. [PMID: 25714677 PMCID: PMC4420897 DOI: 10.1152/ajpendo.00619.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/19/2015] [Indexed: 12/25/2022]
Abstract
Hyperandrogenic syndrome (HAS) is associated with insulin resistance (IR) and type 2 diabetes. Muscle IR in type 2 diabetes is linked with defects in mitochondrial oxidative capacity. In vivo muscle mitochondrial function has not been studied in HAS, especially in youth, who are early in the disease process. Our goal was to measure muscle mitochondrial oxidative function and peripheral IR in obese youth with HAS. Obese girls without HAS [n = 22, age 15(13,17) yr, BMI Z-score 2.05 ± 0.37] and with HAS [n = 35, age 15(14,16) yr, BMI Z-score 2.18 ± 0.30] were enrolled. Mitochondrial function was assessed with (31)phosphorus MR spectroscopy before, during, and after near-maximal isometric calf exercise, and peripheral IR was assessed with an 80 mU·m(-2)·min(-1) hyperinsulinemic euglycemic clamp. Girls with HAS had higher androgens [free androgen index 7.9(6.6,15.5) vs. 3.5(3.0,4.0), P < 0.01] and more IR [glucose infusion rate 9.4(7.0, 12,2) vs. 14.5(13.2,15.8) mg·kg lean(-1)·min(-1), P < 0.01]. HAS girls also had increased markers of inflammation including CRP, platelets, and white blood cell count and higher serum free fatty acids during hyperinsulinemia. Mitochondrial oxidative phosphorylation was lower in HAS [0.11(0.06,0.19) vs. 0.18(0.12,0.23) mmol/s, P < 0.05], although other spectroscopy markers of mitochondrial function were similar between groups. In multivariate analysis of the entire cohort, IR related to androgens, oxidative phosphorylation, and free fatty acid concentrations during hyperinsulinemia. These relationships were present in just the HAS cohort as well. Obese girls with HAS have significant peripheral IR, which is related to elevated androgens and free fatty acids and decreased mitochondrial oxidative phosphorylation. These may provide future options as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Center for Women's Health Research, Anschutz Medical Campus, Aurora, Colorado;
| | - Bradley R Newcomer
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregory Coe
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lindsey Newnes
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amy Baumgartner
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Pyle
- Department of Pediatrics, University of Colorado School of Medicine, and Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado
| | - Jane E Reusch
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Veteran Affairs, Denver, Colorado
| | - Kristen J Nadeau
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Center for Women's Health Research, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Eriksen MB, Glintborg D, Nielsen MFB, Jakobsen MA, Brusgaard K, Tan Q, Gaster M. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance. Biochem Biophys Res Commun 2014; 451:622-6. [DOI: 10.1016/j.bbrc.2014.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
24
|
Genetic alterations within the DENND1A gene in patients with polycystic ovary syndrome (PCOS). PLoS One 2013; 8:e77186. [PMID: 24086769 PMCID: PMC3785455 DOI: 10.1371/journal.pone.0077186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disease among premenopausal women, is caused by both genes and environment. We and others previously reported association between single nucleotide polymorphisms (SNPs) in the DENND1A gene and PCOS. We therefore sequenced the DENND1A gene in white patients with PCOS to identify possible alterations that may be implicated in the PCOS pathogenesis. Patients were referred with PCOS and/or hirsutism between 1998 and 2011 (n = 261). PCOS was diagnosed according to the Rotterdam criteria (n = 165). Sequence analysis was performed in 10 patients with PCOS. Additional patients (n = 251) and healthy female controls (n = 248) were included for SNP genotyping. Patients underwent clinical examination including Ferriman-Gallwey score (FG-score), biochemical analyses and transvaginal ultrasound. Mutation analysis was carried out by bidirectional sequencing. SNP genotyping was tested by allelic discrimination in real-time PCR in the additional patients and controls. Sequencing of the DENND1A gene identified eight SNPs; seven were not known to be associated with any diseases. One missense SNP was detected (rs189947178, A/C), potentially altering the structural conformation of the DENND1A protein. SNP genotyping of rs189947178 showed significantly more carriers among patients with PCOS and moderate hirsutism compared to controls. However, due to small sample size and lack of multiple regression analysis supporting an association between rs189947178 and FG-score or PCOS diagnosis, this could be a false positive finding. In conclusion, sequence analysis of the DENND1A gene of patients with PCOS did not identify alterations that alone could be responsible for the PCOS pathogenesis, but a missense SNP (rs189947178) was identified in one patient and significantly more carriers of rs189947178 were found among patients with PCOS and moderate hirsutism vs. controls. Additional studies with independent cohort are needed to confirm this due to the small sample size of this study.
Collapse
|
25
|
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33:981-1030. [PMID: 23065822 PMCID: PMC5393155 DOI: 10.1210/er.2011-1034] [Citation(s) in RCA: 1072] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.
Collapse
|
26
|
Hoeks J, Schrauwen P. Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol Metab 2012; 23:444-50. [PMID: 22726362 DOI: 10.1016/j.tem.2012.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 01/07/2023]
Abstract
Reduced mitochondrial capacity in skeletal muscle has been suggested to underlie the development of insulin resistance and type 2 diabetes mellitus (T2DM). However, data obtained from human subjects concerning this putative relation indicate that the mitochondrial defect observed in diabetic muscle might be secondary to the insulin-resistant state instead of being a causal factor. Nonetheless, diminished mitochondrial function, even secondary to insulin resistance, may accelerate lipid deposition in non-adipose tissues and aggravate insulin resistance. Indeed, improving mitochondrial capacity via exercise training and calorie restriction is associated with positive metabolic health effects. Here we review muscle mitochondrial dysfunction in humans and propose that targeting muscle mitochondria to improve muscle oxidative capacity should be considered as a strategy for improving metabolic health.
Collapse
Affiliation(s)
- Joris Hoeks
- NUTRIM - School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
27
|
van Tienen FHJ, Praet SFE, de Feyter HM, van den Broek NM, Lindsey PJ, Schoonderwoerd KGC, de Coo IFM, Nicolay K, Prompers JJ, Smeets HJM, van Loon LJC. Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes. J Clin Endocrinol Metab 2012; 97:3261-9. [PMID: 22802091 DOI: 10.1210/jc.2011-3454] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Conflicting data exist on mitochondrial function and physical activity in type 2 diabetes mellitus (T2DM) development. OBJECTIVE The aim was to assess mitochondrial function at different stages during T2DM development in combination with physical exercise in longstanding T2DM patients. DESIGN AND METHODS We performed cross-sectional analysis of skeletal muscle from 12 prediabetic 11 longstanding T2DM male subjects and 12 male controls matched by age and body mass index. INTERVENTION One-year intrasubject controlled supervised exercise training intervention was done in longstanding T2DM patients. MAIN OUTCOME MEASUREMENTS Extensive ex vivo analyses of mitochondrial quality, quantity, and function were collected and combined with global gene expression analysis and in vivo ATP production capacity after 1 yr of training. RESULTS Mitochondrial density, complex I activity, and the expression of Krebs cycle and oxidative phosphorylation system-related genes were lower in longstanding T2DM subjects but not in prediabetic subjects compared with controls. This indicated a reduced capacity to generate ATP in longstanding T2DM patients only. Gene expression analysis in prediabetic subjects suggested a switch from carbohydrate toward lipid as an energy source. One year of exercise training raised in vivo skeletal muscle ATP production capacity by 21 ± 2% with an increased trend in mitochondrial density and complex I activity. In addition, expression levels of β-oxidation, Krebs cycle, and oxidative phosphorylation system-related genes were higher after exercise training. CONCLUSIONS Mitochondrial dysfunction is apparent only in inactive longstanding T2DM patients, which suggests that mitochondrial function and insulin resistance do not depend on each other. Prolonged exercise training can, at least partly, reverse the mitochondrial impairments associated with the longstanding diabetic state.
Collapse
Affiliation(s)
- F H J van Tienen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eriksen MB, Brusgaard K, Andersen M, Tan Q, Altinok ML, Gaster M, Glintborg D. Association of polycystic ovary syndrome susceptibility single nucleotide polymorphism rs2479106 and PCOS in Caucasian patients with PCOS or hirsutism as referral diagnosis. Eur J Obstet Gynecol Reprod Biol 2012; 163:39-42. [PMID: 22504079 DOI: 10.1016/j.ejogrb.2012.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/29/2012] [Accepted: 03/12/2012] [Indexed: 01/17/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is the most common endocrine disease among premenopausal women. A recent study found association between three single nucleotide polymorphisms (SNPs) and PCOS in a cohort of Han Chinese women. OBJECTIVE To investigate the association between rs13405728 (LHCGR gene), rs13429458 (THADA gene) and rs2479106 (DENND1A gene), PCOS, hirsutism and metabolic and hormonal parameters in a well characterized cohort of Caucasian patients of Danish descendant with PCOS or hirsutism. STUDY DESIGN Patients underwent clinical examination, hormone analyses, oral glucose tolerance test and transvaginal ultrasound. Genetic variation was tested using allelic discrimination by real-time PCR. PATIENTS 268 patients referred to The Department of Endocrinology, Odense University Hospital, Denmark with PCOS or hirsutism between 1997 and 2011. Two hundred and forty-eight healthy females were included as controls. RESULTS Genotype distributions and allele frequencies of rs13405728, rs13429458, and rs2479106 were comparable in patients and controls. The rs2479106 G allele was associated with a decreased PCOS susceptibility. None of the SNPs were associated with hirsutism or increased metabolic parameters. CONCLUSIONS The rs2479106 G allele was associated with decreased PCOS susceptibility, thus confirming previously reported findings of association between rs2479106 and PCOS. Metabolic and hormonal parameters were comparable between genotypes of rs13405728 and rs2479106.
Collapse
Affiliation(s)
- Mette B Eriksen
- Department of Endocrinology, Odense University Hospital, 5000 Odense C, Denmark.
| | | | | | | | | | | | | |
Collapse
|