1
|
Atlas G, Hanna C, Tan TY, Nisselle A, Tucker E, Ayers K, Sinclair A, O'Connell MA. Genomic testing for differences of sex development: Practices and perceptions of clinicians. Clin Endocrinol (Oxf) 2024; 101:640-647. [PMID: 39155615 DOI: 10.1111/cen.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES To investigate the approach taken by clinicians involved in the diagnosis and management of individuals with Differences of Sex Development (DSD), particularly with regard to genomic testing, and identify perceived gaps/strengths/barriers in current practice. DESIGN AND METHODS An anonymous online survey was developed, with questions exploring demographics, perceptions of genomic testing, availability of genetics services and opinions on the role and utility of genomic testing in DSD. All responses were anonymous. Clinicians involved in the diagnosis and management of individuals with DSD were recruited from relevant societies and departments across Australia and New Zealand. RESULTS 79 eligible clinicians commenced the survey, with 63 completing it and 16 providing a partial response. The perceived benefit of having a genetic diagnosis for DSD was almost unanimous (97%). Almost half (48%) of respondents reported barriers in genomic testing. 81% of respondents reported they order genomic tests currently. Approaches to genomic testing when faced with four different clinical scenarios varied across respondents. Clinicians perceived genomic testing to be underutilised (median 36 on sliding scale from 0 to 100). CONCLUSIONS Despite 97% of respondents reporting benefit of a genetic diagnosis for individuals with DSD, this was not reflected throughout the survey with regard to clinical implementation. When faced with clinical scenarios, the recommendations for genomic testing from respondents was much lower, indicating the discrepancy between perception and clinical practice. Genomic testing in the context of DSD is seen as both beneficial and desired, yet there are multiple barriers impacting its integration into standard clinical care.
Collapse
Affiliation(s)
- Gabby Atlas
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Chloe Hanna
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Amy Nisselle
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Elena Tucker
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Katie Ayers
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Sinclair
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Michele A O'Connell
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Wankanit S, Zidoune H, Bignon-Topalovic J, Schlick L, Houzelstein D, Fusée L, Boukri A, Nouri N, McElreavey K, Bashamboo A, Elzaiat M. Evidence for NR2F2/COUP-TFII involvement in human testis development. Sci Rep 2024; 14:17869. [PMID: 39090159 PMCID: PMC11294483 DOI: 10.1038/s41598-024-68860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.
Collapse
Affiliation(s)
- Somboon Wankanit
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | | | - Laurène Schlick
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Denis Houzelstein
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Leila Fusée
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Ken McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Maëva Elzaiat
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
3
|
Olivera-Bernal GC, De Ita-Ley M, Ricárdez-Marcial EF, Garduño-Zarazúa LM, González-Cuevas ÁR, Sepúlveda-Robles OA, Huicochea-Montiel JC, Cárdenas-Conejo A, Santana-Díaz L, Rosas-Vargas H. Cytogenomic description of a Mexican cohort with differences in sex development. Mol Cytogenet 2024; 17:16. [PMID: 39010086 PMCID: PMC11251293 DOI: 10.1186/s13039-024-00685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Differences in Sex Development (DSD) is a heterogeneous group of congenital alterations that affect inner and/or outer primary sex characters. Although these conditions do not represent a mortality risk, they can have a severe psycho-emotional impact if not appropriately managed. The genetic changes that can give rise to DSD are diverse, from chromosomal alterations to single base variants involved in the sexual development network. Epidemiological studies about DSD indicate a global frequency of 1:4500-5500, which can increase to 1:200-300, including isolated anatomical defects. To our knowledge, this study is the first to describe epidemiological and genetic features of DSD in a cohort of Mexican patients of a third-level care hospital. METHODS Descriptive and retrospective cross-sectional study that analyzed DSD patients from 2015 to 2021 attended a Paediatric Hospital from Mexico City. RESULTS One hundred one patients diagnosed with DSD were registered and grouped into different entities according to the Chicago consensus statement and the diagnosis defined by the multidisciplinary group. Of the total, 54% of them belong to the chromosomal DSD classification, 16% belongs to 46, XX and 30% of them belongs to the 46, XY classification. CONCLUSION The frequency for chromosomal DSDs was consistent with the literature; however, we found that DSD 46, XY is more frequent in our cohort, which may be due to the age of the patients captured, the characteristics of our study population, or other causes that depend on the sample size.
Collapse
Affiliation(s)
- Grecia C Olivera-Bernal
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Marlon De Ita-Ley
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar F Ricárdez-Marcial
- Department of Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital General Centro Médico Nacional "La Raza", Mexico City, Mexico
| | - Luz María Garduño-Zarazúa
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Ángel Ricardo González-Cuevas
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Omar A Sepúlveda-Robles
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Juan Carlos Huicochea-Montiel
- Department of Paediatric Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional S XXI, Mexico City, Mexico
| | - Alan Cárdenas-Conejo
- Department of Paediatric Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional S XXI, Mexico City, Mexico
| | - Laura Santana-Díaz
- Department of Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital General Centro Médico Nacional "La Raza", Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico.
| |
Collapse
|
4
|
Margiotti K, Libotte F, Fabiani M, Mesoraca A, Giorlandino C. Digenic Origin of Difference of Sex Development in a Patient Harbouring DHX37 and MAMLD1 Variants. Case Rep Pediatr 2024; 2024:4896940. [PMID: 38962685 PMCID: PMC11221946 DOI: 10.1155/2024/4896940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Background The diagnostic process for identifying variations in sex development (DSD) remains challenging due to the limited availability of evidence pertaining to the association between phenotype and genotype. DSD incidence is reported as 2 in 10,000 births, and the etiology has been attributed to genetic causes. Case Presentation. The present study investigated genetic causes implicated in a case of a 15-year-old 46, XY patient, raised as a girl. Genetic analysis by clinical exome sequencing (CES) showed a digenic inheritance due to two known pathogenic mutations in the DHX37 gene and the MAMLD1 gene, while we excluded variants with pathogenic significance in 209 DSD-related genes. Conclusions Based on our literature review, this is the first case with the combined presence of pathogenic mutations in the MAMLD1 gene and DHX37 gene in a patient with gonadal dysgenesis.
Collapse
Affiliation(s)
- Katia Margiotti
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
| | | | - Marco Fabiani
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
| | - Alvaro Mesoraca
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
| | - Claudio Giorlandino
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
- ALTAMEDICA, Fetal-Maternal Medical Centre, Department of Prenatal Diagnosis, Viale Liegi 45, Rome 00198, Italy
| |
Collapse
|
5
|
Jiali C, Huifang P, Yuqing J, Xiantao Z, Hongwei J. Worldwide cohort study of 46, XY differences/disorders of sex development genetic diagnoses: geographic and ethnic differences in variants. Front Genet 2024; 15:1387598. [PMID: 38915825 PMCID: PMC11194351 DOI: 10.3389/fgene.2024.1387598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Differences/disorders of sex development (DSDs) in individuals with a 46, XY karyotype are a group of congenital disorders that manifest as male gonadal hypoplasia or abnormalities of the external genitalia. Approximately 50% of patients with 46, XY DSDs cannot obtain a molecular diagnosis. The aims of this paper were to review the most common causative genes and rare genes in patients with 46, XY DSDs, analyze global molecular diagnostic cohorts for the prevalence and geographic distribution of causative genes, and identify the factors affecting cohort detection results. Although the spectrum of genetic variants varies across regions and the severity of the clinical phenotype varies across patients, next-generation sequencing (NGS), the most commonly used detection method, can still reveal genetic variants and aid in diagnosis. A comparison of the detection rates of various sequencing modalities revealed that whole-exome sequencing (WES) facilitates a greater rate of molecular diagnosis of the disease than panel sequencing. Whole-genome sequencing (WGS), third-generation sequencing, and algorithm advancements will contribute to the improvement of detection efficiency. The most commonly mutated genes associated with androgen synthesis and action are AR, SR5A2, and HSD17B3, and the most commonly mutated genes involved in gonadal formation are NR5A1 and MAP3K1. Detection results are affected by differences in enrollment criteria and sequencing technologies.
Collapse
Affiliation(s)
- Chen Jiali
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Peng Huifang
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiang Yuqing
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zeng Xiantao
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Hongwei
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Tobias ES, Lucas-Herald AK, Sagar D, Montezano AC, Rios FJ, De Lucca Camargo L, Hamilton G, Gazdagh G, Diver LA, Williams N, Herzyk P, Touyz RM, Greenfield A, McGowan R, Ahmed SF. SEC31A may be associated with pituitary hormone deficiency and gonadal dysgenesis. Endocrine 2024; 84:345-349. [PMID: 38400880 DOI: 10.1007/s12020-024-03701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/14/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Disorders/differences of sex development (DSD) result from variants in many different human genes but, frequently, have no detectable molecular cause. METHODS Detailed clinical and genetic phenotyping was conducted on a family with three children. A Sec31a animal model and functional studies were used to investigate the significance of the findings. RESULTS By trio whole-exome DNA sequencing we detected a heterozygous de novo nonsense SEC31A variant, in three children of healthy non-consanguineous parents. The children had different combinations of disorders that included complete gonadal dysgenesis and multiple pituitary hormone deficiency. SEC31A encodes a component of the COPII coat protein complex, necessary for intracellular anterograde vesicle-mediated transport between the endoplasmic reticulum (ER) and Golgi. CRISPR-Cas9 targeted knockout of the orthologous Sec31a gene region resulted in early embryonic lethality in homozygous mice. mRNA expression of ER-stress genes ATF4 and CHOP was increased in the children, suggesting defective protein transport. The pLI score of the gene, from gnomAD data, is 0.02. CONCLUSIONS SEC31A might underlie a previously unrecognised clinical syndrome comprising gonadal dysgenesis, multiple pituitary hormone deficiencies, dysmorphic features and developmental delay. However, a variant that remains undetected, in a different gene, may alternatively be causal in this family.
Collapse
Affiliation(s)
- Edward S Tobias
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK.
- Academic Unit of Medical Genetics and Clinical Pathology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - Danielle Sagar
- MRC Mammalian Genetics Unit, Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
| | - Livia De Lucca Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Graham Hamilton
- Glasgow Polyomics, College of Medical Veterinary and Life Sciences, Garscube Estate, Switchback Rd, Glasgow, G61 1BD, UK
| | - Gabriella Gazdagh
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
- Academic Unit of Medical Genetics and Clinical Pathology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Louise A Diver
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Nicola Williams
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Pawel Herzyk
- Glasgow Polyomics, College of Medical Veterinary and Life Sciences, Garscube Estate, Switchback Rd, Glasgow, G61 1BD, UK
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Andy Greenfield
- MRC Mammalian Genetics Unit, Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
- Nuffield Department of Women's & Reproductive Health, Institute of Reproductive Sciences, University of Oxford, Oxford, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow, G51 4TF, UK
| |
Collapse
|
7
|
Sirokha D, Rayevsky A, Gorodna O, Kalynovskyi V, Zelinska N, Samson O, Kwiatkowska K, Nef S, Jaruzelska J, Kusz-Zamelczyk K, Livshits L. Mutations in STARD8 (DLC3) May Cause 46,XY Gonadal Dysgenesis. Sex Dev 2024; 17:181-189. [PMID: 38447543 DOI: 10.1159/000537877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION 46,XY gonadal dysgenesis is a condition that is characterised by undeveloped testes in individuals with a male karyotype. Mutations in many genes that underlie this condition have been identified; however, there are still a considerable number of patients with an unknown genetic background. Recently, a mutation in the STARD8 X-linked gene in two sisters with 46,XY gonadal dysgenesis has been reported. It was localised within the START domain, whose homologue in Drosophila is responsible for maintaining testes integrity during their development. METHODS We analysed the potential pathogenicity of another STARD8 mutation, p.R887C, that was identified in a patient with 46,XY asymmetric gonadal dysgenesis. For this purpose, molecular dynamics simulations were performed. RESULTS These simulations revealed the full rearrangement of the helix containing the p.R887C substitution upstream from the START domain, which may cause STARD8 protein dysfunction and contribute to 46,XY gonadal dysgenesis. A comparison of the phenotypes of the three described 46,XY gonadal dysgenesis patients that harbour STARD8 mutations indicated that alterations of this gene can result in a partial or complete gonadal dysgenesis phenotype. CONCLUSION Based on these and previous results, it is reasonable to include STARD8 in gene panels for 46,XY gonadal dysgenesis.
Collapse
Affiliation(s)
- Dmytro Sirokha
- Department of Molecular Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alexey Rayevsky
- Department of Molecular Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Modeling, Enamine Ltd., Kyiv, Ukraine
| | - Olexandra Gorodna
- Department of Molecular Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vitalii Kalynovskyi
- Department of Pediatric Endocrinology, Ukrainian Scientific and Practical Center for Endocrine Surgery, Transplantation of Endocrine Organs and Tissues, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Nataliya Zelinska
- Department of Pediatric Endocrinology, Ukrainian Scientific and Practical Center for Endocrine Surgery, Transplantation of Endocrine Organs and Tissues, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Oksana Samson
- Endocrine Department, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | | | | | - Ludmila Livshits
- Department of Molecular Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Aekka A, Weisman AG, Papadakis J, Yerkes E, Baker J, Keswani M, Weinstein J, Finlayson C. Clinical utility of early rapid genome sequencing in the evaluation of patients with differences of sex development. Am J Med Genet A 2024; 194:351-357. [PMID: 37789729 DOI: 10.1002/ajmg.a.63377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Establishing an early and accurate genetic diagnosis among patients with differences of sex development (DSD) is crucial in guiding the complex medical and psychosocial care they require. Genetic testing routinely utilized in clinical practice for this population is predicated upon physical exam findings and biochemical and endocrine profiling. This approach, however, is inefficient and unstandardized. Many patients with DSD, particularly those with 46,XY DSD, never receive a molecular genetic diagnosis. Rapid genome sequencing (rGS) is gaining momentum as a first-tier diagnostic instrument in the evaluation of patients with DSD given its ability to provide greater diagnostic yield and timely results. We present the case of a patient with nonbinary genitalia and systemic findings for whom rGS identified a novel variant of the WT1 gene and resulted in a molecular diagnosis within two weeks of life. This timeframe of diagnosis for syndromic DSD is largely unprecedented at our institution. Rapid GS expedited mobilization of a multidisciplinary medical team; enabled early understanding of clinical trajectory; informed planning of medical and surgical interventions; and guided individualized psychosocial support provided to the family. This case highlights the potential of early rGS in transforming the evaluation and care of patients with DSD.
Collapse
Affiliation(s)
- Apoorva Aekka
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Allison Goetsch Weisman
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jaclyn Papadakis
- Department of Psychiatry and Behavioral Health, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth Yerkes
- Division of Urology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua Baker
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mahima Keswani
- Division of Nephrology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joanna Weinstein
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Courtney Finlayson
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Kouri C, Sommer G, Martinez de Lapiscina I, Elzenaty RN, Tack LJW, Cools M, Ahmed SF, Flück CE. Clinical and genetic characteristics of a large international cohort of individuals with rare NR5A1/SF-1 variants of sex development. EBioMedicine 2024; 99:104941. [PMID: 38168586 PMCID: PMC10797150 DOI: 10.1016/j.ebiom.2023.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Steroidogenic factor 1 (SF-1/NR5A1) is essential for human sex development. Heterozygous NR5A1/SF-1 variants manifest with a broad range of phenotypes of differences of sex development (DSD), which remain unexplained. METHODS We conducted a retrospective analysis on the so far largest international cohort of individuals with NR5A1/SF-1 variants, identified through the I-DSD registry and a research network. FINDINGS Among 197 individuals with NR5A1/SF-1 variants, we confirmed diverse phenotypes. Over 70% of 46, XY individuals had a severe DSD phenotype, while 90% of 46, XX individuals had female-typical sex development. Close to 100 different novel and known NR5A1/SF-1 variants were identified, without specific hot spots. Additionally, likely disease-associated variants in other genes were reported in 32 individuals out of 128 tested (25%), particularly in those with severe or opposite sex DSD phenotypes. Interestingly, 48% of these variants were found in known DSD or SF-1 interacting genes, but no frequent gene-clusters were identified. Sex registration at birth varied, with <10% undergoing reassignment. Gonadectomy was performed in 30% and genital surgery in 58%. Associated organ anomalies were observed in 27% of individuals with a DSD, mainly concerning the spleen. Intrafamilial phenotypes also varied considerably. INTERPRETATION The observed phenotypic variability in individuals and families with NR5A1/SF-1 variants is large and remains unpredictable. It may often not be solely explained by the monogenic pathogenicity of the NR5A1/SF-1 variants but is likely influenced by additional genetic variants and as-yet-unknown factors. FUNDING Swiss National Science Foundation (320030-197725) and Boveri Foundation Zürich, Switzerland.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Institute of Social and Preventive Medicine, University of Bern, Switzerland, University of Bern, Bern 3012, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Research into the Genetics and Control of Diabetes and Other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain; Endo-ERN, Amsterdam 1081 HV, the Netherlands
| | - Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Lloyd J W Tack
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Martine Cools
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Sick Children, Glasgow G51 4TF, UK
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
10
|
Narita C, Takubo N, Sammori M, Matsumura Y, Shimura K, Ozaki R, Haruna H, Narumi S, Ishii T, Hasegawa T, Shimizu T. A case of 46,XY complete gonadal dysgenesis with a novel missense variant in SRY. Clin Pediatr Endocrinol 2023; 32:235-238. [PMID: 37842143 PMCID: PMC10568573 DOI: 10.1297/cpe.2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/12/2023] [Indexed: 10/17/2023] Open
Abstract
Disorders of sex development (DSD) with mild external genital abnormalities may be diagnosed after puberty. Here, we report a case of 46,XY complete gonadal dysgenesis with a novel missense variant in sex-determining region Y (SRY), diagnosed after primary amenorrhea. A 15-yr-old patient presented to our gynecology department with a chief complaint of amenorrhea. The patient was diagnosed with a 46,XY karyotype, and SRY gene positivity. Gonadotropin levels were high, whereas testosterone levels were low. A pelvic magnetic resonance imaging (MRI) revealed a hypoplastic uterus; however, no gonads could be identified. Laparoscopy revealed bilateral streak gonads, fallopian tube-like structures, and the uterus. The gonads were removed based on the risk of gonadal malignancy. Comprehensive genetic analysis of DSD revealed a previously unreported SRY variant, c.271A>T, p.Ser91Cys, and in silico analysis predicted the variant to be pathogenic. The patient was diagnosed with 46,XY complete gonadal dysgenesis with a novel missense variant in SRY. The patient continued female hormone replacement therapy and experienced breast enlargement and cyclic menstruation. Determining the etiology of DSD can be difficult, causing anxiety in patients and their families. In addition to surgical scrutiny, genetic analysis is important to aid in diagnosis and reassure patients and their families.
Collapse
Affiliation(s)
- Chisato Narita
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Noriyuki Takubo
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Manami Sammori
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuko Matsumura
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhiro Shimura
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Rie Ozaki
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hidenori Haruna
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Martinez de Lapiscina I, Kouri C, Aurrekoetxea J, Sanchez M, Naamneh Elzenaty R, Sauter KS, Camats N, Grau G, Rica I, Rodriguez A, Vela A, Cortazar A, Alonso-Cerezo MC, Bahillo P, Bertholt L, Esteva I, Castaño L, Flück CE. Genetic reanalysis of patients with a difference of sex development carrying the NR5A1/SF-1 variant p.Gly146Ala has discovered other likely disease-causing variations. PLoS One 2023; 18:e0287515. [PMID: 37432935 DOI: 10.1371/journal.pone.0287515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
NR5A1/SF-1 (Steroidogenic factor-1) variants may cause mild to severe differences of sex development (DSD) or may be found in healthy carriers. The NR5A1/SF-1 c.437G>C/p.Gly146Ala variant is common in individuals with a DSD and has been suggested to act as a susceptibility factor for adrenal disease or cryptorchidism. Since the allele frequency is high in the general population, and the functional testing of the p.Gly146Ala variant revealed inconclusive results, the disease-causing effect of this variant has been questioned. However, a role as a disease modifier is still possible given that oligogenic inheritance has been described in patients with NR5A1/SF-1 variants. Therefore, we performed next generation sequencing (NGS) in 13 DSD individuals harboring the NR5A1/SF-1 p.Gly146Ala variant to search for other DSD-causing variants and clarify the function of this variant for the phenotype of the carriers. Panel and whole-exome sequencing was performed, and data were analyzed with a filtering algorithm for detecting variants in NR5A1- and DSD-related genes. The phenotype of the studied individuals ranged from scrotal hypospadias and ambiguous genitalia in 46,XY DSD to opposite sex in both 46,XY and 46,XX. In nine subjects we identified either a clearly pathogenic DSD gene variant (e.g. in AR) or one to four potentially deleterious variants that likely explain the observed phenotype alone (e.g. in FGFR3, CHD7). Our study shows that most individuals carrying the NR5A1/SF-1 p.Gly146Ala variant, harbor at least one other deleterious gene variant which can explain the DSD phenotype. This finding confirms that the NR5A1/SF-1 p.Gly146Ala variant may not contribute to the pathogenesis of DSD and qualifies as a benign polymorphism. Thus, individuals, in whom the NR5A1/SF-1 p.Gly146Ala gene variant has been identified as the underlying genetic cause for their DSD in the past, should be re-evaluated with a NGS method to reveal the real genetic diagnosis.
Collapse
Affiliation(s)
- Idoia Martinez de Lapiscina
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
| | - Chrysanthi Kouri
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Josu Aurrekoetxea
- Biocruces Bizkaia Health Research Institute, Research Group of Medical Oncology, Cruces University Hospital, Barakaldo, Spain
- University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Mirian Sanchez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
| | - Rawda Naamneh Elzenaty
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kay-Sara Sauter
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Núria Camats
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Vall d'Hebron Research Institute (VHIR), Growth and Development group, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gema Grau
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Rodriguez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Vela
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Alicia Cortazar
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Endocrinology Department, Cruces University Hospital, Barakaldo, Spain
| | | | - Pilar Bahillo
- Department of Pediatrics, Pediatric Endocrinology Unit, x Clinic University Hospital of Valladolid, Valladolid, Spain
| | - Laura Bertholt
- Pediatric Endocrinology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Isabel Esteva
- Endocrinology Section, Gender Identity Unit, Regional University Hospital of Malaga, Malaga, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- University of the Basque Country (UPV-EHU), Leioa, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Christa E Flück
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Faria JAD, Moraes DR, Kulikowski LD, Batista RL, Gomes NL, Nishi MY, Zanardo E, Nonaka CKV, de Freitas Souza BS, Mendonca BB, Domenice S. Cytogenomic Investigation of Syndromic Brazilian Patients with Differences of Sexual Development. Diagnostics (Basel) 2023; 13:2235. [PMID: 37443631 DOI: 10.3390/diagnostics13132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Cytogenomic methods have gained space in the clinical investigation of patients with disorders/differences in sexual development (DSD). Here we evaluated the role of the SNP array in achieving a molecular diagnosis in Brazilian patients with syndromic DSD of unknown etiology. METHODS Twenty-two patients with DSD and syndromic features were included in the study and underwent SNP-array analysis. RESULTS In two patients, the diagnosis of 46,XX SRY + DSD was established. Additionally, two deletions were revealed (3q29 and Xp22.33), justifying the syndromic phenotype in these patients. Two pathogenic CNVs, a 10q25.3-q26.2 and a 13q33.1 deletion encompassing the FGFR2 and the EFNB2 gene, were associated with genital atypia and syndromic characteristics in two patients with 46,XY DSD. In a third 46,XY DSD patient, we identified a duplication in the 14q11.2-q12 region of 6.5 Mb associated with a deletion in the 21p11.2-q21.3 region of 12.7 Mb. In a 46,XY DSD patient with delayed neuropsychomotor development and congenital cataracts, a 12 Kb deletion on chromosome 10 was found, partially clarifying the syndromic phenotype, but not the genital atypia. CONCLUSIONS The SNP array is a useful tool for DSD patients, identifying the molecular etiology in 40% (2/5) of patients with 46,XX DSD and 17.6% (3/17) of patients with 46,XY DSD.
Collapse
Affiliation(s)
- José Antonio Diniz Faria
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-909, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Daniela R Moraes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Leslie Domenici Kulikowski
- Laboratório de Citogenômica e Patologia Molecular LIM/03, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Nathalia Lisboa Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Mirian Yumie Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Evelin Zanardo
- Laboratório de Citogenômica e Patologia Molecular LIM/03, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Carolina Kymie Vasques Nonaka
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador 41253-190, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador 41253-190, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador 41253-190, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador 40296-710, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
13
|
Ayers KL, Eggers S, Rollo BN, Smith KR, Davidson NM, Siddall NA, Zhao L, Bowles J, Weiss K, Zanni G, Burglen L, Ben-Shachar S, Rosensaft J, Raas-Rothschild A, Jørgensen A, Schittenhelm RB, Huang C, Robevska G, van den Bergen J, Casagranda F, Cyza J, Pachernegg S, Wright DK, Bahlo M, Oshlack A, O'Brien TJ, Kwan P, Koopman P, Hime GR, Girard N, Hoffmann C, Shilon Y, Zung A, Bertini E, Milh M, Ben Rhouma B, Belguith N, Bashamboo A, McElreavey K, Banne E, Weintrob N, BenZeev B, Sinclair AH. Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects. Nat Commun 2023; 14:3403. [PMID: 37296101 PMCID: PMC10256788 DOI: 10.1038/s41467-023-39040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.
Collapse
Affiliation(s)
- Katie L Ayers
- The Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Stefanie Eggers
- The Victorian Clinical Genetics Services, Melbourne, Australia
| | - Ben N Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Katherine R Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nadia M Davidson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Institute of Technology, Haifa, Israel
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Et Laboratoire de Neurogénétique Moléculaire, Département de Génétique et Embryologie Médicale, APHP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Shay Ben-Shachar
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Annick Raas-Rothschild
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | - Franca Casagranda
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Justyna Cyza
- The Murdoch Children's Research Institute, Melbourne, Australia
| | - Svenja Pachernegg
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Melanie Bahlo
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Terrence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Nadine Girard
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Chen Hoffmann
- Radiology Department, Sheba medical Centre, Tel Aviv, Israel
| | - Yuval Shilon
- Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Amnon Zung
- Pediatrics Department, Kaplan Medical Center, Rehovot, 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Bochra Ben Rhouma
- Higher Institute of Nursing Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon, 58100, Israel
| | - Naomi Weintrob
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology Unit, Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Andrew H Sinclair
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
de Oliveira FR, Mazzola TN, de Mello MP, Francese-Santos AP, de Lemos-Marini SHV, Maciel-Guerra AT, Hiort O, Werner R, Guerra-Junior G, Fabbri-Scallet H. DHX37 and NR5A1 Variants Identified in Patients with 46,XY Partial Gonadal Dysgenesis. Life (Basel) 2023; 13:1093. [PMID: 37240737 PMCID: PMC10222664 DOI: 10.3390/life13051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The group of disorders known as 46,XY gonadal dysgenesis (GD) is characterized by anomalies in testis determination, including complete and partial GD (PGD) and testicular regression syndrome (TRS). Several genes are known to be involved in sex development pathways, however approximately 50% of all cases remain elusive. Recent studies have identified variants in DHX37, a gene encoding a putative RNA helicase essential in ribosome biogenesis and previously associated with neurodevelopmental disorders, as a cause of PGD and TRS. To investigate the potential role of DHX37 in disorders of sexual development (DSD), 25 individuals with 46,XY DSD were analyzed and putative pathogenic variants were found in four of them. WES analyses were performed on these patients. In DHX37, the variant p.(Arg308Gln), recurrent associated with DSD, was identified in one patient; the p.(Leu467Val), predicted to be deleterious, was found together with an NR5A1 loss-of-function variant in patient 2; and, the p.(Val999Met) was identified in two unrelated patients, one of whom (patient 3) also carried a pathogenic NR5A1 variant. For both patients carrying DHX37 and NR5A1 pathogenic variants, a digenic inheritance is suggested. Our findings support the importance of DHX37 variants as a cause of disorders of sex development, implying a role in testis development.
Collapse
Affiliation(s)
- Felipe Rodrigues de Oliveira
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas 13083-875, Brazil
- Postgraduate Program in Child and Adolescent Health, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Taís Nitsch Mazzola
- Center for Investigation in Paediatric, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Maricilda Palandi de Mello
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas 13083-875, Brazil
- Interdisciplinary Group for the Study of Sex Determination and Differentiation (GIEDDS), State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Ana Paula Francese-Santos
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | | | - Andrea Trevas Maciel-Guerra
- Interdisciplinary Group for the Study of Sex Determination and Differentiation (GIEDDS), State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Olaf Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Ralf Werner
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, 23562 Lübeck, Germany
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Gil Guerra-Junior
- Interdisciplinary Group for the Study of Sex Determination and Differentiation (GIEDDS), State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
- Department of Pediatrics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Helena Fabbri-Scallet
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas 13083-875, Brazil
- Interdisciplinary Group for the Study of Sex Determination and Differentiation (GIEDDS), State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| |
Collapse
|
15
|
Zhang D, Wang D, Tong Y, Li M, Meng L, Song Q, Xin Y. A novel c.64G > T (p.G22C) NR5A1 variant in a Chinese adolescent with 46,XY disorders of sex development: a case report. BMC Pediatr 2023; 23:182. [PMID: 37072715 PMCID: PMC10114376 DOI: 10.1186/s12887-023-03974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Adolescents with 46,XY disorders of sex development (DSD) face additional medical and psychological challenges. To optimize management and minimize hazards, correct and early clinical and molecular diagnosis is necessary. CASE PRESENTATION We report a 13-year-old Chinese adolescent with absent Müllerian derivatives and suspected testis in the inguinal area. History, examinations, and assistant examinations were available for clinical diagnosis of 46,XY DSD. The subsequent targeting specific disease-causing genes, comprising 360 endocrine disease-causing genes, was employed for molecular diagnosis. A novel variation in nuclear receptor subfamily 5 group A member 1 (NR5A1) [c.64G > T (p.G22C)] was identified in the patient. In vitro functional analyses of the novel variant suggested no impairment to NR5A1 mRNA or protein expression relative to wild-type, and immunofluorescence confirmed similar localization of NR5A1 mutant to the cell nucleus. However, we observed decreased DNA-binding affinity by the NR5A1 variant, while dual-luciferase reporter assays showed that the mutant effectively downregulated the transactivation capacity of anti-Müllerian hormone. We described a novel NR5A1 variant and demonstrated its adverse effects on the functional integrity of the NR5A1 protein resulting in serious impairment of its modulation of gonadal development. CONCLUSIONS This study adds one novel NR5A1 variant to the pool of pathogenic variants and enriches the adolescents of information available about the mutation spectrum of this gene in Chinese population.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Dajia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Mingyu Li
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Lingzhe Meng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Qiutong Song
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ying Xin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
16
|
Zheng GY, Chu GM, Li PP, He R. Phenotype and genetic characteristics in 20 Chinese patients with 46,XY disorders of sex development. J Endocrinol Invest 2023:10.1007/s40618-023-02020-8. [PMID: 36745277 DOI: 10.1007/s40618-023-02020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE 46,XY disorders of sex development (DSD) is the most complicated and common type of DSD. To date, more than 30 genes have been identified associated with 46,XY DSD. However, the mutation spectrum of 46,XY DSD is incomplete owing to the high genetic and clinical heterogeneity. This study aims to provide clinical and mutational characteristics of 18 Chinese patients with 46,XY DSD. METHODS A total of 20 unrelated individuals with 46,XY DSD were recruited. Whole-exome sequencing (WES) or custom-panel sequencing combined Sanger sequencing were performed to detect the pathogenic mutations. The pathogenicity of the variant was assessed according to the American College of Medical Genetics and Genomics (ACMG) guidance and technical standards recommended by the ACMG and the Clinical Genome Resource (ClinGen). RESULTS Six patients harbored NR5A1 mutations; two patients harbored NR0B1 mutations; six patients harbored SRD5A2 mutations; six patients harbored AR mutations. Six novel genetic variants were identified involved in three genes (NR5A1, NR0B1, and AR). CONCLUSION We determined the genetic etiology for all enrolled patients. Our study expanded the mutation spectrum of 46,XY DSD and provided diagnostic evidence for patients with the same mutation in the future.
Collapse
Affiliation(s)
- G Y Zheng
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Shenyang, 110004, People's Republic of China
| | - G M Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Shenyang, 110004, People's Republic of China
| | - P P Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Shenyang, 11000, People's Republic of China
| | - R He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
17
|
Sowińska-Przepiera E, Krzyścin M, Przepiera A, Brodowska A, Malanowska E, Kozłowski M, Cymbaluk-Płoska A. Late Diagnosis of Swyer Syndrome in a Patient with Bilateral Germ Cell Tumor Treated with a Contraceptive Due to Primary Amenorrhea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2139. [PMID: 36767504 PMCID: PMC9916373 DOI: 10.3390/ijerph20032139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Swyer syndrome is a special form of DSD (disorders of sex development), so-called pure gonadal dysgenesis with a karyotype 46, XY and a female phenotype. One of the most important problems in patients with DSD is the risk of gonadal tumors. We present a case of a 26-year-old patient with Swyer syndrome. The patient had primary amenorrhea and no puberty characteristics. In ultrasound imaging in the vicinity of the uterus, there were two homogeneous structures. A genetic diagnosis was also performed, which showed karyotype 46, XY. The patient underwent a bilateral gonadectomy. Histopathological examination revealed the presence of dysgerminoma in both dysgenetic gonads. The follow-up of five years now did not show any changes suspected of invasion. We concluded that the primary amenorrhea, along with the absence of development of sexual characteristics, should prompt an expanded diagnosis for disorders of sex development. Gonadal dysgerminoma should be suspected even in the absence of tumor features on ultrasound and blood laboratory tests. Early prophylactic gonadectomy could protect patients from developing tumors in dysgenetic gonads.
Collapse
Affiliation(s)
- Elżbieta Sowińska-Przepiera
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Pediatric, Adolescent Gynecology Clinic, Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Mariola Krzyścin
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Adam Przepiera
- Department of Urology and Urologic Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Ewelina Malanowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
18
|
Whole-Exome Sequencing Identified Rare Genetic Variants Associated with Undervirilized Genitalia in Taiwanese Pediatric Patients. Biomedicines 2023; 11:biomedicines11020242. [PMID: 36830778 PMCID: PMC9953256 DOI: 10.3390/biomedicines11020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Disorders/differences of sex development (DSDs) are a group of rare and phenotypically variable diseases. The underlying genetic causes of most cases of 46XY DSDs remains unknown. Despite the advent of genetic testing, current investigations of the causes of DSDs allow genetic-mechanism identification in about 20-35% of cases. This study aimed primarily to establish a rapid and high-throughput genetic test for undervirilized males with and without additional dysmorphic features. Routine chromosomal and endocrinological investigations were performed as part of DSD evaluation. We applied whole-exome sequencing (WES) complemented with multiplex ligation-dependent probe amplification to seek explainable genetic causes. Integrated computing programs were used to call and predict the functions of genetic variants. We recruited 20 patients and identified the genetic etiologies for 14 (70%) patients. A total of seven of the patients who presented isolated DSD phenotypes were found to have causative variants in the AR, MAP3K1, and FLNA genes. Moreover, the other seven patients presented additional phenotypes beyond undervirilized genitalia. Among them, two patients were compatible with CHARGE syndrome, one with Robinow syndrome, and another three with hypogonadotropic hypogonadism. One patient, who carried a heterozygous FLNA mutation, also harbored a heterozygous PTPN11 mutation and thus presented some phenotypes of Noonan syndrome. We identified several genetic variants (12 nonsense mutations and one microdeletion) that account for syndromic and nonsyndromic DSDs in the Taiwanese population. The identification of these causative genes extended our current understanding of sex development and related congenital disorders.
Collapse
|
19
|
Wan Y, Yu R, Luo J, Huang P, Zheng X, Sun L, Hu K. A novel DEAH-box helicase 37 mutation associated with differences of sex development. Front Endocrinol (Lausanne) 2023; 14:1059159. [PMID: 37065748 PMCID: PMC10098359 DOI: 10.3389/fendo.2023.1059159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/14/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVE To determine the genetic etiology of a family pedigree with two patients affected by differences of sex development (DSD). METHODS Assess the clinical characteristics of the patients and achieve exome sequencing results and in vitro functional studies. RESULTS The 15-year-old proband, raised as female, presented with delayed puberty and short stature associated with atypical genitalia. Hormonal profile showed hypergonadotrophic hypogonadism. Imaging studies revealed the absence of a uterus and ovaries. The karyotype confirmed a 46, XY pattern. Her younger brother presented with a micropenis and hypoplastic scrotum with non-palpable testis and hypospadias. Laparoscopic exploration was performed on the younger brother. Streak gonads were found and removed due to the risk of neoplastic transformation. Post-operative histopathology showed the co-existence of Wolffian and Müllerian derivatives. Whole-exome sequencing identified a novel mutation (c.1223C>T, p. Ser408Leu) in the Asp-Glu-Ala-His-box helicase 37 gene, which was found to be deleterious by in silico analysis. Segregation analysis of the variant displayed a sex-limited, autosomal dominant, maternal inheritance pattern. In vitro experiments revealed that the substitution of 408Ser by Leu caused decreased DHX37 expression both at the mRNA and protein levels. Moreover, the β-catenin protein was upregulated, and the p53 protein was unaltered by mutant DHX37. CONCLUSIONS We described a novel mutation (c.1223C>T, p. Ser408Leu) of the DHX37 gene associated with a Chinese pedigree consisting of two 46, XY DSD patients. We speculated that the underlying molecular mechanism might involve upregulation of the β-catenin protein.
Collapse
Affiliation(s)
- Yun Wan
- Department of Endocrinology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Richeng Yu
- Department of Endocrinology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jianhua Luo
- Department of Endocrinology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ping Huang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xingju Zheng
- Department of Medical Imaging, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- *Correspondence: Kui Hu, ; Liqun Sun,
| | - Kui Hu
- Department of Cardiovascular Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Kui Hu, ; Liqun Sun,
| |
Collapse
|
20
|
Goodman M, Yacoub R, Getahun D, McCracken CE, Vupputuri S, Lash TL, Roblin D, Contreras R, Cromwell L, Gardner MD, Hoffman T, Hu H, Im TM, Prakash Asrani R, Robinson B, Xie F, Nash R, Zhang Q, Bhai SA, Venkatakrishnan K, Stoller B, Liu Y, Gullickson C, Ahmed M, Rink D, Voss A, Jung HL, Kim J, Lee PA, Sandberg DE. Cohort profile: pathways to care among people with disorders of sex development (DSD). BMJ Open 2022; 12:e063409. [PMID: 36130763 PMCID: PMC9494584 DOI: 10.1136/bmjopen-2022-063409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The 'DSD Pathways' study was initiated to assess health status and patterns of care among people enrolled in large integrated healthcare systems and diagnosed with conditions comprising the broad category of disorders (differences) of sex development (DSD). The objectives of this communication are to describe methods of cohort ascertainment for two specific DSD conditions-classic congenital adrenal hyperplasia with 46,XX karyotype (46,XX CAH) and complete androgen insensitivity syndrome (CAIS). PARTICIPANTS Using electronic health records we developed an algorithm that combined diagnostic codes, clinical notes, laboratory data and pharmacy records to assign each cohort candidate a 'strength-of-evidence' score supporting the diagnosis of interest. A sample of cohort candidates underwent a review of the full medical record to determine the score cutoffs for final cohort validation. FINDINGS TO DATE Among 5404 classic 46,XX CAH cohort candidates the strength-of-evidence scores ranged between 0 and 10. Based on sample validation, the eligibility cut-off for full review was set at the strength-of-evidence score of ≥7 among children under the age of 8 years and ≥8 among older cohort candidates. The final validation of all cohort candidates who met the cut-off criteria identified 115 persons with classic 46,XX CAH. The strength-of-evidence scores among 648 CAIS cohort candidates ranged from 2 to 10. There were no confirmed CAIS cases among cohort candidates with scores <6. The in-depth medical record review for candidates with scores ≥6 identified 61 confirmed cases of CAIS. FUTURE PLANS As the first cohort of this type, the DSD Pathways study is well-positioned to fill existing knowledge gaps related to management and outcomes in this heterogeneous population. Analyses will examine diagnostic and referral patterns, adherence to care recommendations and physical and mental health morbidities examined through comparisons of DSD and reference populations and analyses of health status across DSD categories.
Collapse
Affiliation(s)
- Michael Goodman
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Rami Yacoub
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Darios Getahun
- Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
- Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, California, USA
| | - Courtney E McCracken
- Center for Research and Evaluation, Kaiser Permanente Georgia, Atlanta, Georgia, USA
| | - Suma Vupputuri
- Mid-Atlantic Permanente Research Institute, Kaiser Permanente, Rockville, Maryland, USA
| | - Timothy L Lash
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
- Aarhus Universitet, Aarhus, Midtjylland, Denmark
| | - Douglas Roblin
- Mid-Atlantic Permanente Research Institute, Kaiser Permanente, Rockville, Maryland, USA
| | - Richard Contreras
- Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Lee Cromwell
- Center for Research and Evaluation, Kaiser Permanente Georgia, Atlanta, Georgia, USA
| | - Melissa D Gardner
- Susan B Meister Child Health and Evaluation Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Trenton Hoffman
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Haihong Hu
- Mid-Atlantic Permanente Research Institute, Kaiser Permanente, Rockville, Maryland, USA
| | - Theresa M Im
- Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | | | - Brandi Robinson
- Center for Research and Evaluation, Kaiser Permanente Georgia, Atlanta, Georgia, USA
| | - Fagen Xie
- Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Rebecca Nash
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Qi Zhang
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Sadaf A Bhai
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | | | - Bethany Stoller
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Yijun Liu
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | | | - Maaz Ahmed
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - David Rink
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Ava Voss
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Hye-Lee Jung
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Jin Kim
- Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Peter A Lee
- Division of Endocrinology, Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - David E Sandberg
- Susan B Meister Child Health and Evaluation Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Disorder of Sex Development Due to 17-Beta-Hydroxysteroid Dehydrogenase Type 3 Deficiency: A Case Report and Review of 70 Different HSD17B3 Mutations Reported in 239 Patients. Int J Mol Sci 2022; 23:ijms231710026. [PMID: 36077423 PMCID: PMC9456484 DOI: 10.3390/ijms231710026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The 17-beta-hydroxysteroid dehydrogenase type 3 (17-β-HSD3) enzyme converts androstenedione to testosterone and is encoded by the HSD17B3 gene. Homozygous or compound heterozygous HSD17B3 mutations block the synthesis of testosterone in the fetal testis, resulting in a Disorder of Sex Development (DSD). We describe a child raised as a female in whom the discovery of testes in the inguinal canals led to a genetic study by whole exome sequencing (WES) and to the identification of a compound heterozygous mutation of the HSD17B3 gene (c.608C>T, p.Ala203Val, and c.645A>T, p.Glu215Asp). Furthermore, we review all HSD17B3 mutations published so far in cases of 17-β-HSD3 deficiency. A total of 70 different HSD17B3 mutations have so far been reported in 239 patients from 187 families. A total of 118 families had homozygous mutations, 63 had compound heterozygous mutations and six had undetermined genotypes. Mutations occurred in all 11 exons and were missense (55%), splice-site (29%), small deletions and insertions (7%), nonsense (5%), and multiple exon deletions and duplications (2%). Several mutations were recurrent and missense mutations at codon 80 and the splice-site mutation c.277+4A>T each represented 17% of all mutated alleles. These findings may be useful to those involved in the clinical management and genetic diagnosis of this disorder.
Collapse
|
22
|
Zidoune H, Ladjouze A, Chellat-Rezgoune D, Boukri A, Dib SA, Nouri N, Tebibel M, Sifi K, Abadi N, Satta D, Benelmadani Y, Bignon-Topalovic J, El-Zaiat-Munsch M, Bashamboo A, McElreavey K. Novel Genomic Variants, Atypical Phenotypes and Evidence of a Digenic/Oligogenic Contribution to Disorders/Differences of Sex Development in a Large North African Cohort. Front Genet 2022; 13:900574. [PMID: 36110220 PMCID: PMC9468775 DOI: 10.3389/fgene.2022.900574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a majority of individuals with disorders/differences of sex development (DSD) a genetic etiology is often elusive. However, new genes causing DSD are routinely reported and using the unbiased genomic approaches, such as whole exome sequencing (WES) should result in an increased diagnostic yield. Here, we performed WES on a large cohort of 125 individuals all of Algerian origin, who presented with a wide range of DSD phenotypes. The study excluded individuals with congenital adrenal hypoplasia (CAH) or chromosomal DSD. Parental consanguinity was reported in 36% of individuals. The genetic etiology was established in 49.6% (62/125) individuals of the total cohort, which includes 42.2% (35/83) of 46, XY non-syndromic DSD and 69.2% (27/39) of 46, XY syndromic DSD. No pathogenic variants were identified in the 46, XX DSD cases (0/3). Variants in the AR, HSD17B3, NR5A1 and SRD5A2 genes were the most common causes of DSD. Other variants were identified in genes associated with congenital hypogonadotropic hypogonadism (CHH), including the CHD7 and PROKR2. Previously unreported pathogenic/likely pathogenic variants (n = 30) involving 25 different genes were identified in 22.4% of the cohort. Remarkably 11.5% of the 46, XY DSD group carried variants classified as pathogenic/likely pathogenic variant in more than one gene known to cause DSD. The data indicates that variants in PLXNA3, a candidate CHH gene, is unlikely to be involved in CHH. The data also suggest that NR2F2 variants may cause 46, XY DSD.
Collapse
Affiliation(s)
- Housna Zidoune
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | - Djalila Chellat-Rezgoune
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | | | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | - Meryem Tebibel
- Department of Pediatric Surgery, CHU Beni Messous, Algiers, Algeria
| | - Karima Sifi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Noureddine Abadi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Dalila Satta
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Yasmina Benelmadani
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
- *Correspondence: Ken McElreavey,
| |
Collapse
|
23
|
Sepponen K, Lundin K, Yohannes DA, Vuoristo S, Balboa D, Poutanen M, Ohlsson C, Hustad S, Bifulco E, Paloviita P, Otonkoski T, Ritvos O, Sainio K, Tapanainen JS, Tuuri T. Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells. Differentiation 2022; 128:83-100. [DOI: 10.1016/j.diff.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
|
24
|
Alhamoudi KM, Alghamdi B, Aljomaiah A, Alswailem M, Al-Hindi H, Alzahrani AS. Case Report: Severe Gonadal Dysgenesis Causing 46,XY Disorder of Sex Development Due to a Novel NR5A1 Variant. Front Genet 2022; 13:885589. [PMID: 35865014 PMCID: PMC9294228 DOI: 10.3389/fgene.2022.885589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the nuclear receptor subfamily 5 group A member 1 (NR5A1) are the underlying cause of 10–20% of 46,XY disorders of sex development (DSDs). We describe a young girl with 46,XY DSD due to a unique novel mutation of the NR5A1 gene. An 11-year-old subject, raised as a female, was noticed to have clitromegly. She looked otherwise normal. However, her evaluation revealed a 46,XY karyotype, moderate clitromegly but otherwise normal female external genitalia, undescended atrophied testes, rudimentary uterus, no ovaries, and lack of breast development. Serum testosterone and estradiol were low, and gonadotropins were elevated. Adrenocortical function was normal. DNA was isolated from the peripheral leucocytes and used for whole exome sequencing. The results were confirmed by Sanger sequencing. We identified a novel mutation in NR5A1 changing the second nucleotide of the translation initiation codon (ATG>ACG) and resulting in a change of the first amino acid, methionine to threonine (p.Met1The). This led to severe gonadal dysgenesis with deficiency of testosterone and anti-Müllerian hormone (AMH) secretion. Lack of the former led to the development of female external genitalia, and lack of the latter allowed the Müllerian duct to develop into the uterus and the upper vagina. The patient has a female gender identity. Bilateral orchidectomy was performed and showed severely atrophic testes. Estrogen/progesterone therapy was initiated with excellent breast development and normal cyclical menses. In summary, we describe a severely affected case of 46,XY DSD due to a novel NR5A1 mutation involving the initiation codon that fully explains the clinical phenotype in this subject.
Collapse
Affiliation(s)
- Kheloud M. Alhamoudi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abeer Aljomaiah
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali S. Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- *Correspondence: Ali S. Alzahrani,
| |
Collapse
|
25
|
Yeste D, Aguilar-Riera C, Canestrino G, Fernández-Alvarez P, Clemente M, Camats-Tarruella N. A New MAMLD1 Variant in an Infant With Microphallus and Hypospadias With Hormonal Pattern Suggesting Partial Hypogonadotropic Hypogonadism-Case Report. Front Endocrinol (Lausanne) 2022; 13:884107. [PMID: 35837313 PMCID: PMC9274080 DOI: 10.3389/fendo.2022.884107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
MAMLD1 (X chromosome) is one of the recognized genes related to different sex development. It is expressed in testis and ovaries and seems to be involved in fetal sex development and in adult reproductive function, including testosterone biosynthesis. However, its exact role remains unclear. Over 40 genetic variants have been described, mainly in male individuals and mostly associated with hypospadias. Although MAMLD1 has been shown to regulate the expression of the steroidogenic pathway, patients with MAMLD1 variants mostly show normal gonadal function and normal testosterone levels. Here we describe a patient (46,XY) with hypospadias and microphallus, with low testosterone and dihydrotestosterone (DHT) levels, and with inappropriately low values of luteinizing hormone (LH) during minipuberty. This hormonal pattern was suggestive of partial hypogonadotropic hypogonadism. A stimulation test with hCG (4 months) showed no significant increase in both testosterone and dihydrotestosterone concentrations. At 5 months of age, he was treated with intramuscular testosterone, and the penis length increased to 3.5 cm. The treatment was stopped at 6 months of age. Our gonadal function massive-sequencing panel detected a previously unreported nonsense variant in the MAMLD1 gene (c.1738C>T:p.Gln580Ter), which was classified as pathogenic. This MAMLD1 variant, predicting a truncated protein, could explain his genital phenotype. His hormonal profile (low testosterone, dihydrotestosterone, and LH concentrations) together with no significant increase of testosterone and DHT plasma concentrations (hCG test) highlight the potential role of this gene in the biosynthesis of testosterone during the fetal stage and minipuberty of the infant. Besides this, the LH values may suggest an involvement of MAMLD1 in the LH axis or a possible oligogenesis. It is the first time that a decrease in DHT has been described in a patient with an abnormal MAMLD1.
Collapse
Affiliation(s)
- Diego Yeste
- Section of Paediatric Endocrinology, Vall d’Hebron University Hospital, Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Aguilar-Riera
- Section of Paediatric Endocrinology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Gennaro Canestrino
- Paediatric Endocrinology Service, Paediatric Service, Sant Joan de Déu Manresa Hospital, Manresa, Spain
| | - Paula Fernández-Alvarez
- Laboratory of Clinical and Molecular Genetics, Vall d’Hebron University Hospital, Barcelona, Spain
| | - María Clemente
- Section of Paediatric Endocrinology, Vall d’Hebron University Hospital, Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Camats-Tarruella
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Growth and Development Research Group, Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
26
|
Zhang W, Mao J, Wang X, Sun B, Zhao Z, Zhang X, Nie M, Wu X. Case Report: Novel Compound Heterozygotic Variants in PPP2R3C Gene Causing Syndromic 46, XY Gonadal Dysgenesis and Literature Review. Front Genet 2022; 13:871328. [PMID: 35812758 PMCID: PMC9259967 DOI: 10.3389/fgene.2022.871328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose: Patients with syndromic 46, XY disorders/differences of sex development (DSD) are characterized by gonadal and phenotypic genders inconsistent with their chromosomal sexes as well as abnormalities of multiple extragonadal organs. They are caused by mutations in specific genes, which are expressed in the affected organs and regulate their development, and over fourteen genes have been identified. In this study, we aimed to determine the underlying cause of a patient with syndromic 46, XY DSD and review the clinical presentations and genetic findings of all reported similar cases. Methods: Whole-exome sequencing (WES) was performed to find a molecular cause of the patient. In silico tools were used to analyze the pathogenicity of the variants. Reports of cases with similar clinical features and involved genes were summarized by searching through PubMed/MEDLINE using keywords “PPP2R3C” or “G5PR” and “46,XY disorders of sex development”. Results: Compound heterozygous variants (p.F229del/p.G417E) in PPP2R3C were identified in the 24-year-old female by WES and verified by Sanger sequencing. The patient presents complete testicular dysgenesis, low birth weight, facial deformity, cubitus valgus, and decreasing number of CD19+ B lymphocytes and CD4+ T lymphocytes. A total of thirteen 46, XY DSD cases with four homozygous PPP2R3C mutations (p.Leu103Pro, p.Leu193Ser, p.Phe350Ser, and p.Ser216_Tyr218dup) have been reported previously, and their clinical manifestations are roughly similar to those of our patient. Conclusion: Novel compound heterozygous variants in PPP2R3C cause specific syndromic 46, XY gonadal dysgenesis, which broadened the pathogenic variants spectrum of PPP2R3C. The typical phenotype of PPP2R3C mutation is complete 46, XY gonadal dysgenesis with multiple extragonadal anomalies, including facial deformities, skeletal system abnormalities, muscle abnormalities, impaired nervous system, impaired hearing and vision, heart and kidney anomalies, and gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Wei Zhang
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bang Sun
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyuan Zhao
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxia Zhang
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Nie
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Min Nie, ; Xueyan Wu,
| | - Xueyan Wu
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Min Nie, ; Xueyan Wu,
| |
Collapse
|
27
|
Ahmed SF, Alimusina M, Batista RL, Domenice S, Lisboa Gomes N, McGowan R, Patjamontri S, Mendonca BB. The Use of Genetics for Reaching a Diagnosis in XY DSD. Sex Dev 2022; 16:207-224. [DOI: 10.1159/000524881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Reaching a firm diagnosis is vital for the long-term management of a patient with a difference or disorder of sex development (DSD). This is especially the case in XY DSD where the diagnostic yield is particularly low. Molecular genetic technology is playing an increasingly important role in the diagnostic process, and it is highly likely that it will be used more often at an earlier stage in the diagnostic process. In many cases of DSD, the clinical utility of molecular genetics is unequivocally clear, but in many other cases there is a need for careful exploration of the benefit of genetic diagnosis through long-term monitoring of these cases. Furthermore, the incorporation of molecular genetics into the diagnostic process requires a careful appreciation of the strengths and weaknesses of the evolving technology, and the interpretation of the results requires a clear understanding of the wide range of conditions that are associated with DSD.
Collapse
|
28
|
Nowacka-Woszuk J, Stachowiak M, Szczerbal I, Szydlowski M, Szabelska-Beresewicz A, Zyprych-Walczak J, Krzeminska P, Nowak T, Lukomska A, Ligocka Z, Biezynski J, Dzimira S, Nizanski W, Switonski M. Whole genome sequencing identifies a missense polymorphism in PADI6 associated with testicular/ovotesticular XX disorder of sex development in dogs. Genomics 2022; 114:110389. [PMID: 35597501 DOI: 10.1016/j.ygeno.2022.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022]
Abstract
Disorders of sex development (DSDs) are congenital malformations defined as discrepancies between sex chromosomes and phenotypical sex. Testicular or ovotesticular XX DSDs are frequently observed in female dogs, while monogenic XY DSDs are less frequent. Here, we applied whole genome sequencing (WGS) to search for causative mutations in XX DSD females in French Bulldogs (FB) and American Staffordshire Terries (AST) and in XY DSD Yorkshire Terries (YT). The WGS results were validated by Sanger sequencing and ddPCR. It was shown that a missense SNP of the PADI6 gene, is significantly associated with the XX DSD (SRY-negative) phenotype in AST (P = 0.0051) and FB (P = 0.0306). On the contrary, we did not find any associated variant with XY DSD in YTs. Our study suggests that the genetic background of the XX DSD may be more complex and breed-specific.
Collapse
Affiliation(s)
- Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Alicja Szabelska-Beresewicz
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Paulina Krzeminska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tomasz Nowak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Anna Lukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Zuzanna Ligocka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Janusz Biezynski
- Department of Surgery, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
| | - Stanislaw Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland
| | - Wojciech Nizanski
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland.
| |
Collapse
|
29
|
Cocchetti C, Baldinotti F, Romani A, Ristori J, Mazzoli F, Vignozzi L, Maggi M, Fisher AD. A Novel Compound Heterozygous Mutation of HSD17B3 Gene Identified in a Patient With 46,XY Difference of Sexual Development. Sex Med 2022; 10:100522. [PMID: 35588601 PMCID: PMC9386624 DOI: 10.1016/j.esxm.2022.100522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Deficiency of the 17β-hydroxysteroid dehydrogenase type 3 (17 β-HSD3) is a rare autosomal recessive 46,XY Difference of sex development (DSD), resulting from pathogenetic variants in the HSD17B3 gene, which lead to absent or reduced ability to convert Δ4-androstenedione to testosterone in the fetal testes. AIM This study aimed to present the clinical and genetic characteristics of an Italian patient receiving a diagnosis of 17 β-HSD3 deficiency in adulthood. The patient was raised as female and underwent early surgical interventions to correct virilized genitalia, leading to a significant sexual distress. METHODS At the time of the referral, a 20-gene Next Generation Sequencing custom-panel for DSD was performed on patient's genomic DNA. RESULTS A novel compound heterozygous mutation in HSD17B3 gene was identified, detecting a new variant (c.257_265delAGGCCATTG, p.) CONCLUSION: Novel genotype causing 17 β-HSD3 deficiency is presented. Furthermore, the patient's clinical history stresses the importance to actively involve these individuals in the decision-making process avoiding surgical intervention when the patient is not able to give fully informed consent. Cocchetti C, Baldinotti F, Romani A, et al. A Novel Compound Heterozygous Mutation of HSD17B3 Gene Identified in a Patient With 46,XY Difference of Sexual Development. Sex Med 2022;10:100522.
Collapse
Affiliation(s)
- Carlotta Cocchetti
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Florence University Hospital, Florence, Italy
| | - Fulvia Baldinotti
- Laboratory of Molecular genetics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessia Romani
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Florence University Hospital, Florence, Italy
| | - Jiska Ristori
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Florence University Hospital, Florence, Italy
| | - Francesca Mazzoli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Florence University Hospital, Florence, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Florence University Hospital, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandra Daphne Fisher
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Florence University Hospital, Florence, Italy.
| |
Collapse
|
30
|
Nimgaonkar I, Jamgochian M, Milgraum DM, Pappert AS, Milgraum SS. Ulerythema ophryogenes in association with MAP3K1-mutated Swyer syndrome. JAAD Case Rep 2022; 25:43-46. [PMID: 35755173 PMCID: PMC9213218 DOI: 10.1016/j.jdcr.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
31
|
Ostrer H. Pathogenic Variants in MAP3K1 Cause 46,XY Gonadal Dysgenesis: A Review. Sex Dev 2022; 16:92-97. [PMID: 35290982 DOI: 10.1159/000522428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pathogenic variants in the MAP3K1 gene are an important cause of 46,XY non-syndromic partial and complete gonadal dysgenesis, accounting for at least 4% of cases. Inheritance occurs in a sex-limited, autosomal dominant fashion with virtually complete penetrance in 46,XY individuals. 46,XX carriers appear to have normal fertility and no developmental abnormalities. Pathogenic variants occur almost exclusively within known domains of the MAP3K1 protein, facilitating annotation when identified. Where studied, these variants have been modeled to alter the local MAP3K1 folding and surface domains and have been shown to alter interactions with known binding partners. The net effect of these variants is to increase phosphorylation of downstream targets ERK1, ERK2, and p38, resulting in multiple gain-of-function effects interfering with testis determination and enabling ovarian determination.
Collapse
Affiliation(s)
- Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
32
|
Chen H, Chen Q, Zhu Y, Yuan K, Li H, Zhang B, Jia Z, Zhou H, Fan M, Qiu Y, Zhuang Q, Lei Z, Li M, Huang W, Liang L, Yan Q, Wang C. MAP3K1 Variant Causes Hyperactivation of Wnt4/β-Catenin/FOXL2 Signaling Contributing to 46,XY Disorders/Differences of Sex Development. Front Genet 2022; 13:736988. [PMID: 35309143 PMCID: PMC8927045 DOI: 10.3389/fgene.2022.736988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
Background: 46,XY disorders/differences of sex development (46,XY DSD) are congenital conditions that result from abnormal gonadal development (gonadal dysgenesis) or abnormalities in androgen synthesis or action. During early embryonic development, several genes are involved in regulating the initiation and maintenance of testicular or ovarian-specific pathways. Recent reports have shown that MAP3K1 genes mediate the development of the 46,XY DSD, which present as complete or partial gonadal dysgenesis. Previous functional studies have demonstrated that some MAP3K1 variants result in the gain of protein function. However, data on possible mechanisms of MAP3K1 genes in modulating protein functions remain scant. Methods: This study identified a Han Chinese family with the 46,XY DSD. To assess the history and clinical manifestations for the 46,XY DSD patients, the physical, operational, ultra-sonographical, pathological, and other examinations were performed for family members. Variant analysis was conducted using both trio whole-exome sequencing (trio WES) and Sanger sequencing. On the other hand, we generated transiently transfected testicular teratoma cells (NT2/D1) and ovary-derived granular cells (KGN), with mutant or wild-type MAP3K1 gene. We then performed functional assays such as determination of steady-state levels of gender related factors, protein interaction and luciferase assay system. Results: Two affected siblings were diagnosed with 46,XY DSD. Our analysis showed a missense c.556A > G/p.R186G variant in the MAP3K1 gene. Functional assays demonstrated that the MAP3K1R186G variant was associated with significantly decreased affinity to ubiquitin (Ub; 43–49%) and increased affinity to RhoA, which was 3.19 ± 0.18 fold, compared to MAP3K1. The MAP3K1R186G led to hyperphosphorylation of p38 and GSK3β, and promoted hyperactivation of the Wnt4/β-catenin signaling. In addition, there was increased recruitment of β-catenin into the nucleus, which enhanced the expression of pro-ovarian transcription factor FOXL2 gene, thus contributing to the 46,XY DSD. Conclusion: Our study identified a missense MAP3K1 variant associated with 46,XY DSD. We demonstrated that MAP3K1R186G variant enhances binding to the RhoA and improves its own stability, resulting in the activation of the Wnt4/β-catenin/FOXL2 pathway. Taken together, these findings provide novel insights into the molecular mechanisms of 46,XY DSD and promotes better clinical evaluation.
Collapse
Affiliation(s)
- Hong Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Qingqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yilin Zhu
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Yuan
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huizhu Li
- Department of Pediatrics, Lishui City People’s Hospital, Lishui, China
| | - Bingtao Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zexiao Jia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mingjie Fan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yue Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qianqian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoying Lei
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengyao Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chunlin Wang, , Qingfeng Yan, , Li Liang,
| | - Qingfeng Yan
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, China
- *Correspondence: Chunlin Wang, , Qingfeng Yan, , Li Liang,
| | - Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chunlin Wang, , Qingfeng Yan, , Li Liang,
| |
Collapse
|
33
|
Naroji S, Gomez-Lobo V, Finlayson C. Primary Amenorrhea and Differences of Sex Development. Semin Reprod Med 2022; 40:16-22. [PMID: 35772411 PMCID: PMC11145579 DOI: 10.1055/s-0042-1753551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Primary amenorrhea may be a feature or a presenting sign of a difference of sex development, most often due to a congenital anatomic difference or hypergonadotropic hypogonadism. History and physical exam are very important, including whether any variation in external genitalia was present at birth as well as a careful review of pubertal development. Further evaluation includes hormone measurement, imaging, and genetic evaluation. Those with a disorder of sexual development diagnosis should receive care through a multidisciplinary team with psychosocial support.
Collapse
Affiliation(s)
- Swetha Naroji
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Veronica Gomez-Lobo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Courtney Finlayson
- Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
34
|
Mönig I, Schneidewind J, Johannsen TH, Juul A, Werner R, Lünstedt R, Birnbaum W, Marshall L, Wünsch L, Hiort O. Pubertal development in 46,XY patients with NR5A1 mutations. Endocrine 2022; 75:601-613. [PMID: 34613524 PMCID: PMC8816419 DOI: 10.1007/s12020-021-02883-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Mutations in the NR5A1 gene, encoding the transcription factor Steroidogenic Factor-1, are associated with a highly variable genital phenotype in patients with 46,XY differences of sex development (DSD). Our objective was to analyse the pubertal development in 46,XY patients with NR5A1 mutations by the evaluation of longitudinal clinical and hormonal data at pubertal age. METHODS We retrospectively studied a cohort of 10 46,XY patients with a verified NR5A1 mutation and describe clinical features including the external and internal genitalia, testicular volumes, Tanner stages and serum concentrations of LH, FSH, testosterone, AMH, and inhibin B during pubertal transition. RESULTS Patients who first presented in early infancy due to ambiguous genitalia showed spontaneous virilization at pubertal age accompanied by a significant testosterone production despite the decreased gonadal volume. Patients with apparently female external genitalia at birth presented later in life at pubertal age either with signs of virilization and/or absence of female puberty. Testosterone levels were highly variable in this group. In all patients, gonadotropins were constantly in the upper reference range or elevated. Neither the extent of virilization at birth nor the presence of Müllerian structures reliably correlated with the degree of virilization during puberty. CONCLUSION Patients with NR5A1 mutations regardless of phenotype at birth may demonstrate considerable virilization at puberty. Therefore, it is important to consider sex assignment carefully and avoid irreversible procedures during infancy.
Collapse
Affiliation(s)
- Isabel Mönig
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany.
| | - Julia Schneidewind
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Trine H Johannsen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ralf Werner
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
- Institute for Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Ralf Lünstedt
- Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Wiebke Birnbaum
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Louise Marshall
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Lutz Wünsch
- Department of Paediatric Surgery, University of Lübeck, Lübeck, Germany
| | - Olaf Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
35
|
Narcizo AM, Cardoso LC, Benedetti AF, Jorge AA, Funari MF, Braga BL, Franca MM, Montenegro LR, Lerario AM, Nishi MY, Mendonca BB. Targeted massively parallel sequencing panel to diagnose genetic endocrine disorders in a tertiary hospital. Clinics (Sao Paulo) 2022; 77:100132. [PMID: 36288632 PMCID: PMC9593712 DOI: 10.1016/j.clinsp.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES To analyze the efficiency of a multigenic targeted massively parallel sequencing panel related to endocrine disorders for molecular diagnosis of patients assisted in a tertiary hospital involved in the training of medical faculty. MATERIAL AND METHODS Retrospective analysis of the clinical diagnosis and genotype obtained from 272 patients in the Endocrine unit of a tertiary hospital was performed using a custom panel designed with 653 genes, most of them already associated with the phenotype (OMIM) and some candidate genes that englobes developmental, metabolic and adrenal diseases. The enriched DNA libraries were sequenced in NextSeq 500. Variants found were then classified according to ACMG/AMP criteria, with Varsome and InterVar. RESULTS Three runs were performed; the mean coverage depth of the targeted regions in panel sequencing data was 249×, with at least 96.3% of the sequenced bases being covered more than 20-fold. The authors identified 66 LP/P variants (24%) and 27 VUS (10%). Considering the solved cases, 49 have developmental diseases, 12 have metabolic and 5 have adrenal diseases. CONCLUSION The application of a multigenic panel aids the training of medical faculty in an academic hospital by showing the picture of the molecular pathways behind each disorder. This may be particularly helpful in developmental disease cases. A precise genetic etiology provides an improvement in understanding the disease, guides decisions about prevention or treatment, and allows genetic counseling.
Collapse
Affiliation(s)
- Amanda M. Narcizo
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Corresponding authors at: Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Lais C. Cardoso
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna F.F. Benedetti
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexander A.L. Jorge
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Unidade de Endocrinologia Genetica/LIM25, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana F.A. Funari
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Barbara L. Braga
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Monica M. Franca
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana R. Montenegro
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Corresponding authors at: Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Antonio M. Lerario
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Mirian Y. Nishi
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B. Mendonca
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Globa E, Zelinska N, Shcherbak Y, Bignon-Topalovic J, Bashamboo A, MсElreavey K. Disorders of Sex Development in a Large Ukrainian Cohort: Clinical Diversity and Genetic Findings. Front Endocrinol (Lausanne) 2022; 13:810782. [PMID: 35432193 PMCID: PMC9012099 DOI: 10.3389/fendo.2022.810782] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The clinical profile and genetics of individuals with Disorders/Differences of Sex Development (DSD) has not been reported in Ukraine. MATERIALS AND METHODS We established the Ukrainian DSD Register and identified 682 DSD patients. This cohort includes, 357 patients (52.3% [303 patients with Turner syndrome)] with sex chromosome DSD, 119 (17.5%) with 46,XY DSD and 206 (30.2%) with 46,XX DSD. Patients with sex chromosome DSD and congenital adrenal hyperplasia (CAH, n=185) were excluded from further studies. Fluorescence in situ hybridization (FISH) was performed for eight 46,XX boys. 79 patients underwent Whole Exome Sequencing (WES). RESULTS The majority of patients with 46,XY and 46,XX DSD (n=140), were raised as female (56.3% and 61.9% respectively). WES (n=79) identified pathogenic (P) or likely pathogenic (LP) variants in 43% of the cohort. P/LP variants were identified in the androgen receptor (AR) and NR5A1 genes (20.2%). Variants in other DSD genes including AMHR2, HSD17B3, MYRF, ANOS1, FGFR11, WT1, DHX37, SRD5A1, GATA4, TBCE, CACNA1A and GLI2 were identified in 22.8% of cases. 83.3% of all P/LP variants are novel. 35.3% of patients with a genetic diagnosis had an atypical clinical presentation. A known pathogenic variant in WDR11, which was reported to cause congenital hypogonadotropic hypogonadism (CHH), was identified in individuals with primary hypogonadism. CONCLUSIONS WES is a powerful tool to identify novel causal variants in patients with DSD, including a significant minority that have an atypical clinical presentation. Our data suggest that heterozygous variants in the WDR11 gene are unlikely to cause of CHH.
Collapse
Affiliation(s)
- Evgenia Globa
- Ukrainian Scientific and Practical Center of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
- *Correspondence: Evgenia Globa, ; orcid.org/0000-0001-7885-8195
| | - Natalia Zelinska
- Ukrainian Scientific and Practical Center of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Yulia Shcherbak
- National Children’s Specialized Hospital OHMATDYT of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | | | - Anu Bashamboo
- Human Developmental Genetics, Institute Pasteur, Paris, France
| | - Ken MсElreavey
- Human Developmental Genetics, Institute Pasteur, Paris, France
| |
Collapse
|
37
|
Wang J, Kimura E, Mongan M, Xia Y. Genetic Control of MAP3K1 in Eye Development and Sex Differentiation. Cells 2021; 11:cells11010034. [PMID: 35011600 PMCID: PMC8750206 DOI: 10.3390/cells11010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
The MAP3K1 is responsible for transmitting signals to activate specific MAP2K-MAPK cascades. Following the initial biochemical characterization, genetic mouse models have taken center stage to elucidate how MAP3K1 regulates biological functions. To that end, mice were generated with the ablation of the entire Map3k1 gene, the kinase domain coding sequences, or ubiquitin ligase domain mutations. Analyses of the mutants identify diverse roles that MAP3K1 plays in embryonic survival, maturation of T/B cells, and development of sensory organs, including eye and ear. Specifically in eye development, Map3k1 loss-of-function was found to be autosomal recessive for congenital eye abnormalities, but became autosomal dominant in combination with Jnk and RhoA mutations. Additionally, Map3k1 mutation increased eye defects with an exposure to environmental agents such as dioxin. Data from eye developmental models reveal the nexus role of MAP3K1 in integrating genetic and environmental signals to control developmental activities. Here, we focus the discussions on recent advances in understanding the signaling mechanisms of MAP3K1 in eye development in mice and in sex differentiation from human genomics findings. The research works featured here lead to a deeper understanding of the in vivo signaling network, the mechanisms of gene-environment interactions, and the relevance of this multifaceted protein kinase in disease etiology and pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Ying Xia
- Correspondence: ; Tel.: +1-513-558-0371
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide a basic overview on human sex development with a focus on involved genes and pathways, and also to discuss recent advances in the molecular diagnostic approaches applied to clinical workup of individuals with a difference/disorder of sex development (DSD). RECENT FINDINGS Rapid developments in genetic technologies and bioinformatics analyses have helped to identify novel genes and genomic pathways associated with sex development, and have improved diagnostic algorithms to integrate clinical, hormonal and genetic data. Recently, massive parallel sequencing approaches revealed that the phenotype of some DSDs might be only explained by oligogenic inheritance. SUMMARY Typical sex development relies on very complex biological events, which involve specific interactions of a large number of genes and pathways in a defined spatiotemporal sequence. Any perturbation in these genetic and hormonal processes may result in atypical sex development leading to a wide range of DSDs in humans. Despite the huge progress in the understanding of molecular mechanisms underlying DSDs in recent years, in less than 50% of DSD individuals, the genetic cause is currently solved at the molecular level.
Collapse
Affiliation(s)
- Idoia Martinez de LaPiscina
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN, Barakaldo, Spain
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
A Novel WT1 Mutation Identified in a 46,XX Testicular/Ovotesticular DSD Patient Results in the Retention of Intron 9. BIOLOGY 2021; 10:biology10121248. [PMID: 34943163 PMCID: PMC8698877 DOI: 10.3390/biology10121248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Disorders/differences of sexual development are very diverse. Among them is a condition characterized by the presence of testicular tissue in people with female chromosomes, which is typically manifested by male or ambiguous genitalia. While genetic counseling is beneficial for these people and their families, the genetic causes of these cases are only partially understood. We describe a new mutation in the WT1 gene that results in the presence of testicular tissue in a child with a female karyotype. We propose molecular mechanisms disrupted by this mutation. This finding widened our understanding of processes that govern sexual development and can be used to develop diagnostic tests for disorders/differences of sexual development. Abstract The 46,XX testicular DSD (disorder/difference of sexual development) and 46,XX ovotesticular DSD (46,XX TDSD and 46,XX OTDSD) phenotypes are caused by genetic rearrangements or point mutations resulting in imbalance between components of the two antagonistic, pro-testicular and pro-ovarian pathways; however, the genetic causes of 46,XX TDSD/OTDSD are not fully understood, and molecular diagnosis for many patients with the conditions is unavailable. Only recently few mutations in the WT1 (WT1 transcription factor; 11p13) gene were described in a group of 46,XX TDSD and 46,XX OTDSD individuals. The WT1 protein contains a DNA/RNA binding domain consisting of four zinc fingers (ZnF) and a three-amino acid (KTS) motif that is present or absent, as a result of alternative splicing, between ZnF3 and ZnF4 (±KTS isoforms). Here, we present a patient with 46,XX TDSD/OTDSD in whom whole exome sequencing revealed a heterozygous de novo WT1 c.1437A>G mutation within an alternative donor splice site which is used for −KTS WT1 isoform formation. So far, no mutation in this splice site has been identified in any patient group. We demonstrated that the mutation results in the retention of intron 9 in the mature mRNA of the 46,XX TDSD/OTDSD patient. In cases when the erroneous mRNA is translated, exclusively the expression of a truncated WT1 +KTS protein lacking ZnF4 and no −KTS protein occurs from the mutated allele of the patient. We discuss potential mechanisms and pathways which can be disturbed upon two conditions: Absence of Zn4F and altered +KTS/−KTS ratio.
Collapse
|
40
|
Granada ML, Audí L. El laboratorio en el diagnóstico multidisciplinar del desarrollo sexual anómalo o diferente (DSD). ADVANCES IN LABORATORY MEDICINE 2021; 2:481-493. [PMCID: PMC10197318 DOI: 10.1515/almed-2020-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objetivos El desarrollo de las características sexuales femeninas o masculinas acontece durante la vida fetal, determinándose el sexo genético, el gonadal y el sexo genital interno y externo (femenino o masculino). Cualquier discordancia en las etapas de diferenciación ocasiona un desarrollo sexual anómalo o diferente (DSD) que se clasifica según la composición de los cromosomas sexuales del cariotipo. Contenido En este capítulo se abordan la fisiología de la determinación y el desarrollo de las características sexuales femeninas o masculinas durante la vida fetal, la clasificación general de los DSD y su estudio diagnóstico clínico, bioquímico y genético que debe ser multidisciplinar. Los estudios bioquímicos deben incluir, además de las determinaciones bioquímicas generales, análisis de hormonas esteroideas y peptídicas, en condiciones basales o en pruebas funcionales de estimulación. El estudio genético debe comenzar con la determinación del cariotipo al que seguirá un estudio molecular en los cariotipos 46,XX ó 46,XY, orientado a la caracterización de un gen candidato. Además, se expondrán de manera específica los marcadores bioquímicos y genéticos en los DSD 46,XX, que incluyen el desarrollo gonadal anómalo (disgenesias, ovotestes y testes), el exceso de andrógenos de origen fetal (el más frecuente), fetoplacentario o materno y las anomalías del desarrollo de los genitales internos. Perspectivas El diagnóstico de un DSD requiere la contribución de un equipo multidisciplinar coordinado por un clínico y que incluya los servicios de bioquímica y genética clínica y molecular, un servicio de radiología e imagen y un servicio de anatomía patológica.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, España
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, España
| |
Collapse
|
41
|
Arya S, Kumar S, Lila AR, Sarathi V, Memon SS, Barnabas R, Thakkar H, Patil VA, Shah NS, Bandgar TR. Exonic WT1 pathogenic variants in 46,XY DSD associated with gonadoblastoma. Endocr Connect 2021; 10:1522-1530. [PMID: 34727091 PMCID: PMC8679883 DOI: 10.1530/ec-21-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The literature regarding gonadoblastoma risk in exonic Wilms' tumor suppressor gene (WT1) pathogenic variants is sparse. The aim of this study is to describe the phenotypic and genotypic characteristics of Asian-Indian patients with WT1 pathogenic variants and systematically review the literature on association of exonic WT1 pathogenic variants and gonadoblastoma. DESIGN Combined retrospective-prospective analysis. METHODS In this study, 46,XY DSD patients with WT1 pathogenic variants detected by clinical exome sequencing from a cohort of 150 index patients and their affected relatives were included. The PubMed database was searched for the literature on gonadoblastoma with exonic WT1 pathogenic variants. RESULTS The prevalence of WT1 pathogenic variants among 46,XY DSD index patients was 2.7% (4/150). All the four patients had atypical genitalia and cryptorchidism. None of them had Wilms' tumor till the last follow-up, whereas one patient had late-onset nephropathy. 11p13 deletion was present in one patient with aniridia. The family with p.Arg458Gln pathogenic variant had varied phenotypic spectrum of Frasier syndrome; two siblings had gonadoblastoma, one of them had growing teratoma syndrome (first to report with WT1). On literature review, of >100 exonic point pathogenic variants, only eight variants (p.Arg462Trp, p.Tyr177*, p.Arg434His, p.Met410Arg, p.Gln142*, p.Glu437Lys, p.Arg458*, and p.Arg458Gln) in WT1 were associated with gonadoblastoma in a total of 15 cases (including our two cases). CONCLUSIONS WT1 alterations account for 3% of 46,XY DSD patients in our cohort. 46,XY DSD patients harboring exonic WT1 pathogenic variants carry a small but definitive risk of gonadoblastoma; hence, these patients require a gonadoblastoma surveillance with a more stringent surveillance in those harboring a gonadoblastoma-associated variant.
Collapse
Affiliation(s)
- Sneha Arya
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Sandeep Kumar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Anurag R Lila
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
- Correspondence should be addressed to A R Lila:
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Saba Samad Memon
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Rohit Barnabas
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Hemangini Thakkar
- Department of Radiology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Virendra A Patil
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Tushar R Bandgar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| |
Collapse
|
42
|
De Falco L, Piscopo C, D’Angelo R, Evangelista E, Suero T, Sirica R, Ruggiero R, Savarese G, Di Carlo A, Furino G, Scarpato C, Fico A. Detection of 46, XY Disorder of Sex Development (DSD) Based on Plasma Cell-Free DNA and Targeted Next-Generation Sequencing. Genes (Basel) 2021; 12:genes12121890. [PMID: 34946839 PMCID: PMC8700836 DOI: 10.3390/genes12121890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
Mutations in the HSD17B3 gene cause HSD17B3 deficiency and result in 46, XY Disorders of Sex Development (46, XY DSD). The diagnosis of 46, XY DSD is very challenging and not rarely is confirmed only at older ages, when an affected XY female presents with primary amenorrhea or develops progressive virilization. The patient described in this paper represents a case of discrepancies between non-invasive prenatal testing (NIPT) and ultrasound based fetal sex determination detected during prenatal screening. Exome sequencing was performed on the cell free fetal DNA (cffDNA), amniotic fluid, and the parents. Libraries were generated according to the manufacturer’s protocols using TruSight One Kits (Illumina Inc., San Diego, CA, USA). Sequencing was carried out on NEXT Seq 500 (Illumina) to mean sequencing depth of at least 100×. A panel of sexual disease genes was used in order to search for a causative variant. The finding of a mutation (c.645 A>T, p.Glu215Asp) in HSD17B3 gene in amniotic fluid as well as in cffDNA and both parents supported the hypothesis of the HSD17B3 deficiency. In conclusion, we used clinical exome sequencing and non-invasive prenatal detection, providing a solution for NIPT of a single-gene disorder. Early genetic diagnoses are useful for patients and clinicians, contribute to clinical knowledge of DSD, and are invaluable for genetic counseling of couples contemplating future pregnancies.
Collapse
Affiliation(s)
- Luigia De Falco
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
- Correspondence:
| | - Carmelo Piscopo
- Medical and Laboratory Genetic Unit, A. Cardarelli Hospital, 80131 Naples, Italy;
| | - Rossana D’Angelo
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Eloisa Evangelista
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Teresa Suero
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Antonella Di Carlo
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Giulia Furino
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| | - Ciro Scarpato
- Ambulatorio Medicina Prenatale, PO S. Giuliano, 80014 Naples, Italy;
| | - Antonio Fico
- AMES, Centro Polidiagnostico Strumentale, 80013 Naples, Italy; (R.D.); (E.E.); (T.S.); (R.S.); (R.R.); (G.S.); (A.D.C.); (G.F.); (A.F.)
- Fondazione Genetica per la Vita Onlus, Via Cuma, 80132 Naples, Italy
| |
Collapse
|
43
|
Molecular and Cytogenetic Analysis of Romanian Patients with Differences in Sex Development. Diagnostics (Basel) 2021; 11:diagnostics11112107. [PMID: 34829455 PMCID: PMC8620580 DOI: 10.3390/diagnostics11112107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Differences in sex development (DSD) are often correlated with a genetic etiology. This study aimed to assess the etiology of DSD patients following a protocol of genetic testing. Materials and methods. This study prospectively investigated a total of 267 patients with DSD who presented to Clinical Emergency Hospital for Children Cluj-Napoca between January 2012 and December 2019. Each patient was clinically, biochemically, and morphologically evaluated. As a first intervention, the genetic test included karyotype + SRY testing. A high value of 17-hydroxyprogesterone was found in 39 patients, in whom strip assay analysis of the CYP21A2 gene was subsequently performed. A total of 35 patients were evaluated by chromosomal microarray technique, and 22 patients were evaluated by the NGS of a gene panel. Results. The karyotype analysis established the diagnosis in 15% of the patients, most of whom presented with sex chromosome abnormalities. Genetic testing of CYP21A2 established a confirmation of the diagnosis in 44% of patients tested. SNP array analysis was particularly useful in patients with syndromic DSD; 20% of patients tested presented with pathogenic CNVs or uniparental disomy. Gene panel sequencing established the diagnosis in 11 of the 22 tested patients (50%), and the androgen receptor gene was most often involved in these patients. The genes that presented as pathogenic or likely pathogenic variants or variants of uncertain significance were RSPO1, FGFR1, WT1, CHD7, AR, NIPBL, AMHR2, AR, EMX2, CYP17A1, NR0B1, GNRHR, GATA4, and ATM genes. Conclusion. An evaluation following a genetic testing protocol that included karyotype and SRY gene testing, CYP21A2 analysis, chromosomal analysis by microarray, and high-throughput sequencing were useful in establishing the diagnosis, with a spectrum of diagnostic yield depending on the technique (between 15 and 50%). Additionally, new genetic variants not previously described in DSD were observed.
Collapse
|
44
|
Han B, Zhu H, Yao H, Ren J, O'Day P, Wang H, Zhu W, Cheng T, Auchus RJ, Qiao J. Differences of adrenal-derived androgens in 5α-reductase deficiency versus androgen insensitivity syndrome. Clin Transl Sci 2021; 15:658-666. [PMID: 34755921 PMCID: PMC8932821 DOI: 10.1111/cts.13184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/27/2022] Open
Abstract
Steroid 5α‐reductase type 2 deficiency (5α‐RD2) and androgen insensitivity syndrome (AIS) are difficult to distinguish clinically and biochemically, and adrenal‐derived androgens have not been investigated in these conditions using modern methods. The objective of the study was to compare Chinese patients with 5α‐RD2, AIS, and healthy men. Sixteen patients with 5α‐RD2, 10 patients with AIS, and 39 healthy men were included. Serum androgen profiles were compared in these subjects using liquid chromatography/tandem mass spectrometry (LC‐MS/MS). Based on clinical features and laboratory tests, 5α‐RD2 and AIS were diagnosed and confirmed by genotyping. Dihydrotestosterone (DHT) and testosterone (T) were both significantly lower in patients with 5α‐RD2 than AIS (p < 0.0001). The T/DHT ratio was higher in 5α‐RD2 (4.5–88.6) than AIS (13.4–26.7) or healthy men (7.6–40.5). Using LC‐MS/MS, a cutoff T/DHT value of 27.3 correctly diagnosed 5α‐RD2 versus AIS with sensitivity 93.8% and specificity 100%. Among the adrenal‐derived 11‐oxygenated androgens, 11β‐hydroxyandrostenedione (11OHA4) and 11‐ketoandrostenedione (11KA4) were also lower in patients with 5α‐RD2 than those of patients with AIS. In contrast, 11β‐hydroxytestosterone (11OHT) was higher in 5α‐RD2 than AIS. Furthermore, a 11OHT/11OHA4 cutoff value of 0.048 could also distinguish 5α‐RD2 from AIS. Thus, both elevated T/DHT values above 27.3 and the unexpected 11‐oxygenated androgen profile, with a 11OHT/11OHA4 ratio greater than 0.048, distinguished 5α‐RD2 from AIS. These data suggest that the metabolism of both gonadal and adrenal‐derived androgens is altered in 5α‐RD2.
Collapse
Affiliation(s)
- Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haijun Yao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Ren
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, Department of Pharmacology, the Program for Disorders of Sexual Development, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick O'Day
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, Department of Pharmacology, the Program for Disorders of Sexual Development, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Wang
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjiao Zhu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Cheng
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, Department of Pharmacology, the Program for Disorders of Sexual Development, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Qiao
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Granada ML, Audí L. The laboratory in the multidisciplinary diagnosis of differences or disorders of sex development (DSD): I) Physiology, classification, approach, and methodologyII) Biochemical and genetic markers in 46,XX DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:468-493. [PMID: 37360895 PMCID: PMC10197333 DOI: 10.1515/almed-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objectives The development of female or male sex characteristics occurs during fetal life, when the genetic, gonadal, and internal and external genital sex is determined (female or male). Any discordance among sex determination and differentiation stages results in differences/disorders of sex development (DSD), which are classified based on the sex chromosomes found on the karyotype. Content This chapter addresses the physiological mechanisms that determine the development of female or male sex characteristics during fetal life, provides a general classification of DSD, and offers guidance for clinical, biochemical, and genetic diagnosis, which must be established by a multidisciplinary team. Biochemical studies should include general biochemistry, steroid and peptide hormone testing either at baseline or by stimulation testing. The genetic study should start with the determination of the karyotype, followed by a molecular study of the 46,XX or 46,XY karyotypes for the identification of candidate genes. Summary 46,XX DSD include an abnormal gonadal development (dysgenesis, ovotestes, or testes), an androgen excess (the most frequent) of fetal, fetoplacental, or maternal origin and an abnormal development of the internal genitalia. Biochemical and genetic markers are specific for each group. Outlook Diagnosis of DSD requires the involvement of a multidisciplinary team coordinated by a clinician, including a service of biochemistry, clinical, and molecular genetic testing, radiology and imaging, and a service of pathological anatomy.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
46
|
Ridnik M, Schoenfelder S, Gonen N. Cis-Regulatory Control of Mammalian Sex Determination. Sex Dev 2021; 15:317-334. [PMID: 34710870 PMCID: PMC8743899 DOI: 10.1159/000519244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Stefan Schoenfelder
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
47
|
Miyado M, Fukami M, Ogata T. MAMLD1 and Differences/Disorders of Sex Development: An Update. Sex Dev 2021; 16:126-137. [PMID: 34695834 DOI: 10.1159/000519298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
MAMLD1 (alias CXorf6) was first documented in 2006 as a causative gene of 46,XY differences/disorders of sex development (DSD). MAMLD1/Mamld1 is expressed in the fetal testis and is predicted to enhance the expression of several Leydig cell-specific genes. To date, hemizygous MAMLD1 variants have been identified in multiple 46,XY individuals with hypomasculinized external genitalia. Pathogenic MAMLD1 variants are likely to cause genital abnormalities at birth and are possibly associated with age-dependent deterioration of testicular function. In addition, some MAMLD1 variants have been identified in 46,XX individuals with ovarian dysfunction. However, recent studies have raised the possibility that MAMLD1 variants cause 46,XY DSD and ovarian dysfunction as oligogenic disorders. Unsolved issues regarding MAMLD1 include the association between MAMLD1 variants and 46,XX testicular DSD, gene-gene interactions in the development of MAMLD1-mediated DSD, and intracellular functions of MAMLD1.
Collapse
Affiliation(s)
- Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
48
|
Kouri C, Sommer G, Flück CE. Oligogenic Causes of Human Differences of Sex Development: Facing the Challenge of Genetic Complexity. Horm Res Paediatr 2021; 96:169-179. [PMID: 34537773 DOI: 10.1159/000519691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deviations of intrauterine sex determination and differentiation and postnatal sex development can result in a very heterogeneous group of differences of sex development (DSD) with a broad spectrum of phenotypes. Variants in genes involved in sexual development cause different types of DSD, but predicting the phenotype from an individual's genotype and vice versa remains challenging. SUMMARY Next Generation Sequencing (NGS) studies suggested that oligogenic inheritance contributes to the broad manifestation of DSD phenotypes. This review will focus on possible oligogenic inheritance in DSD identified by NGS studies with a special emphasis on NR5A1variants as an example of oligogenic origin associated with a broad range of DSD phenotypes. We thoroughly searched the literature for evidence regarding oligogenic inheritance in DSD diagnosis with NGS technology and describe the challenges to interpret contribution of these genes to DSD phenotypic variability and pathogenicity. Key Messages: Variants in common DSD genes like androgen receptor (AR), mitogen-activated protein kinase kinase kinase 1 (MAP3K1), Hydroxy-Delta-5-Steroid Dehydrogenase 3 Beta- And Steroid Delta-Isomerase 2 (HSD3B2), GATA Binding Protein 4 (GATA4), zinc finger protein friend of GATA family member 2 (ZFPM2), 17b-hydroxysteroid dehydrogenase type 3 (HSD17B3), mastermind-like domain-containing protein 1 (MAMLD1), and nuclear receptor subfamily 5 group A member 1 (NR5A1) have been detected in combination with additional variants in related genes in DSD patients with a broad range of phenotypes, implying a role of oligogenic inheritance in DSD, while still awaiting proof. Use of NGS approach for genetic diagnosis of DSD patients can reveal more complex genetic traits supporting the concept of oligogenic cause of DSD. However, assessing the pathomechanistic contribution of multiple gene variants on a DSD phenotype remains an unsolved conundrum.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Grit Sommer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Délot EC, Vilain E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet 2021; 22:588-602. [PMID: 34083777 PMCID: PMC10598994 DOI: 10.1038/s41576-021-00365-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/05/2023]
Abstract
Despite being collectively among the most frequent congenital developmental conditions worldwide, differences of sex development (DSD) lack recognition and research funding. As a result, what constitutes optimal management remains uncertain. Identification of the individual conditions under the DSD umbrella is challenging and molecular genetic diagnosis is frequently not achieved, which has psychosocial and health-related repercussions for patients and their families. New genomic approaches have the potential to resolve this impasse through better detection of protein-coding variants and ascertainment of under-recognized aetiology, such as mosaic, structural, non-coding or epigenetic variants. Ultimately, it is hoped that better outcomes data, improved understanding of the molecular causes and greater public awareness will bring an end to the stigma often associated with DSD.
Collapse
Affiliation(s)
- Emmanuèle C Délot
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
50
|
Bird AD, Croft BM, Harada M, Tang L, Zhao L, Ming Z, Bagheri-Fam S, Koopman P, Wang Z, Akita K, Harley VR. Ovotesticular disorders of sex development in FGF9 mouse models of human synostosis syndromes. Hum Mol Genet 2021; 29:2148-2161. [PMID: 32452519 DOI: 10.1093/hmg/ddaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints). Whether these synostosis-causing FGF9 mutations impact upon gonadal development and DSD etiology has not been explored. We therefore examined embryonic gonads in the well-characterized Fgf9 missense mouse mutants, Fgf9S99N and Fgf9N143T, which phenocopy the skeletal defects of FGF9S99N and FGF9R62G variants, respectively. XY Fgf9S99N/S99N and XY Fgf9N143T/N143T fetal mouse gonads showed severely disorganized testis cords and partial XY sex reversal at 12.5 days post coitum (dpc), suggesting loss of FGF9 function. By 15.5 dpc, testis development in both mutants had partly recovered. Mitotic analysis in vivo and in vitro suggested that the testicular phenotypes in these mutants arise in part through reduced proliferation of the gonadal supporting cells. These data raise the possibility that human FGF9 mutations causative for dominant skeletal conditions can also lead to loss of FGF9 function in the developing testis, at least in mice. Our data suggest that, in humans, testis development is largely tolerant of deleterious FGF9 mutations which lead to skeletal defects, thus offering an explanation as to why XY DSDs are rare in patients with pathogenic FGF9 variants.
Collapse
Affiliation(s)
- Anthony D Bird
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Brittany M Croft
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Masayo Harada
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenhua Ming
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stefan Bagheri-Fam
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|