1
|
An J, Su Z, Meng S. Effect of aerobic training versus resistance training for improving cardiorespiratory fitness and body composition in middle-aged to older adults: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr 2024; 126:105530. [PMID: 38878596 DOI: 10.1016/j.archger.2024.105530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
This systematic review and meta-analysis aimed to examine the influence of aerobic training (AT) versus resistance training (RT) on cardiorespiratory fitness and body composition in middle-aged to older adults. Four electronic databases including PubMed, Scopus, Cochrane CENTRAL, and web of science, as well as reference lists of included randomized controlled trials (RCTs) were searched from inception to April 2024. Data were pooled by the inverse-variance method and reported as mean differences (MDs) with 95 % confidence intervals (CIs). Thirty-eight RCTs, with a pooled sample of 1682 participants, met our inclusion criteria. Meta-analysis revealed that AT significantly improved VO2max/peak (MD = 1.80, 95 % CI: 0.96 to 2.64, p < 0.0001) and 6-MWT (MD = 18.58, 95 % CI: 10.38 to 26.78, p < 0.00001), and significantly decreased body mass (MD = -1.23, 95 % CI: -1.98 to -0.47, p = 0.001) versus RT. However, changes in lean body mass favored RT over AT. Moreover, changes in VO2max/peak and 6-MWT following AT were significant among both healthy and unhealthy participants, or men and women, after medium-term (< 24 weeks) and long-term (≥ 24 weeks) interventions, and among participants aged ≤65 and >65. Our results propose that AT should be considered an efficient approach to improving cardiorespiratory fitness and overall body composition with aging, particularly in terms of VO2max and 6-MWT performance. However, for improvements in lean body mass, RT may be more beneficial. Therefore, a combination of AT and RT might be optimal for comprehensive fitness and body composition improvements with aging.
Collapse
Affiliation(s)
- Jianqun An
- College of Sports Science, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Zhanguo Su
- Faculty of Physical Education, Huainan Normal University, Huainan 232038, Anhui, China.
| | - Shangjie Meng
- International College, Krirk University, Bangkok 10220, Thailand
| |
Collapse
|
2
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
3
|
Serrano J, Kondo S, Link GM, Brown IS, Pratley RE, Baskin KK, Goodpaster BH, Coen PM, Kyriazis GA. A partial loss-of-function variant (Ile191Val) of the TAS1R2 glucose receptor is associated with enhanced responses to exercise training in older adults with obesity: A translational study. Metabolism 2024:156045. [PMID: 39393515 DOI: 10.1016/j.metabol.2024.156045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND The TAS1R2 receptor, known for its role in taste perception, has also emerged as a key regulator of muscle physiology. Previous studies have shown that genetic ablation of TAS1R2 in mice enhances muscle fitness mimicking responses to endurance exercise training. However, the translational relevance of these findings to humans remains uncertain. METHODS We explored responses to endurance exercise training in mice and humans with genetic deficiency of TAS1R2. First, we assessed the effects of muscle-specific deletion of TAS1R2 in mice (mKO) or wild type controls (mWT) following 4 weeks of voluntary wheel running (VWR). Next, we investigated the effects of the TAS1R2-Ile191Val (rs35874116) partial loss-of-function variant on responses to a 6-month diet-induced weight loss with exercise training (WLEX), weight loss alone (WL), or education control (CON) interventions in older individuals with obesity. Participants were retrospectively genotyped for the TAS1R2-Ile191Val polymorphism and classified as conventional function (Ile/Ile) or partial loss-of-function (Val carriers: Ile/Val and Val/Val). Body composition, cardiorespiratory fitness, and skeletal muscle mitochondrial function were assessed before and after the intervention. RESULTS In response to VWR, mKO mice demonstrated enhanced running endurance and mitochondrial protein content. Similarly, TAS1R2 Val carriers exhibited distinctive improvements in body composition, including increased muscle mass, along with enhanced cardiorespiratory fitness and mitochondrial function in skeletal muscle following the WLEX intervention compared to Ile/Ile counterparts. Notably, every Val carrier demonstrated substantial responses to exercise training and weight loss, surpassing all Ile/Ile participants in overall performance metrics. CONCLUSIONS Our findings suggest that TAS1R2 partial loss-of-function confers beneficial effects on muscle function and metabolism in humans in response to exercise training, akin to observations in TAS1R2 muscle-deficient mice. Targeting TAS1R2 may help enhancing exercise training adaptations in individuals with compromised exercise tolerance or metabolic disorders, presenting a potential avenue for personalized exercise interventions.
Collapse
Affiliation(s)
- Joan Serrano
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Saki Kondo
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Grace M Link
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ian S Brown
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Kedryn K Baskin
- Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Paul M Coen
- Translational Research Institute, Advent Health, Orlando, FL, USA.
| | - George A Kyriazis
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Zhao YC, Gao BH. Integrative effects of resistance training and endurance training on mitochondrial remodeling in skeletal muscle. Eur J Appl Physiol 2024; 124:2851-2865. [PMID: 38981937 DOI: 10.1007/s00421-024-05549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Resistance training activates mammalian target of rapamycin (mTOR) pathway of hypertrophy for strength gain, while endurance training increases peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway of mitochondrial biogenesis benefiting oxidative phosphorylation. The conventional view suggests that resistance training-induced hypertrophy signaling interferes with endurance training-induced mitochondrial remodeling. However, this idea has been challenged because acute leg press and knee extension in humans enhance both muscle hypertrophy and mitochondrial remodeling signals. Thus, we first examined the muscle mitochondrial remodeling and hypertrophy signals with endurance training and resistance training, respectively. In addition, we discussed the influence of resistance training on muscle mitochondria, demonstrating that the PGC-1α-mediated muscle mitochondrial adaptation and hypertrophy occur simultaneously. The second aim was to discuss the integrative effects of concurrent training, which consists of endurance and resistance training sessions on mitochondrial remodeling. The study found that the resistance training component does not reduce muscle mitochondrial remodeling signals in concurrent training. On the contrary, concurrent training has the potential to amplify skeletal muscle mitochondrial biogenesis compared to a single exercise model. Concurrent training involving differential sequences of resistance and endurance training may result in varied mitochondrial biogenesis signals, which should be linked to the pre-activation of mTOR or PGC-1α signaling. Our review proposed a mechanism for mTOR signaling that promotes PGC-1α signaling through unidentified pathways. This mechanism may be account for the superior muscle mitochondrial remodeling change following the concurrent training. Our review suggested an interaction between resistance training and endurance training in skeletal muscle mitochondrial adaptation.
Collapse
Affiliation(s)
- Yong-Cai Zhao
- College of Exercise and Health, Tianjin University of Sport, No. 16 Donghai Road, Jinghai District, Tianjin, 301617, China.
| | - Bing-Hong Gao
- School of Athletic Performance, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| |
Collapse
|
5
|
Renwick JRM, Preobrazenski N, Wu Z, Khansari A, LeBouedec MA, Nuttall JMG, Bancroft KR, Simpson-Stairs N, Swinton PA, Gurd BJ. Standard Deviation of Individual Response for VO 2max Following Exercise Interventions: A Systematic Review and Meta-analysis. Sports Med 2024:10.1007/s40279-024-02089-y. [PMID: 39160296 DOI: 10.1007/s40279-024-02089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Although numerous attempts to demonstrate inter-individual differences in trainability across various outcomes have been unsuccessful, the investigation of maximal oxygen consumption (VO2max) trainability warrants further study. OBJECTIVE Our objective was to conduct the first systematic review and meta-analysis to evaluate inter-individual differences in VO2max trainability across aerobic exercise training protocols utilizing non-exercising comparator groups. METHODS We conducted a literature search across three databases: EMBASE, PubMed and SCOPUS. The search strategy incorporated two main concepts: aerobic exercise training and VO2max. Studies were included if they used human participants, employed standardized and supervised exercise training, reported absolute or relative VO2max, included a non-exercise comparator group, reported VO2max change scores for non-exercise and exercise groups and provided the standard deviation (SD) of change for all groups. We calculated the SD of individual response (SDIR) to estimate the presence of inter-individual differences in trainability across all studies. RESULTS The literature search generated 32,968 studies, 24 of which were included in the final analysis. Our findings indicated that (1) the majority of variation in observed change scores following an intervention is due to measurement error, (2) calculating SDIR within a single study would not yield sufficient accuracy of SDIR due to generally small sample sizes and (3) meta-analysis of SD IR 2 across studies does not provide strong evidence for a positive value. CONCLUSION Overall, our meta-analysis demonstrated that there is not strong evidence supporting the existence of VO2max trainability across single interventions. As such, it appears unlikely that clinically relevant predictors of VO2max response will be discovered. Registration can be found online ( https://doi.org/10.17605/OSF.IO/X9VU3 ).
Collapse
Affiliation(s)
- John R M Renwick
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nicholas Preobrazenski
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zeyu Wu
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ava Khansari
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matisse A LeBouedec
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jared M G Nuttall
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kyra R Bancroft
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nia Simpson-Stairs
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, AB10 7QE, UK
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
6
|
Jeong I, Cho EJ, Yook JS, Choi Y, Park DH, Kang JH, Lee SH, Seo DY, Jung SJ, Kwak HB. Mitochondrial Adaptations in Aging Skeletal Muscle: Implications for Resistance Exercise Training to Treat Sarcopenia. Life (Basel) 2024; 14:962. [PMID: 39202704 PMCID: PMC11355854 DOI: 10.3390/life14080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, poses a significant health challenge as the global population ages. Mitochondrial dysfunction is a key factor in sarcopenia, as evidenced by the role of mitochondrial reactive oxygen species (mtROS) in mitochondrial biogenesis and dynamics, as well as mitophagy. Resistance exercise training (RET) is a well-established intervention for sarcopenia; however, its effects on the mitochondria in aging skeletal muscles remain unclear. This review aims to elucidate the relationship between mitochondrial dynamics and sarcopenia, with a specific focus on the implications of RET. Although aerobic exercise training (AET) has traditionally been viewed as more effective for mitochondrial enhancement, emerging evidence suggests that RET may also confer beneficial effects. Here, we highlight the potential of RET to modulate mtROS, drive mitochondrial biogenesis, optimize mitochondrial dynamics, and promote mitophagy in aging skeletal muscles. Understanding this interplay offers insights for combating sarcopenia and preserving skeletal muscle health in aging individuals.
Collapse
Affiliation(s)
- Ilyoung Jeong
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Eun-Jeong Cho
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Jang-Soo Yook
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
| | - Youngju Choi
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Institute of Specialized Teaching and Research, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Seok-Hun Lee
- Combat Institute of Australia, Leederville, WA 6007, Australia;
| | - Dae-Yun Seo
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Republic of Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Lanza IR, Sundberg CW, Kent JA. Reduced oxidative capacity of skeletal muscle IS NOT an inevitable consequence of adult ageing. J Physiol 2024. [PMID: 38970775 DOI: 10.1113/jp285042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
| | | | - Jane A Kent
- University of Massachusetts Amherst, Amherst, USA
| |
Collapse
|
8
|
Yoshiko A, Shiozawa K, Niwa S, Takahashi H, Koike T, Watanabe K, Katayama K, Akima H. Association of skeletal muscle oxidative capacity with muscle function, sarcopenia-related exercise performance, and intramuscular adipose tissue in older adults. GeroScience 2024; 46:2715-2727. [PMID: 38153667 PMCID: PMC10828458 DOI: 10.1007/s11357-023-01043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Muscle function and exercise performance measures, such as muscle endurance capacity, maximal strength, chair stand score, gait speed, and Timed Up and Go score, are evaluated to diagnose sarcopenia and frailty in older individuals. Furthermore, intramuscular adipose tissue (IntraMAT) content increases with age. Skeletal muscle oxidative capacity determines muscle metabolism and maintains muscle performance. This study aimed to investigate the association of skeletal muscle oxidative capacity with muscle function, exercise performance, and IntraMAT content in older individuals. Thirteen older men and women participated in this study. Skeletal muscle oxidative capacity was assessed by the recovery speed of muscle oxygen saturation after exercise using near-infrared spectroscopy from the medial gastrocnemius. We assessed two muscle functions, peak torque and time to task failure, and four sarcopenia-related exercise performances: handgrip strength, gait speed, 30-s chair stand, and Timed Up and Go. The IntraMAT content was measured using axial magnetic resonance imaging. The results showed a relationship between skeletal muscle oxidative capacity and gait speed but not with muscle functions and other exercise performance measures. Skeletal muscle oxidative capacity was not related to IntraMAT content. Skeletal muscle oxidative capacity, which may be indicative of the capacity of muscle energy production in the mitochondria, is related to locomotive functions but not to other functional parameters or skeletal fat infiltration.
Collapse
Affiliation(s)
- Akito Yoshiko
- Faculty of Liberal Arts and Sciences, Chukyo University, Toyota, Japan.
| | - Kana Shiozawa
- Department of Exercise and Sports Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shiori Niwa
- Department of Nursing, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Teruhiko Koike
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kohei Watanabe
- School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Keisho Katayama
- Department of Exercise and Sports Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
10
|
Burtscher J, Strasser B, Burtscher M. A mito-centric view on muscle aging and function. Front Public Health 2024; 11:1330131. [PMID: 38269379 PMCID: PMC10806989 DOI: 10.3389/fpubh.2023.1330131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
- Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Kelley GA, Kelley KS, Stauffer BL. Resistance training and inter-interindividual response differences on cardiorespiratory fitness in older adults: An ancillary meta-analysis of randomized controlled trials. Sci Prog 2024; 107:368504241227088. [PMID: 38312013 PMCID: PMC10846148 DOI: 10.1177/00368504241227088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Examine true inter-individual response differences (IIRD) as a result of resistance training on cardiorespiratory fitness in older adults. Data from a recent meta-analysis of 22 randomized controlled trials representing 552 men and women (292 resistance training, 260 control) ≥ 60 years of age were included. The primary outcome was cardiorespiratory fitness (VO2max) in ml.kg-1.min-1. Using the inverse variance heterogeneity (IVhet) model, statistically significant treatment effect (resistance training minus control) increases in VO2max in ml.kg-1.min-1 were found (mean, 1.8, 95% CI, 0.4 to 3.3 ml.kg-1.min-1, p = 0.01; Q = 82.8, p < 0.001; I2 = 74.6%, 95% CI, 61.6 to 83.3%; τ 2 =1.1). The 95% prediction interval (PI) was -0.8 to 4.5 ml.kg-1.min-1. However, no statistically significant IIRD was observed (mean, 0.6, 95% CI, -1.1 to 1.4 ml.kg-1.min-1; τ 2 =1.5). The 95% PI was -1.8 to 2.0 ml.kg-1.min-1. In conclusion, while progressive resistance training may increase VO2max in ml.kg-1.min-1, a lack of true resistance-training-associated IIRD exist.
Collapse
Affiliation(s)
- George A. Kelley
- School of Public Health, Department of Epidemiology and Biostatistics, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- School of Public and Population Health, Boise State University, Boise, ID, USA
| | - Kristi S. Kelley
- School of Public Health, Department of Epidemiology and Biostatistics, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- School of Public and Population Health, Boise State University, Boise, ID, USA
| | - Brian L. Stauffer
- Division of Cardiology, Denver Health Medical Center, Denver, CO, USA
- Department of Medicine, Division of Cardiology, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
12
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
13
|
Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. J Appl Physiol (1985) 2023; 135:763-774. [PMID: 37616334 PMCID: PMC10642518 DOI: 10.1152/japplphysiol.00405.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
This study investigated how different exercise training modalities influence skeletal muscle mitochondrial dynamics. Healthy [average body mass index (BMI): 25.8 kg/m2], sedentary younger and older participants underwent 12 wk of supervised high-intensity aerobic interval training (HIIT; n = 13), resistance training (RT; n = 14), or combined training (CT; n = 11). Mitochondrial structure was assessed using transmission electron microscopy (TEM). Regulators of mitochondrial fission and fusion, cardiorespiratory fitness (V̇o2peak), insulin sensitivity via a hyperinsulinemic-euglycemic clamp, and muscle mitochondrial respiration were assessed. TEM showed increased mitochondrial volume, number, and perimeter following HIIT (P < 0.01), increased mitochondrial number following CT (P < 0.05), and no change in mitochondrial abundance after RT. Increased mitochondrial volume associated with increased mitochondrial respiration and insulin sensitivity following HIIT (P < 0.05). Increased mitochondrial perimeter associated with increased mitochondrial respiration, insulin sensitivity, and V̇o2peak following HIIT (P < 0.05). No such relationships were observed following CT or RT. OPA1, a regulator of fusion, was increased following HIIT (P < 0.05), whereas FIS1, a regulator of fission, was decreased following HIIT and CT (P < 0.05). HIIT also increased the ratio of OPA1/FIS1 (P < 0.01), indicative of the balance between fission and fusion, which positively correlated with improvements in respiration, insulin sensitivity, and V̇o2peak (P < 0.05). In conclusion, HIIT induces a larger, more fused mitochondrial tubular network. Changes indicative of increased fusion following HIIT associate with improvements in mitochondrial respiration, insulin sensitivity, and V̇o2peak supporting the idea that enhanced mitochondrial fusion accompanies notable health benefits of HIIT.NEW & NOTEWORTHY We assessed the effects of 12 wk of supervised high-intensity interval training (HIIT), resistance training, and combined training (CT) on skeletal muscle mitochondrial abundance and markers of fission and fusion. HIIT increased mitochondrial area and size and promoted protein changes indicative of increased mitochondrial fusion, whereas lessor effects were observed after CT and no changes were observed after RT. Furthermore, increased mitochondrial area and size after HIIT associated with improved mitochondrial respiration, cardiorespiratory fitness, and insulin sensitivity.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
- Department of Health and Human Performance, University of Wisconsin-River Falls, River Falls, Wisconsin, United States
| | - Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Suvyaktha Simha
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Katherine A Klaus
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
14
|
Adams M, Gordt-Oesterwind K, Bongartz M, Zimmermann S, Seide S, Braun V, Schwenk M. Effects of Physical Activity Interventions on Strength, Balance and Falls in Middle-Aged Adults: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2023; 9:61. [PMID: 37466877 DOI: 10.1186/s40798-023-00606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Weak lower body strength and balance impairments are fundamental risk factors for mobility impairments and falls that can be improved by physical activity (PA). Previous meta-analyses have focused on these risk factors in adults aged ≥ 65 years. Yet, the potential of PA for improving these risk factors in middle-aged populations has not been systematically investigated. This systematic review and meta-analysis aim to examine the effect of general and structured PA on lower limb strength, postural balance and falls in middle-aged adults. METHODS A computerized systematic literature search was conducted in the electronic databases MEDLINE, CINAHL, Web of Science and Cochrane Library. PA intervention types were classified according to the ProFaNE taxonomy. Randomized controlled trials exploring the effects of PA on strength (e.g., leg press one-repetition-maximum), balance (e.g., single limb stance) and falls (e.g., fall rates) in adults aged 40-60 years were systematically searched and included in a network analysis. Moderator analyses were performed for specific subgroups (age, sex, low PA). The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) Scale. RESULTS Out of 7170 articles screened, 66 studies (median PEDro score 5) with 3387 participants were included. Strong, significant effects on muscle strength were found for strength (SMD = 1.02), strength-aerobic (SMD = 1.41), strength-endurance (SMD = 0.92) and water-based (SMD = 1.08) training (52 studies, I2 = 79.3%). Strength training (SMD = 1.16), strength-aerobic (SMD = 0.98) and 3D training (SMD = 1.31) improved postural balance (30 studies, I2 = 88.1%). Moderator analyses revealed significant effects of specific intervention types on certain subgroups and subdomains of strength and balance. No studies were found measuring falls. CONCLUSIONS Structured PA interventions in middle-aged adults improve strength and balance outcomes related to functional impairments and falls. Strength training increases both strength and balance and can be recommended to prevent age-related functional decline. However, the interpretability of the results is limited due to considerable heterogeneity and the overall low methodological quality of the included studies. Long-term trials are needed to determine the preventive potential of PA on strength, balance and falls. This meta-analysis may inform guidelines for tailored training during middle age to promote healthy aging. Prospero registration: CRD42020218643.
Collapse
Affiliation(s)
- Michael Adams
- Network Aging Research, Heidelberg University, 69115, Heidelberg, Germany.
- Institute of Sports and Sports Sciences, Heidelberg University, 69117, Heidelberg, Germany.
| | - Katharina Gordt-Oesterwind
- Network Aging Research, Heidelberg University, 69115, Heidelberg, Germany
- Institute of Sports and Sports Sciences, Heidelberg University, 69117, Heidelberg, Germany
- Unit Digitale Geriatrie, Geriatric Center of Heidelberg University Hospital, Medical Faculty of Heidelberg University, 69120, Heidelberg, Germany
| | - Martin Bongartz
- Geriatric Center, Heidelberg University Hospital, Agaplesion Bethanien Hospital Heidelberg, 69126, Heidelberg, Germany
| | - Samuel Zimmermann
- Institute of Medical Biometry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Svenja Seide
- Institute of Medical Biometry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Volker Braun
- Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Michael Schwenk
- Network Aging Research, Heidelberg University, 69115, Heidelberg, Germany
- Institute of Sports and Sports Sciences, Heidelberg University, 69117, Heidelberg, Germany
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78464, Constance, Germany
| |
Collapse
|
15
|
Pedersen ZO, Pedersen BS, Larsen S, Dysgaard T. A Scoping Review Investigating the "Gene-Dosage Theory" of Mitochondrial DNA in the Healthy Skeletal Muscle. Int J Mol Sci 2023; 24:ijms24098154. [PMID: 37175862 PMCID: PMC10179410 DOI: 10.3390/ijms24098154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
This review provides an overview of the evidence regarding mtDNA and valid biomarkers for assessing mitochondrial adaptions. Mitochondria are small organelles that exist in almost all cells throughout the human body. As the only organelle, mitochondria contain their own DNA, mitochondrial DNA (mtDNA). mtDNA-encoded polypeptides are subunits of the enzyme complexes in the electron transport chain (ETC) that are responsible for production of ATP to the cells. mtDNA is frequently used as a biomarker for mitochondrial content, since changes in mitochondrial volume are thought to induce similar changes in mtDNA. However, some exercise studies have challenged this "gene-dosage theory", and have indicated that changes in mitochondrial content can adapt without changes in mtDNA. Thus, the aim of this scoping review was to summarize the studies that used mtDNA as a biomarker for mitochondrial adaptions and address the question as to whether changes in mitochondrial content, induce changes in mtDNA in response to aerobic exercise in the healthy skeletal muscle. The literature was searched in PubMed and Embase. Eligibility criteria included: interventional study design, aerobic exercise, mtDNA measurements reported pre- and postintervention for the healthy skeletal muscle and English language. Overall, 1585 studies were identified. Nine studies were included for analysis. Eight out of the nine studies showed proof of increased oxidative capacity, six found improvements in mitochondrial volume, content and/or improved mitochondrial enzyme activity and seven studies did not find evidence of change in mtDNA copy number. In conclusion, the findings imply that mitochondrial adaptions, as a response to aerobic exercise, can occur without a change in mtDNA copy number.
Collapse
Affiliation(s)
- Zandra Overgaard Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Britt Staevnsbo Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tina Dysgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Mannakkara NN, Finocchiaro G. Exercise and the Heart: Benefits, Risks and Adverse Effects of Exercise Training. Rev Cardiovasc Med 2023; 24:94. [PMID: 39077491 PMCID: PMC11264002 DOI: 10.31083/j.rcm2403094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 07/31/2024] Open
Abstract
Exercise has multiple health benefits and reduces cardiovascular morbidity and mortality. Regular exercise decreases the burden of cardiovascular risk factors and improves prognosis in several cardiac conditions. Despite these premises, sudden cardiac death (SCD) during sports may occur in apparently healthy athletes who perform at the highest levels. Accurate identification and prompt treatment of individuals at risk may reduce the burden of SCD. A possible cardiotoxic effect of intense exercise has been recently postulated, however this is still matter of controversy as causal relationships are often difficult to establish taking into account multiple confounders. Exercise is safe for the majority, even with cardiovascular disease. In this review, we focus on exercise and sports, discussing their benefits and risks and exercise recommendations for healthy individuals and those with cardiovascular disease.
Collapse
Affiliation(s)
- Nilanka N Mannakkara
- Cardiothoracic Centre, Guy's and St. Thomas' Hospital, SE1 7EH London, UK
- Department of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH London, UK
| | - Gherardo Finocchiaro
- Cardiothoracic Centre, Guy's and St. Thomas' Hospital, SE1 7EH London, UK
- Department of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH London, UK
- Cardiovascular Sciences Research Centre, St George's University of London, SW17 0RE London, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Foundation Trust, SW3 6NP London, UK
| |
Collapse
|
17
|
Monserdà-Vilaró A, Balsalobre-Fernández C, Hoffman JR, Alix-Fages C, Jiménez SL. Effects of Concurrent Resistance and Endurance Training Using Continuous or Intermittent Protocols on Muscle Hypertrophy: Systematic Review With Meta-Analysis. J Strength Cond Res 2023; 37:688-709. [PMID: 36508686 DOI: 10.1519/jsc.0000000000004304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Monserdà-Vilaró, A, Balsalobre-Fernández, C, Hoffman, JR, Alix-Fages, C, and Jiménez, SL. Effects of concurrent resistance and endurance training using continuous or intermittent protocols on muscle hypertrophy: Systematic review with meta-analysis. J Strength Cond Res 37(3): 688-709, 2023-The purpose of this systematic review with meta-analysis was to explore the effects of concurrent resistance and endurance training (CT) incorporating continuous or intermittent endurance training (ET) on whole-muscle and type I and II muscle fiber hypertrophy compared with resistance training (RT) alone. Randomized and nonrandomized studies reporting changes in cross-sectional area at muscle fiber and whole-muscle levels after RT compared with CT were included. Searches for such studies were performed in Web of Science, PubMed, Scopus, SPORTDiscus, and CINAHL electronic databases. The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences (SMDs). Twenty-five studies were included. At the whole-muscle level, there were no significant differences for any comparison (SMD < 0.03). By contrast, RT induced greater type I and type II muscle fiber hypertrophy than CT when high-intensity interval training (HIIT) was incorporated alone (SMD > 0.33) or combined with continuous ET (SMD > 0.27), but not compared with CT incorporating only continuous ET (SMD < 0.16). The subgroup analyses of this systematic review and meta-analysis showed that RT induces greater muscle fiber hypertrophy than CT when HIIT is included. However, no CT affected whole-muscle hypertrophy compared with RT.
Collapse
Affiliation(s)
| | | | - Jay R Hoffman
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel ; and
| | - Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Sergio L Jiménez
- Centre for Sport Studies, Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain
| |
Collapse
|
18
|
Schoenfeld J, Roeh A, Holdenrieder S, von Korn P, Haller B, Krueger K, Falkai P, Halle M, Hasan A, Scherr J. High-mobility group box 1 protein, receptor for advanced glycation end products and nucleosomes increases after marathon. Front Physiol 2023; 14:1118127. [PMID: 36866178 PMCID: PMC9971726 DOI: 10.3389/fphys.2023.1118127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Background: Prolonged and strenuous exercise has been linked to potential exercise-induced myocardial damages. One potential key to unmask the discussed underlying mechanisms of this subclinical cardiac damage could be markers of immunogenic cell damage (ICD). We investigated the kinetics of high-mobility group box 1 protein (HMGB1), soluble receptor for advanced glycation end products (sRAGE), nucleosomes, high sensitive troponin T (hs-TnT) and high sensitive C-reactive protein (hs-CRP) before and up to 12 weeks post-race and described associations with routine laboratory markers and physiological covariates. Methods: In our prospective longitudinal study, 51 adults (82% males; 43 ± 9 years) were included. All participants underwent a cardiopulmonary evaluation 10-12 weeks pre-race. HMGB1, sRAGE, nucleosomes, hs-TnT and, hs-CRP were analysed 10-12 weeks prior, 1-2 weeks before, immediately, 24 h, 72 h, and 12 weeks post-race. Results: HMGB1, sRAGE, nucleosomes and hs-TnT increased significantly from pre- to immediately post-race (0.82-2.79 ng/mL; 1132-1388 pg/mL; 9.24-56.65 ng/mL; 6-27 ng/L; p < 0.001) and returned to baseline within 24-72 h. Hs-CRP increased significantly 24 h post-race (0.88-11.5 mg/L; p < 0.001). Change in sRAGE was positively associated with change in hs-TnT (rs = 0.352, p = 0.011). Longer marathon finishing time was significantly associated with decreased levels of sRAGE [-9.2 pg/mL (β = -9.2, SE = 2.2, p < 0.001)]. Conclusion: Prolonged and strenuous exercise increases markers of ICD immediately post-race, followed by a decrease within 72 h. An acute marathon event results in transient alterations of ICD, we assume that this is not solely driven by myocyte damages.
Collapse
Affiliation(s)
- Julia Schoenfeld
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Astrid Roeh
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Pia von Korn
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Bernhard Haller
- Institute of Medical Informatics, Statistics and Epidemiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kimberly Krueger
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Johannes Scherr
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany,University Center for Preventive and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland,*Correspondence: Johannes Scherr,
| |
Collapse
|
19
|
Impact of concurrent training versus aerobic or resistance training on cardiorespiratory fitness and muscular strength in middle-aged to older adults: A systematic review and meta-analysis. Physiol Behav 2022; 254:113888. [PMID: 35728627 DOI: 10.1016/j.physbeh.2022.113888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022]
Abstract
The effects of aerobic training (AT) on cardiorespiratory fitness (CRF), and resistance training (RT) on muscular strength, are well known in older adults. However, less is known about the potential additive benefits of concurrent training (CT) versus AT or RT alone in this population. We conducted a systematic review and meta-analysis to investigate the effects of CT, versus AT or RT, on CRF and muscular strength in middle-aged to older adults. PubMed and Web of Science were searched through October 2021 to identify randomized trials evaluating CT versus AT and/or RT in middle-aged and older adults (>50 yrs). Studies were included that measured CRF, using maximal or peak oxygen uptake (VO2max/peak); and/or lower- and upper-body muscular strength measured using 1-repetition maximum (1RM) to 10RM tests during isoinertial contractions, or peak torque during isometric dynamometry or isokinetic dynamometry at 30 to 60°/s. Standardized mean differences (SMD) and 95% confidence intervals (95% CIs) were determined using random or fixed effects models. Forty-nine studies involving 2,587 middle-aged to older participants with mean ages ranging from 55 to 88 years, were included in the meta-analysis. Results indicated that CT effectively increased VO2max/peak (SMD: 0.77, p = 0.005, 12 intervention arms) when compared to RT. In addition, CT effectively increased lower- (SMD: 0.60, p = 0.001, 43 intervention arms) and upper-body (SMD: 0.57, p = 0.001, 28 intervention arms) muscular strength when compared to AT. However, there were no differences in VO2max/peak (SMD: 0.09, p = 0.09, 33 intervention arms) between CT and AT, or in lower-body (SMD: 0.07, p = 0.48, 21 intervention arms) and upper-body (SMD: -0.07, p = 0.38, 17 intervention arms) muscular strength between CT and RT. Overall, CT was shown to be effective for increasing CRF and muscular strength in middle-aged to older adults and there was no negative effect on the magnitude of changes in these outcomes compared to either AT or RT alone. These results suggested that CT should be considered a viable strategy to improvement of CRF and muscular strength with aging.
Collapse
|
20
|
Smart TFF, Doleman B, Hatt J, Paul M, Toft S, Lund JN, Phillips BE. The role of resistance exercise training for improving cardiorespiratory fitness in healthy older adults: a systematic review and meta-analysis. Age Ageing 2022; 51:6612690. [PMID: 35737600 PMCID: PMC9220026 DOI: 10.1093/ageing/afac143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Declines in cardiorespiratory fitness (CRF) and muscle mass are both associated with advancing age and each of these declines is associated with worse health outcomes. Resistance exercise training (RET) has previously been shown to improve muscle mass and function in the older population. If RET is also able to improve CRF, as it has been shown to do in younger populations, it has the potential to improve multiple health outcomes in the expanding older population. METHODS This systematic review aimed to identify the role of RET for improving CRF in healthy older adults. A search across CINAHL, MEDLINE, EMBASE and EMCARE databases was conducted with meta-analysis performed on eligible papers to identify improvements in established CRF parameters (VO2 peak, aerobic threshold (AT), 6-minute walking distance test (6MWT) following RET intervention. Main eligibility criteria included older adults (aged over 60), healthy cohorts (disease-specific cohorts were excluded) and RET intervention. RESULTS Thirty-seven eligible studies were identified. Meta-analysis revealed a significant improvement in VO2 peak (MD 1.89 ml/kg/min; 95% confidence interval (CI) 1.21-2.57 ml/kg/min), AT (MD 1.27 ml/kg/min; 95% CI 0.44-2.09 ml/kg/min) and 6MWT (MD 30.89; 95% CI 26.7-35.08) in RET interventions less than 24 weeks. There was no difference in VO2 peak or 6MWT in interventions longer than 24 weeks. DISCUSSION This systematic review adds to a growing body of evidence supporting the implementation of RET in the older population for improving whole-body health, particularly in time-limited timeframes.
Collapse
Affiliation(s)
- Thomas F F Smart
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Derby, UK.,Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Brett Doleman
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Derby, UK.,Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Jacob Hatt
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Derby, UK.,Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Melanie Paul
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Derby, UK.,Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Suzanne Toft
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Jonathan N Lund
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Derby, UK.,Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Derby, UK
| |
Collapse
|
21
|
Mitochondrial mutations alter endurance exercise response and determinants in mice. Proc Natl Acad Sci U S A 2022; 119:e2200549119. [PMID: 35482926 PMCID: PMC9170171 DOI: 10.1073/pnas.2200549119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Primary mitochondrial diseases (PMDs) are the most prevalent inborn metabolic disorders, affecting an estimated 1 in 4,200 individuals. Endurance exercise is generally known to improve mitochondrial function, but its indication in the heterogeneous group of PMDs is unclear. We determined the relationship between mitochondrial mutations, endurance exercise response, and the underlying molecular pathways in mice with distinct mitochondrial mutations. This revealed that mitochondria are crucial regulators of exercise capacity and exercise response. Endurance exercise proved to be mostly beneficial across the different mitochondrial mutant mice with the exception of a worsened dilated cardiomyopathy in ANT1-deficient mice. Thus, therapeutic exercises, especially in patients with PMDs, should take into account the physical and mitochondrial genetic status of the patient. Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.
Collapse
|
22
|
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP. Exerkines in health, resilience and disease. Nat Rev Endocrinol 2022; 18:273-289. [PMID: 35304603 PMCID: PMC9554896 DOI: 10.1038/s41574-022-00641-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Diabetes Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joan M Taylor
- Department of Pathology, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism/Centre for PA Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette van Praag
- Stiles-Nicholson Brain institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Zorina S Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ian R Lanza
- Division of Endocrinology, Nutrition, and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Carl J Lavie
- Division of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
| | - Chih-Hao Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre ('imas12'), Madrid, Spain
- CIBER en Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, Inserm UMR1297, Toulouse, France
- Toulouse III University-Paul Sabatier (UPS), Toulouse, France
| | - Ambarish Pandey
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Saul Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Victoria, Australia
| | - Ashley Xia
- Division of Diabetes, Endocrinology, & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022; 11:antiox11030572. [PMID: 35326222 PMCID: PMC8944834 DOI: 10.3390/antiox11030572] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is the subject of numerous studies, most of them focusing on the negative effects exerted at both molecular and cellular levels, ignoring the possible benefits of free radicals. More and more people admit to having heard of the term "oxidative stress", but few of them understand the meaning of it. We summarized and analyzed the published literature data in order to emphasize the importance and adaptation mechanisms of basal oxidative stress. This review aims to provide an overview of the mechanisms underlying the positive effects of oxidative stress, highlighting these effects, as well as the risks for the population consuming higher doses than the recommended daily intake of antioxidants. The biological dose-response curve in oxidative stress is unpredictable as reactive species are clearly responsible for cellular degradation, whereas antioxidant therapies can alleviate senescence by maintaining redox balance; nevertheless, excessive doses of the latter can modify the redox balance of the cell, leading to a negative outcome. It can be stated that the presence of oxidative status or oxidative stress is a physiological condition with well-defined roles, yet these have been insufficiently researched and explored. The involvement of reactive oxygen species in the pathophysiology of some associated diseases is well-known and the involvement of antioxidant therapies in the processes of senescence, apoptosis, autophagy, and the maintenance of cellular homeostasis cannot be denied. All data in this review support the idea that oxidative stress is an undesirable phenomenon in high and long-term concentrations, but regular exposure is consistent with the hormetic theory.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
- Correspondence:
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Amalia Pușcaș Miklos
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Mădălina-Georgiana Bătrînu
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
24
|
Impact of exercise training on muscle mitochondria modifications in older adults: a systematic review of randomized controlled trials. Aging Clin Exp Res 2022; 34:1495-1510. [PMID: 35079977 DOI: 10.1007/s40520-021-02073-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous evidence showed that cellular aging is a multifactorial process that is associated with decline in mitochondrial function. Physical exercise has been proposed as an effective and safe therapeutical intervention to improve the mitochondria network in the adult myocytes. AIMS The aim of this systematic review of randomized controlled trials (RCTs) was to assess the exercise-induced muscle mitochondria modifications in older adults, underlining the differences related to different exercise modalities. METHODS On November 28th, 2021, five databases (PubMed, Scopus, Web of Science, Cochrane, and PEDro) were systematically searched for RCTs to include articles with: healthy older people as participants; physical exercise (endurance training (ET), resistance training (RT), and combined training (CT)) as intervention; other different exercise modalities or physical inactivity as comparator; mitochondrial modifications (quality, density and dynamics, oxidative, and antioxidant capacity) as outcomes. The quality assessment was performed according to the PEDro scale; the bias risk was evaluated by Cochrane risk-of-bias assessment tool. RESULTS Out of 2940 records, 6 studies were included (2 assessing ET, 2 RT, 1 CT, and 1 both ET and RT). Taken together, 164 elderly subjects were included in the present systematic review. Significant positive effects were reported in terms of mitochondrial quality, density, dynamics, oxidative and antioxidant capacity, even though with different degrees according to the exercise type. The quality assessment reported one good-quality study, whereas the other five studies had a fair quality. DISCUSSION The overall low quality of the studies on this topic indicate that further research is needed. CONCLUSION RT seems to be the most studied physical exercise modality improving mitochondrial density and dynamics, while ET have been related to mitochondrial antioxidant capacity improvements. However, these exercise-induced specific effects should be better explored in older people.
Collapse
|
25
|
Vladimirsky VE, Vladimirsky EV, Lunina AN, Fesyun AD, Rachin AP, Lebedeva OD, Yakovlev MY, Tubekova MA. [Molecular mechanisms of adaptive and therapeutic effects of physical activity in patients with cardiovascular diseases]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:69-77. [PMID: 35485663 DOI: 10.17116/kurort20229902169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Physical activity is one of the main components of the rehabilitation of patients with cardiovascular disease (CVD). As shown by practice and the results of evidence-based studies, the beneficial effects of physical activity on disease outcomes in a number of cardiac nosologies are comparable to drug treatment. This gives the doctor another tool to influence the unfavorable epidemiological situation in developed countries with the spread of diseases of the cardiovascular system and CVD mortality. Reliable positive results of cardiorehabilitation (CR) were obtained using various methods. The goal of CR is to restore the optimal physiological, psychological and professional status, reduce the risk of CVD and mortality. In most current CVD guidelines worldwide, cardiac rehabilitation is a Class I recommendation. The molecular mechanisms described in the review, initiated by physical activity, underlie the multifactorial effect of the latter on the function of the cardiovascular system and the course of cardiac diseases. Physical exercise is an important component of the therapeutic management of patients with CVD, which is supported by the results of a meta-analysis of 63 studies associated with various forms of aerobic exercise of varying intensity (from 50 to 95% VO2) for 1 to 47 months, which showed that CR based on physical exercise improves cardiorespiratory endurance. Knowledge of the molecular basis of the influence of physical activity makes it possible to use biochemical markers to assess the effectiveness of rehabilitation programs.
Collapse
Affiliation(s)
| | | | - A N Lunina
- Wagner Perm State Medical University, Perm, Russia
| | - A D Fesyun
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - A P Rachin
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - O D Lebedeva
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - M Yu Yakovlev
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - M A Tubekova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| |
Collapse
|
26
|
Lagerwaard B, Nieuwenhuizen AG, Bunschoten A, de Boer VC, Keijer J. Matrisome, innervation and oxidative metabolism affected in older compared with younger males with similar physical activity. J Cachexia Sarcopenia Muscle 2021; 12:1214-1231. [PMID: 34219410 PMCID: PMC8517362 DOI: 10.1002/jcsm.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Due to the interaction between skeletal muscle ageing and lifestyle factors, it is often challenging to attribute the decline in muscle mass and quality to either changes in lifestyle or to advancing age itself. Because many of the physiological factors affecting muscle mass and quality are modulated by physical activity and physical activity declines with age, the aim of this study is to better understand the effects of early ageing on muscle function by comparing a population of healthy older and young males with similar physical activity patterns. METHODS Eighteen older (69 ± 2.0 years) and 20 young (22 ± 2.0 years) males were recruited based on similar self-reported physical activity, which was verified using accelerometry measurements. Gene expression profiles of vastus lateralis biopsies obtained by RNA sequencing were compared, and key results were validated using quantitative polymerase chain reaction and western blot. RESULTS Total physical activity energy expenditure was similar between the young and old group (404 ± 215 vs. 411 ± 189 kcal/day, P = 0.11). Three thousand seven hundred ninety-seven differentially expressed coding genes (DEGs) were identified (adjusted P-value cut-off of <0.05), of which 1891 were higher and 1906 were lower expressed in the older muscle. The matrisome, innervation and inflammation were the main upregulated processes, and oxidative metabolism was the main downregulated process in old compared with young muscle. Lower protein levels of mitochondrial transcription factor A (TFAM, P = 0.030) and mitochondrial respiratory Complexes IV and II (P = 0.011 and P = 0.0009, respectively) were observed, whereas a trend was observed for Complex I (P = 0.062), in older compared with young muscle. Protein expression of Complexes I and IV was significantly correlated to mitochondrial capacity in the vastus lateralis as measured in vivo (P = 0.017, R2 = 0.42 and P = 0.030, R2 = 0.36). A trend for higher muscle-specific receptor kinase (MUSK) protein levels in the older group was observed (P = 0.08). CONCLUSIONS There are clear differences in the transcriptome signatures of the vastus lateralis muscle of healthy older and young males with similar physical activity levels, including significant differences at the protein level. By disentangling physical activity and ageing, we appoint early skeletal muscle ageing processes that occur despite similar physical activity. Improved understanding of these processes will be key to design targeted anti-ageing therapies.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
- TI Food and NutritionWageningenThe Netherlands
| | - Arie G. Nieuwenhuizen
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Annelies Bunschoten
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Vincent C.J. de Boer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
27
|
The Effect of Resistance Training in Healthy Adults on Body Fat Percentage, Fat Mass and Visceral Fat: A Systematic Review and Meta-Analysis. Sports Med 2021; 52:287-300. [PMID: 34536199 DOI: 10.1007/s40279-021-01562-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Resistance training is the gold standard exercise mode for accrual of lean muscle mass, but the isolated effect of resistance training on body fat is unknown. OBJECTIVES This systematic review and meta-analysis evaluated resistance training for body composition outcomes in healthy adults. Our primary outcome was body fat percentage; secondary outcomes were body fat mass and visceral fat. DESIGN Systematic review with meta-analysis. DATA SOURCES We searched five electronic databases up to January 2021. ELIGIBILITY CRITERIA We included randomised trials that compared full-body resistance training for at least 4 weeks to no-exercise control in healthy adults. ANALYSIS We assessed study quality with the TESTEX tool and conducted a random-effects meta-analysis, with a subgroup analysis based on measurement type (scan or non-scan) and sex (male or female), and a meta-regression for volume of resistance training and training components. RESULTS From 11,981 records, we included 58 studies in the review, with 54 providing data for a meta-analysis. Mean study quality was 9/15 (range 6-15). Compared to the control, resistance training reduced body fat percentage by - 1.46% (95% confidence interval - 1.78 to - 1.14, p < 0.0001), body fat mass by - 0.55 kg (95% confidence interval - 0.75 to - 0.34, p < 0.0001) and visceral fat by a standardised mean difference of - 0.49 (95% confidence interval - 0.87 to - 0.11, p = 0.0114). Measurement type was a significant moderator in body fat percentage and body fat mass, but sex was not. Training volume and training components were not associated with effect size. Resistance training reduces body fat percentage, body fat mass and visceral fat in healthy adults. STUDY REGISTRATION osf.io/hsk32.
Collapse
|
28
|
McBey DP, Dotzert M, Melling CWJ. The effects of exercise training versus intensive insulin treatment on skeletal muscle fibre content in type 1 diabetes mellitus rodents. Lipids Health Dis 2021; 20:64. [PMID: 34229671 PMCID: PMC8262066 DOI: 10.1186/s12944-021-01494-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intensive-insulin treatment (IIT) strategy for patients with type 1 diabetes mellitus (T1DM) has been associated with sedentary behaviour and the development of insulin resistance. Exercising patients with T1DM often utilize a conventional insulin treatment (CIT) strategy leading to increased insulin sensitivity through improved intramyocellular lipid (IMCL) content. It is unclear how these exercise-related metabolic adaptations in response to exercise training relate to individual fibre-type transitions, and whether these alterations are evident between different insulin strategies (CIT vs. IIT). PURPOSE This study examined glycogen and fat content in skeletal muscle fibres of diabetic rats following exercise-training. METHODS Male Sprague-Dawley rats were divided into four groups: Control-Sedentary, CIT- and IIT-treated diabetic sedentary, and CIT-exercised trained (aerobic/resistance; DARE). After 12 weeks, muscle-fibre lipids and glycogen were compared through immunohistochemical analysis. RESULTS The primary findings were that both IIT and DARE led to significant increases in type I fibres when compared to CIT, while DARE led to significantly increased lipid content in type I fibres compared to IIT. CONCLUSIONS These findings indicate that alterations in lipid content with insulin treatment and DARE are primarily evident in type I fibres, suggesting that muscle lipotoxicity in type 1 diabetes is muscle fibre-type dependant.
Collapse
Affiliation(s)
- David P McBey
- School of Kinesiology, Western University, Medical Sciences Building 227, London, ON, N6A 3K7, Canada
| | - Michelle Dotzert
- School of Kinesiology, Western University, Medical Sciences Building 227, London, ON, N6A 3K7, Canada
| | - C W J Melling
- School of Kinesiology, Western University, Medical Sciences Building 227, London, ON, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
29
|
Burtscher J, Burtscher M, Millet GP. The central role of mitochondrial fitness on antiviral defenses: An advocacy for physical activity during the COVID-19 pandemic. Redox Biol 2021; 43:101976. [PMID: 33932869 PMCID: PMC8062414 DOI: 10.1016/j.redox.2021.101976] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central regulators of cellular metabolism, most known for their role in energy production. They can be "enhanced" by physical activity (including exercise), which increases their integrity, efficiency and dynamic adaptation to stressors, in short "mitochondrial fitness". Mitochondrial fitness is closely associated with cardiorespiratory fitness and physical activity. Given the importance of mitochondria in immune functions, it is thus not surprising that cardiorespiratory fitness is also an integral determinant of the antiviral host defense and vulnerability to infection. Here, we first briefly review the role of physical activity in viral infections. We then summarize mitochondrial functions that are relevant for the antiviral immune response with a particular focus on the current Coronavirus Disease (COVID-19) pandemic and on innate immune function. Finally, the modulation of mitochondrial and cardiorespiratory fitness by physical activity, aging and the chronic diseases that represent the most common comorbidities of COVID-19 is discussed. We conclude that a high mitochondrial - and related cardiorespiratory - fitness should be considered as protective factors for viral infections, including COVID-19. This assumption is corroborated by reduced mitochondrial fitness in many established risk factors of COVID-19, like age, various chronic diseases or obesity. We argue for regular analysis of the cardiorespiratory fitness of COVID-19 patients and the promotion of physical activity - with all its associated health benefits - as preventive measures against viral infection.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
30
|
Burtscher J, Millet GP, Place N, Kayser B, Zanou N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int J Mol Sci 2021; 22:6479. [PMID: 34204228 PMCID: PMC8235687 DOI: 10.3390/ijms22126479] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer's disease, or the most common neurodegenerative motor disorder, Parkinson's disease. While there is evidence that exercise induces signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the muscle-brain axis is incompletely understood. Mitochondria in both organs, however, seem to be central players. Here, we provide an overview on the central role of mitochondria in exercise-induced communication routes from muscle to the brain. These routes include circulating factors, such as myokines, the release of which often depends on mitochondria, and possibly direct mitochondrial transfer. On this basis, we examine the reported effects of different modes of exercise on mitochondrial features and highlight their expected benefits with regard to neurodegeneration prevention or mitigation. In addition, knowledge gaps in our current understanding related to the muscle-brain axis in neurodegenerative diseases are outlined.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
31
|
Knight SP, Laird E, Williamson W, O'Connor J, Newman L, Carey D, De Looze C, Fagan AJ, Chappell MA, Meaney JF, Kenny RA. Obesity is associated with reduced cerebral blood flow - modified by physical activity. Neurobiol Aging 2021; 105:35-47. [PMID: 34022537 PMCID: PMC8600128 DOI: 10.1016/j.neurobiolaging.2021.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
This study examined the associations of body mass index (BMI), waist-to-hip ratio (WHR), waist circumference (WC), and physical activity (PA) with gray matter cerebral blood flow (CBFGM) in older adults. Cross-sectional data was used from the Irish Longitudinal Study on Ageing (n = 495, age 69.0 ±7.4 years, 52.1% female). Whole-brain CBFGM was quantified using arterial spin labeling MRI. Results from multivariable regression analysis revealed that an increase in BMI of 0.43 kg/m2, WHR of 0.01, or WC of 1.3 cm were associated with the same reduction in CBFGM as 1 year of advancing age. Participants overweight by BMI or with high WHR/WC reporting low/moderate PA had up to 3 ml/100g/min lower CBFGM (p ≤ .011); there was no significant reduction for those reporting high PA. Since PA could potentially moderate obesity/CBF associations, this may be a cost-effective and relatively easy way to help mitigate the negative impact of obesity in an older population, such as cerebral hypoperfusion, which is an early mechanism in vascular dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Silvin P Knight
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Eamon Laird
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Wilby Williamson
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - John O'Connor
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Louise Newman
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Celine De Looze
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Chappell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - James F Meaney
- School of Medicine, Trinity College Dublin, Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Mercer's Institute for Successful Ageing (MISA), St. James's Hospital, Dublin, Ireland
| |
Collapse
|
32
|
Berg OK, Kwon OS, Hureau TJ, Clifton HL, Thurston TS, Le Fur Y, Jeong EK, Trinity JD, Richardson RS, Wang E, Layec G. Skeletal Muscle Mitochondrial Adaptations to Maximal Strength Training in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 75:2269-2277. [PMID: 32253421 DOI: 10.1093/gerona/glaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Maximal strength training (MST) results in robust improvements in skeletal muscle force production, efficiency, and mass. However, the effects of MST on muscle mitochondria are still unknown. Accordingly, the purpose of this study was to examine, from the molecular level to whole-muscle, mitochondrial adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older adults using immunoblotting, spectrophotometry, high-resolution respirometry in permeabilized muscle fibers, in vivo 31P magnetic resonance spectroscopy (31P-MRS), and gas exchange. As anticipated, MST resulted in an increased isometric knee-extensor force from 133 ± 36 to 147 ± 49 Nm (p < .05) and quadriceps muscle volume from 1,410 ± 103 to 1,555 ± 455 cm3 (p < .05). Mitochondrial complex (I-V) protein abundance and citrate synthase activity were not significantly altered by MST. Assessed ex vivo, maximal ADP-stimulated respiration (state 3CI+CII, PRE: 23 ± 6 and POST: 14 ± 5 ρM·mg-1·s-1, p < .05), was decreased by MST, predominantly, as a result of a decline in complex I-linked respiration (p < .05). Additionally, state 3 free-fatty acid linked respiration was decreased following MST (PRE: 19 ± 5 and POST: 14 ± 3 ρM·mg-1·s-1, p < .05). Assessed in vivo, MST slowed the PCr recovery time constant (PRE: 49 ± 13 and POST: 57 ± 16 seconds, p < .05) and lowered, by ~20% (p = .055), the quadriceps peak rate of oxidative ATP synthesis, but did not significantly alter the oxidation of lipid. Although these, likely qualitative, mitochondrial adaptations are potentially negative in terms of skeletal muscle energetic capacity, they need to be considered in light of the many improvements in muscle function that MST affords older adults.
Collapse
Affiliation(s)
- Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Norway
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs
| | - Thomas J Hureau
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
| | - Heather L Clifton
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
| | - Taylor S Thurston
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City
| | - Yann Le Fur
- CRMBM, Aix-Marseille Universite, CNRS 7339, France
| | - Eun-Kee Jeong
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City
| | - Joel D Trinity
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City
| | - Russell S Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Norway.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Department of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gwenael Layec
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City.,Department of Kinesiology, University of Massachusetts, Amherst.,Institute for Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
33
|
Harper C, Gopalan V, Goh J. Exercise rescues mitochondrial coupling in aged skeletal muscle: a comparison of different modalities in preventing sarcopenia. J Transl Med 2021; 19:71. [PMID: 33593349 PMCID: PMC7885447 DOI: 10.1186/s12967-021-02737-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle aging is associated with a decline in motor function and loss of muscle mass- a condition known as sarcopenia. The underlying mechanisms that drive this pathology are associated with a failure in energy generation in skeletal muscle, either from age-related decline in mitochondrial function, or from disuse. To an extent, lifelong exercise is efficacious in preserving the energetic properties of skeletal muscle and thus may delay the onset of sarcopenia. This review discusses the cellular and molecular changes in skeletal muscle mitochondria during the aging process and how different exercise modalities work to reverse these changes. A key factor that will be described is the efficiency of mitochondrial coupling—ATP production relative to O2 uptake in myocytes and how that efficiency is a main driver for age-associated decline in skeletal muscle function. With that, we postulate the most effective exercise modality and protocol for reversing the molecular hallmarks of skeletal muscle aging and staving off sarcopenia. Two other concepts pertinent to mitochondrial efficiency in exercise-trained skeletal muscle will be integrated in this review, including- mitophagy, the removal of dysfunctional mitochondrial via autophagy, as well as the implications of muscle fiber type changes with sarcopenia on mitochondrial function.
Collapse
Affiliation(s)
- Colin Harper
- Clinical Translation Unit (CTU), Tulane University, New Orleans, USA
| | - Venkatesh Gopalan
- Agency for Science, Technology & Research (A*STAR), Singapore Bioimaging Consortium (SBIC), Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore.
| |
Collapse
|
34
|
Hesketh SJ, Stansfield BN, Stead CA, Burniston JG. The application of proteomics in muscle exercise physiology. Expert Rev Proteomics 2021; 17:813-825. [PMID: 33470862 DOI: 10.1080/14789450.2020.1879647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Exercise offers protection from non-communicable diseases and extends healthspan by offsetting natural physiological declines that occur in older age. Striated muscle is the largest bodily organ; it underpins the capacity for physical work, and the responses of muscle to exercise convey the health benefits of a physically active lifestyle. Proteomic surveys of muscle provide a means to study the protective effects of exercise and this review summaries some key findings from literature listed in PubMed during the last 10 years that have led to new insight in muscle exercise physiology. AREAS COVERED 'Bottom-up' analyses involving liquid-chromatography tandem mass spectrometry (LC-MS/MS) of peptide digests have become the mainstay of proteomic studies and have been applied to muscle mitochondrial fractions. Enrichment techniques for post-translational modifications, including phosphorylation, acetylation and ubiquitination, have evolved and the analysis of site-specific modifications has become a major area of interest in exercise proteomics. Finally, we consider emergent techniques for dynamic analysis of muscle proteomes that offer new insight to protein turnover and the contributions of synthesis and degradation to changes in protein abundance in response to exercise training. EXPERT OPINION Burgeoning methods for dynamic proteome profiling offer new opportunities to study the mechanisms of muscle adaptation.
Collapse
Affiliation(s)
- Stuart J Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Ben N Stansfield
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| |
Collapse
|
35
|
Jankowski CM, Wilson MP, MaWhinney S, Reusch J, Knaub L, Hull S, Erlandson KM. Blunted muscle mitochondrial responses to exercise training in older adults with HIV. J Infect Dis 2020; 224:679-683. [PMID: 33378424 DOI: 10.1093/infdis/jiaa799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Muscle mitochondrial dysfunction associated with HIV and antiretroviral therapy (ART) may improve with exercise. METHODS Muscle specimens obtained before and after 24 weeks of exercise in older PWH (n=18; ART >2 years) and uninfected controls (n=21) were analyzed for citrate synthase (CS) activity and complexes (C) I-V, manganese superoxide dismutase (MnSOD), peroxisome proliferator-activated receptor-γ coactivator-1 (PGC1α), and voltage-dependent anion channel 1 (VDAC1) content. RESULTS Only controls had increased CS, MnSOD, PGC1 and CIV (P≤0.01; P< 0.01 vs PWH) after training. CONCLUSIONS The blunted mitochondrial adaptations to training in PWH suggests the need for different types of exercise-induced stimulation.
Collapse
Affiliation(s)
| | - Melissa P Wilson
- University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA.,University of Colorado Anschutz Medical Campus, School of Medicine, Department of Bioinformatics and Personalized Medicine, Aurora, CO, USA
| | - Samantha MaWhinney
- University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Jane Reusch
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,University of Colorado Anschutz Medical Campus Center for Women's Health Research, Aurora, CO, USA
| | - Leslie Knaub
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Sara Hull
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Kristine M Erlandson
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Infectious Diseases, Aurora, CO, USA.,University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Geriatric Medicine, Aurora, CO, USA
| |
Collapse
|
36
|
Exercise as a Therapeutic Strategy for Sarcopenia in Heart Failure: Insights into Underlying Mechanisms. Cells 2020; 9:cells9102284. [PMID: 33066240 PMCID: PMC7602002 DOI: 10.3390/cells9102284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, a syndrome commonly seen in elderly populations, is often characterized by a gradual loss of skeletal muscle, leading to the decline of muscle strength and physical performance. Growing evidence suggests that the prevalence of sarcopenia increases in patients with heart failure (HF), which is a dominant pathogenesis in the aging heart. HF causes diverse metabolic complications that may result in sarcopenia. Therefore, sarcopenia may act as a strong predictor of frailty, disability, and mortality associated with HF. Currently, standard treatments for slowing muscle loss in patients with HF are not available. Therefore, here, we review the pathophysiological mechanisms underlying sarcopenia in HF as well as current knowledge regarding the beneficial effects of exercise on sarcopenia in HF and related mechanisms, including hormonal changes, myostatin, oxidative stress, inflammation, apoptosis, autophagy, the ubiquitin-proteasome system, and insulin resistance.
Collapse
|
37
|
Mesquita PH, Lamb DA, Parry HA, Moore JH, Smith MA, Vann CG, Osburn SC, Fox CD, Ruple BA, Huggins KW, Fruge AD, Young KC, Kavazis AN, Roberts MD. Acute and chronic effects of resistance training on skeletal muscle markers of mitochondrial remodeling in older adults. Physiol Rep 2020; 8:e14526. [PMID: 32748504 PMCID: PMC7399374 DOI: 10.14814/phy2.14526] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
We investigated the acute and chronic effects of resistance training (RT) on skeletal muscle markers of mitochondrial content and remodeling in older, untrained adults. Sixteen participants (n = 6 males, n = 10 females; age = 59 ± 4 years) completed 10 weeks of full-body RT (2 day/week). Muscle biopsies from the vastus lateralis were obtained prior to RT (Pre), 24 hr following the first training session (Acute), and 72 hr following the last training session (Chronic). Protein levels of mitochondrial electron transport chain complexes I-V (+39 to +180%, p ≤ .020) and markers of mitochondrial fusion Mfn1 (+90%, p = .003), Mfn2 (+110%, p < .001), and Opa1 (+261%, p = .004) increased following chronic RT. Drp1 protein levels also increased (+134%, p = .038), while Fis1 protein levels did not significantly change (-5%, p = .584) following chronic RT. Interestingly, protein markers of mitochondrial biogenesis (i.e., PGC-1α, TFAM, and NRF1) or mitophagy (i.e., Pink1 and Parkin) were not significantly altered (p > .050) after 10 weeks of RT. In summary, chronic RT promoted increases in content of electron transport chain proteins (i.e., increased protein levels of all five OXPHOS complexes) and increase in the levels of proteins related to mitochondrial dynamics (i.e., increase in fusion protein markers) in skeletal muscle of older adults. These results suggest that chronic RT could be a useful strategy to increase mitochondrial protein content in older individuals.
Collapse
Affiliation(s)
| | - Donald A. Lamb
- Department of Nutrition, Dietetics and Hospitality ManagementAuburn UniversityAuburnALUSA
| | | | | | | | | | | | | | | | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality ManagementAuburn UniversityAuburnALUSA
| | - Andrew D. Fruge
- Department of Nutrition, Dietetics and Hospitality ManagementAuburn UniversityAuburnALUSA
| | - Kaelin C. Young
- School of KinesiologyAuburn UniversityAuburnALUSA
- Department of Cell Biology and PhysiologyEdward Via College of Osteopathic MedicineAuburnALUSA
| | | | - Michael D. Roberts
- School of KinesiologyAuburn UniversityAuburnALUSA
- Department of Cell Biology and PhysiologyEdward Via College of Osteopathic MedicineAuburnALUSA
| |
Collapse
|
38
|
Kruse R, Sahebekhtiari N, Højlund K. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. Int J Mol Sci 2020; 21:ijms21155374. [PMID: 32731645 PMCID: PMC7432338 DOI: 10.3390/ijms21155374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mitochondria are essential in energy metabolism and cellular survival, and there is growing evidence that insulin resistance in chronic metabolic disorders, such as obesity, type 2 diabetes (T2D), and aging, is linked to mitochondrial dysfunction in skeletal muscle. Protein profiling by proteomics is a powerful tool to investigate mechanisms underlying complex disorders. However, despite significant advances in proteomics within the past two decades, the technologies have not yet been fully exploited in the field of skeletal muscle proteome. Area covered: Here, we review the currently available studies characterizing the mitochondrial proteome in human skeletal muscle in insulin-resistant conditions, such as obesity, T2D, and aging, as well as exercise-mediated changes in the mitochondrial proteome. Furthermore, we outline technical challenges and limitations and methodological aspects that should be considered when planning future large-scale proteomics studies of mitochondria from human skeletal muscle. Authors’ view: At present, most proteomic studies of skeletal muscle or isolated muscle mitochondria have demonstrated a reduced abundance of proteins in several mitochondrial biological processes in obesity, T2D, and aging, whereas the beneficial effects of exercise involve an increased content of muscle proteins involved in mitochondrial metabolism. Powerful mass-spectrometry-based proteomics now provides unprecedented opportunities to perform in-depth proteomics of muscle mitochondria, which in the near future is expected to increase our understanding of the complex molecular mechanisms underlying the link between mitochondrial dysfunction and insulin resistance in chronic metabolic disorders.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Correspondence: ; Tel.: +45-2532-06-48
| |
Collapse
|
39
|
Pope BS, Wood SK. Advances in understanding mechanisms and therapeutic targets to treat comorbid depression and cardiovascular disease. Neurosci Biobehav Rev 2020; 116:337-349. [PMID: 32598982 DOI: 10.1016/j.neubiorev.2020.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Chronic or repeated social stress exposure often precipitates the onset of depression and cardiovascular disease (CVD). Despite a clear clinical association between CVD and depression, the pathophysiology underlying these comorbid conditions is unclear. Chronic exposure to social stress can lead to immune system dysregulation, mitochondrial dysfunction, and vagal withdrawal. Further, regular physical exercise is well-known to exert cardioprotective effects, and accumulating evidence demonstrates the antidepressant effect of exercise. This review explores the contribution of inflammation, mitochondrial dysfunction, and vagal withdrawal to stress-induced depression and CVD. Evidence for therapeutic benefits of exercise, anti-inflammatory therapies, and vagus nerve stimulation are also reviewed. Benefits of targeted therapeutics of mitochondrial agents, anti-inflammatory therapies, and vagus nerve stimulation are discussed. Importantly, the ability of exercise to impact each of these factors is also reviewed. The current findings described here implicate a new direction for research, targeting the shared mechanisms underlying comorbid depression-CVD. This will guide the development of novel therapeutic strategies for the prevention and treatment of these stress-related pathologies, particularly within treatment-resistant populations.
Collapse
Affiliation(s)
- Brittany S Pope
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, 20208, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, United States; William Jennings Bryan Dorn Veterans Administration Medical Center, Columbia, SC, 29209, United States.
| |
Collapse
|
40
|
Broskey NT, Marlatt KL, Most J, Erickson ML, Irving BA, Redman LM. The Panacea of Human Aging: Calorie Restriction Versus Exercise. Exerc Sport Sci Rev 2020; 47:169-175. [PMID: 30998529 DOI: 10.1249/jes.0000000000000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary aging is the progressive decline in health and fitness and depends on metabolic rate and oxidative stress. Untoward changes in body composition and metabolic function characterize secondary aging. We hypothesize that both exercise and calorie restriction (CR) improve secondary aging, but only CR improves primary. However, CR followed with exercise is a superior strategy to maintain overall health and quality of life with age.
Collapse
Affiliation(s)
| | | | - Jasper Most
- Pennington Biomedical Research Center, Baton Rouge, LA
| | | | - Brian A Irving
- Pennington Biomedical Research Center, Baton Rouge, LA.,Department of Kinesiology, Louisiana State University, Baton Rouge, LA
| | | |
Collapse
|
41
|
Deane CS, Phillips BE, Smith K, Steele AM, Libretto T, Statton SA, Atherton PJ, Etheridge T. Challenges and practical recommendations for successfully recruiting inactive, statin-free older adults to clinical trials. BMC Res Notes 2020; 13:174. [PMID: 32209122 PMCID: PMC7092412 DOI: 10.1186/s13104-020-05017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To outline the challenges and provide practical recommendations for recruiting inactive, statin-free older adults to facilitate feasible study designs. Data was obtained from a double-blind randomised-controlled clinical trial investigating the effects of acipimox versus placebo on muscle function and metabolism in older (65-75 years), inactive, statin-free males. The initial recruitment target was 20 volunteers within 12 months (November 2016-November 2017). RESULTS Recruitment occurred via the Exeter 10,000 database containing 236 'eligible' males, a Facebook campaign reaching > 8000 ≥ 65 years old males, 400 directly-addressed letters to ≥ 66 year old males, > 1500 flyers distributed within the community, > 40 emails to local community groups, 4 recruitment talks, 2 magazine adverts and 1 radio advert. Widespread recruitment efforts reaching > 120,000 people led to the recruitment of 20 volunteers (18 completed the clinical trial) within a 25-month timeframe, highlighting the challenge of the timely recruitment of inactive, statin-free older adults for clinical trials. We recommend recruitment for future clinical trials should take a multi-pronged approach from the outset, prioritising the use of volunteer databases, Facebook campaigns and delivering recruitment talks.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, EX1 2LU, UK.
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Bethan E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medicine and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Kenneth Smith
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medicine and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Anna M Steele
- National Institute for Health Research Exeter Clinical Research Facility, Research Innovation Learning and Development Building, Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Tina Libretto
- National Institute for Health Research Exeter Clinical Research Facility, Research Innovation Learning and Development Building, Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Sarah A Statton
- National Institute for Health Research Exeter Clinical Research Facility, Research Innovation Learning and Development Building, Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medicine and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, EX1 2LU, UK
| |
Collapse
|
42
|
Madsen KL, Buch AE, Cohen BH, Falk MJ, Goldsberry A, Goldstein A, Karaa A, Koenig MK, Muraresku CC, Meyer C, O'Grady M, Scaglia F, Shieh PB, Vockley J, Zolkipli-Cunningham Z, Haller RG, Vissing J. Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy: MOTOR trial. Neurology 2020; 94:e687-e698. [PMID: 31896620 PMCID: PMC7176297 DOI: 10.1212/wnl.0000000000008861] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/28/2019] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE To investigate the safety and efficacy of escalating doses of the semi-synthetic triterpenoid omaveloxolone in patients with mitochondrial myopathy. METHODS In cohorts of 8-13, 53 participants were randomized double-blind to 12 weeks of treatment with omaveloxolone 5, 10, 20, 40, 80, or 160 mg, or placebo. Outcome measures were change in peak cycling exercise workload (primary), in 6-minute walk test (6MWT) distance (secondary), and in submaximal exercise heart rate and plasma lactate (exploratory). RESULTS No differences in peak workload or 6MWT were observed at week 12 with omaveloxolone treatment vs placebo for all omaveloxolone dose groups. In contrast, omaveloxolone 160 mg reduced heart rate at week 12 by 12.0 ± 4.6 bpm (SE) during submaximal exercise vs placebo, p = 0.01, and by 8.7 ± 3.5 bpm (SE) vs baseline, p = 0.02. Similarly, blood lactate was 1.4 ± 0.7 mM (SE) lower vs placebo, p = 0.04, and 1.6 ± 0.5 mM (SE) lower vs baseline at week 12, p = 0.003, with omaveloxolone 160 mg treatment. Adverse events were generally mild and infrequent. CONCLUSIONS Omaveloxolone 160 mg was well-tolerated, and did not lead to change in the primary outcome measure, but improved exploratory endpoints lowering heart rate and lactate production during submaximal exercise, consistent with improved mitochondrial function and submaximal exercise tolerance. Therefore, omaveloxolone potentially benefits patients with mitochondrial myopathy, which encourages further investigations of omaveloxolone in this patient group. CLINICALTRIALSGOV IDENTIFIER NCT02255422. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that, for patients with mitochondrial myopathy, omaveloxolone compared to placebo did not significantly change peak exercise workload.
Collapse
Affiliation(s)
- Karen L Madsen
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas.
| | - Astrid E Buch
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Bruce H Cohen
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Marni J Falk
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Angela Goldsberry
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Amy Goldstein
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Amel Karaa
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Mary K Koenig
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Colleen C Muraresku
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Colin Meyer
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Megan O'Grady
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Fernando Scaglia
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Perry B Shieh
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Jerry Vockley
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Zarazuela Zolkipli-Cunningham
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - Ronald G Haller
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| | - John Vissing
- From Copenhagen Neuromuscular Center (K.L.M., A.E.B., J.V.), Rigshospitalet, University of Copenhagen, Denmark; Akron Children's Hospital (B.H.C.), OH; Mitochondrial Medicine Frontier Program, Department of Pediatrics (M.J.F., C.C.M., Z.Z.C.), The Children's Hospital of Philadelphia; University of Pennsylvania Perelman School of Medicine (M.J.F., Z.Z.C.), Philadelphia; Reata Pharmaceuticals (A. Goldsberry, C.M., M.O.), Irving, TX; University of Pittsburgh School of Medicine (A. Goldstein, J.V.), Children's Hospital of Pittsburgh of UPMC, PA; Genetics Unit (A.K.), Massachusetts General, Boston; University of Texas Medical School (M.K.K.); Baylor College of Medicine (F.S.); Texas Children's Hospital (F.S.), Houston; BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; University of California Los Angeles (P.B.S.); and University of Texas Southwestern Medical Center and Neuromuscular Center (R.G.H.), Institute for Exercise & Environmental Medicine, Dallas
| |
Collapse
|
43
|
Effect of Calanus Oil Supplementation and 16 Week Exercise Program on Selected Fitness Parameters in Older Women. Nutrients 2020; 12:nu12020481. [PMID: 32074977 PMCID: PMC7071248 DOI: 10.3390/nu12020481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 01/21/2023] Open
Abstract
We investigated changes in functional fitness after an exercise program in combination with Calanus oil supplementation, a novel source of bioactive lipids rich in wax esters with omega-3 polyunsaturated fatty acid (n-3 PUFA). Fifty-five healthy sedentary women aged 65–80 (mean age 70.9 ± 3.9 years, BMI 27.24 ± 3.9 kg m−2, VO2peak 19.46 ± 3.7 ml kg−1 min−1) were enrolled in the study. The participants were divided into two groups: exercise training plus Calanus Oil supplementation (n = 28) or exercise plus placebo (sunflower oil) supplementation (n = 27). The exercise intervention program was completed by 53 participants and contained functional circuit training (twice a week, 45 min plus 15 min of stretching and balance training) and Nordic walking (once a week, 60 min) for 16 weeks. Senior fitness test, exercise stress test on bicycle ergometer, hand-grip, and body composition were evaluated before and after the program. Our results show that functional fitness and body composition improved following the interventional exercise program, but for most of the parameters there was no synergic effect of supplementing n-3 PUFA-rich Calanus oil. In comparison to the placebo group, the group with Calanus supplementation experienced significantly higher improvement of functional strength of lower body which was evaluated by the chair stand test. Supplementation with Calanus may have a synergic effect with exercise on functional strength of the lower body in the elderly.
Collapse
|
44
|
Jacques M, Kuang J, Bishop DJ, Yan X, Alvarez-Romero J, Munson F, Garnham A, Papadimitriou I, Voisin S, Eynon N. Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study. FASEB J 2020; 34:2978-2986. [PMID: 31919888 PMCID: PMC7384122 DOI: 10.1096/fj.201901997rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
Abstract
Mitochondrial respiration using the oxygraph‐2k respirometer (Oroboros) is widely used to estimate mitochondrial capacity in human skeletal muscle. Here, we measured mitochondrial respiration variability, in a relatively large sample, and for the first time, using statistical simulations, we provide the sample size required to detect meaningful respiration changes following lifestyle intervention. Muscle biopsies were taken from healthy, young men from the Gene SMART cohort, at multiple time points. We utilized samples for each measurement with two technical repeats using two respirometer chambers (n = 160 pairs of same muscle after removal of low‐quality samples). We measured the Technical Error of measurement (TEM) and the coefficient of variation (CV) for each mitochondrial complex. There was a high correlation between measurements from the two chambers (R > 0.7 P < .001) for all complexes, but the TEM was large (7.9‐27 pmol s−1 mg−1; complex dependent), and the CV was >15% for all complexes. We performed statistical simulations of a range of effect sizes at 80% power and found that 75 participants (with duplicate measurements) are required to detect a 6% change in mitochondrial respiration after an intervention, while for interventions with 11% effect size, ~24 participants are sufficient. The high variability in respiration suggests that the typical sample sizes in exercise studies may not be sufficient to capture exercise‐induced changes.
Collapse
Affiliation(s)
- Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Javier Alvarez-Romero
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Fiona Munson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Andrew Garnham
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Ioannis Papadimitriou
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Gholamnezhad Z, Mégarbane B, Rezaee R. Molecular Mechanisms Mediating Adaptation to Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:45-61. [PMID: 32342449 DOI: 10.1007/978-981-15-1792-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several experimental and human studies documented the preventive and therapeutic effects of exercise on the normal physiological function of different body systems during aging as well as various diseases. Recent studies using cellular and molecular (biochemical, proteomics, and genomics) techniques indicated that exercise modifies intracellular and extracellular signaling and pathways. In addition, in vivo or in vitro experiments, particularly, using knockout and transgenic animals, helped to mimic physiological conditions during and after exercise. According to the findings of these studies, some important signaling pathways modulated by exercise are Ca2+-dependent calcineurin/activated nuclear factor of activated T-cells, mammalian target of rapamycin, myostatin/Smad, and AMP-activated protein kinase regulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha. Such modulations contribute to cell adaptation and remodeling of muscle fiber type in response to exercise. Despite great improvement in this field, there are still several unanswered questions as well as unfixed issues concerning clinical trials' biases and limitations. Nevertheless, designing multicenter standard clinical trials while considering individual variability and the exercise modality and duration will improve the perspective we have on the mechanisms mediating adaptation to exercise and final outcomes.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Paris-Diderot University, Paris, France
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
In vivo assessment of mitochondrial capacity using NIRS in locomotor muscles of young and elderly males with similar physical activity levels. GeroScience 2019; 42:299-310. [PMID: 31858399 PMCID: PMC7031190 DOI: 10.1007/s11357-019-00145-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial capacity is pivotal to skeletal muscle function and is suggested to decline with age. However, there is large heterogeneity in current data, possibly due to effect modifiers such as physical activity, sex and muscle group. Yet, few studies have compared multiple muscle groups in different age groups with comparable physical activity levels. Here, we newly used near-infrared spectroscopy (NIRS) to characterise mitochondrial capacity in three different locomotor muscles in young (19-25 year) and older (65-71 year), healthy males with similar physical activity levels. Mitochondrial capacity and reperfusion after arterial occlusion was measured in the vastus lateralis (VL), the gastrocnemius (GA) and the tibialis anterior (TA). Physical activity was verified using accelerometry and was not different between the age groups (404.3 ± 214.9 vs 494.9 ± 187.0 activity kcal per day, p = 0.16). Mitochondrial capacity was significantly lower in older males in the GA and VL, but not in the TA (p = 0.048, p = 0.036 and p = 0.64, respectively). Reperfusion rate was not significantly different for the GA (p = 0.55), but was significantly faster in the TA and VL in the young group compared to the older group (p = 0.0094 and p = 0.039, respectively). In conclusion, we identified distinct modes of mitochondrial ageing in different locomotor muscles in a young and older population with similar physical activity patterns. Furthermore, we show that NIRS is suitable for relatively easy application in ageing research and can reveal novel insights into mitochondrial functioning with age.
Collapse
|
47
|
Watson EL, Baker LA, Wilkinson TJ, Gould DW, Graham‐Brown MP, Major RW, Ashford RU, Philp A, Smith AC. Reductions in skeletal muscle mitochondrial mass are not restored following exercise training in patients with chronic kidney disease. FASEB J 2019; 34:1755-1767. [DOI: 10.1096/fj.201901936rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Emma L. Watson
- Department of Cardiovascular Sciences University of Leicester Leicester UK
| | - Luke A. Baker
- Department of Health Sciences University of Leicester Leicester UK
| | | | - Douglas W. Gould
- Department of Cardiovascular Sciences University of Leicester Leicester UK
- Intensive Care National Audit and Research Centre London UK
| | - Matthew P.M. Graham‐Brown
- Department of Cardiovascular Sciences University of Leicester Leicester UK
- John Walls Renal Unit University Hospitals of Leicester NHS Trust Leicester UK
- National Centre for Sport and Exercise Medicine School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Rupert W. Major
- Department of Health Sciences University of Leicester Leicester UK
- John Walls Renal Unit University Hospitals of Leicester NHS Trust Leicester UK
| | - Robert U. Ashford
- Leicester Orthopaedics University Hospitals of Leicester Leicester UK
- Leicester Cancer Research Centre University of Leicester Leicester UK
| | - Andrew Philp
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- UNSW Medicine UNSW Sydney Sydney NSW Australia
| | - Alice C. Smith
- Department of Health Sciences University of Leicester Leicester UK
- John Walls Renal Unit University Hospitals of Leicester NHS Trust Leicester UK
| |
Collapse
|
48
|
Palmeira CM, Teodoro JS, Amorim JA, Steegborn C, Sinclair DA, Rolo AP. Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radic Biol Med 2019; 141:483-491. [PMID: 31349039 PMCID: PMC6718302 DOI: 10.1016/j.freeradbiomed.2019.07.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
The key role of mitochondria in oxidative metabolism and redox homeostasis explains the link between mitochondrial dysfunction and the development of metabolic disorders. Mitochondria's highly dynamic nature, based on alterations in biogenesis, mitophagy, fusion and fission, allows adjusting sequential redox reactions of the electron transport chain (ETC) and dissipation of the membrane potential by ATP synthase, to different environmental cues. With reactive oxygen species being an inevitable by-product of oxidative phosphorylation (OXPHOS), alterations on mitochondrial oxidative rate with a consequent excessive load of reactive oxygen species have been traditionally associated with pathological conditions. However, reactive oxygen species have also been suggested as promoters of mitohormesis, a process in which low, non-cytotoxic concentrations of reactive oxygen species promote mitochondrial homeostasis. Therefore, signaling systems involved in the regulation of mitochondrial homeostasis are attractive candidates for drug development for metabolic diseases triggered by mitochondrial dysfunction. Reversible phosphorylation downstream the cyclic AMP (cAMP) signaling cascade and deacetylation mediated by sirtuins are recognized as major mitochondrial regulators.
Collapse
Affiliation(s)
- Carlos Marques Palmeira
- Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - João Soeiro Teodoro
- Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - João Alves Amorim
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; IIIUC - Institute of Interdisciplinary Research, University of Coimbra, Portugal; Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440, Bayreuth, Germany
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anabela Pinto Rolo
- Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal.
| |
Collapse
|
49
|
Health Benefits of Endurance Training: Implications of the Brain-Derived Neurotrophic Factor-A Systematic Review. Neural Plast 2019; 2019:5413067. [PMID: 31341469 PMCID: PMC6613032 DOI: 10.1155/2019/5413067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/24/2019] [Indexed: 02/06/2023] Open
Abstract
This article presents a concept that wide expression of brain-derived neurotrophic factor (BDNF) and its receptors (TrkB) in the nervous tissue, evoked by regular endurance training (ET), can cause numerous motor and metabolic adaptations, which are beneficial for human health. The relationships between the training-evoked increase of endogenous BDNF and molecular and/or physiological adaptations in the nervous structures controlling both motor performance and homeostasis of the whole organism have been presented. Due to a very wide range of plastic changes that ET has exerted on various systems of the body, the improvement of motor skills and counteraction of the development of civilization diseases resulting from the posttraining increase of BDNF/TrkB levels have been discussed, as important for people, who undertake ET. Thus, this report presents the influence of endurance exercises on the (1) transformation of motoneuron properties, which are a final element of the motor pathways, (2) reduction of motor deficits evoked by Parkinson disease, and (3) prevention of the metabolic syndrome (MetS). This review suggests that the increase of posttraining levels of BDNF and its TrkB receptors causes simultaneous changes in the activity of the spinal cord, the substantia nigra, and the hypothalamic nuclei neurons, which are responsible for the alteration of the functional properties of motoneurons innervating the skeletal muscles, for the enhancement of dopamine release in the brain, and for the modulation of hormone levels involved in regulating the metabolic processes, responsively. Finally, training-evoked increase of the BDNF/TrkB leads to a change in a manner of regulation of skeletal muscles, causes a reduction of motor deficits observed in the Parkinson disease, and lowers weight, glucose level, and blood pressure, which accompany the MetS. Therefore, BDNF seems to be the molecular factor of pleiotropic activity, important in the modulation processes, underlying adaptations, which result from ET.
Collapse
|
50
|
Pinckard K, Baskin KK, Stanford KI. Effects of Exercise to Improve Cardiovascular Health. Front Cardiovasc Med 2019; 6:69. [PMID: 31214598 PMCID: PMC6557987 DOI: 10.3389/fcvm.2019.00069] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a complex disease that affects whole body metabolism and is associated with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D). Physical exercise results in numerous health benefits and is an important tool to combat obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both the onset and development of cardiovascular disease and is an important therapeutic tool to improve outcomes for patients with cardiovascular disease. Some benefits of exercise include enhanced mitochondrial function, restoration and improvement of vasculature, and the release of myokines from skeletal muscle that preserve or augment cardiovascular function. In this review we will discuss the mechanisms through which exercise promotes cardiovascular health.
Collapse
Affiliation(s)
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|