1
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
2
|
Jayasena CN, Devine K, Barber K, Comninos AN, Conway GS, Crown A, Davies MC, Ewart A, Seal LJ, Smyth A, Turner HE, Webber L, Anderson RA, Quinton R. Society for endocrinology guideline for understanding, diagnosing and treating female hypogonadism. Clin Endocrinol (Oxf) 2024; 101:409-442. [PMID: 39031660 DOI: 10.1111/cen.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
Female hypogonadism (FH) is a relatively common endocrine disorder in women of premenopausal age, but there are significant uncertainties and wide variation in its management. Most current guidelines are monospecialty and only address premature ovarian insufficiency (POI); some allude to management in very brief and general terms, and most rely upon the extrapolation of evidence from the studies relating to physiological estrogen deficiency in postmenopausal women. The Society for Endocrinology commissioned new guidance to provide all care providers with a multidisciplinary perspective on managing patients with all forms of FH. It has been compiled using expertise from Endocrinology, Primary Care, Gynaecology and Reproductive Health practices, with contributions from expert patients and a patient support group, to help clinicians best manage FH resulting from both POI and hypothalamo-pituitary disorders, whether organic or functional.
Collapse
Affiliation(s)
- Channa N Jayasena
- Section of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Kerri Devine
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | - Katie Barber
- Community Gynaecology (NHS), Principal Medical Limited, Bicester, Oxfordshire, UK
- Oxford Menopause Ltd, Ardington, Wantage, UK
| | - Alexander N Comninos
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Gerard S Conway
- Reproductive Medicine Unit, University College London Hospitals, London, UK
| | - Anna Crown
- Department of Endocrinology, Royal Sussex County Hospital, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Melanie C Davies
- Reproductive Medicine Unit, University College London Hospitals, London, UK
| | - Ann Ewart
- Kallman Syndrome and Congenital Hypogonadotropic Hypogonadism Support Group, Dallas, Texas, United States
| | - Leighton J Seal
- Department of Endocrinology, St George's Hospital Medical School, London, UK
| | - Arlene Smyth
- UK Turner Syndrome Support Society, Clydebank, UK
| | - Helen E Turner
- Department of Endocrinology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lisa Webber
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Singapore
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Richard Quinton
- Section of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| |
Collapse
|
3
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
4
|
van Rosmalen L, Zhu J, Maier G, Gacasan EG, Lin T, Zhemchuzhnikova E, Rothenberg V, Razu S, Deota S, Ramasamy RK, Sah RL, McCulloch AD, Hut RA, Panda S. Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport. Cell Metab 2024; 36:2015-2037.e6. [PMID: 39232281 PMCID: PMC11378950 DOI: 10.1016/j.cmet.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the "exercise-for-food" paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiaoyue Zhu
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Geraldine Maier
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erica G Gacasan
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elena Zhemchuzhnikova
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Vince Rothenberg
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Swithin Razu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert L Sah
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D McCulloch
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roelof A Hut
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Hutson MJ, Varley I. An Opinion on the Interpretation of Bone Turnover Markers Following Acute Exercise or Nutrition Intervention and Considerations for Applied Research. Int J Sport Nutr Exerc Metab 2024; 34:315-321. [PMID: 38925537 DOI: 10.1123/ijsnem.2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
It is important for athlete and public health that we continue to develop our understanding of the effects of exercise and nutrition on bone health. Bone turnover markers (BTMs) offer an opportunity to accelerate the progression of bone research by revealing a bone response to exercise and nutrition stimuli far more rapidly than current bone imaging techniques. However, the association between short-term change in the concentration of BTMs and long-term bone health remains ambiguous. Several other limitations also complicate the translation of acute BTM data to applied practice. Importantly, several incongruencies exist between the effects of exercise and nutrition stimuli on short-term change in BTM concentration compared with long-term bone structural outcomes to similar stimuli. There are many potential explanations for these inconsistencies, including that short-term study designs fail to encompass a full remodeling cycle. The current article presents the opinion that data from relatively acute studies measuring BTMs may not be able to reliably inform applied practice aiming to optimize bone health. There are important factors to consider when interpreting or translating BTM data and these are discussed.
Collapse
Affiliation(s)
- Mark J Hutson
- School of Sport, Faculty of Life and Health Sciences, Ulster University, Coleraine, United Kingdom
| | - Ian Varley
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
6
|
Wang M, Chee J, Tanaka MJ, Lee YHD. Relative Energy Deficiency in Sport (REDs) and knee injuries: current concepts for female athletes. J ISAKOS 2024; 9:781-787. [PMID: 38795863 DOI: 10.1016/j.jisako.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
In athletes, a mismatch between caloric intake and energy expended in exercise can eventually lead to Relative Energy Deficiency in Sport (REDs), where the athlete suffers from physiological derangements and decreased sport performance. The prevalence of REDs is higher in females than males. Females are already at a higher risk of knee injuries, which has been attributed to a multitude of factors such as hormonal influences, differences in musculoskeletal anatomy and neuromuscular control compared to males. The literature demonstrates an even higher risk of knee injuries in female athletes with symptoms of REDs. We propose the various factors that influence this risk. A reduction in anabolic hormones can affect muscle development and tendon repair. A relationship between poor neuromuscular control and knee injury has been established, and this can be further worsened in patients with menstrual dysfunction. Chronic deficiency in nutrients such as collagen and vitamin D can result in poorer recovery from microtrauma in tendons and ligaments. All these factors may contribute to increasing the risk of knee injuries, which may include anterior cruciate ligament tears, patella tendinopathy and patellofemoral pain syndrome. This review aims to educate sports clinicians to have a high index of suspicion when treating knee injuries in females; to screen and then manage for REDs if present, for holistic patient care.
Collapse
Affiliation(s)
- Mingchang Wang
- Division of Sports, Shoulder and Elbow Surgery, Department of Orthopaedic Surgery, National University Hospital, NUHS Tower Block, Level 11, 1E Kent Ridge Road, 119288, Singapore.
| | - Jade Chee
- Division of Sports, Shoulder and Elbow Surgery, Department of Orthopaedic Surgery, National University Hospital, NUHS Tower Block, Level 11, 1E Kent Ridge Road, 119288, Singapore
| | - Miho J Tanaka
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Suite 400, Boston, MA, 02114, USA
| | - Yee Han Dave Lee
- Division of Sports, Shoulder and Elbow Surgery, Department of Orthopaedic Surgery, National University Hospital, NUHS Tower Block, Level 11, 1E Kent Ridge Road, 119288, Singapore
| |
Collapse
|
7
|
Amoruso I, Fonzo M, Barro A, Scardina C, Titton F, Bertoncello C, Baldovin T. Determinants of menstrual dysfunction in the female athlete triad: A cross-sectional study in Italian athletes. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 73:102653. [PMID: 38670325 DOI: 10.1016/j.psychsport.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND In 1992 the American College of Sports Medicine first described the Female Athlete Triad. The Triad is a metabolic injury involving three distinct clinical traits: low energy availability, with possible eating disorder, low bone mineral density and menstrual dysfunction (MD). Although the estimated prevalence of the Triad is low (1.2 %), single factors are common in female athletes, at all competitive levels and ages. Even though the Triad was described over two decades ago, the interrelation of the three diagnostics components is still debated: additional evidence is required to improve the multidisciplinary treatment approach for this complex condition. MD is one of the first signs of energy impairment. The present study aims at investigating MD determinants and predictors in female athletes, to allow an early diagnosis of the Triad and to implement adequate preventive strategies. MATERIALS AND METHODS An original structured questionnaire was composed to detect the presence of MD risk factors. Included participants were active female athletes within reproductive age range (15-40 years old). Anthropometric parameters and training-related factors, possibly affecting the regularity of the menstrual cycle, were investigated. RESULTS Respondents were 288 female athletes. Among them, 73.3 % were under 25 years of age; 6.6 % resulted underweight; 30.6 % reported to follow a meal plan/diet and 13.9 % declared to be a smoker. Lean sports were practiced by 30.6 % of responders. Body-weight congruence was detected in in 79.9 % of participants, whereas overestimation of body image was found in 16.3 % of athletes. Irregular menstrual cycle, a possible MD predictor, was present in 33.0 % of athletes, with 41.1 % practicing some lean sport (p = 0.007). Also, overestimation of body image suggested an increased risk of menstrual irregularity (p = 0.001). BMI <18.5 or BMI >30 could also act as risk factor, although significance was not fully obtained (p = 0.053). Overall, practice of lean sports and overestimation of body image appeared good determinants of increased menstrual irregularity (AOR 2.02 and 3.83, respectively). CONCLUSIONS Menstrual irregularity in female athletes can be considered an early predictor of MD: risk is further increased in athletes of lean sports and reporting an overestimation of self-perceived body image. Screenings and awareness programs should specifically address female athletes, because of their vulnerable-group profile. In order to define a standardized at-risk profile for Triad onset and sequelae likelihood, evaluation of menstrual regularity should especially be considered, in conjunction with the assessment of other indicators of energy availability (e.g. TEE, lean and fat mass, BMC). Testing for sport-derived stress and disordered eating attitudes is also recommended. Preventive strategy should involve the proactive engagement of sport clubs and periodic competitive sport medical assessment.
Collapse
Affiliation(s)
- Irene Amoruso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Unit of Hygiene and Public Health, University of Padua, Padua, Italy.
| | - Marco Fonzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Unit of Hygiene and Public Health, University of Padua, Padua, Italy.
| | - Anna Barro
- Complex Unit of Hygiene and Public Health, Local Health Authority ULSS2 Marca Trevigiana, District of Asolo, Treviso, Italy.
| | - Claudia Scardina
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Unit of Hygiene and Public Health, University of Padua, Padua, Italy.
| | - Francesca Titton
- Complex Unit of Psychiatry UOC Psichiatria, Local Health Authority ULSS2 Marca Trevigiana, District of Pieve di Soligo, Treviso, Italy.
| | - Chiara Bertoncello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Unit of Hygiene and Public Health, University of Padua, Padua, Italy.
| | - Tatjana Baldovin
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Unit of Hygiene and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
8
|
Tenforde AS, Ackerman KE, Bouxsein ML, Gaudette L, McCall L, Rudolph SE, Gehman S, Garrahan M, Hughes JM, Outerleys J, Davis IS, Popp KL. Factors Associated With High-Risk and Low-Risk Bone Stress Injury in Female Runners: Implications for Risk Factor Stratification and Management. Orthop J Sports Med 2024; 12:23259671241246227. [PMID: 38779133 PMCID: PMC11110515 DOI: 10.1177/23259671241246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/24/2023] [Indexed: 05/25/2024] Open
Abstract
Background Bone stress injury (BSI) is a common overuse injury in active women. BSIs can be classified as high-risk (pelvis, sacrum, and femoral neck) or low-risk (tibia, fibula, and metatarsals). Risk factors for BSI include low energy availability, menstrual dysfunction, and poor bone health. Higher vertical load rates during running have been observed in women with a history of BSI. Purpose/Hypothesis The purpose of this study was to characterize factors associated with BSI in a population of premenopausal women, comparing those with a history of high-risk or low-risk BSI with those with no history of BSI. It was hypothesized that women with a history of high-risk BSI would be more likely to exhibit lower bone mineral density (BMD) and related factors and less favorable bone microarchitecture compared with women with a history of low-risk BSI. In contrast, women with a history of low-risk BSI would have higher load rates. Study Design Cross-sectional study; Level of evidence, 3. Methods Enrolled were 15 women with a history of high-risk BSI, 15 with a history of low-risk BSI, and 15 with no history of BSI. BMD for the whole body, hip, and spine was standardized using z scores on dual-energy x-ray absorptiometry. High-resolution peripheral quantitative computed tomography was used to quantify bone microarchitecture at the radius and distal tibia. Participants completed surveys characterizing factors that influence bone health-including sleep, menstrual history, and eating behaviors-utilizing the Eating Disorder Examination Questionnaire (EDE-Q). Each participant completed a biomechanical assessment using an instrumented treadmill to measure load rates before and after a run to exertion. Results Women with a history of high-risk BSI had lower spine z scores than those with low-risk BSI (-1.04 ± 0.76 vs -0.01 ± 1.15; P < .05). Women with a history of high-risk BSI, compared with low-risk BSI and no BSI, had the highest EDE-Q subscores for Shape Concern (1.46 ± 1.28 vs 0.76 ± 0.78 and 0.43 ± 0.43) and Eating Concern (0.55 ± 0.75 vs 0.16 ± 0.38 and 0.11 ± 0.21), as well as the greatest difference between minimum and maximum weight at current height (11.3 ± 5.4 vs 7.7 ± 2.9 and 7.6 ± 3.3 kg) (P < .05 for all). Women with a history of high-risk BSI were more likely than those with no history of BSI to sleep <7 hours on average per night during the week (80% vs 33.3%; P < .05). The mean and instantaneous vertical load rates were not different between groups. Conclusion Women with a history of high-risk BSI were more likely to exhibit risk factors for poor bone health, including lower BMD, while load rates did not distinguish women with a history of BSI.
Collapse
Affiliation(s)
- Adam S Tenforde
- Department of Physical Medicine and Rehabilitation, Spaulding National Running Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Logan Gaudette
- Department of Physical Medicine and Rehabilitation, Spaulding National Running Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Lauren McCall
- Wu Tsai Female Athlete Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara E Rudolph
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Gehman
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret Garrahan
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Jereme Outerleys
- Department of Physical Medicine and Rehabilitation, Spaulding National Running Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Irene S Davis
- School of Physical Therapy Tampa, University of South Florida, Florida, USA
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA. A.S.T., K.E.A., and M.L.B. contributed equally to this study. I.S.D. and K.L.P. contributed equally to this study
| |
Collapse
|
9
|
O'Leary TJ, Izard RM, Tang JCY, Fraser WD, Greeves JP. Hormonal contraceptive use is associated with altered bone structural and metabolic responses to military training in women: An observational cohort study. Bone 2024; 181:117012. [PMID: 38216077 DOI: 10.1016/j.bone.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Military training increases tibial density and size. Female sex hormones may influence the adaption of bone to loading, but it is unknown if women using different hormonal contraceptives adapt similarly to military training. One hundred and sixteen women (57 women not using hormonal contraceptives [non-users], 38 combined oral contraceptive pill [COCP] users, 21 depot medroxyprogesterone acetate [DMPA] users) completed this study. Tibial volumetric bone mineral density (vBMD) and geometry were measured by peripheral quantitative computed tomography (4 %, 14 %, 38 %, and 66 % sites) at the start (week 1) and end (week 14) of British Army basic training. Circulating markers of bone and calcium metabolism were measured at weeks 1, 2, 4, 6, 10, and 14. Training increased trabecular vBMD at the 4 % site, periosteal perimeter at the 14 % and 66 % sites, and total area, cortical area, cortical thickness, and bone strength at all sites (0.1 to 1.6 %, p ≤ 0.009), with no differences between hormonal contraceptive groups (p ≥ 0.127). Trabecular vBMD increased at the 14 % site in non-users (0.8 %, p = 0.005), but not in COCP or DMPA users (p ≥ 0.205). Periosteal perimeter increased at the 38 % site in COCP (0.4 %, p < 0.001) and DMPA (0.5 %, p < 0.001) users, but not in non-users (p = 0.058). Training had no effect on periosteal perimeter at the 4 % site or cortical vBMD or endosteal perimeter at any site (p ≥ 0.168). βCTX decreased and PINP increased during training with no difference between hormonal contraceptive groups. Training increased iPTH in non-users, but not COCP or DMPA users. Hormonal contraceptives may exert site-specific effects on the mechanobiology of bone, with higher endogenous oestradiol promoting trabecularisation and inhibiting periosteal expansion in non-users compared with hormonal contraceptive users.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army HQ, Andover, UK; Division of Surgery and Interventional Science, UCL, London, UK
| | | | - Jonathan C Y Tang
- Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norwich, UK; Clinical Biochemistry, Departments of Laboratory Medicine and Departments of Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| | - William D Fraser
- Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norwich, UK; Clinical Biochemistry, Departments of Laboratory Medicine and Departments of Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army HQ, Andover, UK; Division of Surgery and Interventional Science, UCL, London, UK; Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
10
|
Nose-Ogura S, Yoshino O, Kinoshita S, Nakamura H, Harada M, Hiraike O, Osuga Y, Dohi M, Nakajima K, Kawahara T. Differences of Bone Mineral Density by Characteristics of Sports in Amenorrheic Athletes. Int J Sports Med 2024; 45:55-62. [PMID: 37813353 DOI: 10.1055/a-2161-5668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Hypothalamic amenorrhea leads to a hypoestrogenic state, causing decreased bone mineral density (BMD), while strong impact loading on bone has been shown to increase BMD. The purpose of this study is to compare BMD in female athletes based on menstrual status and their sports/events by impact loading characteristics. BMD at the lumbar spine was measured by dual-energy X-ray absorptiometry and hormone level. The subjects were classified into four groups and BMD and hormone levels were compared among the four groups, which were divided into amenorrheic athletes (AAs) and eumenorrheic athletes (EAs). This study recruited 410 female athletes (164 in the AAs and 246 in the EAs), 55 athletes in non-impact sports, 123 in low-impact sports, 141 in multidirectional sports, and 91 in high-impact sports. In the AAs group, BMD Z-score was lowest in low-impact sports (Z-score: -1.53 [-1.76, -1.30]), and was highest in high-impact sports (Z-score: 0.02 [-0.34, 0.38]). In multidirectional and high-impact sports, BMD Z-score in the AAs group did not show results lower than the average for non-athletes. When screening female athletes for low BMD, it is important to evaluate the risk of low BMD based on the impact loading characteristics of their sports/events, in addition to the menstrual state.
Collapse
Affiliation(s)
- Sayaka Nose-Ogura
- Department of Sports Medicine and Research, JAPAN High Performance Sport Center, Japan Institute of Sports Sciences, Kita-ku, Japan
- Department of Obstetrics and Gynecology, The University of Tokyo, Bunkyo-ku, Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, The University of Yamanashi, Yamanashi, Japan
| | - Sakiko Kinoshita
- Department of Obstetrics and Gynecology, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, The University of Tokyo, Bunkyo-ku, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, The University of Tokyo, Bunkyo-ku, Japan
| | - Osamu Hiraike
- Department of Obstetrics and Gynecology, The University of Tokyo, Bunkyo-ku, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, Bunkyo-ku, Japan
| | - Michiko Dohi
- Department of Sports Medicine and Research, JAPAN High Performance Sport Center, Japan Institute of Sports Sciences, Kita-ku, Japan
| | - Kohei Nakajima
- Department of Sports Medicine and Research, JAPAN High Performance Sport Center, Japan Institute of Sports Sciences, Kita-ku, Japan
| | - Takashi Kawahara
- Department of Sports Medicine and Research, JAPAN High Performance Sport Center, Japan Institute of Sports Sciences, Kita-ku, Japan
| |
Collapse
|
11
|
Scheffer JH, Dunshea-Mooij CAE, Armstrong S, MacManus C, Kilding AE. Prevalence of low energy availability in 25 New Zealand elite female rowers - A cross sectional study. J Sci Med Sport 2023; 26:640-645. [PMID: 37802760 DOI: 10.1016/j.jsams.2023.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/14/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES To quantify energy availability (EA) in elite female rowers, determine its association with bone mineral density (BMD), and examine the ability of the low energy availability in females-questionnaire (LEAF-Q) and brief eating disorder in athletes-questionnaire (BEDA-Q) to distinguish between low and normal EA. DESIGN Observational cross-sectional study. METHODS Twenty-five elite female rowers participated in the study. EA was calculated by means of a 4-day food intake diary and analysis of training load. Low energy availability (LEA) was defined as EA <30 kCal * kg-1 * FFM-1 * day-1. Dual-energy X-ray absorptiometry (DXA) was used to assess fat free mass (FFM) and BMD Z-scores. LEA risk was assessed using the LEAF-Q and BEDA-Q. RESULTS The mean EA was 23.2 ± 12.2 kCal * kg-1 * FFM-1 * day-1. Prevalence of LEA was 64 %. The mean BMD Z-score was 1.6 ± 0.6 (range: 0.7 to 2.9). Athletes with LEA had a significantly higher BEDA-Q score than the group with normal EA (mean 0.30 ± 0.17 vs. 0.09 ± 0.11, P < 0.05), but LEAF-Q score was not different between groups (mean 10.4 ± 4.6, 8.2 ± 4.5, P = 0.29). CONCLUSION Low energy availability is common amongst elite female rowers in New Zealand and is positively correlated with higher scores on the BEDA-Q. Bone mineral density was normal irrespective of EA status.
Collapse
Affiliation(s)
| | | | - Stuart Armstrong
- Rowing New Zealand/High Performance Sport New Zealand, New Zealand
| | | | - Andrew E Kilding
- Sport Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology/High Performance Sport New Zealand, New Zealand
| |
Collapse
|
12
|
Burt LA, Wyatt PM, Morrison A, Boyd SK. Bone Quality in Competitive Athletes: A Systematic Review. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:456-470. [PMID: 38037364 PMCID: PMC10696374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 12/02/2023]
Abstract
The study objective was to assess bone quality measured by high resolution peripheral quantitative computed tomography (HR-pQCT) in competitive athletes. Medline, EMBASE and Sport Discus were searched through May 2022. Prior to submission, a follow-up database search was performed (January 2023). Studies of competitive athletes using HR-pQCT to assess bone quality were included. Athletes were aged between 14 and 45 years. Data extraction included study design and location (country), skeletal imaging modality and site, bone variables and any additional musculoskeletal-related outcome. Information identifying sports and athletes were also extracted. This review included 14 manuscripts and a total of 928 individuals (male: n=75; female: n=853). Athletes comprised 78% (n=722) of the included individuals and 93% of athletes were female. Assessment scores indicate the studies were good to fair quality. The athletes included in this review can be categorized into three groups: 1) healthy athletes, 2) athletes with compromised menstrual function (e.g., amenorrhoea), and 3) athletes with compromised bone health (e.g., bone stress injuries). When assessing bone quality using HR-pQCT, healthy competitive athletes had denser, stronger and larger bones with better microarchitecture, compared with controls. However, the same cannot be said for athletes with amenorrhoea or bone stress injuries.
Collapse
Affiliation(s)
- Lauren A. Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Paige M. Wyatt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Canadian Sports Institute, Calgary, Canada
| | - Alida Morrison
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven K. Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
13
|
Roche M, Nattiv A, Sainani K, Barrack M, Kraus E, Tenforde A, Kussman A, Olson EM, Kim B, Fahy K, Miller E, Diamond E, Meraz S, Singh S, Nattiv A, Fredericson M. Higher Triad Risk Scores Are Associated With Increased Risk for Trabecular-Rich Bone Stress Injuries in Female Runners. Clin J Sport Med 2023; 33:631-637. [PMID: 37655940 DOI: 10.1097/jsm.0000000000001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/22/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Bone stress injuries (BSIs) in trabecular-rich bone are associated with greater biological risk factors compared with cortical-rich bone. We hypothesized that female runners with high Female Athlete Triad (Triad)-related risk would be at greater risk for trabecular-rich BSIs than runners with low Triad-related risk. DESIGN Prospective cohort study. SETTING Two NCAA institutions. PARTICIPANTS Female runners were followed prospectively for up to 5 years. INTERVENTION The intervention consisted of team nutrition presentations focused on optimizing energy availability plus individualized nutrition sessions. Triad Cumulative Risk Assessment (CRA) categories were assigned yearly based on low-energy availability, menstrual status, age of menarche, low body mass index, low bone mineral density, and prior BSI. MAIN OUTCOME MEASURES The outcome was the annual incidence of trabecular- and cortical-rich BSI. Generalized Estimating Equations (GEE, to account for the correlated nature of the observations) with a Poisson distribution and log link were used for statistical modeling. RESULTS Cortical-rich BSI rates were higher than trabecular-rich BSI rates (0.32 vs 0.13 events per person-year). Female runners with high Triad-related risk had a significantly higher incidence rate ratio of trabecular-rich BSI (RR: 4.40, P = 0.025) and cortical-rich BSI (RR: 2.87, P = 0.025) than women with low Triad-related risk. Each 1-point increase in Triad CRA score was associated with a significant 26% increased risk of trabecular-rich BSI ( P = 0.0007) and a nonsignificant 14% increased risk of cortical-rich BSI ( P = 0.054). CONCLUSIONS Increased Triad CRA scores were strongly associated with increased risk for trabecular-rich BSI. Incorporating Triad CRA scores in clinical care could guide BSI prevention.
Collapse
Affiliation(s)
- Megan Roche
- Stanford Department of Epidemiology and Population Health, Stanford, California
| | - Aurelia Nattiv
- Department of Family Medicine and Orthopaedic Surgery, Division of Sports Medicine and Non-Operative Orthopedics, University of California Los Angeles, Los Angeles, California
| | - Kristin Sainani
- Stanford Department of Epidemiology and Population Health, Stanford, California
| | - Michelle Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, Long Beach, California
| | - Emily Kraus
- Department of Family Medicine, University of Washington, Seattle, Washington
| | - Adam Tenforde
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | - Andrea Kussman
- Department of Family Medicine, University of Washington, Seattle, Washington
| | - Emily Miller Olson
- Department of Orthopaedic Surgery, University of New Mexico, Albuquerque, New Mexico
| | - Brian Kim
- Department of Orthopaedic Surgery, University of California Irvine, Irvine, California
| | - Katherine Fahy
- Department of Family Medicine and Orthopaedic Surgery, Division of Sports Medicine and Non-Operative Orthopedics, University of California Los Angeles, Los Angeles, California
| | - Emily Miller
- Department of Family Medicine and Orthopaedic Surgery, Division of Sports Medicine and Non-Operative Orthopedics, University of California Los Angeles, Los Angeles, California
| | - Elyse Diamond
- Department of Family Medicine, University of Washington, Seattle, Washington
| | - Sonya Meraz
- Tan Chingfen Graduate School of Nursing, University of Massachusetts, North Worcester, Massachusetts; and
| | - Sonal Singh
- School of Medicine, St. George University, Grenada, West Indies
| | - Aurelia Nattiv
- Department of Family Medicine and Orthopaedic Surgery, Division of Sports Medicine and Non-Operative Orthopedics, University of California Los Angeles, Los Angeles, California
| | - Michael Fredericson
- Department of Family Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Wyatt PM, Drager K, Groves EM, Stellingwerff T, Billington EO, Boyd SK, Burt LA. Comparison of Bone Quality Among Winter Endurance Athletes with and Without Risk Factors for Relative Energy Deficiency in Sport (REDs): A Cross-Sectional Study. Calcif Tissue Int 2023; 113:403-415. [PMID: 37578531 DOI: 10.1007/s00223-023-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) is a syndrome describing the relationship between prolonged and/or severe low energy availability and negative health and performance outcomes. The high energy expenditures incurred during training and competition put endurance athletes at risk of REDs. The objective of this study was to investigate differences in bone quality in winter endurance athletes classified as either low-risk versus at-risk for REDs. Forty-four participants were recruited (M = 18; F = 26). Bone quality was assessed at the distal radius and tibia using high resolution peripheral quantitative computed tomography (HR-pQCT), and at the hip and spine using dual X-ray absorptiometry (DXA). Finite element analysis was used to estimate bone strength. Participants were grouped using modified criteria from the REDs Clinical Assessment Tool Version 1. Fourteen participants (M = 3; F = 11), were classified as at-risk of REDs (≥ 3 risk factors). Measured with HR-pQCT, cortical bone area (radius) and bone strength (radius and tibia) were 6.8%, 13.1% and 10.3% lower (p = 0.025, p = 0.033, p = 0.027) respectively, in at-risk compared with low-risk participants. Using DXA, femoral neck areal bone density was 9.4% lower in at-risk compared with low-risk participants (p = 0.005). At-risk male participants had 21.9% lower femoral neck areal bone density (via DXA) than low-risk males (p = 0.020) with no significant differences in females. Overall, 33.3% of athletes were at-risk for REDs and had lower bone quality than those at low-risk.
Collapse
Affiliation(s)
- Paige M Wyatt
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Canadian Sport Institute Calgary, Calgary, AB, Canada
| | - Kelly Drager
- Canadian Sport Institute Calgary, Calgary, AB, Canada
| | - Erik M Groves
- Canadian Sport Institute Calgary, Calgary, AB, Canada
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, BC, Canada
- Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Emma O Billington
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Division of Endocrinology and Metabolism, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Haines MS, Kaur S, Scarff G, Lauze M, Gerweck A, Slattery M, Oreskovic NM, Ackerman KE, Tenforde AS, Popp KL, Bouxsein ML, Miller KK, Misra M. Male Runners With Lower Energy Availability Have Impaired Skeletal Integrity Compared to Nonathletes. J Clin Endocrinol Metab 2023; 108:e1063-e1073. [PMID: 37079740 PMCID: PMC10505543 DOI: 10.1210/clinem/dgad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
CONTEXT Female athletes, particularly runners, with insufficient caloric intake for their energy expenditure [low energy availability (EA) or relative energy deficiency] are at risk for impaired skeletal integrity. Data are lacking in male runners. OBJECTIVE To determine whether male runners at risk for energy deficit have impaired bone mineral density (BMD), microarchitecture, and estimated strength. DESIGN Cross-sectional. SETTING Clinical research center. PARTICIPANTS 39 men (20 runners, 19 controls), ages 16-30 years. MAIN OUTCOME MEASURES Areal BMD (dual-energy x-ray absorptiometry); tibia and radius volumetric BMD and microarchitecture (high-resolution peripheral quantitative computed tomography); failure load (microfinite element analysis); serum testosterone, estradiol, leptin; energy availability. RESULTS Mean age (24.5 ± 3.8 y), lean mass, testosterone, and estradiol levels were similar; body mass index, percent fat mass, leptin, and lumbar spine BMD Z-score (-1.4 ± 0.8 vs -0.8 ± 0.8) lower (P < .05); and calcium intake and running mileage higher (P ≤ .01) in runners vs controls. Runners with EA CONCLUSIONS Despite weight-bearing activity, skeletal integrity is impaired in male runners with lower caloric intake relative to exercise energy expenditure, which may increase bone stress injury risk. Lower estradiol and lean mass are associated with lower tibial strength in runners.
Collapse
Affiliation(s)
- Melanie S Haines
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Snimarjot Kaur
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Geetanjali Scarff
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meghan Lauze
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anu Gerweck
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolas M Oreskovic
- Harvard Medical School, Boston, MA 02115, USA
- Department of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kathryn E Ackerman
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Adam S Tenforde
- Harvard Medical School, Boston, MA 02115, USA
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Cambridge, MA 02129, USA
| | - Kristin L Popp
- Harvard Medical School, Boston, MA 02115, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
- Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Mary L Bouxsein
- Harvard Medical School, Boston, MA 02115, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
16
|
Stellingwerff T, Mountjoy M, McCluskey WT, Ackerman KE, Verhagen E, Heikura IA. Review of the scientific rationale, development and validation of the International Olympic Committee Relative Energy Deficiency in Sport Clinical Assessment Tool: V.2 (IOC REDs CAT2)-by a subgroup of the IOC consensus on REDs. Br J Sports Med 2023; 57:1109-1118. [PMID: 37752002 DOI: 10.1136/bjsports-2023-106914] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) has various different risk factors, numerous signs and symptoms and is heavily influenced by one's environment. Accordingly, there is no singular validated diagnostic test. This 2023 International Olympic Committee's REDs Clinical Assessment Tool-V.2 (IOC REDs CAT2) implements a three-step process of: (1) initial screening; (2) severity/risk stratification based on any identified REDs signs/symptoms (primary and secondary indicators) and (3) a physician-led final diagnosis and treatment plan developed with the athlete, coach and their entire health and performance team. The CAT2 also introduces a more clinically nuanced four-level traffic-light (green, yellow, orange and red) severity/risk stratification with associated sport participation guidelines. Various REDs primary and secondary indicators have been identified and 'weighted' in terms of scientific support, clinical severity/risk and methodological validity and usability, allowing for objective scoring of athletes based on the presence or absence of each indicator. Early draft versions of the CAT2 were developed with associated athlete-testing, feedback and refinement, followed by REDs expert validation via voting statements (ie, online questionnaire to assess agreement on each indicator). Physician and practitioner validity and usability assessments were also implemented. The aim of the IOC REDs CAT2 is to assist qualified clinical professionals in the early and accurate diagnosis of REDs, with an appropriate clinical severity and risk assessment, in order to protect athlete health and prevent prolonged and irreversible outcomes of REDs.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Margo Mountjoy
- Association for Summer Olympic International Federations (ASOIF), Lausanne, Switzerland
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Evert Verhagen
- Amsterdam Collaboration on Health and Safety in Sports and Department of Public and Occupational Health, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Ida A Heikura
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
17
|
Mountjoy M, Ackerman KE, Bailey DM, Burke LM, Constantini N, Hackney AC, Heikura IA, Melin A, Pensgaard AM, Stellingwerff T, Sundgot-Borgen JK, Torstveit MK, Jacobsen AU, Verhagen E, Budgett R, Engebretsen L, Erdener U. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). Br J Sports Med 2023; 57:1073-1097. [PMID: 37752011 DOI: 10.1136/bjsports-2023-106994] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) was first introduced in 2014 by the International Olympic Committee's expert writing panel, identifying a syndrome of deleterious health and performance outcomes experienced by female and male athletes exposed to low energy availability (LEA; inadequate energy intake in relation to exercise energy expenditure). Since the 2018 REDs consensus, there have been >170 original research publications advancing the field of REDs science, including emerging data demonstrating the growing role of low carbohydrate availability, further evidence of the interplay between mental health and REDs and more data elucidating the impact of LEA in males. Our knowledge of REDs signs and symptoms has resulted in updated Health and Performance Conceptual Models and the development of a novel Physiological Model. This Physiological Model is designed to demonstrate the complexity of either problematic or adaptable LEA exposure, coupled with individual moderating factors, leading to changes in health and performance outcomes. Guidelines for safe and effective body composition assessment to help prevent REDs are also outlined. A new REDs Clinical Assessment Tool-Version 2 is introduced to facilitate the detection and clinical diagnosis of REDs based on accumulated severity and risk stratification, with associated training and competition recommendations. Prevention and treatment principles of REDs are presented to encourage best practices for sports organisations and clinicians. Finally, methodological best practices for REDs research are outlined to stimulate future high-quality research to address important knowledge gaps.
Collapse
Affiliation(s)
- Margo Mountjoy
- Family Medicine, McMaster University Michael G DeGroote School of Medicine, Waterloo, Ontario, Canada
- Games Group, International Olympic Committee, Lausanne, Switzerland
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Naama Constantini
- Sports Medicine Center, Shaare Zedek Medical Center, The Hebrew University, Jerusalem, Israel
| | - Anthony C Hackney
- Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ida Aliisa Heikura
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Melin
- Department of Sport Science - Swedish Olympic Committee Research Fellow, Linnaeus University, Kalmar, Sweden
| | - Anne Marte Pensgaard
- Department of Sport and Social Sciences, Norwegian School of Sports Sciences, Oslo, Norway
| | - Trent Stellingwerff
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | - Evert Verhagen
- Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Science, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Uğur Erdener
- Department of Ophthalmology, Hacettepe University, Ankara, Turkey
- World Archery, Lausanne, Switzerland
| |
Collapse
|
18
|
Hutson MJ, O'Donnell E, Brooke-Wavell K, James LJ, Raleigh CJ, Carson BP, Sale C, Blagrove RC. High-impact jumping mitigates the short-term effects of low energy availability on bone resorption but not formation in regularly menstruating females: A randomized control trial. Scand J Med Sci Sports 2023; 33:1690-1702. [PMID: 37365858 DOI: 10.1111/sms.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Low energy availability (LEA) is prevalent in active individuals and negatively impacts bone turnover in young females. High-impact exercise can promote bone health in an energy efficient manner and may benefit bone during periods of LEA. Nineteen regularly menstruating females (aged 18-31 years) participated in two three-day conditions providing 15 (LEA) and 45 kcals kg fat-free mass-1 day-1 (BAL) of energy availability, each beginning 3 ± 1 days following the self-reported onset of menses. Participants either did (LEA+J, n = 10) or did not (LEA, n = 9) perform 20 high-impact jumps twice per day during LEA, with P1NP, β-CTx (circulating biomarkers of bone formation and resorption, respectively) and other markers of LEA measured pre and post in a resting and fasted state. Data are presented as estimated marginal mean ± 95% CI. P1NP was significantly reduced in LEA (71.8 ± 6.1-60.4 ± 6.2 ng mL-1 , p < 0.001, d = 2.36) and LEA+J (93.9 ± 13.4-85.2 ± 12.3 ng mL-1 , p < 0.001, d = 1.66), and these effects were not significantly different (time by condition interaction: p = 0.269). β-CTx was significantly increased in LEA (0.39 ± 0.09-0.46 ± 0.10 ng mL-1 , p = 0.002, d = 1.11) but not in LEA+J (0.65 ± 0.08-0.65 ± 0.08 ng mL-1 , p > 0.999, d = 0.19), and these effects were significantly different (time by condition interaction: p = 0.007). Morning basal bone formation rate is reduced following 3 days LEA, induced via dietary restriction, with or without high-impact jumping in regularly menstruating young females. However, high-impact jumping can prevent an increase in morning basal bone resorption rate and may benefit long-term bone health in individuals repeatedly exposed to such bouts.
Collapse
Affiliation(s)
- Mark J Hutson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- School of Sport, Faculty of Life and Health Sciences, Ulster University, Coleraine, UK
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Conor J Raleigh
- Department of Physical Education & Sport Sciences, University of Limerick, Limerick, Ireland
| | - Brian P Carson
- Department of Physical Education & Sport Sciences, University of Limerick, Limerick, Ireland
| | - Craig Sale
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Richard C Blagrove
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
19
|
Armento A, Heronemus M, Truong D, Swanson C. Bone Health in Young Athletes: a Narrative Review of the Recent Literature. Curr Osteoporos Rep 2023; 21:447-458. [PMID: 37289381 PMCID: PMC10248337 DOI: 10.1007/s11914-023-00796-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to discuss the most recent published scientific evidence regarding bone health in the pediatric athlete. RECENT FINDINGS Pediatric athletes commonly suffer from overuse injuries to the physes and apophyses, as well as bone stress injuries, for which magnetic resonance imaging grading of the severity of injuries may be useful in guiding return to sport. Adolescent athletes, particularly those who train indoors and during the winter season, are at risk for vitamin D deficiency, which has important implications for bone mineral density. However, the relationship between vitamin D status and traumatic fracture risk is still unclear. While the female athlete triad is a well-established condition, the current work has led to the recognition of parallel pathophysiology in male athletes, referred to as the male athlete triad. Recent evidence suggests that transdermal 17β-estradiol treatment in amenorrhoeic female athletes is an effective adjunctive treatment to improve bone mineral density in treatment of the female athlete triad. Young athletes are at risk for musculoskeletal injuries unique to the growing skeleton. Optimizing nutritional intake, particularly related to adequate vitamin D intake and prevention of the athlete triad, is critical to optimize bone health in the young athlete.
Collapse
Affiliation(s)
- Aubrey Armento
- Department of Orthopedics, University of Colorado School of Medicine, 13123 E. 16th Ave, B060, Aurora, CO 80045 USA
- Sports Medicine Center, Children’s Hospital Colorado, Aurora, CO USA
| | - Marc Heronemus
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO USA
| | - Daniel Truong
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO USA
| | - Christine Swanson
- Department of Medicine-Endocrinology, Diabetes, and Metabolism, University of Colorado School of Medicine, Aurora, CO USA
| |
Collapse
|
20
|
Baumgartner S, Bitterlich N, Geboltsberger S, Neuenschwander M, Matter S, Stute P. Contraception, female cycle disorders and injuries in Swiss female elite athletes-a cross sectional study. Front Physiol 2023; 14:1232656. [PMID: 37565143 PMCID: PMC10410265 DOI: 10.3389/fphys.2023.1232656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Aim: The national Olympic committee of Switzerland has conducted an online survey among female elite athletes with a focus on cycle disorders, contraception, and injuries in 2021. Methods: A total of 1,092 female elite athletes from 107 different sports were asked to answer the questionnaire. A descriptive analysis was carried out to determine location parameters and create frequency tables. Results: The questionnaire was completed by 408 athletes (37.4%) from 92 different sports. 43.4% participated in a lean sport. 57.1% reported no injuries, 32.6% one injury, and 10.2% two or more injuries per year. A considerable proportion reported being affected by primary amenorrhoea (10.8%). Primary amenorrhoea occurred significantly more often in female athletes with a BMI lower than 21.7 kg/m2 (15.2%) than in athletes with a BMI above 21.7 kg/m2 (7.4%, p = 0.021). Considering contraception, 25.8% of female athletes were currently using an oral contraceptive pill. The proportion of female athletes not using contraception at all or using non-hormonal contraceptive methods was high at 54.4%. In lean sports, significantly more athletes used no or non-hormonal contraceptives (p < 0.05). Conclusion: Among top Swiss female athletes, a considerable proportion used non-hormonal or no contraceptives. This trend was more evident in lean sports. Delayed menarche and cycle irregularities were common among female athletes, especially among athletes with high training volumes as well as a BMI below 21.7 kg/m2. This orienting survey underlines the importance of specialized gynecological care for elite female athletes.
Collapse
Affiliation(s)
- Sabrina Baumgartner
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Bern, Switzerland
- Swiss Federal Institute of Sport—BASPO, Magglingen, Switzerland
| | | | | | | | | | - Petra Stute
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
O'Leary TJ, Coombs CV, Perrett C, Double RL, Keay N, Wardle SL, Greeves JP. Menstrual Function, Eating Disorders, Low Energy Availability, and Musculoskeletal Injuries in British Servicewomen. Med Sci Sports Exerc 2023; 55:1307-1316. [PMID: 36893306 DOI: 10.1249/mss.0000000000003154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
PURPOSE This study aimed to investigate associations between menstrual function, eating disorders, and risk of low energy availability with musculoskeletal injuries in British servicewomen. METHODS All women younger than 45 yr in the UK Armed Forces were invited to complete a survey about menstrual function, eating behaviors, exercise behaviors, and injury history. RESULTS A total of 3022 women participated; 2% had a bone stress injury in the last 12 months, 20% had ever had a bone stress injury, 40% had a time-loss musculoskeletal injury in the last 12 months, and 11% were medically downgraded for a musculoskeletal injury. Menstrual disturbances (oligomenorrhea/amenorrhea, history of amenorrhea, and delayed menarche) were not associated with injury. Women at high risk of disordered eating (Female Athlete Screening Tool score >94) were at higher risk of history of a bone stress injury (odds ratio (OR; 95% confidence interval (CI)), 2.29 (1.67-3.14); P < 0.001) and time-loss injury in the last 12 months (OR (95% CI), 1.56 (1.21-2.03); P < 0.001) than women at low risk of disordered eating. Women at high risk of low energy availability (Low Energy Availability in Females Questionnaire score ≥8) were at higher risk of bone stress injury in the last 12 months (OR (95% CI), 3.62 (2.07-6.49); P < 0.001), history of a bone stress injury (OR (95% CI), 2.08 (1.66-2.59); P < 0.001), a time-loss injury in the last 12 months (OR (95% CI), 9.69 (7.90-11.9); P < 0.001), and being medically downgraded with an injury (OR (95% CI), 3.78 (2.84-5.04); P < 0.001) than women at low risk of low energy availability. CONCLUSIONS Eating disorders and risk of low energy availability provide targets for protecting against musculoskeletal injuries in servicewomen.
Collapse
Affiliation(s)
| | - Charlotte V Coombs
- Army Health and Performance Research, Army Headquarters, Andover, UNITED KINGDOM
| | - Caitlin Perrett
- Division of Surgery and Interventional Science, UCL, London, UNITED KINGDOM
| | - Rebecca L Double
- Army Health and Performance Research, Army Headquarters, Andover, UNITED KINGDOM
| | - Nicky Keay
- Division of Medicine, UCL, London, UNITED KINGDOM
| | | | | |
Collapse
|
22
|
Greeves JP, Beck B, Nindl BC, O'Leary TJ. Current risks factors and emerging biomarkers for bone stress injuries in military personnel. J Sci Med Sport 2023:S1440-2440(23)00075-0. [PMID: 37188615 DOI: 10.1016/j.jsams.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Bone stress injuries (BSIs) have plagued the military for over 150 years; they afflict around 5 to 10% of military recruits, more so in women, and continue to place a medical and financial burden on defence. While the tibia generally adapts to the rigours of basic military training, the putative mechanisms for bone maladaptation are still unclear. METHODS This paper provides a review of the published literature on current risk factors and emerging biomarkers for BSIs in military personnel; the potential for biochemical markers of bone metabolism to monitor the response to military training; and, the association of novel biochemical 'exerkines' with bone health. RESULTS The primary risk factor for BSI in military (and athletic) populations is too much training, too soon. Appropriate physical preparation before training will likely be most protective, but routine biomarkers will not yet identify those at risk. Nutritional interventions will support a bone anabolic response to training, but exposure to stress, sleep loss, and medication is likely harmful to bone. Monitoring physiology using wearables-ovulation, sleep and stress-offer potential to inform prevention strategies. CONCLUSIONS The risk factors for BSIs are well described, but their aetiology is very complex particularly in the multi-stressor military environment. Our understanding of the skeletal responses to military training is improving as technology advances, and potential biomarkers are constantly emerging, but sophisticated and integrated approaches to prevention of BSI are warranted.
Collapse
Affiliation(s)
- Julie P Greeves
- Army Health and Performance Research, Army HQ, Andover, United Kingdom; Norwich Medical School, University of East Anglia, United Kingdom; Division of Surgery and Interventional Science, UCL, United Kingdom.
| | - Belinda Beck
- School of Health Sciences and Social Work, Griffith University, Australia; The Bone Clinic, Australia.
| | - Bradley C Nindl
- School of Health and Rehabilitation Sciences, University of Pittsburgh, United States.
| | - Thomas J O'Leary
- Army Health and Performance Research, Army HQ, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, United Kingdom.
| |
Collapse
|
23
|
Hegedus EJ, Mulligan EP, Beer BA, Gisselman AS, Wooten LC, Stern BD. How Advancement in Bone Science Should Inform the Examination and Treatment of Femoral Shaft Bone Stress Injuries in Running Athletes. Sports Med 2023; 53:1117-1124. [PMID: 36598744 DOI: 10.1007/s40279-022-01802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
Stress fractures likely have a 1-2% incidence in athletes in general. In runners, a more vulnerable population, incidence rates likely range between 3.2 and 21% with female runners having greater susceptibility. The incidence of femoral shaft stress fractures is less well known. New basic and translational science research may impact the way clinicians diagnose and treat femoral stress fractures. By using a fictitious case study, this paper applies bone science to suggest new approaches to evaluating and treating femoral shaft stress fractures in the running population.
Collapse
Affiliation(s)
- Eric J Hegedus
- Tufts University Doctor of Physical Therapy Program, 101 E Washington St Ste 950, Phoenix, AZ, 85004, USA.
| | - Edward P Mulligan
- Tufts University Doctor of Physical Therapy Program, 101 E Washington St Ste 950, Phoenix, AZ, 85004, USA
| | | | - Angela Spontelli Gisselman
- Tufts University Doctor of Physical Therapy Program, 101 E Washington St Ste 950, Phoenix, AZ, 85004, USA
| | - Liana C Wooten
- Tufts University Doctor of Physical Therapy Program, 101 E Washington St Ste 950, Phoenix, AZ, 85004, USA
| | - Benjamin D Stern
- Tufts University Doctor of Physical Therapy Program, 101 E Washington St Ste 950, Phoenix, AZ, 85004, USA
| |
Collapse
|
24
|
Vadivalagan C, Krishnan A, Chen SJ, Hseu YC, Muthu S, Dhar R, Aljabali AAA, Tambuwala MM. The Warburg effect in osteoporosis: Cellular signaling and epigenetic regulation of energy metabolic events to targeting the osteocalcin for phenotypic alteration. Cell Signal 2022; 100:110488. [PMID: 36208706 DOI: 10.1016/j.cellsig.2022.110488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a silent disease of skeletal morphology that induces fragility and fracture risk in aged persons irrespective of gender. Juvenile secondary osteoporosis is rare and is influenced by familial genetic abnormalities. Despite the currently available therapeutic options, more-acute treatments are in need. Women suffer from osteoporosis after menopause, which is characterized by a decline in the secretion of sex hormones in the later phase of life. Several studies in the past two decades emphasized hormone-related pathways to combat osteoporosis. Some studies partially examined energy-related pathways, but achieving a more vivid picture of metabolism and bone remodeling in terms of the Warburg phenomenon is still warranted. Each cell requires sufficient energy for cellular propagation and growth; in particular, osteoporosis is an energy-dependent mechanism affected by a decreased cellular mass of the bone morphology. Energy utilization is the actual propagation of such diseases, and narrowing down these criteria will hopefully provide clues to formulate better therapeutic strategies. Oxidative glycolysis is a particular type of energy metabolic pathway in cancer cells that influences cellular proliferation. Therefore, the prospect of utilizing collective glucose metabolism by inducing the Warburg effect may improve cell propagation. The benefits of utilizing the energy from the Warburg effect may be a difficult task. However, it seems to improve their effectiveness in the osteoblast phenotype by connecting the selected pathways such as WNT, Notch, AKT, and Insulin signaling by targeting osteocalcin resulting in phenotypic alteration. Osteocalcin directs ATP utilization through the sclerostin SOST gene in the bone microenvironment. Thus, selective activation of ATP production involved in osteoblast maturation remains a prime strategy to fight osteoporosis.
Collapse
Affiliation(s)
- Chithravel Vadivalagan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul-624003, Tamil Nadu, India
| | - Rajib Dhar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, -603203, Tamilnadu, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
25
|
Nimmala S, Kaur S, Singhal V, Mitchell DM, Stanford FC, Bouxsein ML, Lauze M, Huynh C, Pedreira CC, Lee H, Bredella MA, Misra M. Changes in Sex Steroids and Enteric Peptides After Sleeve Gastrectomy in Youth in Relation to Changes in Bone Parameters. J Clin Endocrinol Metab 2022; 107:e3747-e3758. [PMID: 35689793 PMCID: PMC9387701 DOI: 10.1210/clinem/dgac361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Sleeve gastrectomy (SG) improves metabolic endpoints but is associated with impaired bone outcomes. OBJECTIVE To determine mechanisms contributing to impaired bone health in youth following SG. METHODS 12-month longitudinal observational study in a multidisciplinary tertiary-care hospital, including 64 youth 13-25 years old with moderate-to-severe obesity (51 females); 30 underwent SG and 34 were nonsurgical (NS) controls. SG was undertaken after a combined decision-making process between treatment team and patient. The main outcome measures were fasting blood for enteric peptides, sex steroids, sclerostin, and bone turnover markers (N-terminal propeptide of type 1 procollagen [P1NP] and C-terminal cross-linking telopeptide [CTX]); dual-energy X-ray absorptiometry measures of areal bone mineral density (aBMD) and body composition; high resolution peripheral quantitative computed tomography; measures of volumetric BMD (vBMD); microfinite element analysis of strength estimates (distal radius and tibia). RESULTS SG had greater reductions in body mass index (BMI) z-scores, serum estrone, and the free androgen index (FAI) (P ≤ .046), and greater increases in sclerostin, P1NP, and CTX (P ≤ .010) than NS controls. Fasting ghrelin decreased in SG vs NS (P < .0001); fasting peptide YY did not change. Most changes were driven by female SG participants. Among females (the majority of study participants), after controlling for baseline age and race, reductions in total hip aBMD Z-scores were positively associated with changes in BMI, lean mass, estrone, FAI, and ghrelin, and inversely with changes in sclerostin.. Decreases in total vBMD of the radius and tibia were associated positively with decreases in BMI. Increases in CTX were associated with decreases in BMI, lean mass, and ghrelin, and increases in sclerostin. CONCLUSION Bone loss after SG in youth is associated with changes in body composition, sex steroids, sclerostin, and enteric peptides. These are potential targets for future preventative or therapeutic strategies.
Collapse
Affiliation(s)
- Supritha Nimmala
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Snimarjot Kaur
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- MGH Weight Center, Boston, MA 02114, USA
| | - Deborah M Mitchell
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Fatima Cody Stanford
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- MGH Weight Center, Boston, MA 02114, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Meghan Lauze
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carolyn Huynh
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Clarissa C Pedreira
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- MGH Biostatistics Center and Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine and Harvard Medical School, Boston, MA 02114, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
27
|
The Bone Biomarker Response to an Acute Bout of Exercise: A Systematic Review with Meta-Analysis. Sports Med 2022; 52:2889-2908. [DOI: 10.1007/s40279-022-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/16/2022]
|
28
|
Pedreira CC, Maya J, Misra M. Functional hypothalamic amenorrhea: Impact on bone and neuropsychiatric outcomes. Front Endocrinol (Lausanne) 2022; 13:953180. [PMID: 35937789 PMCID: PMC9355702 DOI: 10.3389/fendo.2022.953180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Functional hypothalamic amenorrhea is a state of reversible hypogonadism common in adolescents and young women that can be triggered by energy deficit or emotional stress or a combination of these factors. Energy deficit may be a consequence of (i) reduced caloric intake, as seen in patients with eating disorders, such as anorexia nervosa, or (ii) excessive exercise, when caloric intake is insufficient to meet the needs of energy expenditure. In these conditions of energy deficit, suppression of the hypothalamic secretion of gonadotrophin-releasing hormone (with resulting hypoestrogenism) as well as other changes in hypothalamic-pituitary function may occur as an adaptive response to limited energy availability. Many of these adaptive changes, however, are deleterious to reproductive, skeletal, and neuropsychiatric health. Particularly, normoestrogenemia is critical for normal bone accrual during adolescence, and hypoestrogenemia during this time may lead to deficits in peak bone mass acquisition with longstanding effects on skeletal health. The adolescent years are also a time of neurological changes that impact cognitive function, and anxiety and depression present more frequently during this time. Normal estrogen status is essential for optimal cognitive function (particularly verbal memory and executive function) and may impact emotion and mood. Early recognition of women at high risk of developing hypothalamic amenorrhea and its timely management with a multidisciplinary team are crucial to prevent the severe and long-term effects of this condition.
Collapse
Affiliation(s)
- Clarissa Carvalho Pedreira
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neuroendocrine Unit, Center for Endocrinology and Diabetes of Bahia State, Salvador, Brazil
| | - Jacqueline Maya
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Freire Ribeiro AB, Bruininks BD, Street GM, Smock AJ, Scibora LM. Comparison of Tibial Geometry, Density, and Strength in College-Aged Female Eumenorrheic Dancers, Gymnasts, and Runners: A Peripheral Quantitative Computed Tomography Study. J Dance Med Sci 2022; 26:165-172. [PMID: 35697494 DOI: 10.12678/1089-313x.091522c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Weightbearing activities such as gymnastics, soccer, weightlifting, and running have often been used as benchmarks in skeletal research since they have been shown to promote densitometric and geometric benefits. In comparison with other sports, there is a paucity of information in relation to dance and its osteogenic potential. OBJECTIVE This study aimed to compare tibial geometry, density, and strength in college-aged dancers versus gymnasts and runners. METHODS A total of 60 trained eumenorrheic collegiate-aged female dancers (n = 11), gymnasts (n = 11), runners (n = 19), and sedentary controls (n = 19) were included in the study. Bone measurements, including total area (ToA), volumetric (total vBMD) and cortical density (CoD), compressive bone strength (BSI), and polar strength stress index (SSIp) of the dominant limb, were assessed using peripheral quantitative computed tomography (pQCT) at the distal and proximal tibia (4% and 66% of limb length). RESULTS No significant differences in ToA, CoD, CoA, and total vBMD were found between dancers and the comparison athletes at the measured sites. In addition, strength indices (BSI and SSIp) at the distal and proximal sites were similar between the dancing and both athlete groups. CONCLUSION Results suggest dance elicits similar structural adaptations at the tibia compared to benchmark high-impact and repetitive impact sports; thus, indicating dance, in its various forms, can have a positive effect on important bone variables that influence density and strength. These adaptations may potentially delay or prevent bone fragility later in life. Future studies should compare individual styles of dance separately, longitudinally, and include other important lower (e.g., hip) and upper body (e.g., radius) sites to further identify which forms provide the greatest osteogenic benefits.
Collapse
|
30
|
De Souza MJ, Ricker EA, Mallinson RJ, Allaway HCM, Koltun KJ, Strock NCA, Gibbs JC, Kuruppumullage Don P, Williams NI. Bone mineral density in response to increased energy intake in exercising women with oligomenorrhea/amenorrhea: the REFUEL randomized controlled trial. Am J Clin Nutr 2022; 115:1457-1472. [PMID: 35170727 PMCID: PMC9170471 DOI: 10.1093/ajcn/nqac044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Energy deficiency can result in menstrual disturbances and compromised bone health in women, a condition known as the Female Athlete Triad. OBJECTIVES The REFUEL randomized controlled trial assessed the impact of increased energy intake on bone health and menstrual function in exercising women with menstrual disturbances. METHODS Exercising women with oligomenorrhea/amenorrhea (Oligo/Amen) were randomly assigned to an intervention group (Oligo/Amen + Cal, n = 40, mean ± SEM age: 21.3 ± 0.5 y; weight: 55.0 ± 1.0 kg; BMI: 20.4 ± 0.3 kg/m2) who increased energy intake 20%-40% above baseline energy needs for 12 mo or a control group (Oligo/Amen Control, n = 36; mean ± SEM age: 20.7 ± 0.5 y; weight: 59.1 ± 1.3 kg; BMI: 21.3 ± 0.4 kg/m2). Energy intake and expenditure, metabolic and reproductive hormones, body composition, and areal bone mineral density (aBMD) were assessed. RESULTS Oligo/Amen + Cal improved energy status [increased body mass (2.6 ± 0.4 kg), BMI (0.9 ± 0.2 kg/m2), fat mass (2.0 ± 0.3 kg), body fat percentage (2.7% ± 0.4%), and insulin-like growth factor 1 (37.4 ± 14.6 ng/mL)] compared with Oligo/Amen Control and experienced a greater likelihood of menses (P < 0.05). Total body and spine aBMD remained unchanged (P > 0.05). Both groups demonstrated decreased femoral neck aBMD at month 6 (-0.006 g/cm2; 95% CI: -0.011, -0.0002 g/cm2 ; time main effect P = 0.043) and month 12 (-0.011 g/cm2; 95% CI: -0.021, -0.001 g/cm2; time main effect P = 0.023). Both groups demonstrated a decrease in total hip aBMD at month 6 (-0.006 g/cm2; 95% CI: -0.011, -0.002 g/cm2; time main effect P = 0.004). CONCLUSIONS Although higher dietary energy intake increased weight, body fat, and menstrual frequency, bone mineral density was not improved, compared with the control group. The 12-mo intervention may have been too short and the increase in energy intake (∼352 kcal/d), although sufficient to increase menstrual frequency, was insufficient to increase estrogen or improve aBMD. Future research should refine the optimal nutritional and/or pharmacological interventions for the recovery of bone health in athletes and exercising women with Oligo/Amen.This trial was registered at clinicaltrials.gov as NCT00392873.
Collapse
Affiliation(s)
- Mary Jane De Souza
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Emily A Ricker
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Rebecca J Mallinson
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Heather C M Allaway
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Kristen J Koltun
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Jenna C Gibbs
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | | | - Nancy I Williams
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
31
|
Restrictive Eating and Prior Low-Energy Fractures Are Associated With History of Multiple Bone Stress Injuries. Int J Sport Nutr Exerc Metab 2022; 32:325-333. [PMID: 35523419 DOI: 10.1123/ijsnem.2021-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Bone stress injuries (BSIs) are common among athletes and have high rates of recurrence. However, risk factors for multiple or recurrent BSIs remain understudied. Thus, we aimed to explore whether energy availability, menstrual function, measures of bone health, and a modified Female Athlete Triad Cumulative Risk Assessment (CRA) tool are associated with a history of multiple BSIs. We enrolled 51 female runners (ages 18-36 years) with history of ≤1 BSI (controls; n = 31) or ≥3 BSIs (multiBSI; n = 20) in this cross-sectional study. We measured lumbar spine, total hip, and femoral neck areal bone mineral density by dual-energy X-ray absorptiometry, bone material strength index using impact microindentation, and volumetric bone mineral density, microarchitecture, and estimated strength by high-resolution peripheral quantitative computed tomography. Participants completed questionnaires regarding medical history, low-energy fracture history, and disordered eating attitudes. Compared with controls, multiBSI had greater incidence of prior low-energy fractures (55% vs. 16%, p = .005) and higher modified Triad CRA scores (2.90 ± 2.05 vs. 1.84 ± 1.59, p = .04). Those with multiBSI had higher Eating Disorder Examination Questionnaire (0.92 ± 1.03 vs. 0.46 ± 0.49, p = .04) scores and a greater percentage difference between lowest and highest body mass at their current height (15.5% ± 6.5% vs. 11.5% ± 4.9% p = .02). These preliminary findings indicate that women with a history of multiple BSIs suffered more prior low-energy fractures and have greater historical and current estimates of energy deficit compared with controls. Our results provide strong rationale for future studies to examine whether subclinical indicators of energy deficit contribute to risk for multiple BSIs in female runners.
Collapse
|
32
|
Jonvik KL, Torstveit MK, Sundgot-Borgen JK, Mathisen TF. Last Word on Viewpoint: Do we need to change the guideline values for determining low bone mineral density in athletes? J Appl Physiol (1985) 2022; 132:1325-1326. [PMID: 35608156 PMCID: PMC9208431 DOI: 10.1152/japplphysiol.00227.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kristin L Jonvik
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Monica K Torstveit
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | | | | |
Collapse
|
33
|
Hill L, Mountjoy M, Miller J. Non-shoulder Injuries in Swimming: A Systematic Review. Clin J Sport Med 2022; 32:256-264. [PMID: 33852442 DOI: 10.1097/jsm.0000000000000903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The shoulder is the most common injury in swimming, followed by the knee and spine. The repetitive nature of swimming training may predispose a swimmer to injury. Several risk factors have been previously identified, but the level of evidence and level of certainty that these risk factors predispose a swimmer to injury risk has yet to be evaluated critically in a systematic review. DESIGN Systematic review and meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. DATA SOURCES Data were obtained through PubMed, Cochrane, and Google Scholar. The database search was limited to articles that were published between January 1980 and December 2019. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Level I, II, and III studies were included in this review. All studies must have been conducted in swimmers or swimming, a description of the specific pathology and provide at least one identified risk factor with an association (P < 0.05). RESULTS A total of 19 critically appraised articles identified 28 potential risk factors for musculoskeletal injuries in swimmers. The risk factors were grouped by the anatomical region: neck and back, pelvis and hip, and the knee. Only 2 risk factors were appraised at a moderate level of certainty, both occurring in the knee. The remaining 26 identified risk factors were appraised at a low level of certainty. There is a clear lack of research surrounding nonshoulder injuries in swimmers.
Collapse
Affiliation(s)
- Lee Hill
- Division of Gastroenterology and Nutrition, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
- Department of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Margo Mountjoy
- Federation International de Natation (aquatics) (FINA) Sports Medicine, Lausanne, Switzerland; and
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Jim Miller
- Federation International de Natation (aquatics) (FINA) Sports Medicine, Lausanne, Switzerland; and
| |
Collapse
|
34
|
Popp KL, Cooke LM, Bouxsein ML, Hughes JM. Impact of Low Energy Availability on Skeletal Health in Physically Active Adults. Calcif Tissue Int 2022; 110:605-614. [PMID: 35171303 DOI: 10.1007/s00223-022-00957-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
For decades researchers reported that pre-menopausal women who engage in extensive endurance exercise and have menstrual dysfunction can develop low bone mineral density (BMD) or osteoporosis. More recently, low energy availability has been recognized as the initiating factor for low BMD in these women. Furthermore, the relationship between low energy availability and poor skeletal health is not exclusive to women engaging in endurance exercise. Rather, both males and females commonly experience endocrine dysfunction resulting from low energy availability and high exercise levels that degrades skeletal health. Consequences to skeletal health can range from short-term changes in bone metabolism and increased risk of bone stress injuries to long-term consequences of low BMD, such as osteoporosis and related fragility fractures. The degree to which low energy availability degrades skeletal health may be dependent on the length and extent of the energy deficit. However, the complex relationships between under-fueling, short- and long-term skeletal consequences and the factors that mediate these relationships are not well described. In this review, we discuss the consequences of low energy availability on sex hormones and skeletal health in two highly-active populations-athletes and military trainees-and provide a summary of existing knowledge gaps for future study.
Collapse
Affiliation(s)
- Kristin L Popp
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA.
- Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| | - Laura M Cooke
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mary L Bouxsein
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02215, USA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Julie M Hughes
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| |
Collapse
|
35
|
Hoenig T, Ackerman KE, Beck BR, Bouxsein ML, Burr DB, Hollander K, Popp KL, Rolvien T, Tenforde AS, Warden SJ. Bone stress injuries. Nat Rev Dis Primers 2022; 8:26. [PMID: 35484131 DOI: 10.1038/s41572-022-00352-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 01/11/2023]
Abstract
Bone stress injuries, including stress fractures, are overuse injuries that lead to substantial morbidity in active individuals. These injuries occur when excessive repetitive loads are introduced to a generally normal skeleton. Although the precise mechanisms for bone stress injuries are not completely understood, the prevailing theory is that an imbalance in bone metabolism favours microdamage accumulation over its removal and replacement with new bone via targeted remodelling. Diagnosis is achieved by a combination of patient history and physical examination, with imaging used for confirmation. Management of bone stress injuries is guided by their location and consequent risk of healing complications. Bone stress injuries at low-risk sites typically heal with activity modification followed by progressive loading and return to activity. Additional treatment approaches include non-weight-bearing immobilization, medications or surgery, but these approaches are usually limited to managing bone stress injuries that occur at high-risk sites. A comprehensive strategy that integrates anatomical, biomechanical and biological risk factors has the potential to improve the understanding of these injuries and aid in their prevention and management.
Collapse
Affiliation(s)
- Tim Hoenig
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Boston Children's Hospital, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Belinda R Beck
- School of Health Sciences & Social Work, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,The Bone Clinic, Brisbane, Queensland, Australia
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David B Burr
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam S Tenforde
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.
| | - Stuart J Warden
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA. .,Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN, USA. .,La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
36
|
Gama E, Kasuki L, Paranhos-Neto FP, Madeira M, Mendonça L, Schtscherbyna A, Farias M. Low Energy Availability Interferes With Exercise-Associated Bone Effects in Female Long-Distance Triathletes as Detected by HR-pQCT. J Clin Densitom 2022; 25:160-167. [PMID: 33608221 DOI: 10.1016/j.jocd.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Female Athlete Triad, initially described as the association of disordered eating, amenorrhea and osteoporosis, was further redefined to focus on low energy availability (EA), which has a central role in development of hypoestrogenism and low bone mineral density (BMD). However, the contribution of each variable, that is, low EA and hypoestrogenism, for bone derangements is still an open question. To evaluate body composition and bone status in long-distance triathletes without hypoestrogenism, as compared to non-athletes, using DXA and HR-pQCT, and the influence of EA. Population comprised 23 triathletes who had completed at least one long-distance race in the previous year, and 17 non-athletic healthy controls. The athletes denied previous oligo-amenorrhea and had spontaneous regular menses or were on hormonal contraceptives. Control patients also had regular menses. Energy deficiency (low EA) was defined as energy intake below the recommended level for athletes, that is, 45 kcal/kg free fat mass/day. Only femoral neck BMD Z-score measured by DXA trended higher in athletes (p = 0.05), whereas high-resolution peripheral quantitative computed tomography detected significantly higher values of entire bone and trabecular bone area, cortical perimeter, trabecular vBMD and trabecular bone volume/tissue volume, and lower trabecular separation and trabecular inhomogeneity in athletes. No difference was found between athletes with spontaneous menses and those on hormone contraceptives in respect to all parameters. The effects of exercise on bone were not so pronounced in athletes with low EA, although they still had better bone parameters than controls. Stress fractures were reported by 4:12 athletes with low EA and by 2:11 athletes with adequate EA. Long-distance female triathletes without hypoestrogenism show higher values of cortical perimeter, bone area, volumetric density and trabecular microstructure, but low EA interferes with exercise-associated bone effects. These innovative findings reinforce the importance of adequate EA in female athletes to guarantee skeletal health.
Collapse
Affiliation(s)
- Emf Gama
- Division of Endocrinology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, Rio de Janeiro, Brasil.
| | - L Kasuki
- Neuroendocrinology Research Center, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, Rio de Janeiro, Brasil
| | - F P Paranhos-Neto
- Division of Endocrinology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, Rio de Janeiro, Brasil
| | - M Madeira
- Division of Endocrinology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, Rio de Janeiro, Brasil
| | - Lmc Mendonça
- Division of Rheumatology of Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, Rio de Janeiro, Brasil
| | - A Schtscherbyna
- Division of Endocrinology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mlf Farias
- Division of Endocrinology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
37
|
Shirley MK, Longman DP, Elliott-Sale KJ, Hackney AC, Sale C, Dolan E. A Life History Perspective on Athletes with Low Energy Availability. Sports Med 2022; 52:1223-1234. [PMID: 35113390 DOI: 10.1007/s40279-022-01643-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 12/19/2022]
Abstract
The energy costs of athletic training can be substantial, and deficits arising from costs unmet by adequate energy intake, leading to a state of low energy availability, may adversely impact athlete health and performance. Life history theory is a branch of evolutionary theory that recognizes that the way the body uses energy-and responds to low energy availability-is an evolved trait. Energy is a finite resource that must be distributed throughout the body to simultaneously fuel all biological processes. When energy availability is low, insufficient energy may be available to equally support all processes. As energy used for one function cannot be used for others, energetic "trade-offs" will arise. Biological processes offering the greatest immediate survival value will be protected, even if this results in energy being diverted away from others, potentially leading to their downregulation. Athletes with low energy availability provide a useful model for anthropologists investigating the biological trade-offs that occur when energy is scarce, while the broader conceptual framework provided by life history theory may be useful to sport and exercise researchers who investigate the influence of low energy availability on athlete health and performance. The goals of this review are: (1) to describe the core tenets of life history theory; (2) consider trade-offs that might occur in athletes with low energy availability in the context of four broad biological areas: reproduction, somatic maintenance, growth, and immunity; and (3) use this evolutionary perspective to consider potential directions for future research.
Collapse
Affiliation(s)
- Meghan K Shirley
- Division of GI, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel P Longman
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anthony C Hackney
- Department of Exercise and Sport Science, Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
38
|
Kelly AW, Hecht S. The female athlete triad. ANNALS OF JOINT 2022; 7:6. [PMID: 38529159 PMCID: PMC10929343 DOI: 10.21037/aoj-2020-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/24/2020] [Indexed: 03/27/2024]
Abstract
The female athlete triad represents the 3 interrelated components: of energy availability (EA), menstrual function and bone health. Each component exists on a spectrum ranging from optimal health to dysfunction. Screening for the triad during the annual wellness exam, the preparticipation physical evaluation (PPE) or when the athlete presents with any single component can help identify athletes at risk. A multidisciplinary team is helpful in managing the treatment of the Triad which relies on improving EA. Screening, early recognition and aggressive treatment is important, especially in adolescent athletes to optimize bone health.
Collapse
Affiliation(s)
- Amanda Weiss Kelly
- University Hospitals of Cleveland, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Suzanne Hecht
- University Hospitals of Cleveland, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
39
|
Indirli R, Lanzi V, Mantovani G, Arosio M, Ferrante E. Bone health in functional hypothalamic amenorrhea: What the endocrinologist needs to know. Front Endocrinol (Lausanne) 2022; 13:946695. [PMID: 36303862 PMCID: PMC9592968 DOI: 10.3389/fendo.2022.946695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
In the original definition by Klinefelter, Albright and Griswold, the expression "hypothalamic hypoestrogenism" was used to describe functional hypothalamic amenorrhoea (FHA). Given the well-known effects of estrogens on bone, the physiopathology of skeletal fragility in this condition may appear self-explanatory. Actually, a growing body of evidence has clarified that estrogens are only part of the story. FHA occurs in eating disorders, overtraining, and during psychological or physical stress. Despite some specific characteristics which differentiate these conditions, relative energy deficiency is a common trigger that initiates the metabolic and endocrine derangements contributing to bone loss. Conversely, data on the impact of amenorrhoea on bone density or microarchitecture are controversial, and reduced bone mass is observed even in patients with preserved menstrual cycle. Consistently, oral estrogen-progestin combinations have not proven beneficial on bone density of amenorrheic women. Low bone density is a highly prevalent finding in these patients and entails an increased risk of stress or fragility fractures, and failure to achieve peak bone mass and target height in young girls. Pharmacological treatments have been studied, including androgens, insulin-like growth factor-1, bisphosphonates, denosumab, teriparatide, leptin, but none of them is currently approved for use in FHA. A timely screening for bone complications and a multidisciplinary, customized approach aiming to restore energy balance, ensure adequate protein, calcium and vitamin D intake, and reverse the detrimental metabolic-endocrine changes typical of this condition, should be the preferred approach until further studies are available.
Collapse
Affiliation(s)
- Rita Indirli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Rita Indirli,
| | - Valeria Lanzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
40
|
Holtzman B, Ackerman KE. Recommendations and Nutritional Considerations for Female Athletes: Health and Performance. Sports Med 2021; 51:43-57. [PMID: 34515972 PMCID: PMC8566643 DOI: 10.1007/s40279-021-01508-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/29/2022]
Abstract
Optimal nutrition is an important aspect of an athlete’s preparation to achieve optimal health and performance. While general concepts about micro- and macronutrients and timing of food and fluids are addressed in sports science, rarely are the specific effects of women’s physiology on energy and fluid needs highly considered in research or clinical practice. Women differ from men not only in size, but in body composition and hormonal milieu, and also differ from one another. Their monthly hormonal cycles, with fluctuations in estrogen and progesterone, have varying effects on metabolism and fluid retention. Such cycles can change from month to month, can be suppressed with exogenous hormones, and may even be manipulated to capitalize on ideal timing for performance. But before such physiology can be manipulated, its relationship with nutrition and performance must be understood. This review will address general concepts regarding substrate metabolism in women versus men, common menstrual patterns of female athletes, nutrient and hydration needs during different phases of the menstrual cycle, and health and performance issues related to menstrual cycle disruption. We will discuss up-to-date recommendations for fueling female athletes, describe areas that require further exploration, and address methodological considerations to inform future work in this important area.
Collapse
Affiliation(s)
- Bryan Holtzman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kathryn E Ackerman
- Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA. .,Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Wardle SL, O'Leary TJ, McClung JP, Pasiakos SM, Greeves JP. Feeding female soldiers: Consideration of sex-specific nutrition recommendations to optimise the health and performance of military personnel. J Sci Med Sport 2021; 24:995-1001. [PMID: 34452842 DOI: 10.1016/j.jsams.2021.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022]
Abstract
Appropriate nutrition recommendations are required to optimise the health and performance of military personnel, yet limited data are available on whether male and female military personnel have different nutrition requirements. OBJECTIVES To consider the evidence for sex-specific nutrition requirements to optimise the health and performance of military personnel. DESIGN Narrative review. METHODS Published literature was reviewed, with a focus on sex-specific requirements, in the following areas: nutrition for optimising muscle mass and function, nutrition during energy deficit, and nutrition for reproductive and bone health. RESULTS There are limited data on sex differences in protein requirements but extant data suggest that, despite less muscle mass, on average, in women, sex-specific protein feeding strategies are not required to optimise muscle mass in military-aged individuals. Similarly, despite sex differences in metabolic and endocrine responses to energy deficit, current data do not suggest a requirement for sex-specific feeding strategies during energy deficit. Energy deficit impairs health and performance, most notably bone and reproductive health and these impairments are greater for women. Vitamin D, iron and calcium are important nutrients to protect the bone health of female military personnel due to increased risk of stress fracture. CONCLUSIONS Women have an increased incidence of bone injuries, less muscle mass and are more susceptible to the negative effects of energy deficit, including compromised reproductive health. However, there are limited data on sex differences in response to various nutrition strategies designed to improve these elements of health and performance. Future studies should evaluate whether sex-specific feeding recommendations are required.
Collapse
Affiliation(s)
- Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, United Kingdom; Division of Surgery and Interventional Science, University College London, United Kingdom.
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, United Kingdom; Division of Surgery and Interventional Science, University College London, United Kingdom
| | - James P McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, United States of America
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, United States of America
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, United Kingdom; Division of Surgery and Interventional Science, University College London, United Kingdom; Norwich Medical School, University of East Anglia, United Kingdom
| |
Collapse
|
42
|
Abstract
The aim of the study is to present the problem of functional hypothalamic amenorrhea, taking into account any disease and treatment, diagnosis, and consequences of this disease. We searched PubMed (MEDLINE) and included 38 original and review articles concerning functional hypothalamic amenorrhea. Functional hypothalamic amenorrhea is the most common cause of secondary amenorrhea in women of childbearing age. It is a reversible disorder caused by stress related to weight loss, excessive exercise and/or traumatic mental experiences. The basis of functional hypothalamic amenorrhea is hormonal, based on impaired pulsatile GnRH secretion in the hypothalamus, then decreased secretion of gonadotropins, and, consequently, impaired hormonal function of the ovaries. This disorder leads to hypoestrogenism, manifested by a disturbance of the menstrual cycle in the form of amenorrhea, leading to anovulation. Prolonged state of hypoestrogenism can be very detrimental to general health, leading to many harmful short- and long-term consequences. Treatment of functional hypothalamic amenorrhea should be started as soon as possible, and it should primarily involve lifestyle modification. Only then should pharmacological treatment be applied. Importantly, treatment is most often long-term, but it results in recovery for the majority of patients. Effective therapy, based on multidirectional action, can protect patients from numerous negative impacts on fertility, cardiovascular system and bone health, as well as reducing mental morbidity.
Collapse
|
43
|
Hutson MJ, O'Donnell E, Petherick E, Brooke-Wavell K, Blagrove RC. Incidence of bone stress injury is greater in competitive female distance runners with menstrual disturbances independent of participation in plyometric training. J Sports Sci 2021; 39:2558-2566. [PMID: 34269142 DOI: 10.1080/02640414.2021.1945184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bone stress injury (BSI) is prevalent in female distance runners. Menstrual disturbances are associated with impaired bone health in endurance athletes. This study aimed to investigate the association between menstrual function and BSI and explore whether plyometric training may protect against BSI in individuals with menstrual disturbances. Competitive female distance runners (n = 183) aged 18-40 years were surveyed for training habits, menstrual function, and BSI, during the previous 12 months. Oligo/amenorrhoea during the previous 12 months (<9 menses) was deemed to indicate menstrual disturbance; hormonal contraceptive users and those previously diagnosed with a pathology that impacted menstrual function were excluded. BSI incidence rate was 2.25 (p = 0.02, 95% CI: 1.14-4.41) times greater in oligo/amenorrhoeic than eumenorrhoeic runners. BSI incidence rate was similar in oligo/amenorrhoeic and eumenorrhoeic runners that did plyometric training, but 3.78 (p = 0.001, 95% CI: 1.68-8.5) times greater in oligo/amenorrhoeic versus eumenorrhoeic runners that did not. However, the effect of plyometrics was non-significant (menstrual function × plyometric training interaction, p = 0.06; main effect, p = 0.89). Conventional plyometric training may not reduce BSI incidence in female distance runners, but menstrual disturbances and prolonged periods of low energy availability should be avoided.
Collapse
Affiliation(s)
- Mark J Hutson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emily Petherick
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Richard C Blagrove
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
44
|
O'Leary TJ, Wardle SL, Gifford RM, Double RL, Reynolds RM, Woods DR, Greeves JP. Tibial Macrostructure and Microarchitecture Adaptations in Women During 44 Weeks of Arduous Military Training. J Bone Miner Res 2021; 36:1300-1315. [PMID: 33856703 DOI: 10.1002/jbmr.4290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Bone adapts to unaccustomed, high-impact loading but loses mechanosensitivity quickly. Short periods of military training (≤12 weeks) increase the density and size of the tibia in women. The effect of longer periods of military training, where the incidence of stress fracture is high, on tibial macrostructure and microarchitecture in women is unknown. This observational study recruited 51 women (age 19 to 30 years) at the start of 44 weeks of British Army Officer training. Tibial volumetric bone mineral density (vBMD), geometry, and microarchitecture were measured by high-resolution peripheral quantitative computed tomography (HRpQCT). Scans of the right tibial metaphysis (4% site) and diaphysis (30% site) were performed at weeks 1, 14, 28, and 44. Measures of whole-body areal bone mineral density (aBMD) were obtained using dual-energy X-ray absorptiometry (DXA). Blood samples were taken at weeks 1, 28, and 44, and were analyzed for markers of bone formation and resorption. Trabecular vBMD increased from week 1 to 44 at the 4% site (3.0%, p < .001). Cortical vBMD decreased from week 1 to 14 at the 30% site (-0.3%, p < .001). Trabecular area decreased at the 4% site (-0.4%); trabecular bone volume fraction (3.5%), cortical area (4.8%), and cortical thickness (4.0%) increased at the 4% site; and, cortical perimeter increased at the 30% site (0.5%) from week 1 to 44 (p ≤ .005). Trabecular number (3.5%) and thickness (2.1%) increased, and trabecular separation decreased (-3.1%), at the 4% site from week 1 to 44 (p < .001). Training increased failure load at the 30% site from week 1 to 44 (2.5%, p < .001). Training had no effect on aBMD or markers of bone formation or resorption. Tibial macrostructure and microarchitecture continued to adapt across 44 weeks of military training in young women. Temporal decreases in cortical density support a role of intracortical remodeling in the pathogenesis of stress fracture. © 2021 Crown copyright. Journal of Bone and Mineral Research © 2021 American Society for Bone and Mineral Research (ASBMR). This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Robert M Gifford
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | - Rebecca L Double
- Army Health and Performance Research, Army Headquarters, Andover, UK
| | - Rebecca M Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David R Woods
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK.,Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.,Northumbria and Newcastle National Health Service (NHS) Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, UK.,University of Newcastle, Newcastle, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London (UCL), London, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
45
|
Nattiv A, De Souza MJ, Koltun KJ, Misra M, Kussman A, Williams NI, Barrack MT, Kraus E, Joy E, Fredericson M. The Male Athlete Triad-A Consensus Statement From the Female and Male Athlete Triad Coalition Part 1: Definition and Scientific Basis. Clin J Sport Med 2021; 31:335-348. [PMID: 34091537 DOI: 10.1097/jsm.0000000000000946] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023]
Abstract
ABSTRACT The Male Athlete Triad is a syndrome of 3 interrelated conditions most common in adolescent and young adult male endurance and weight-class athletes and includes the clinically relevant outcomes of (1) energy deficiency/low energy availability (EA) with or without disordered eating/eating disorders, (2) functional hypothalamic hypogonadism, and (3) osteoporosis or low bone mineral density with or without bone stress injury (BSI). The causal role of low EA in the modulation of reproductive function and skeletal health in the male athlete reinforces the notion that skeletal health and reproductive outcomes are the primary clinical concerns. At present, the specific intermediate subclinical outcomes are less clearly defined in male athletes than those in female athletes and are represented as subtle alterations in the hypothalamic-pituitary-gonadal axis and increased risk for BSI. The degree of energy deficiency/low EA associated with such alterations remains unclear. However, available data suggest a more severe energy deficiency/low EA state is needed to affect reproductive and skeletal health in the Male Athlete Triad than in the Female Athlete Triad. Additional research is needed to further clarify and quantify this association. The Female and Male Athlete Triad Coalition Consensus Statements include evidence statements developed after a roundtable of experts held in conjunction with the American College of Sports Medicine 64th Annual Meeting in Denver, Colorado, in 2017 and are in 2 parts-Part I: Definition and Scientific Basis and Part 2: The Male Athlete Triad: Diagnosis, Treatment, and Return-to-Play. In this first article, we discuss the scientific evidence to support the Male Athlete Triad model.
Collapse
Affiliation(s)
- Aurelia Nattiv
- Division of Sports Medicine and Non-Operative Orthopaedics, Departments of Family Medicine and Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California
| | - Mary Jane De Souza
- Department of Kinesiology, Penn State University, University Park, Pennsylvania
| | - Kristen J Koltun
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrea Kussman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Nancy I Williams
- Department of Kinesiology, Penn State University, University Park, Pennsylvania
| | - Michelle T Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, Long Beach, California; and
| | - Emily Kraus
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | | | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| |
Collapse
|
46
|
Stellingwerff T, Heikura IA, Meeusen R, Bermon S, Seiler S, Mountjoy ML, Burke LM. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities. Sports Med 2021; 51:2251-2280. [PMID: 34181189 DOI: 10.1007/s40279-021-01491-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
The symptom similarities between training-overload (with or without an Overtraining Syndrome (OTS) diagnosis) and Relative Energy Deficiency in Sport (RED-S) are significant, with both initiating from a hypothalamic-pituitary origin, that can be influenced by low carbohydrate (CHO) and energy availability (EA). In this narrative review we wish to showcase that many of the negative outcomes of training-overload (with, or without an OTS diagnosis) may be primarily due to misdiagnosed under-fueling, or RED-S, via low EA and/or low CHO availability. Accordingly, we undertook an analysis of training-overload/OTS type studies that have also collected and analyzed for energy intake (EI), CHO, exercise energy expenditure (EEE) and/or EA. Eighteen of the 21 studies (86%) that met our criteria showed indications of an EA decrease or difference between two cohorts within a given study (n = 14 studies) or CHO availability decrease (n = 4 studies) during the training-overload/OTS period, resulting in both training-overload/OTS and RED-S symptom outcomes compared to control conditions. Furthermore, we demonstrate significantly similar symptom overlaps across much of the OTS (n = 57 studies) and RED-S/Female Athlete Triad (n = 88 studies) literature. It is important to note that the prevention of under-recovery is multi-factorial, but many aspects are based around EA and CHO availability. Herein we have demonstrated that OTS and RED-S have many shared pathways, symptoms, and diagnostic complexities. Substantial attention is required to increase the knowledge and awareness of RED-S, and to enhance the diagnostic accuracy of both OTS and RED-S, to allow clinicians to more accurately exclude LEA/RED-S from OTS diagnoses.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada.
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada.
| | - Ida A Heikura
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stéphane Bermon
- Université Côte d'Azur, LAMHESS Nice, Nice, France
- World Athletics, Health and Science Department, Monte Carlo, Monaco
| | - Stephen Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
- IOC Medical Commission Games Group, Lausanne, Switzerland
| | - Louise M Burke
- Australian Institute of Sport, Bruce, ACT, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Ishizu T, Torii S, Taguchi M. Habitual Dietary Status and Stress Fracture Risk Among Japanese Female Collegiate Athletes. J Am Coll Nutr 2021; 41:481-488. [PMID: 34125657 DOI: 10.1080/07315724.2021.1920068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of the present study was to identify the habitual dietary intake and stress fractures history among sport types and to determine the factors related to the risk of stress fractures among Japanese female collegiate athletes. METHODS This study involved 589 Japanese female collegiate athletes. We investigated habitual dietary intake (food frequency questionnaire), eating attitude (EAT-26), demographics, training status, participation in sports events, history of injury in their career, and menstrual status using a self-reported questionnaire. A multivariate logistic regression analysis was conducted to determine the risk factors associated with stress fractures. RESULTS Thirty percent of the total participants had a history of stress fractures, although most participants had no risk of eating disorders. Most Japanese female collegiate athletes consumed less than the dietary reference intake levels for the general Japanese female population aged 18-29 years and the athletes' dietary guideline for key bone-health nutrients such as calcium and vitamin D. The multivariate logistic regression analysis revealed body mass index (BMI; OR, 0.91; 95% CI, 0.82-0.99) and energy intake (EI; OR, 0.99; 95% CI, 0.99-0.99) as significant and independent factors in the history of stress fractures among Japanese female collegiate athletes (p = 0.047 and p = 0.039, respectively). CONCLUSIONS Japanese female collegiate athletes failed to meet energy and nutrient recommendations; BMI and EI were significantly associated with stress fractures, a diet that includes an appropriate amount of energy is essential.
Collapse
Affiliation(s)
- Tatsuya Ishizu
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Motoko Taguchi
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
48
|
Coelho AR, Cardoso G, Brito ME, Gomes IN, Cascais MJ. The Female Athlete Triad/Relative Energy Deficiency in Sports (RED-S). REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:395-402. [PMID: 34077990 PMCID: PMC10304901 DOI: 10.1055/s-0041-1730289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In a healthy athlete, the caloric intake is sufficient for sports energy needs and body physiological functions, allowing a balance between energy availability, bone metabolism, and menstrual cycle. On the other hand, an imbalance caused by low energy availability due to a restrictive diet, eating disorders or long periods of energy expenditure leads to multisystemic deregulation favoring the essential functions of the body. This phenomenon, described as the female athlete triad, occurs in a considerable percentage of high-performance athletes, with harmful consequences for their future. The present review was carried out based on a critical analysis of the most recent publications available and aims to provide a global perception of the topic relative energy deficit in sport (RED-S). The objective is to promote the acquisition of more consolidated knowledge on an undervalued theme, enabling the acquisition of preventive strategies, early diagnosis and/or appropriate treatment.
Collapse
Affiliation(s)
| | - Gonçalo Cardoso
- Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário, Lisboa, Portugal
| | - Marta Espanhol Brito
- Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário, Lisboa, Portugal
| | | | - Maria João Cascais
- Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário, Lisboa, Portugal
| |
Collapse
|
49
|
O'Leary TJ, Rice HM, Greeves JP. Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training. Curr Osteoporos Rep 2021; 19:308-317. [PMID: 33635518 DOI: 10.1007/s11914-021-00671-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Stress fractures at weight-bearing sites, particularly the tibia, are common in military recruits and athletes. This review presents recent findings from human imaging and biomechanics studies aimed at predicting and preventing stress fractures. RECENT FINDINGS Peripheral quantitative computed tomography (pQCT) provides evidence that cortical bone geometry (tibial width and area) is associated with tibial stress fracture risk during weight-bearing exercise. The contribution of bone trabecular microarchitecture, cortical porosity, and bone material properties in the pathophysiology of stress fractures is less clear, but high-resolution pQCT and new techniques such as impact microindentation may improve our understanding of the role of microarchitecture and material properties in stress fracture prediction. Military studies demonstrate osteogenic outcomes from high impact, repetitive tibial loading during training. Kinetic and kinematic characteristics may influence stress fracture risk, but there is no evidence that interventions to modify biomechanics can reduce the incidence of stress fracture. Strategies to promote adaptive bone formation, in combination with improved techniques to assess bone strength, present exciting opportunities for future research to prevent stress fractures.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - Hannah M Rice
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK.
- Division of Surgery and Interventional Science, UCL, London, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
50
|
Effects of Low Energy Availability on Bone Health in Endurance Athletes and High-Impact Exercise as A Potential Countermeasure: A Narrative Review. Sports Med 2021; 51:391-403. [PMID: 33346900 PMCID: PMC7900047 DOI: 10.1007/s40279-020-01396-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endurance athletes expend large amounts of energy in prolonged high-intensity exercise and, due to the weight-sensitive nature of most endurance sports, often practice periods of dietary restriction. The Female Athlete Triad and Relative Energy Deficiency in Sport models consider endurance athletes at high-risk for suffering from low energy availability and associated health complications, including an increased chance of bone stress injury. Several studies have examined the effects of low energy availability on various parameters of bone structure and markers of bone (re)modelling; however, there are differences in findings and research methods and critical summaries are lacking. It is difficult for athletes to reduce energy expenditure or increase energy intake (to restore energy availability) in an environment where performance is a priority. Development of an alternative tool to help protect bone health would be beneficial. High-impact exercise can be highly osteogenic and energy efficient; however, at present, it is rarely utilized to promote bone health in endurance athletes. Therefore, with a view to reducing the prevalence of bone stress injury, the objectives of this review are to evaluate the effects of low energy availability on bone health in endurance athletes and explore whether a high-impact exercise intervention may help to prevent those effects from occurring.
Collapse
|