1
|
Dresner-Pollak R. Skeletal Fragility in Adult People Living With Type 1 Diabetes. Endocr Pract 2024; 30:592-597. [PMID: 38556079 DOI: 10.1016/j.eprac.2024.03.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Advances in the management of people with type 1 diabetes (T1D) led to longer life expectancy, but with it an aging population with age-associated conditions. While macrovascular and microvascular complications are widely recognized, bone fragility has received considerably less attention, although fractures lead to high morbidity and mortality. Hip fracture risk is up to sixfold higher in T1D than in nondiabetic controls and significantly higher than in type 2 diabetes. Hip fractures occur at a younger age, and the consequences are worse. The risk of nonvertebral fractures is also significantly increased. Altered bone quality is a major underlying mechanism. Areal BMD measured by DXA underestimates fracture risk. BMD testing is recommended in T1D patients with poor glycemic control and/or microvascular complications. Trabecular bone score is mildly reduced, and its ability to predict fractures in T1D is unknown. Bone turnover markers, particularly procollagen type 1 N-terminal propeptide, are suppressed and do not predict fracture risk in T1D. T1D-related risk factors for fractures include disease onset at age <20 years, longer disease duration, HbA1c ≥8%, hypoglycemic episodes and microvascular complications. Data regarding the efficacy of therapeutic interventions to prevent or treat skeletal fragility in T1D is scant. Adequate calcium and vitamin D intake and fall prevention are recommended. Antiosteoporosis therapies are recommended in T1D patients with previous hip or vertebral fragility fracture, more than 1 other fragility fracture, BMD T-score < -2.5 at the femoral neck or spine, and increased FRAX score. Fracture risk assessment needs to be part of the management of people with T1D.
Collapse
Affiliation(s)
- Rivka Dresner-Pollak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Calmarza P, Pérez-Ajami RI, Prieto-López C, Gallego-Royo A, García-Carro C, Lou-Francés GM. Glycemic control and study of lipid and bone metabolism in type 1 diabetic children. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:171-181. [PMID: 39079139 PMCID: PMC11361410 DOI: 10.7705/biomedica.7132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024]
Abstract
Introduction. Type 1 diabetes mellitus is considered one of the most common chronic diseases of childhood. It is a high-risk factor for developing early cardiovascular disease and it also affects bone health. Objective. To describe demographic characteristics and biochemical parameters of a population of children with type 1 diabetes, evaluated in the pediatric diabetes unit of a tertiary Spanish hospital. Materials and methods. In this retrospective study, we determined metabolic, lipid, and bone parameters in 124 children with type 1 diabetes who were monitored in the pediatric diabetes unit of the Hospital Universitario Miguel Servet in Zaragoza (Spain) from May 2020 to July 2021. Results. Children with type 1 diabetes have worse metabolic control of the disease at puberty, but their lipid control is considered acceptable. We found an inverse correlation between bone formation markers and disease duration, as well as with metabolic control. Conclusion. Bone formation markers are inversely correlated with the percentage of glycated hemoglobin and diabetes evolution time. Patients’ lipid and bone profiles are more favorable when metabolic control of the disease is achieved.
Collapse
Affiliation(s)
- Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, EspañaHospital Universitario Miguel ServetHospital Universitario Miguel ServetZaragozaSpain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, EspañaUniversidad de ZaragozaUniversidad de ZaragozaZaragozaSpain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, EspañaInstituto de Salud Carlos IIIInstituto de Salud Carlos IIIMadridSpain
| | - Rasha Isabel Pérez-Ajami
- Servicio de Pediatría, Hospital Universitario Miguel Servet, Zaragoza, EspañaHospital Universitario Miguel ServetHospital Universitario Miguel ServetZaragozaSpain
| | - Carlos Prieto-López
- Servicio de Bioquímica Clínica, Hospital de Alcañiz, Alcañiz, EspañaHospital de AlcañizHospital de AlcañizAlcañizSpain
| | - Alba Gallego-Royo
- Servicio de Medicina Preventiva, Hospital Universitario Miguel Servet, Zaragoza, EspañaHospital Universitario Miguel ServetHospital Universitario Miguel ServetZaragozaSpain
| | - Celia García-Carro
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, EspañaHospital Universitario Miguel ServetHospital Universitario Miguel ServetZaragozaSpain
| | - Graciela María Lou-Francés
- Centro de Salud de Barbastro, Barbastro, EspañaCentro de Salud de BarbastroCentro de Salud de BarbastroBarbastroSpain
| |
Collapse
|
3
|
Marino S, Ozgurel SU, McAndrews K, Cregor M, Villaseñor A, Mamani-Huanca M, Barbas C, Gortazar A, Sato AY, Bellido T. Abaloparatide is more potent than teriparatide in restoring bone mass and strength in type 1 diabetic male mice. Bone 2024; 181:117042. [PMID: 38360197 DOI: 10.1016/j.bone.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
This study investigated the efficacy of the two FDA-approved bone anabolic ligands of the parathyroid hormone receptor 1 (PTH1R), teriparatide or human parathyroid hormone 1-34 (PTH) and abaloparatide (ABL), to restoring skeletal health using a preclinical murine model of streptozotocin-induced T1-DM. Intermittent daily subcutaneous injections of equal molar doses (12 pmoles/g/day) of PTH (50 ng/g/day), ABL (47.5 ng/g/day), or vehicle, were administered for 28 days to 5-month-old C57Bl/6 J male mice with established T1-DM or control (C) mice. ABL was superior to PTH in increasing or restoring bone mass in control or T1-MD mice, respectively, which was associated with superior stimulation of trabecular and periosteal bone formation, upregulation of osteoclastic/osteoblastic gene expression, and increased circulating bone remodeling markers. Only ABL corrected the reduction in ultimate load, which is a measure of bone strength, induced by T1-DM, and it also increased energy to ultimate load. In addition, bones from T1-DM mice treated with PTH or ABL exhibited increased ultimate stress, a material index, compared to T1-DM mice administered with vehicle. And both PTH and ABL prevented the increased expression of the Wnt antagonist Sost/sclerostin displayed by T1-DM mice. Further, PTH and ABL increased to a similar extent the circulating bone resorption marker CTX and the bone formation marker P1NP in T1-DM after 2 weeks of treatment; however, only ABL sustained these increases after 4 weeks of treatment. We conclude that at equal molar doses, ABL is more effective than PTH in increasing bone mass and restoring the cortical and trabecular bone lost with T1-DM, due to higher and longer-lasting increases in bone remodeling.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, AR, USA.
| | - Serra Ucer Ozgurel
- Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Kevin McAndrews
- Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Meloney Cregor
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, AR, USA; Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain.
| | - Maricuz Mamani-Huanca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain.
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain.
| | - Arancha Gortazar
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain.
| | - Amy Y Sato
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, AR, USA; Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, AR, USA; Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Starlinger J, Santol J, Kaiser G, Sarahrudi K. Close negative correlation of local and circulating Dickkopf-1 and Sclerostin levels during human fracture healing. Sci Rep 2024; 14:6524. [PMID: 38499638 PMCID: PMC10948769 DOI: 10.1038/s41598-024-55756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Wnt signaling is critically involved in fracture healing. Existing data predominantly relies on rodent models. Here, we explored local and circulating Dickkopf-1 (DKK1) levels in patients with respect to fracture healing and explore its association to sclerostin (SOST). 69 patients after surgical stabilization of long bone fractures of which six patients had impaired fracture healing were included in this study. Life-style and patient related factors with a known effect on DKK1 and SOST were recorded. DKK1 and SOST concentrations were measured using enzyme-linked immunosorbent assay (ELISA) at the fracture site and in circulation. DKK1 and SOST showed a close inverse correlation. In fracture hematoma and immediately after trauma DKK1 levels were significantly reduced while SOST levels were significantly increased, compared to healthy control. Postoperatively, DKK1 peaked at week 2 and SOST at week 8, again demonstrating a close negative correlation. Age and smoking status affected the balance of DKK1 and SOST, while type 2 diabetes and sex did not demonstrate a significant influence. Early postoperative elevation of SOST without compensatory DKK1 decrease was associated with fracture non-union in younger patients (< 50a). The close inverse correlation and very rapid dynamics of DKK1 and SOST locally as well as systemically suggest their critical involvement during human fracture healing. Importantly, as immediate compensatory feedback mechanism are apparent, we provide evidence that dual-blockade of DKK1 and SOST could be critical to allow for therapeutic efficiency of Wnt targeted therapies for fracture healing.
Collapse
Affiliation(s)
- Julia Starlinger
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria.
| | - Jonas Santol
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten, Sigmund Freud Private University, Vienna, Austria
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Georg Kaiser
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria
| | - Kambiz Sarahrudi
- Department of Orthopedics and Trauma-Surgery, General Hospital Vienna, Medical University Vienna, Vienna, Austria
- Department for Trauma Surgery, Wiener Neustadt Regional Hospital, Wiener Neustadt, Austria
| |
Collapse
|
5
|
Ma E, Wo D, Chen J, Yan H, Zhou X, He J, Wu C, Wang Q, Zuo C, Li X, Li L, Meng Q, Zheng L, Peng L, Chen L, Peng J, Ren DN, Zhu W. Inhibition of a novel Dickkopf-1-LDL receptor-related proteins 5 and 6 axis prevents diabetic cardiomyopathy in mice. Eur Heart J 2024; 45:688-703. [PMID: 38152853 PMCID: PMC10906985 DOI: 10.1093/eurheartj/ehad842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND AND AIMS Anti-hypertensive agents are one of the most frequently used drugs worldwide. However, no blood pressure-lowering strategy is superior to placebo with respect to survival in diabetic hypertensive patients. Previous findings show that Wnt co-receptors LDL receptor-related proteins 5 and 6 (LRP5/6) can directly bind to several G protein-coupled receptors (GPCRs). Because angiotensin II type 1 receptor (AT1R) is the most important GPCR in regulating hypertension, this study examines the possible mechanistic association between LRP5/6 and their binding protein Dickkopf-1 (DKK1) and activation of the AT1R and further hypothesizes that the LRP5/6-GPCR interaction may affect hypertension and potentiate cardiac impairment in the setting of diabetes. METHODS The roles of serum DKK1 and DKK1-LRP5/6 signalling in diabetic injuries were investigated in human and diabetic mice. RESULTS Blood pressure up-regulation positively correlated with serum DKK1 elevations in humans. Notably, LRP5/6 physically and functionally interacted with AT1R. The loss of membrane LRP5/6 caused by injection of a recombinant DKK1 protein or conditional LRP5/6 deletions resulted in AT1R activation and hypertension, as well as β-arrestin1 activation and cardiac impairment, possibly because of multiple GPCR alterations. Importantly, unlike commonly used anti-hypertensive agents, administration of the anti-DKK1 neutralizing antibody effectively prevented diabetic cardiac impairment in mice. CONCLUSIONS These findings establish a novel DKK1-LRP5/6-GPCR pathway in inducing diabetic injuries and may resolve the long-standing conundrum as to why elevated blood DKK1 has deleterious effects. Thus, monitoring and therapeutic elimination of blood DKK1 may be a promising strategy to attenuate diabetic injuries.
Collapse
Affiliation(s)
- En Ma
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Da Wo
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Jinxiao Chen
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Hongwei Yan
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Xiaohui Zhou
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Jia He
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Celiang Wu
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Qing Wang
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Shanghai, China
| | - Xiao Li
- Department of Nuclear Medicine, Changhai Hospital, Shanghai, China
| | - Li Li
- Department of Health Management, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qingshu Meng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Liang Zheng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Luying Peng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| | - Lidian Chen
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Jun Peng
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Dan-ni Ren
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
| | - Weidong Zhu
- Innovation and Transformation Center, Collaborative Innovation Center for Rehabilitation Technology, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou, Fuzhou 350122, China
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, 1239 Siping Road, Yangpu, Shanghai, China
| |
Collapse
|
6
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
7
|
Jiang H, Li D, Han Y, Li N, Tao X, Liu J, Zhang Z, Yu Y, Wang L, Yu S, Zhang N, Xiao H, Yang X, Zhang Y, Zhang G, Zhang BT. The role of sclerostin in lipid and glucose metabolism disorders. Biochem Pharmacol 2023; 215:115694. [PMID: 37481136 DOI: 10.1016/j.bcp.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Dijie Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying Han
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Nanxi Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaohui Tao
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Luyao Wang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sifan Yu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Huan Xiao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Xin Yang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yihao Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.
| |
Collapse
|
8
|
Wong SK, Mohamad NV, Jayusman PA, Ibrahim N‘I. A Review on the Crosstalk between Insulin and Wnt/β-Catenin Signalling for Bone Health. Int J Mol Sci 2023; 24:12441. [PMID: 37569816 PMCID: PMC10419059 DOI: 10.3390/ijms241512441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
A positive association between insulin resistance and osteoporosis has been widely established. However, crosstalk between the signalling molecules in insulin and Wingless (Wnt)/beta-(β-)catenin transduction cascades orchestrating bone homeostasis remains not well understood. The current review aims to collate the existing evidence, reporting (a) the expression of insulin signalling molecules involved in bone-related disorders and (b) the expression of Wnt/β-catenin signalling molecules involved in governing insulin homeostasis. The downstream effector molecule, glycogen synthase kinase-3 beta (GSK3β), has been identified to be a point of convergence linking the two signal transduction networks. This review highlights that GSK3β may be a drug target in the development of novel anabolic agents and the potential use of GSK3β inhibitors to treat bone-related disorders.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Vaizura Mohamad
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
9
|
Xing W, Liang L, Dong N, Chen L, Liu Z. Abnormal changes of bone metabolism markers with age in children with cerebral palsy. Front Pediatr 2023; 11:1214608. [PMID: 37593441 PMCID: PMC10427878 DOI: 10.3389/fped.2023.1214608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Cerebral palsy (CP) is a broad range of diseases with permanent and nonprogressive motor impairments, carrying a high cost for both the individual and the society. The characteristics of low bone mineral density and high risk of fractures suggest that bone metabolism disorders are present in CP. This study aims to investigate the association between indicators of bone metabolism and children with CP. A total of 139 children (75 children with CP and 64 healthy controls) were included in this cross-sectional study. Participants were divided into three age groups (0-2 years, 2.1-4 years, and 4.1-7 years). All children with CP were diagnosed according to clinical criteria and furtherly divided into clinical subtypes. The levels of total procollagen type I N-terminal propeptide (TPINP), N-MID osteocalcin (OC), beta-crosslaps (β-CTX), 25-hydroxyvitamin D (25-OHD) and parathyroid hormone (PTH) in the serum were measured with corresponding detection kits according to the manufacturer's instructions. Serum levels of TPINP and 25-OHD were lower with older age, whereas β-CTX and PTH were higher with older age. In the CP group, TPINP (age 0-2 years and 2.1-4 years) and OC (age 2.1-4 years) levels were higher, while β-CTX (age 2.1-4 years and 4.1-7 years) and PTH (age 2.1-4 years) values were lower than the control group. In addition, there were no statistically significant differences in the levels of these indicators among the CP subgroups with different clinical characteristics. Our study shows that bone turnover markers, indicators of bone metabolism, in children with CP differ significantly from healthy controls. The indicators we studied changed with age, and they did not correlate with disease severity.
Collapse
Affiliation(s)
| | | | | | | | - Zhizhong Liu
- Department of Clinical Laboratory, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
10
|
Urbano F, Farella I, Brunetti G, Faienza MF. Pediatric Type 1 Diabetes: Mechanisms and Impact of Technologies on Comorbidities and Life Expectancy. Int J Mol Sci 2023; 24:11980. [PMID: 37569354 PMCID: PMC10418611 DOI: 10.3390/ijms241511980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases in childhood, with a progressively increasing incidence. T1D management requires lifelong insulin treatment and ongoing health care support. The main goal of treatment is to maintain blood glucose levels as close to the physiological range as possible, particularly to avoid blood glucose fluctuations, which have been linked to morbidity and mortality in patients with T1D. Indeed, the guidelines of the International Society for Pediatric and Adolescent Diabetes (ISPAD) recommend a glycated hemoglobin (HbA1c) level < 53 mmol/mol (<7.0%) for young people with T1D to avoid comorbidities. Moreover, diabetic disease strongly influences the quality of life of young patients who must undergo continuous monitoring of glycemic values and the administration of subcutaneous insulin. In recent decades, the development of automated insulin delivery (AID) systems improved the metabolic control and the quality of life of T1D patients. Continuous subcutaneous insulin infusion (CSII) combined with continuous glucose monitoring (CGM) devices connected to smartphones represent a good therapeutic option, especially in young children. In this literature review, we revised the mechanisms of the currently available technologies for T1D in pediatric age and explored their effect on short- and long-term diabetes-related comorbidities, quality of life, and life expectation.
Collapse
Affiliation(s)
- Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy;
| | - Ilaria Farella
- Clinica Medica “A. Murri”, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
11
|
Meier C, Eastell R, Pierroz DD, Lane NE, Al-Daghri N, Suzuki A, Napoli N, Mithal A, Chakhtoura M, Fuleihan GEH, Ferrari S. Biochemical Markers of Bone Fragility in Patients with Diabetes. A Narrative Review by the IOF and the ECTS. J Clin Endocrinol Metab 2023; 108:dgad255. [PMID: 37155585 PMCID: PMC10505554 DOI: 10.1210/clinem/dgad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
CONTEXT The risk of fragility fractures is increased in both type 1 and type 2 diabetes. Numerous biochemical markers reflecting bone and/or glucose metabolism have been evaluated in this context. This review summarizes current data on biochemical markers in relation to bone fragility and fracture risk in diabetes. METHODS Literature review by a group of experts from the International Osteoporosis Foundation (IOF) and European Calcified Tissue Society (ECTS) focusing on biochemical markers, diabetes, diabetes treatments and bone in adults. RESULTS Although bone resorption and bone formation markers are low and poorly predictive of fracture risk in diabetes, osteoporosis drugs seem to change bone turnover markers in diabetics similarly to non-diabetics, with similar reductions in fracture risk. Several other biochemical markers related to bone and glucose metabolism have been correlated with BMD and/or fracture risk in diabetes, including osteocyte-related markers such as sclerostin, HbA1c and advanced glycation end products (AGEs), inflammatory markers and adipokines, as well as IGF-1 and calciotropic hormones. CONCLUSION Several biochemical markers and hormonal levels related to bone and/or glucose metabolism have been associated with skeletal parameters in diabetes. Currently, only HbA1c levels seem to provide a reliable estimate of fracture risk, while bone turnover markers could be used to monitor the effects of anti-osteoporosis therapy.
Collapse
Affiliation(s)
- Christian Meier
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Richard Eastell
- Academic Unit of Bone Metabolism, Mellanby Centre for Bone Research, University of Sheffield, S57AU Sheffield, UK
| | | | - Nancy E Lane
- Department of Medicine and Rheumatology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA
| | - Nasser Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Ambrish Mithal
- Institute of Diabetes and Endocrinology, Max Healthcare, Saket, New Delhi 110017, India
| | - Marlene Chakhtoura
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, Riad El Solh, Beirut 6044, Lebanon
| | - Ghada El-Hajj Fuleihan
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, Riad El Solh, Beirut 6044, Lebanon
| | - Serge Ferrari
- Service and Laboratory of Bone Diseases, Geneva University Hospital and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
12
|
Dincel AS, Jørgensen NR. New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1). Calcif Tissue Int 2023; 112:243-257. [PMID: 36165920 DOI: 10.1007/s00223-022-01020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
A healthy skeleton depends on a continuous renewal and maintenance of the bone tissue. The process of bone remodeling is highly controlled and consists of a fine-tuned balance between bone formation and bone resorption. Biochemical markers of bone turnover are already in use for monitoring diseases and treatment involving the skeletal system, but novel biomarkers reflecting specific biological processes in bone and interacting tissues may prove useful for diagnostic, prognostic, and monitoring purposes. The Wnt-signaling pathway is one of the most important pathways controlling bone metabolism and consequently the action of inhibitors of the pathway such as sclerostin and Dickkopf-related protein 1 (DKK1) have crucial roles in controlling bone formation and resorption. Thus, they might be potential markers for clinical use as they reflect a number of physiological and pathophysiological events in bone and in the cross-talk with other tissues in the human body. This review focuses on the clinical utility of measurements of circulating sclerostin and DKK1 levels based on preanalytical and analytical considerations and on evidence obtained from published clinical studies. While accumulating evidence points to clear associations with a number of disease states for the two markers, and thus, the potential for especially sclerostin as a biochemical marker that may be used clinically, the lack of standardization or harmonization of the assays still hampers the clinical utility of the markers.
Collapse
Affiliation(s)
- Aylin Sepinci Dincel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey.
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
13
|
Rodríguez-Narciso S, Martínez-Portilla RJ, Guzmán-Guzmán IP, Careaga-Cárdenas G, Rubio-Navarro BJ, Barba-Gallardo LF, Delgadillo-Castañeda R, Villafan-Bernal JR. Osteocalcin serum concentrations and markers of energetic metabolism in pediatric patients. Systematic review and metanalysis. Front Pediatr 2023; 10:1075738. [PMID: 36714656 PMCID: PMC9878130 DOI: 10.3389/fped.2022.1075738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background Osteocalcin plays a role in glucose metabolism in mice, but its relevance in human energetic metabolism is controversial. Its relationship with markers of energetic metabolism in the pediatric population has not been systematically addressed in infants and adolescents. Objective This study aims to assess the mean differences between tOC, ucOC, and cOC among healthy children and children with type 1 or type 2 diabetes (T1D or T2D) and the correlation of these bone molecules with metabolic markers. Methods A systematic review and metanalysis were performed following PRISMA criteria to identify relevant observational studies published in English and Spanish using PubMed, Scopus, EBSCO, and Web of Science databases. The risk of bias was assessed using New Castle-Ottawa scale. Effect size measures comprised standardized mean difference (SMD) and Pearson correlations. Heterogeneity and meta-regressions were performed. Results The 20 studies included were of high quality and comprised 3,000 pediatric patients who underwent tOC, cOC, or ucOC measurements. Among healthy subjects, there was a positive correlation of ucOC with WC and weight, a positive correlation of tOC with FPG, HDL-c, WC, height, and weight, and a negative correlation between tOC and HbA1c. Among diabetic subjects, a negative correlation of ucOC with HbA1c and glycemia in both T1D and T2D was found and a negative correlation between tOC and HbA1c in T1D but not in T2D. The ucOC concentrations were lower in T2D, T1D, and patients with abnormal glucose status than among controls. The serum concentrations of tOC concentrations were lower among T1D than in controls. The patient's age, altitude, and HbA1c influenced the levels of serum tOC. Conclusion Osteocalcin is involved in energy metabolism in pediatric subjects because it is consistently related to metabolic and anthropometric parameters. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42019138283.
Collapse
Affiliation(s)
| | - Raigam Jafet Martínez-Portilla
- Clinical Research Division, Evidence-Based Medicine Department, National Institute of Perinatology, Mexico City, Mexico
- Molecular and Maternal-Fetal Medicine, Iberoamerican Research Network in Translational, Mexico City, Mexico
| | | | | | | | | | | | - José Rafael Villafan-Bernal
- Molecular and Maternal-Fetal Medicine, Iberoamerican Research Network in Translational, Mexico City, Mexico
- Investigador por México, National Council of Science and Technology (CONACYT), Mexico City, Mexico
- Laboratory of Immunogenomics and Metabolic Diseases, Mexican National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| |
Collapse
|
14
|
Tao SS, Cao F, Sam NB, Li HM, Feng YT, Ni J, Wang P, Li XM, Pan HF. Dickkopf-1 as a promising therapeutic target for autoimmune diseases. Clin Immunol 2022; 245:109156. [DOI: 10.1016/j.clim.2022.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/03/2022]
|
15
|
Irisin and Bone in Sickness and in Health: A Narrative Review of the Literature. J Clin Med 2022; 11:jcm11226863. [PMID: 36431340 PMCID: PMC9699623 DOI: 10.3390/jcm11226863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Irisin is a hormone-like myokine produced by the skeletal muscle in response to exercise. Upon its release into the circulation, it is involved in the browning process and thermogenesis, but recent evidence indicates that this myokine could also regulate the functions of osteoblasts, osteoclasts, and osteocytes. Most human studies have reported that serum irisin levels decrease with age and in conditions involving bone diseases, including both primary and secondary osteoporosis. However, it should be emphasized that recent findings have called into question the importance of circulating irisin, as well as the validity and reproducibility of current methods of irisin measurement. In this review, we summarize data pertaining to the role of irisin in the bone homeostasis of healthy children and adults, as well as in the context of primary and secondary osteoporosis. Additional research is required to address methodological issues, and functional studies are required to clarify whether muscle and bone damage per se affect circulating levels of irisin or whether the modulation of this myokine is caused by the inherent mechanisms of underlying diseases, such as genetic or inflammatory causes. These investigations would shed further light on the effects of irisin on bone homeostasis and bone disease.
Collapse
|
16
|
Araújo IMD, Moreira MLM, Paula FJAD. Diabetes and bone. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:633-641. [PMID: 36382752 PMCID: PMC10118819 DOI: 10.20945/2359-3997000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Globally, one in 11 adults has diabetes mellitus of which 90% have type 2 diabetes. The numbers for osteoporosis are no less staggering: 1 in 3 women has a fracture after menopause, and the same is true for 1 in 5 men after the age of 50 years. Aging is associated with several physiological changes that cause insulin resistance and impaired insulin secretion, which in turn lead to hyperglycemia. The negative balance between bone resorption and formation is a natural process that appears after the fourth decade of life and lasts for the following decades, eroding the bone structure and increasing the risk of fractures. Not incidentally, it has been acknowledged that diabetes mellitus, regardless of whether type 1 or 2, is associated with an increased risk of fracture. The nuances that differentiate bone damage in the two main forms of diabetes are part of the intrinsic heterogeneity of diabetes, which is enhanced when associated with a condition as complex as osteoporosis. This narrative review addresses the main parameters related to the increased risk of fractures in individuals with diabetes, and the mutual factors affecting the treatment of diabetes mellitus and osteoporosis.
Collapse
|
17
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Better understanding of the mechanisms underlying skeletal dysfunction in the context of diabetes is needed to guide the development of therapeutic interventions to reduce the burden of diabetic fractures. Osteocytes, the 'master regulators' of bone remodeling, have emerged as key culprits in the pathogenesis of diabetes-related skeletal fragility. RECENT FINDINGS Both type 1 diabetes and type 2 diabetes cause chronic hyperglycemia that, over time, reduces bone quality and bone formation. In addition to acting as mechanosensors, osteocytes are important regulators of osteoblast and osteoclast activities; however, diabetes leads to osteocyte dysfunction. Indeed, diabetes causes the accumulation of advanced glycation end-products and senescent cells that can affect osteocyte viability and functions via increased receptor for advanced glycation endproducts (RAGE) signaling or the production of a pro-inflammatory senescence-associated secretory phenotype. These changes may increase osteocyte-derived sclerostin production and decrease the ability of osteocytes to sense mechanical stimuli thereby contributing to poor bone quality in humans with diabetes. SUMMARY Osteocyte dysfunction exists at the nexus of diabetic skeletal disease. Therefore, interventions targeting the RAGE signaling pathway, senescent cells, and those that inhibit sclerostin or mechanically stimulate osteocytes may alleviate the deleterious effects of diabetes on osteocytes and bone quality.
Collapse
Affiliation(s)
| | | | - Joshua N. Farr
- Correspondence: Joshua N. Farr, , Mayo Clinic, Guggenheim 7-11D, 200 First Street SW, Rochester, MN 55905, Telephone: 507-538-0085
| |
Collapse
|
19
|
Kurban S, Selver Eklioglu B, Selver MB. Investigation of the relationship between serum sclerostin and dickkopf-1 protein levels with bone turnover in children and adolescents with type-1 diabetes mellitus. J Pediatr Endocrinol Metab 2022; 35:673-679. [PMID: 35411762 DOI: 10.1515/jpem-2022-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Diabetes mellitus (DM) is widely known to have a detrimental effect on bone health and is associated with increased fracture risk. Recently, the Wnt/beta-catenin signaling pathway and its inhibitors sclerostin and dickkopf-1 (Dkk-1) were found to be involved in the control of bone mass. The present study aimed to measure serum sclerostin and Dkk-1 protein levels in children and adolescents with type-1 DM and compare with other bone turnover markers and bone mineral density (BMD). METHODS This study was performed on 40 children and adolescents with type-I DM and 40 healthy children and adolescents. Anthropometric measurements and pubertal examination were done. In addition to laboratory analysis, dickkopf-1, sclerostin, cross-linked N-telopeptides of type I collagen (NTx), bone alkaline phosphatase (bALP), and osteocalcin levels were studied. BMD of the participants was measured by calcaneus ultrasonography. RESULTS Dickkopf-1 levels of the children and adolescents with type-1 DM were significantly higher, vitamin D, NTx, osteocalcin, and phosphorus levels were significantly lower than those of the controls (p<0.001). Fasting blood glucose, HbA1c, and insulin were significantly higher in the type 1 DM group (p<0.01). CONCLUSIONS Both bone remodeling and its compensatory mechanism bone loss are lower in children and adolescents with type-1 DM than in the controls. Also, higher levels of Dkk-1 play a role in decreased bone turnover in these patients. Since Dkk-1 and sclerostin seem to take a role in treating metabolic bone diseases in the future, we believe that our findings are significant in this respective.
Collapse
Affiliation(s)
- Sevil Kurban
- Department of Biochemistry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Beray Selver Eklioglu
- Division of Pediatric Endocrinology, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Muhammed Burak Selver
- Department of Pediatrics, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
- Istanbul University, Institute of Health Sciences and Institute of Child Health Social Pediatrics PhD Program, Istanbul, Turkey
| |
Collapse
|
20
|
Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, Burden AM, Rivadeneira F, Napoli N, Rauner M. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol 2022; 10:207-220. [PMID: 35101185 DOI: 10.1016/s2213-8587(21)00347-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Increased fracture risk represents an emerging and severe complication of diabetes. The resulting prolonged immobility and hospitalisations can lead to substantial morbidity and mortality. In type 1 diabetes, bone mass and bone strength are reduced, resulting in up to a five-times greater risk of fractures throughout life. In type 2 diabetes, fracture risk is increased despite a normal bone mass. Conventional dual-energy x-ray absorptiometry might underestimate fracture risk, but can be improved by applying specific adjustments. Bone fragility in diabetes can result from cellular abnormalities, matrix interactions, immune and vascular changes, and musculoskeletal maladaptation to chronic hyperglycaemia. This Review summarises how the bone microenvironment responds to type 1 and type 2 diabetes, and the mechanisms underlying fragility fractures. We describe the value of novel imaging technologies and the clinical utility of biomarkers, and discuss current and future therapeutic approaches that protect bone health in people with diabetes.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Serge Ferrari
- Service and Laboratory of Bone Diseases, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Morten Frost
- Molecular Endocrinology Laboratory and Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
| | - Ralph Müller
- Institute of Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrea M Burden
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Nicola Napoli
- RU of Endocrinology and Diabetes, Campus Bio-Medico University of Rome and Fondazione Policlinico Campus Bio-Medico, Rome, Italy; Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Travis C, Srivastava PS, Hawke TJ, Kalaitzoglou E. Diabetic Bone Disease and Diabetic Myopathy: Manifestations of the Impaired Muscle-Bone Unit in Type 1 Diabetes. J Diabetes Res 2022; 2022:2650342. [PMID: 35601019 PMCID: PMC9119786 DOI: 10.1155/2022/2650342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes is associated with complications affecting muscle and bone, with diabetic bone disease and diabetic myopathy becoming increasingly reported in the past few decades. This review is aimed at succinctly reviewing the literature on the current knowledge regarding these increasingly identified and possibly interconnected complications on the musculoskeletal system. Furthermore, this review summarizes several nonmechanical factors that could be mediating the development and progression of premature musculoskeletal decline in this population and discusses preventative measures to reduce the burden of diabetes on the musculoskeletal system.
Collapse
Affiliation(s)
- Callie Travis
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - Priya S. Srivastava
- Department of Pediatrics, Division of Pediatric Endocrinology, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Evangelia Kalaitzoglou
- University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Giordano P, Del Vecchio GC, Russo G, Palmieri VV, Piacente L, Fidone C, Urbano F, Faienza MF. High Dickkopf-1 (DKK-1) levels are associated with chronic inflammation in children with Sickle Cell Disease. Eur J Haematol 2021; 108:336-341. [PMID: 34962669 DOI: 10.1111/ejh.13741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Sickle bone disease (SBD) is a chronic complication of Sickle Cell Disease (SCD) whose pathogenesis is not completely understood. Chronic inflammation associated with SCD could alter bone remodeling. Our aim was to analyze the serum levels of bone remodeling markers in a group of SCD children to evaluate their involvement in the SBD. METHODS We enrolled 26 SCD subjects and 26 age-matched controls, who lived in the same geographic area. DKK-1, sclerostin, RANKL, and OPG serum levels were evaluated. Neutrophil-lymphocyte ratio (NLR) was also evaluated as a marker of inflammation. RESULTS The analysis of bone remodeling markers did not show any significant difference between the two groups except for DKK-1 levels that were significantly higher in the patients than controls (p<0.05). A significant direct correlation between NLR and DKK-1 (p=0.004) was found. An inverse correlation between NLR and osteocalcin (p=0.01) has also been observed. CONCLUSIONS The chronic inflammation, which represents a peculiar characteristic in SCD patients, would represent the primary causal agent of the activation of osteoblastogenesis inhibitors responsible of bone impairment in these subjects. Further studies will be needed to better explain the role of these inhibitors in SCD, to prevent or treat bone damage in this population.
Collapse
Affiliation(s)
- Paola Giordano
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A. Moro", Bari, Italy
| | | | - Giovanna Russo
- Clinica di Onco-Ematologia Pediatrica, Azienda Ospedaliero Universitaria "Policlinico Vittorio Emanuele", Catania, Italy
| | - Viviana Valeria Palmieri
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A. Moro", Bari, Italy
| | - Laura Piacente
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A. Moro", Bari, Italy
| | | | | | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A. Moro", Bari, Italy
| |
Collapse
|
23
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
24
|
Bilinski WJ, Szternel L, Siodmiak J, Krintus M, Paradowski PT, Domagalski K, Sypniewska G. Effect of fasting hyperglycemia and insulin resistance on bone turnover markers in children aged 9-11 years. J Diabetes Complications 2021; 35:108000. [PMID: 34384707 DOI: 10.1016/j.jdiacomp.2021.108000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 07/25/2021] [Indexed: 11/18/2022]
Abstract
AIM Impaired regulation of glucose metabolism in childhood adversely affects bone health. We assessed the effect of fasting hyperglycemia and insulin resistance on bone turnover markers in prepubertal children with normal glycemia (<100 mg/dL) and fasting hyperglycemia (100-125 mg/dL). METHODS Glucose, hemoglobin A1c, IGF-I (insulin-like growth factor I), iP1NP (N-terminal propeptide of type I procollagen), CTX-1 (C-terminal telopeptide of type I collagen) and insulin were measured. Bone turnover index (BTI) and HOMA-IR (homeostasis model assessment) were calculated. RESULTS Bone resorption marker (CTX) levels were decreased by 26.5% in boys with hyperglycemia, though only 7% in girls. Hyperglycemia had no effect on the bone formation marker iP1NP. IGF-1, the best predictor of bone marker variance accounted for 25% of iP1NP and 5% of CTX variance. Girls presented significantly higher BTI indicating the predominance of bone formation over resorption. Insulin resistance significantly decreased CTX. In girls, HOMA-IR and IGF-1 predicted 15% of CTX variance. CONSLUSIONS Fasting hyperglycemia and insulin resistance in children impact bone turnover suppressing bone resorption. Hyperglycemia decreased resorption, particularly in boys, while suppression of resorption by insulin resistance was more pronounced in girls. We suggest that the progression of disturbances accompanying prediabetes, may interfere with bone modelling and be deleterious to bone quality in later life.
Collapse
Affiliation(s)
- Wojciech J Bilinski
- Department of Orthopaedics and Traumatology, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Torun, Poland; Department of Orthopaedics, KoMed, Poddebickie Health Center, Poddebice, Poland.
| | - Lukasz Szternel
- Department of Laboratory Medicine Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Joanna Siodmiak
- Department of Laboratory Medicine Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Magdalena Krintus
- Department of Laboratory Medicine Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Przemyslaw T Paradowski
- Department of Orthopaedics and Traumatology, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Torun, Poland; Department of Surgical and Perioperative Sciences, Division of Orthopedics, Sunderby Research Unit, Umeå University, Umeå, Sweden; Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Krzysztof Domagalski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Grazyna Sypniewska
- Department of Laboratory Medicine Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
25
|
Syversen U, Mosti MP, Mynarek IM, Vedal TSJ, Aasarød K, Basso T, Reseland JE, Thorsby PM, Asvold BO, Eriksen EF, Stunes AK. Evidence of impaired bone quality in men with type 1 diabetes: a cross-sectional study. Endocr Connect 2021; 10:955-964. [PMID: 34289447 PMCID: PMC8428087 DOI: 10.1530/ec-21-0193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Type 1 diabetes (T1D) is associated with substantial fracture risk. Bone mineral density (BMD) is, however, only modestly reduced, suggesting impaired bone microarchitecture and/or bone material properties. Yet, the skeletal abnormalities have not been uncovered. Men with T1D seem to experience a more pronounced bone loss than their female counterparts. Hence, we aimed to examine different aspects of bone quality in men with T1D. DESIGN AND METHODS In this cross-sectional study, men with T1D and healthy male controls were enrolled. BMD (femoral neck, total hip, lumbar spine, whole body) and spine trabecular bone score (TBS) were measured by dual x-ray absorptiometry, and bone material strength index (BMSi) was measured by in vivo impact microindentation. HbA1c and bone turnover markers were analyzed. RESULTS Altogether, 33 men with T1D (43 ± 12 years) and 28 healthy male controls (42 ± 12 years) were included. Subjects with T1D exhibited lower whole-body BMD than controls (P = 0.04). TBS and BMSi were attenuated in men with T1D vs controls (P = 0.016 and P = 0.004, respectively), and T1D subjects also had a lower bone turnover. The bone parameters did not differ between subjects with or without diabetic complications. Duration of disease correlated negatively with femoral neck BMD but not with TBS or BMSi. CONCLUSIONS This study revealed compromised bone material strength and microarchitecture in men with T1D. Moreover, our data confirm previous studies which found a modest decrease in BMD and low bone turnover in subjects with T1D. Accordingly, bone should be recognized as a target of diabetic complications.
Collapse
Affiliation(s)
- Unni Syversen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
- Correspondence should be addressed to U Syversen:
| | - Mats Peder Mosti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Medical Clinic, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
| | - Ida Maria Mynarek
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trude Seselie Jahr Vedal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristin Aasarød
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
| | - Trude Basso
- Department of Orthopedics, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
| | | | - Per Medbøe Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Aker, Oslo, Norway
| | - Bjorn O Asvold
- Department of Endocrinology, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Trondheim, Norway
| | | | - Astrid Kamilla Stunes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Medical Clinic, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
| |
Collapse
|
26
|
Faienza MF, Scicchitano P, Lamparelli R, Zaza P, Cecere A, Brunetti G, Cortese F, Valente F, Delvecchio M, Giordano P, Zito AP, D'Amato G, Ciccone MM. Vascular and Myocardial Function in Young People with Type 1 Diabetes Mellitus: Insulin Pump Therapy Versus Multiple Daily Injections Insulin Regimen. Exp Clin Endocrinol Diabetes 2021; 130:415-422. [PMID: 34384121 DOI: 10.1055/a-1523-7574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Multiple daily injections (MDI) and continuous subcutaneous insulin infusion (CSII) are two modalities of treating type 1 diabetes mellitus (T1DM). The benefits of CSII on long-term metabolic control and outcomes compared to those of MDI are still debated. We investigated both vascular function and myocardial performance in T1DM adolescents on MDI or CSII treatment. METHODS One hundred twenty-three T1DM subjects (mean age 14.16±2.55 years), 63 on MDI regimen, 60 on CSII, and 57 controls were enrolled. Anthropometric and biochemical characteristics were evaluated. Ultrasound assessments of carotid intima-media thickness (cIMT), flow-mediated dilatation of brachial artery, anteroposterior diameter of the infrarenal abdominal aorta (APAO), and transthoracic echocardiography were performed. RESULTS T1DM subjects on the CSII regimen showed better glycemic control than those on MDI, expressed as glycated haemoglobin (HbA1c). c-IMT and APAO were higher in MDI than CSII patients (0.61±0.11 mm vs. 0.56±0.07 mm, p=0.04; 13.61±3.29 mm vs. 11.65±1.84 mm, p=0.01, respectively). Left and right Tei index and left E/e' ratio were higher in MDI than CSII subjects (0.82±0.40 vs. 0.52±0.19, p=0.002; 0.86±0.41 vs. 0.64±0.1, p=0.02; 5.89±2.0 vs. 4.73±1.59, p=0.02, respectively). Multiple regression analyses showed that glucose level, HbA1c and diabetes onset were significantly related to vascular and echocardiographic parameters in MDI and CSII patients. CONCLUSIONS CSII regimen in T1DM adolescents improves glycemic control and seems to ameliorate endothelial function and global myocardial performance as compared to MDI therapy.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A.Moro", Bari, Italy
| | - Pietro Scicchitano
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Bari, Italy
| | - Raffaella Lamparelli
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A.Moro", Bari, Italy
| | - Pierlugi Zaza
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A.Moro", Bari, Italy
| | - Annagrazia Cecere
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University "A. Moro" of Bari, Bari, Italy
| | - Francesca Cortese
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Bari, Italy
| | - Federica Valente
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Bari, Italy
| | - Maurizio Delvecchio
- Metabolic Diseases, Clinical Genetics and Diabetology Unit, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Paola Giordano
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A.Moro", Bari, Italy
| | - Anna Paola Zito
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Bari, Italy
| | - Gabriele D'Amato
- Department of Women's and Children's Health, ASL Bari, Neonatal Intensive Care Unit, "Di Venere" Hospital, Bari, Italy
| | - Marco Matteo Ciccone
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
27
|
Brunetti G, D'Amato G, De Santis S, Grano M, Faienza MF. Mechanisms of altered bone remodeling in children with type 1 diabetes. World J Diabetes 2021; 12:997-1009. [PMID: 34326950 PMCID: PMC8311475 DOI: 10.4239/wjd.v12.i7.997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Bone loss associated with type 1 diabetes mellitus (T1DM) begins at the onset of the disease, already in childhood, determining a lower bone mass peak and hence a greater risk of osteoporosis and fractures later in life. The mechanisms underlying diabetic bone fragility are not yet completely understood. Hyperglycemia and insulin deficiency can affect the bone cells functions, as well as the bone marrow fat, thus impairing the bone strength, geometry, and microarchitecture. Several factors, like insulin and growth hormone/insulin-like growth factor 1, can control bone marrow mesenchymal stem cell commitment, and the receptor activator of nuclear factor-κB ligand/osteoprotegerin and Wnt-b catenin pathways can impair bone turnover. Some myokines may have a key role in regulating metabolic control and improving bone mass in T1DM subjects. The aim of this review is to provide an overview of the current knowledge of the mechanisms underlying altered bone remodeling in children affected by T1DM.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University "A. Moro" of Bari, Bari 70125, Italy
| | - Gabriele D'Amato
- Department of Women’s and Children’s Health, ASL Bari, Neonatal Intensive Care Unit, Di Venere Hospital, Bari 70124, Italy
| | - Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari 70126, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Univ Bari, Bari 70124, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A.Moro", Bari 70124, Italy
| |
Collapse
|
28
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
29
|
Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Identification of hub genes related to the progression of type 1 diabetes by computational analysis. BMC Endocr Disord 2021; 21:61. [PMID: 33827531 PMCID: PMC8028841 DOI: 10.1186/s12902-021-00709-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a serious threat to childhood life and has fairly complicated pathogenesis. Profound attempts have been made to enlighten the pathogenesis, but the molecular mechanisms of T1D are still not well known. METHODS To identify the candidate genes in the progression of T1D, expression profiling by high throughput sequencing dataset GSE123658 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and gene ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI), modules, target gene - miRNA regulatory network and target gene - TF regulatory network analysis were constructed and analyzed using HIPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, validation of hub genes was conducted by using ROC (Receiver operating characteristic) curve and RT-PCR analysis. A molecular docking study was performed. RESULTS A total of 284 DEGs were identified, consisting of 142 up regulated genes and 142 down regulated genes. The gene ontology (GO) and pathways of the DEGs include cell-cell signaling, vesicle fusion, plasma membrane, signaling receptor activity, lipid binding, signaling by GPCR and innate immune system. Four hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell-cell signaling, cytokine signaling in immune system, signaling by GPCR and innate immune system. ROC curve and RT-PCR analysis showed that EGFR, GRIN2B, GJA1, CAP2, MIF, POLR2A, PRKACA, GABARAP, TLN1 and PXN might be involved in the advancement of T1D. Molecular docking studies showed high docking score. CONCLUSIONS DEGs and hub genes identified in the present investigation help us understand the molecular mechanisms underlying the advancement of T1D, and provide candidate targets for diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, Karnataka, 577501, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karanataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society's Ayurvedic Medical College, Ron, Karanataka, 582209, India
| |
Collapse
|
30
|
Anastasilakis AD, Tsourdi E, Tabacco G, Naciu AM, Napoli N, Vescini F, Palermo A. The Impact of Antiosteoporotic Drugs on Glucose Metabolism and Fracture Risk in Diabetes: Good or Bad News? J Clin Med 2021; 10:jcm10050996. [PMID: 33801212 PMCID: PMC7957889 DOI: 10.3390/jcm10050996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis and diabetes mellitus represent global health problems due to their high, and increasing with aging, prevalence in the general population. Osteoporosis can be successfully treated with both antiresorptive and anabolic drugs. While these drugs are clearly effective in reducing the risk of fracture in patients with postmenopausal and male osteoporosis, it is still unclear whether they may have the same efficacy in patients with diabetic osteopathy. Furthermore, as bone-derived cytokines (osteokines) are able to influence glucose metabolism, it is conceivable that antiosteoporotic drugs may have an effect on glycemic control through their modulation of bone turnover that affects the osteokines’ release. These aspects are addressed in this narrative review by means of an unrestricted computerized literature search in the PubMed database. Our findings indicate a balance between good and bad news. Active bone therapies and their modulation of bone turnover do not appear to play a clinically significant role in glucose metabolism in humans. Moreover, there are insufficient data to clarify whether there are any differences in the efficacy of antiosteoporotic drugs on fracture incidence between diabetic and nondiabetic patients with osteoporosis. Although more studies are required for stronger recommendations to be issued, bisphosphonates appear to be the first-line drug for treatment of osteoporosis in diabetic patients, while denosumab seems preferable for older patients, particularly for those with impaired renal function, and osteoanabolic agents should be reserved for patients with more severe forms of osteoporosis.
Collapse
Affiliation(s)
| | - Elena Tsourdi
- Department of Medicine (III) &Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-12933; Fax: +49-351-458-5801
| | - Gaia Tabacco
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Anda Mihaela Naciu
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Fabio Vescini
- Department of Endocrinology and Diabetes, Santa Maria della Misericordia Hospital, 33100 Udine, Italy;
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| |
Collapse
|
31
|
Hildebrandt N, Colditz J, Dutra C, Goes P, Salbach-Hirsch J, Thiele S, Hofbauer LC, Rauner M. Role of osteogenic Dickkopf-1 in bone remodeling and bone healing in mice with type I diabetes mellitus. Sci Rep 2021; 11:1920. [PMID: 33479403 PMCID: PMC7820472 DOI: 10.1038/s41598-021-81543-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is associated with low bone mass and a higher risk for fractures. Dickkopf-1 (Dkk1), which inhibits Wnt signaling, osteoblast function, and bone formation, has been found to be increased in the serum of patients with T1DM. Here, we investigated the functional role of Dkk1 in T1DM-induced bone loss in mice. T1DM was induced in 10-week-old male mice with Dkk1-deficiency in late osteoblasts/osteocytes (Dkk1f/f;Dmp1-Cre, cKO) and littermate control mice by 5 subsequent injections of streptozotocin (40 mg/kg). Age-matched, non-diabetic control groups received citrate buffer instead. At week 12, calvarial defects were created in subgroups of each cohort. After a total of 16 weeks, weight, fat, the femoral bone phenotype and the area of the bone defect were analyzed using µCT and dynamic histomorphometry. During the experiment, diabetic WT and cKO mice did not gain body weight compared to control mice. Further they lost their perigonadal and subcutaneous fat pads. Diabetic mice had highly elevated serum glucose levels and impaired glucose tolerance, regardless of their Dkk1 levels. T1DM led to a 36% decrease in trabecular bone volume in Cre− negative control animals, whereas Dkk1 cKO mice only lost 16%. Of note, Dkk1 cKO mice were completely protected from T1DM-induced cortical bone loss. T1DM suppressed the bone formation rate, the number of osteoblasts at trabecular bone, serum levels of P1NP and bone defect healing in both, Dkk1-deficient and sufficient, mice. This may be explained by increased serum sclerostin levels in both genotypes and the strict dependence on bone formation for bone defect healing. In contrast, the number of osteoclasts and TRACP 5b serum levels only increased in diabetic control mice, but not in Dkk1 cKO mice. In summary, Dkk1 derived from osteogenic cells does not influence the development of T1DM but plays a crucial role in T1DM-induced bone loss in male mice by regulating osteoclast numbers.
Collapse
Affiliation(s)
- Nick Hildebrandt
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Juliane Colditz
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Caio Dutra
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,Post-Graduation Program in Morphological Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paula Goes
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Juliane Salbach-Hirsch
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
32
|
The effect of Irisin on bone cells in vivo and in vitro. Biochem Soc Trans 2021; 49:477-484. [PMID: 33449117 DOI: 10.1042/bst20200978] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
The myokine Irisin, produced during physical exercise, has an anabolic effect on bone, both in vitro and in vivo. Very recently, using a controlled in vitro 3D cell model to mimic the bone microenvironment aboard the International Space Station, it has been shown that Irisin treatment in microgravity prevents the down-regulation of the transcription factors Atf4, Runx2 and Osterix, as well as Collagen I and Osteoprotegerin proteins, crucial for osteoblast differentiation in physiologic conditions. Irisin action has also been investigated in human subjects, in which it correlates with bone health status, supporting its physiological importance also in human bone, both in healthy subjects and in patients suffering from diseases related to bone metabolism, such as hyperparathyroidism and type 1 diabetes. Low levels of circulating Irisin have been found in post-menopausal women affected by hyperparathyroidism. Furthermore, Irisin is positively correlated with bone strength in athletes and bone mineral density in football players. Moreover, in healthy children, Irisin is positively associated with bone mineral status and in children with type 1 diabetes, Irisin is positively correlated with improved glycemic control and skeletal health. In this review, we will focus on recent findings about Irisin action on microgravity induced bone loss and on osteocyte activity and survival through its αV/β5 integrin receptor.
Collapse
|
33
|
Correlation between Serum Bone Turnover Markers and Estimated Glomerular Filtration Rate in Chinese Patients with Diabetes. DISEASE MARKERS 2021; 2021:6731218. [PMID: 33505536 PMCID: PMC7806398 DOI: 10.1155/2021/6731218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Objective Diabetes is a growing global public health concern with many significant disease complications. Multiple studies show that bone turnover markers (BTMs) are decreased in diabetes patients, indicating impaired bone metabolism in diabetes patients. A recent study also showed that in diabetes patients, BTMs are correlated with urine albumin to creatinine ratio, an indicator of nephropathy. However, whether BTMs are correlated with estimated glomerular filtration rate (eGFR) in diabetes remains unknown. This retrospective study accessed correlations between serum BTMs and eGFR in Chinese patients with diabetes and compare levels of BTMs and eGFR between diabetic patients and healthy individuals. Methods This study analyzed data from 221 diabetic patients (include type1 and type 2 diabetes) and 155 healthy individuals. Serum BTM levels and eGFR were compared between diabetic patients and healthy individuals. Pearson correlation analysis was used to assess correlations between BTMs and eGFR. Multiple logistic regression analysis adjusted for gender and age was performed to measure odd ratio (OR) and 95% confidence interval (95% CI) of BTMs on diabetes. Results Patients with diabetes had significant lower 25-hydroxyvitamin D (25(OH)D) levels (15.07 ± 6.20 ng/mL) than healthy group (17.89 ± 6.41 ng/mL) (P < 0.05). For patients with diabetes, eGFR was negatively correlated with osteocalcin (OC) (r = −0.434, P < 0.05), procollagen type 1 intact N-terminal propeptide (P1NP) (r = −0.350, P < 0.05), and β-carboxy-terminal cross-linking telopeptide of type I collagen (β-CTX) (r = −0.179, P < 0.05) levels. For healthy people, eGFR was negatively correlated with 25(OH)D (r = −0.290, P < 0.05) levels. Multiple logistic regression analysis adjusted for age and gender (mean age of diabetes was 64.9 years and the percentage of female was 66.9%, mean age of healthy people was 48.4 years and the percentage of female was 37.4%) showed that 25(OH)D (OR = 0.909, 95%CI = 0.862 − 0.959, P < 0.05) was protective factors for diabetes. Conclusions In the stage of diabetic nephropathy, bone turnover may accelerate. It is important to detect BTMs in the stage of diabetic nephropathy.
Collapse
|
34
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
35
|
Li J, Ren Y, Li S, Li J. Relationship Between Sclerostin (SOST) Expression and Genetic Loci rs851056, rs1230399 Polymorphisms and Bone Mineral Density in Postmenopausal Women with Type 2 Diabetes in Xinjiang. Diabetes Metab Syndr Obes 2021; 14:4443-4450. [PMID: 34764662 PMCID: PMC8575445 DOI: 10.2147/dmso.s305831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The Wnt signaling pathway plays a valuable role in bone metabolism. SOST is a major inhibitor of the Wnt signaling pathway. The expression of SOST and genetic polymorphism might be associated with bone mineral density in postmenopausal women with type 2 diabetes mellitus (T2DM). OBJECTIVE This study aims to explore whether SOST protein expression and genetic locus rs851056, rs1230399 polymorphism is associated with bone mineral density in postmenopausal women with T2DM in Xinjiang. METHODS A total of 136 Xinjiang postmenopausal women were divided into four groups: A (-/-), B (±), C (-/+), and D (+/+) by assessing their OGTT and bone mass. Genetic polymorphisms were determined using the mass ARRAY mass spectrometer. RESULTS 1) Genotypes and allele frequencies at rs851056 were statistically significant differences in groups B and D patients compared to group A, respectively. 2) Individuals carrying the GG genotype had lower HDL, Ca, and ALP as compared to those carrying the GC/CC genotypes in group C. In contrast, individuals carrying the GG genotype had higher BMD (L1-4) as compared to those carrying the GC/CC genotypes in group D. 3) SOST protein expression levels were higher in groups C and D than in group A. 4). BMD (L1-4) was negatively correlated with SOST protein. 5) Multiple linear regression analysis for BMD-dependent variables showed that the decrease of BMI and TG were risk factors for BMD (L1-4), besides, the decrease of BMI, ALP, and extended years of menopause were all risk factors for BMD (femoral neck). CONCLUSION SOST protein expression and genetic locus rs851056, rs1230399 polymorphism are associated with bone mineral density in postmenopausal women with type 2 diabetes mellitus in Xinjiang.
Collapse
Affiliation(s)
- Jun Li
- Endocrinology and Metabolism Department, First Affiliated Hosptital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, People’s Republic of China
- Correspondence: Jun Li Email
| | - YanXia Ren
- Endocrinology and Metabolism Department, First Affiliated Hosptital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - SiYuan Li
- Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - JiaJia Li
- Endocrinology and Metabolism Department, Second People’s Hospital of Nanyang, Nanyang, Henan Province, People’s Republic of China
| |
Collapse
|
36
|
Eckert AJ, Mader JK, Altmeier M, Mühldorfer S, Gillessen A, Dallmeier D, Shah VN, Heyer C, Hartmann B, Holl RW. Fracture risk in patients with type 2 diabetes aged ≥50 years related to HbA1c, acute complications, BMI and SGLT2i-use in the DPV registry. J Diabetes Complications 2020; 34:107664. [PMID: 32624333 PMCID: PMC7502496 DOI: 10.1016/j.jdiacomp.2020.107664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander J Eckert
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany; German Centre for Diabetes Research (DZD), Neuherberg, Germany.
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | | | | | | | - Dhayana Dallmeier
- AGAPLESION Bethesda Clinic, Geriatric Center Ulm, Ulm, Germany; Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Bettina Hartmann
- Heilig-Geist Hospital Bensheim, Department of Gastroenterology and Diabetology, Bensheim, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany; German Centre for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
37
|
Sherk VD, Vigers T, Pyle L, Snell-Bergeon JK, Nadeau KJ, Rickels MR, Miller KM, Greenbaum CJ, Shah VN. Acute Hyperinsulinemia Alters Bone Turnover in Women and Men With Type 1 Diabetes. JBMR Plus 2020; 4:e10389. [PMID: 32995692 PMCID: PMC7507374 DOI: 10.1002/jbm4.10389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) increases fracture risk across the lifespan. The low bone turnover associated with T1D is thought to be related to glycemic control, but it is unclear whether peripheral hyperinsulinemia due to dependence on exogenous insulin has an independent effect on suppressing bone turnover. The purpose of this study was to test the bone turnover marker (BTM) response to acute hyperinsulinemia. Fifty‐eight adults aged 18 to 65 years with T1D over 2 years were enrolled at seven T1D Exchange Clinic Network sites. Participants had T1D diagnosis between age 6 months to 45 years. Participants were stratified based on their residual endogenous insulin secretion measured as peak C‐peptide response to a mixed meal tolerance test. BTMs (CTX, P1NP, sclerostin [SCL], osteonectin [ON], alkaline phosphatase [ALP], osteocalcin [OCN], osteoprotegerin [OPG], osteopontin [OPN], and IGF‐1) were assessed before and at the end of a 2‐hour hyperinsulinemic‐euglycemic clamp (HEC). Baseline ON (r = −0.30, p = .022) and OCN (r = −0.41, p = .002) were negatively correlated with age at T1D diagnosis, but baseline BTMs were not associated with HbA1c. During the HEC, P1NP decreased significantly (−14.5 ± 44.3%; p = .020) from baseline. OCN, ON, and IGF‐1 all significantly increased (16.0 ± 13.1%, 29.7 ± 31.7%, 34.1 ± 71.2%, respectively; all p < .001) during the clamp. The increase in SCL was not significant (7.3 ± 32.9%, p = .098), but the decrease in CTX (−12.4 ± 48.9, p = .058) neared significance. ALP and OPG were not changed from baseline (p = .23 and p = .77, respectively). Baseline ON and SCL were higher in men, but OPG was higher in women (all p ≤ .029). SCL was the only BTM that changed differently in women than men. There were no differences in baseline BTMs or change in BTMs between C‐peptide groups. Exogenous hyperinsulinemia acutely alters bone turnover, suggesting a need to determine whether strategies to promote healthy remodeling may protect bone quality in T1D. © 2020 American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Department of OrthopedicsSchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Timothy Vigers
- Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus Aurora CO USA.,Department of Pediatrics, Section of EndocrinologySchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA.,Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Laura Pyle
- Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus Aurora CO USA.,Department of Pediatrics, Section of EndocrinologySchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA.,Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Kristen J Nadeau
- Children's Hospital Colorado University of Colorado School of Medicine Aurora CO USA
| | - Michael R Rickels
- Institute for Diabetes, Obesity & Metabolism University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | | | | | - Viral N Shah
- Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| |
Collapse
|
38
|
Colaianni G, Storlino G, Sanesi L, Colucci S, Grano M. Myokines and Osteokines in the Pathogenesis of Muscle and Bone Diseases. Curr Osteoporos Rep 2020; 18:401-407. [PMID: 32514668 DOI: 10.1007/s11914-020-00600-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review we aim to summarize the latest findings on the network of molecules produced by muscle and bone under physiological and pathological conditions. RECENT FINDINGS The concomitant onset of osteoporosis and sarcopenia is currently one of the main threats that can increase the risk of falling fractures during aging, generating high health care costs due to hospitalization for bone fracture surgery. With the growing emergence of developing innovative therapies to treat these two age-related conditions that often have common onset, a broader understanding of molecular messengers regulating the communication between muscle and bone tissue became imperative. Recently it has been highlighted that two muscle-derived signals, such as the myokines Irisin and L-BAIBA, positively affect bone tissue. In parallel, there are signals derived from bone that affect either positively the skeletal muscle, such as osteocalcin, or negatively, such as RANKL.
Collapse
Affiliation(s)
- G Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - G Storlino
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - L Sanesi
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - S Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
39
|
Stefania DS, Clodoveo ML, Cariello M, D'Amato G, Franchini C, Faienza MF, Corbo F. Polyphenols and obesity prevention: critical insights on molecular regulation, bioavailability and dose in preclinical and clinical settings. Crit Rev Food Sci Nutr 2020; 61:1804-1826. [PMID: 32436425 DOI: 10.1080/10408398.2020.1765736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity represents one of the most important public health challenges of the 21st century and is characterized by a multifactorial etiology in which environmental, behavioral, metabolic, and genetic factors work together. Despite the rapid increase in prevalence of obesity in the last decades, especially in children, it remains a preventable disease. To battle obesity a multisector approach promoting healthier lifestyle in terms of physical activity and nutrition is needed. Specifically, biologically active dietary compounds, as polyphenols, are able to modulate the expression of genes involved in the development and progression of obesity and its comorbidities as demonstrated by multiple studies using different obesity models. However, human studies focusing on the transcriptomic modulation by polyphenols in obese patients are still limited and do not often recapitulate the results obtained in preclinical setting likely due to the underestimation of some variables such as bioavailability, dose and form (native vs. metabolized) of polyphenols used. The aim of this review is to summarize the state-of-art of nutrigenomic in vitro, in vivo and ex vivo studies as well as clinical trials based on dietary polyphenols to fight obesity. We also critical discuss the variables to be considered to fill the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- De Santis Stefania
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M L Clodoveo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - M Cariello
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - G D'Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, Bari, Italy
| | - C Franchini
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M F Faienza
- Pediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - F Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
40
|
Janssen LGM, Van Dam AD, Hanssen MJW, Kooijman S, Nahon KJ, Reinders H, Jazet IM, Van Marken Lichtenbelt WD, Rensen PCN, Appelman-Dijkstra NM, Boon MR. Higher Plasma Sclerostin and Lower Wnt Signaling Gene Expression in White Adipose Tissue of Prediabetic South Asian Men Compared with White Caucasian Men. Diabetes Metab J 2020; 44:326-335. [PMID: 31701693 PMCID: PMC7188965 DOI: 10.4093/dmj.2019.0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND South Asians generally have an unfavourable metabolic phenotype compared with white Caucasians, including central obesity and insulin resistance. The Wnt protein family interacts with insulin signaling, and impaired Wnt signaling is associated with adiposity and type 2 diabetes mellitus. We aimed to investigate Wnt signaling in relation to insulin signaling in South Asians compared with white Caucasians. METHODS Ten Dutch South Asian men with prediabetes and overweight or obesity and 10 matched Dutch white Caucasians were included. Blood samples were assayed for the Wnt inhibitor sclerostin. Subcutaneous white adipose tissue (WAT) and skeletal muscle biopsies were assayed for Wnt and insulin signaling gene expression with quantitative reverse transcription polymerase chain reaction (Clinicaltrials.gov NCT02291458). RESULTS Plasma sclerostin was markedly higher in South Asians compared with white Caucasians (+65%, P<0.01). Additionally, expression of multiple Wnt signaling genes and key insulin signaling genes were lower in WAT in South Asians compared with white Caucasians. Moreover, in WAT in both ethnicities, Wnt signaling gene expression strongly positively correlated with insulin signaling gene expression. In skeletal muscle, WNT10B expression in South Asians was lower, but expression of other Wnt signaling and insulin signaling genes was comparable between ethnicities. Wnt and insulin signaling gene expression also positively correlated in skeletal muscle, albeit less pronounced. CONCLUSION South Asian men with overweight or obesity and prediabetes have higher plasma sclerostin and lower Wnt signaling gene expression in WAT compared with white Caucasians. We interpret that reduced Wnt signaling could contribute to impaired insulin signaling in South Asians.
Collapse
Affiliation(s)
- Laura G M Janssen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Andrea D Van Dam
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark J W Hanssen
- Department of Human Biology and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberly J Nahon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanneke Reinders
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter D Van Marken Lichtenbelt
- Department of Human Biology and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Natasha M Appelman-Dijkstra
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Center for Bone Quality, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
41
|
Bilinski WJ, Paradowski PT, Sypniewska G. Bone health and hyperglycemia in pediatric populations. Crit Rev Clin Lab Sci 2020; 57:444-457. [PMID: 32216595 DOI: 10.1080/10408363.2020.1739619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The impact of prediabetes and diabetes on skeletal health in the context of increased risk of fragility fractures in adults has been studied recently. However, the prevalence of diabetes, overweight, and obesity have also increased in younger subjects. Current data concerning bone metabolism based on assessment of markers for bone turnover and of bone quality in diabetes patients in diverse age groups appears to be inconsistent. This review synthesizes the current data on the assessment of bone turnover based on the use of circulating bone markers recommended by international organizations; the effects of age, gender, and other factors on the interpretation of the data; and the effects of type 1 and type 2 diabetes as well as hyperglycemia on bone quality and turnover with particular emphasis on the pediatric population. Early intervention in the pediatric population is necessary to prevent the progression of metabolic disturbances that accompany prediabetes and diabetes in the context of common low vitamin D status that may interfere with bone growth.
Collapse
Affiliation(s)
| | - Przemyslaw T Paradowski
- Department of Orthopaedics and Traumatology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.,Department of Surgical and Perioperative Sciences. Division of Orthopedics, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Grazyna Sypniewska
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
42
|
How Physical Activity across the Lifespan Can Reduce the Impact of Bone Ageing: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061862. [PMID: 32183049 PMCID: PMC7143872 DOI: 10.3390/ijerph17061862] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Bone remodeling is a lifelong process, due to the balanced activity of the osteoblasts (OBs), the bone-forming cells, and osteoclasts (OCs), the bone-resorbing cells. This equilibrium is mainly regulated by the WNT-ß-cathenin pathway and the RANK-RANKL/OPG system, respectively. Bone ageing is a process which normally occurs during life due to the imbalance between bone formation and bone resorption, potentially leading to osteoporosis. Bone loss associated with bone ageing is determined by oxidative stress, the result of the increasing production of reactive oxygen species (ROS). The promotion of physical exercise during growth increases the chances of accruing bone and delaying the onset of osteoporosis. Several studies demonstrate that physical exercise is associated with higher bone mineral density and lower fracture incidence, and the resulting bone mineral gain is maintained with ageing, despite a reduction of physical activity in adulthood. The benefits of exercise are widely recognized, thus physical activity is considered the best non-pharmacologic treatment for pathologies such as osteoporosis, obesity, diabetes and cardiovascular disease. We reviewed the physiological mechanisms which control bone remodeling, the effects of physical activity on bone health, and studies on the impact of exercise in reducing bone ageing.
Collapse
|
43
|
Xu Y, Gao C, He J, Gu W, Yi C, Chen B, Wang Q, Tang F, Xu J, Yue H, Zhang Z. Sclerostin and Its Associations With Bone Metabolism Markers and Sex Hormones in Healthy Community-Dwelling Elderly Individuals and Adolescents. Front Cell Dev Biol 2020; 8:57. [PMID: 32117983 PMCID: PMC7020200 DOI: 10.3389/fcell.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Sclerostin is an important regulator of bone mass involving Wnt/β-catenin signaling pathway. We aimed to obtain the profile of serum sclerostin level and explore its associations with bone metabolism markers and sex hormones in healthy community-dwelling Chinese elderly individuals and adolescents. A cross-sectional study was performed in three communities in Shanghai. In all, 861 participants, including 574 healthy elderly individuals, and 287 healthy adolescents, were recruited. The levels of serum sclerostin, procollagen type 1 N-terminal propeptide (P1NP), β-CrossLaps of type I collagen containing cross-linked C-telopeptide (β-CTX), parathyroid hormone (PTH), 25-hydroxyvitamin D [25(OH)D], estradiol (E2), testosterone (T), and sex hormone-binding globulin (SHBG) were measured in blood samples from all participants. Median sclerostin level was higher in males than in females and in elderly individuals than in adolescents (elderly males: 54.89 pmol/L, elderly females: 39.95 pmol/L, adolescent males: 36.58 pmol/L, adolescent females: 27.06 pmol/L; both P < 0.05). In elderly individuals, serum sclerostin was positively correlated with age (β = 0.176, P < 0.001) and T (β = 0.248, P = 0.001), but negatively associated to P1NP (β = −0.140, P = 0.001). In adolescents, circulating sclerostin was significantly and positively associated with P1NP (β = 0.192, P = 0.003). The directions of the association between sclerostin and P1NP were opposite in Chinese elderly individuals and adolescents, which may reflect that sclerostin plays distinct roles in different functional states of the skeleton. Our findings revealed the rough profile of circulating sclerostin level in general healthy Chinese population and its associations with bone metabolism markers and sex hormones, which may provide a clue to further elucidate the cross action of sclerostin in bone metabolism and sexual development.
Collapse
Affiliation(s)
- Yang Xu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Gao
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinwei He
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenqin Gu
- Fenglin Community Health Service Center, Shanghai, China
| | - Chuntao Yi
- Fenglin Community Health Service Center, Shanghai, China
| | - Bihua Chen
- Longhua Community Health Service Center, Shanghai, China
| | - Qingqing Wang
- Longhua Community Health Service Center, Shanghai, China
| | - Feng Tang
- Qixian Community Health Service Center, Shanghai, China
| | - Juliang Xu
- Qixian Community Health Service Center, Shanghai, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
44
|
Pacicca DM, Brown T, Watkins D, Kover K, Yan Y, Prideaux M, Bonewald L. Elevated glucose acts directly on osteocytes to increase sclerostin expression in diabetes. Sci Rep 2019; 9:17353. [PMID: 31757981 PMCID: PMC6874765 DOI: 10.1038/s41598-019-52224-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Bone quality in diabetic patients is compromised, leading to weaker bones and increased fracture risk. However, the mechanism by which this occurs in diabetic bone remains to be fully elucidated. We hypothesized that elevated glucose and glucose variation would affect the function of osteocytes, essential regulators of bone homeostasis and quality. To first test this hypothesis, we used the IDG-SW3 osteocyte-like cell line to examine the effects of glucose levels on osteocyte function and viability in vitro. We confirmed our in vitro findings using the in vivo streptozotocin-induced (STZ) diabetic rat model and ex-vivo cultured osteocytes from these rats. IDG-SW3 cells cultured under high glucose conditions displayed significantly increased Sost mRNA(100-fold) and sclerostin protein, a negative regulator of bone formation(5000-fold), compared to cells in control media. mRNA expression of osteoblast markers such as Osx, Ocn and Col1a1 was unaffected by glucose. Factors associated with osteoclast activation were affected by glucose, with Rankl being upregulated by low glucose. Opg was also transiently upregulated by high glucose in mature IDG-SW3 cells. Induction of diabetes in Sprague-Dawley rats via a single dose of STZ (70 mg/kg) resulted in elevated maximum glucose and increased variability compared to control animals (670/796 vs. 102/142 mg/dL). This was accompanied by increased Sost/sclerostin expression in the osteocytes of these animals. These results show that glucose levels directly regulate osteocyte function through sclerostin expression and suggest a potential mechanism for the negative impact of diabetes on bone quality.
Collapse
Affiliation(s)
- Donna M Pacicca
- Children's Mercy Hospital, Kansas City, Missouri, USA.
- University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri, USA.
| | - Tammy Brown
- Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Dara Watkins
- Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Karen Kover
- Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Yun Yan
- Children's Mercy Hospital, Kansas City, Missouri, USA
| | | | | |
Collapse
|
45
|
Madsen JOB, Jørgensen NR, Pociot F, Johannesen J. Bone turnover markers in children and adolescents with type 1 diabetes-A systematic review. Pediatr Diabetes 2019; 20:510-522. [PMID: 30941847 DOI: 10.1111/pedi.12853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with impaired bone health and both osteocalcin (OCN) and procollagen type 1 amino terminal propetide (P1NP) (markers of bone formation) and C-terminal cross-linked telopeptide (CTX) (marker of bone resorption) are decreased in adult patients with T1D. We review the existing literature characterizing these bone turnover markers in children and adolescents with T1D and by meta-analysis examine whether alterations in OCN, P1NP, and CTX are evident and if potential changes correlate to the metabolic control (hemoglobin A1c, HbA1c). Systematic searches at MEDLINE and EMBASE were conducted in January 2018 identifying all studies describing OCN, P1NP, or CTX in children and adolescents with T1D. A total of 26 studies were included, representing data from more than 1000 patients with T1D. Pooled analyses of standard mean difference and summary effects analysis were performed when sufficient data were available. Pooled analysis revealed mean OCN to be significantly lower in children and adolescents with T1D compared to healthy controls (standard mean difference: -1.87, 95% confidence interval, CI: -2.83; -0.91) whereas both P1NP and CTX did not differ from the controls. Only data on OCN was sufficient to make pooled correlation analysis revealing a negative correlation between OCN and HbA1c (-0.31 95% CI: -0.45; -0.16). In conclusion, OCN is decreased in children and adolescents with T1D, whether CTX and P1NP are affected as well is unclear, due to very limited data available. New and large studies including OCN, P1NP, and CTX (preferably as z-scores adjusting for age variability) is needed to further elucidate the status of bone turnover in children and adolescents with T1D.
Collapse
Affiliation(s)
- Jens O B Madsen
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.,OPEN, Odense Patient Data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Flemming Pociot
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Jesper Johannesen
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Ueland T, Stilgren L, Bollerslev J. Bone Matrix Levels of Dickkopf and Sclerostin are Positively Correlated with Bone Mass and Strength in Postmenopausal Osteoporosis. Int J Mol Sci 2019; 20:ijms20122896. [PMID: 31197079 PMCID: PMC6627473 DOI: 10.3390/ijms20122896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling plays a pivotal role in maintaining bone mass. Secreted pathway modulators such as sclerostin (SOST) and Dickkopfs (DKKs) may influence bone mass inhibiting the canonical Wnt pathway. We evaluated whether bone protein content of secreted Wnt antagonists is related to age, bone mass, and strength in postmenopausal osteoporosis. We measured cortical and trabecular bone contents of SOST and Dickkopf-1 (DKK1) in combined extracts obtained after ethylenediaminetetraacetic acid and guanidine hydrochloride extraction in 56 postmenopausal women aged 47–74 (mean, 63) yr with a previous distal forearm fracture and a hip or spine Z-score less than 0. Our findings were (i) SOST and DKK1 protein levels were higher in trabecular bone, (ii) cortical and trabecular DKK1 and trabecular SOST correlated positively with bone matrix levels of osteocalcin (r between 0.28 and 0.45, p < 0.05), (iii) cortical DKK1 correlated with lumbar spine bone mineral density (BMD) (r = 0.32, p < 0.05) and femoral neck BMD (r = 0.41, p < 0.01), and (iv) cortical DKK1 and SOST correlated with apparent bone volumetric density and compressive strength (r between 0.34 and 0.51, p < 0.01). In conclusion, cortical bone matrix levels of DKK1 and SOST were positively correlated with bone mass and bone strength in postmenopausal osteoporotic women.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute for of Internal Medicine, Faculty of Medicine, University of Oslo, 0027 Oslo, Norway.
- KG Jebsen TREC, University of Tromsø, 9010 Tromsø, Norway.
| | - Lis Stilgren
- Department of Endocrinology, Svendborg Hospital, 5700 Svendborg, Denmark.
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Oslo University Hospital; Faculty of Medicine, University of Oslo, 0027 Oslo, Norway.
| |
Collapse
|
47
|
Irisin and Bone: From Preclinical Studies to the Evaluation of Its Circulating Levels in Different Populations of Human Subjects. Cells 2019; 8:cells8050451. [PMID: 31091695 PMCID: PMC6562988 DOI: 10.3390/cells8050451] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
Almost four years after the discovery of the anabolic action of irisin on bone in mice, ample clinical evidence is emerging in support of its additional physiological relevance in human bone. Irisin inversely correlates with sclerostin levels in adults with prediabetes and with vertebral fragility fractures in post-menopausal women. Furthermore, in athletes we observed a positive correlation between irisin and bone mineral density at different anatomical sites. Our group also described a positive association between serum irisin and bone status in healthy children and multivariate regression analysis showed that irisin is a stronger determinant of bone mineral status than bone alkaline phosphatase. In children with type 1 diabetes mellitus, serum irisin concentrations are positively associated with bone quality and with glycemic control following continuous subcutaneous insulin infusion. Additionally, our in vitro studies suggest the existence of a negative interplay between PTH and irisin biology and these results were also supported by the observation that post-menopausal women with primary hyperparathyroidism have lower levels of irisin compared to matched controls. In this review, we will focus on recent findings about circulating level of irisin in different populations of human subjects and its correlation with their bone status.
Collapse
|
48
|
Corbo F, Brunetti G, Crupi P, Bortolotti S, Storlino G, Piacente L, Carocci A, Catalano A, Milani G, Colaianni G, Colucci S, Grano M, Franchini C, Clodoveo ML, D'Amato G, Faienza MF. Effects of Sweet Cherry Polyphenols on Enhanced Osteoclastogenesis Associated With Childhood Obesity. Front Immunol 2019; 10:1001. [PMID: 31130968 PMCID: PMC6509551 DOI: 10.3389/fimmu.2019.01001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Childhood obesity is associated with the development of severe comorbidities, such as diabetes, cardiovascular diseases, and increased risk of osteopenia/osteoporosis and fractures. The status of low-grade inflammation associated to obesity can be reversed through an enhanced physical activity and by consumption of food enrich of anti-inflammatory compounds, such as omega-3 fatty acids and polyphenols. The aim of this study was to deepen the mechanisms of bone impairment in obese children and adolescents through the evaluation of the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs), and the assessment of the serum levels of RANKL and osteoprotegerin (OPG). Furthermore, we aimed to evaluate the in vitro effects of polyphenol cherry extracts on osteoclastogenesis, as possible dietary treatment to improve bone health in obese subjects. High RANKL levels were measured in obese with respect to controls (115.48 ± 35.20 pg/ml vs. 87.18 ± 17.82 pg/ml; p < 0.01), while OPG levels were significantly reduced in obese than controls (378.02 ± 61.15 pg/ml vs. 436.75 ± 95.53 pg/ml, respectively, p < 0.01). Lower Ad-SoS- and BTT Z-scores were measured in obese compared to controls (p < 0.05). A significant elevated number of multinucleated TRAP+ osteoclasts (OCs) were observed in the un-stimulated cultures of obese subjects compared to the controls. Interestingly, obese subjects displayed a higher percentage of CD14+/CD16+ than controls. Furthermore, in the mRNA extracts of obese subjects we detected a 2.5- and 2-fold increase of TNFα and RANKL transcripts compared to controls, respectively. Each extract of sweet cherries determined a dose-dependent reduction in the formation of multinucleated TRAP+ OCs. Consistently, 24 h treatment of obese PBMCs with sweet cherry extracts from the three cultivars resulted in a significant reduction of the expression of TNFα. In conclusion, the bone impairment in obese children and adolescents is sustained by a spontaneous osteoclastogenesis that can be inhibited in vitro by the polyphenol content of sweet cherries. Thus, our study opens future perspectives for the use of sweet cherry extracts, appropriately formulated as nutraceutical food, as preventive in healthy children and therapeutic in obese ones.
Collapse
Affiliation(s)
- Filomena Corbo
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Crupi
- CREA-VE, Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology, Turi, Italy
| | - Sara Bortolotti
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Laura Piacente
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Gualtiero Milani
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
49
|
Sakamoto E, Kido JI, Takagi R, Inagaki Y, Naruishi K, Nagata T, Yumoto H. Advanced glycation end-product 2 and Porphyromonas gingivalis lipopolysaccharide increase sclerostin expression in mouse osteocyte-like cells. Bone 2019; 122:22-30. [PMID: 30735798 DOI: 10.1016/j.bone.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Sclerostin is a secreted glycoprotein that is mainly expressed in osteocytes, exerts negative effects on bone formation, and is present at elevated levels in diabetes mellitus (DM). Periodontitis is an infectious disease caused by periodontopathic bacteria, a complication of DM, and sometimes associated with severe inflammation and alveolar bone resorption. Advanced glycation end-products (AGEs) are a major pathogen in DM complications and adversely influence periodontitis in DM patients. In the present study, the effects of AGE2 and Porphyromonas gingivalis lipopolysaccharide (P-LPS) on the expression of sclerostin in mouse osteocyte-like cells (MLO-Y4-A2 cells) and its function in osteoblast differentiation were investigated. AGE2 and P-LPS up-regulated the expressions of receptor of AGE (RAGE) and Toll-like receptor 2 (TLR2), respectively, and significantly up-regulated that of sclerostin and interleukin 6 (IL-6) in osteocytes. Sclerostin, RAGE and TLR2 levels were synergistically increased by AGE2 and P-LPS. The siRNAs of RAGE and TLR2 significantly inhibited AGE2- and P-LPS-induced sclerostin expression. AGE2 up-regulated sclerostin expression in osteocyte-like cells via the RAGE, ERK and JNK, and NF-κB signal pathways. On the other hand, P-LPS elevated sclerostin levels via the TLR2, JNK and p38, and NF-κB signal pathways. When osteocytes pre-treated with AGE2 and P-LPS and osteoblastic cells (MC3T3-E1) were co-cultured in the medium with a sclerostin-neutralizing antibody, AGE2- and P-LPS-induced decreases in alkaline phosphatase activity and Runx2 expression in osteoblastic cells were significantly inhibited by the sclerostin-neutralizing antibody. These results suggest that AGE2 and P-LPS influence bone metabolism and inflammation through the regulation of sclerostin expression, and may aggravate periodontitis with DM.
Collapse
Affiliation(s)
- Eijiro Sakamoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jun-Ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Ryosuke Takagi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Inagaki
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koji Naruishi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
50
|
Wędrychowicz A, Sztefko K, Starzyk JB. Sclerostin and its significance for children and adolescents with type 1 diabetes mellitus (T1D). Bone 2019; 120:387-392. [PMID: 30120991 DOI: 10.1016/j.bone.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Recent studies have shown that sclerostin, which is a negative regulator of bone formation, could play an important role in the crosstalk between bone and glucose metabolism. The role of sclerostin and its link with glucose homeostasis in type 1 diabetes mellitus (T1D) has not been yet studied extensively in children. The aim of this study was to assess sclerostin and its relationship between other bone and fat related factors as well as glucose metabolism in children and adolescents with T1D in comparison to their healthy peers. METHODS Forty patients with T1D, 18 girls, mean age 12.3 ± 4.7 yrs, and 28 healthy as controls (13.1 ± 4.2 yrs), sex and Tanner stage-matched were included into the study. Fasting blood samples for measurement of sclerostin, osteocalcin (OC), leptin, adiponectin, vitamin D, fasting glucose, lipid profile, HbA1c, and C-peptide were taken at 8.00 AM. RESULTS Sclerostin levels were significantly higher in patients with T1D than in the control group (p = 0.04) without significant differences between genders. Pearson correlation coefficients revealed a positive association between serum sclerostin levels and leptin OC (r = 0.59, p < 0.001) and a negative correlation between serum sclerostin levels and leptin (r = -0.32, p = 0.02) in all of the subjects and no significant correlations between sclerostin and adiponectin, 25(OH)D3, nor lipids. In the group of T1D patients a strong positive association between serum sclerostin levels and OC (r = 0.62, p < 0.001), and a negative association between serum sclerostin levels and HbA1c and leptin levels (r = -0.33, p = 0.04; r = -0.33, p = 0.03, respectively) were found. These associations were significant also after adjusting the analysis to the age, SDS-BMI and Tanner staging. In the healthy group after adjustment to age, SDS-BMI and Tanner stage, a negative correlation between sclerostin and C-peptide (r = -0.79, p = 0.02) was found. CONCLUSIONS Our data suggest a possible relationship between sclerostin and glucose metabolism in children and adolescents with T1D. It would be worth to investigate if an increase in sclerostin levels could present as a potential cause of the reduction of bone formation in T1D. Both bone-derived OC as well as fat-derived leptin seems to possibly modulate the participation of sclerostin in metabolic regulation in T1D.
Collapse
Affiliation(s)
- Anna Wędrychowicz
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Medical College, Jagiellonian University in Krakow, Poland.
| | - Krystyna Sztefko
- Department of Clinical Biochemistry, Pediatric Institute, Medical College, Jagiellonian University in Krakow, Poland
| | - Jerzy B Starzyk
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Medical College, Jagiellonian University in Krakow, Poland
| |
Collapse
|