1
|
Bailin SS, Gabriel CL, Gangula RD, Hannah L, Nair S, Carr JJ, Terry JG, Silver HJ, Simmons JD, Mashayekhi M, Kalams SA, Mallal S, Kropski JA, Wanjalla CN, Koethe JR. Single-cell Analysis of Subcutaneous Fat Reveals Pro-fibrotic Cells that Correlate with Visceral Adiposity in HIV. J Clin Endocrinol Metab 2024:dgae369. [PMID: 38820087 DOI: 10.1210/clinem/dgae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
CONTEXT Cardiometabolic diseases are common in persons with HIV (PWH) on antiretroviral therapy (ART), which has been attributed to preferential lipid storage in visceral adipose tissue (VAT) compared with subcutaneous adipose tissue (SAT). However, the relationship of SAT-specific cellular and molecular programs with VAT volume is poorly understood in PWH. OBJECTIVE We characterized SAT cell-type specific composition and transcriptional programs that are associated with greater VAT volume in PWH on contemporary ART. METHODS We enrolled PWH on long-term ART with a spectrum of metabolic health. Ninety-two participants underwent SAT biopsy for bulk RNA sequencing and 43 had single-cell RNA sequencing. Computed tomography quantified VAT volume and insulin resistance was calculated using HOMA2-IR. RESULTS VAT volume was associated with HOMA2-IR (p < 0.001). Higher proportions of SAT intermediate macrophages (IMs), myofibroblasts, and MYOC + fibroblasts were associated with greater VAT volume using partial Spearman's correlation adjusting for age, sex, and body mass index (ρ=0.34-0.49, p < 0.05 for all). Whole SAT transcriptomics showed PWH with greater VAT volume have increased expression of extracellular matrix (ECM)- and inflammation-associated genes, and reduced expression of lipolysis- and fatty acid metabolism-associated genes. CONCLUSIONS In PWH, greater VAT volume is associated with higher proportion of SAT IMs and fibroblasts, and a SAT ECM and inflammatory transcriptome, which is similar to findings in HIV-negative persons with obesity. These data identify SAT cell-type specific changes associated with VAT volume in PWH that could underlie the high rates of cardiometabolic diseases in PWH, though additional longitudinal studies are needed to define directionality and mechanisms.
Collapse
Affiliation(s)
- Samuel S Bailin
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Curtis L Gabriel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, Tennessee, USA
| | - Rama D Gangula
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - LaToya Hannah
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heidi J Silver
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Joshua D Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Spyros A Kalams
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Simon Mallal
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Insitute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan A Kropski
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Medicine, Division of Allergy and Pulmonology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Deparment of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R Koethe
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Tesolato SE, González-Gamo D, Barabash A, Claver P, de la Serna SC, Domínguez-Serrano I, Dziakova J, de Juan C, Torres AJ, Iniesta P. Expression Analysis of hsa-miR-181a-5p, hsa-miR-143-3p, hsa-miR-132-3p and hsa-miR-23a-3p as Biomarkers in Colorectal Cancer-Relationship to the Body Mass Index. Cancers (Basel) 2023; 15:3324. [PMID: 37444431 DOI: 10.3390/cancers15133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This work aims to investigate the expression levels of four preselected miRNAs previously linked to cancer and/or obesity, with the purpose of finding potential biomarkers in the clinical management of CRC developed by patients showing different BMI values. We analyzed samples from a total of 65 subjects: 43 affected by CRC and 22 without cancer. Serum and both subcutaneous and omental adipose tissues (SAT and OAT) were investigated, as well as tumor and non-tumor colorectal tissues in the case of the CRC patients. The relative expression (2-∆∆Ct) levels of 4 miRNAs (hsa-miR-181a-5p, hsa-miR-143-3p, has-miR-132-3p and hsa-miR-23a-3p) were measured by RT-qPCR. Serum, SAT and OAT expression levels of these miRNAs showed significant differences between subjects with and without CRC, especially in the group of overweight/obese subjects. In CRC, serum levels of hsa-miR-143-3p clearly correlated with their levels in both SAT and OAT, independently of the BMI group. Moreover, hsa-miR-181a-5p could be considered as a biomarker in CRC patients with BMI ≥ 25 Kg/m2 and emerges as a tumor location marker. We conclude that both adiposity and CRC induce changes in the expression of the miRNAs investigated, and hsa-miR-143-3p and hsa-miR-181a-5p expression analysis could be useful in the clinical management of CRC.
Collapse
Affiliation(s)
- Sofía Elena Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Gamo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Barabash
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- CIBERDEM (Network Biomedical Research Center for Diabetes and Associated Metabolic Diseases), Carlos III Institute of Health, 28029 Madrid, Spain
- Endocrinology & Nutrition Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Paula Claver
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Sofía Cristina de la Serna
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Inmaculada Domínguez-Serrano
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Jana Dziakova
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Carmen de Juan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Antonio José Torres
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Irie K, Yamamoto T, Azuma T, Iwai K, Yonenaga T, Tomofuji T. Association between Periodontal Condition and Fat Distribution in Japanese Adults: A Cross-Sectional Study Using Check-Up Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1699. [PMID: 36767065 PMCID: PMC9914211 DOI: 10.3390/ijerph20031699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Some studies have reported a significant association between periodontal condition and obesity status. We hypothesized that visceral fat area (VFA) and subcutaneous fat area (SFA) volumes might be correlated with periodontal condition. The purpose of the present cross-sectional study was to investigate the association between periodontal condition and fat distribution in Japanese adults. A total of 158 participants, aged 35-74 years, underwent a health check-up including fat distribution and oral examinations. All of the participants underwent magnetic resonance imaging to quantify VFA and SFA. Periodontal condition was evaluated using the periodontal pocket depth (PPD) and clinical attachment level. The VFA volumes differed among the PPD score and clinical attachment level (CAL) code groups. On the other hand, no significant differences in SFA volume were observed among different periodontal conditions. Multiple regression analysis showed that VFA was positively correlated with a greater CAL (standardized coefficient β = 0.123, p = 0.009), but not with a greater PPD score. A larger VFA was positively associated with a greater CAL in Japanese adults, whereas no association was found between SFA and periodontal condition.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Dental Sociology, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Tatsuo Yamamoto
- Department of Dental Sociology, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Tetsuji Azuma
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan
| | - Komei Iwai
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan
| | - Takatoshi Yonenaga
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan
| | - Takaaki Tomofuji
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan
| |
Collapse
|
5
|
A hint for the obesity paradox and the link between obesity, perirenal adipose tissue and Renal Cell Carcinoma progression. Sci Rep 2022; 12:19956. [PMID: 36402906 PMCID: PMC9675816 DOI: 10.1038/s41598-022-24418-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence supports a role for local fat depots in cancer outcomes. Despite the robust positive association of obesity with renal cell carcinoma (RCCa) diagnosis, increased adiposity is inversely related to RCCa oncological outcomes. Here, we sought to ascertain whether imagiologically assessed local fat depots associate with RCCa progression and survival and account for this apparent paradox. A retrospective cohort of renal carcinoma patients elective for nephrectomy (n = 137) were included. Beyond baseline clinicopathological characteristics, computed tomography (CT)-scans at the level of renal hilum evaluated areas and densities of different adipose tissue depots (perirenal, subcutaneous, visceral) and skeletal muscle (erector spinae, psoas and quadratus lumborum muscles) were analyzed. Univariate and multivariable Cox proportional hazards models were estimated following empirical analysis using stepwise Cox regression. Age, visceral adipose tissue (VAT) area and body mass index (BMI) predicted tumour-sided perirenal fat area (R2 = 0.584), which presented upregulated UCP1 expression by 27-fold (P = 0.026) and smaller adipocyte areas, compared with subcutaneous depot. Multivariate analyses revealed that increased area of perirenal adipose tissue (PRAT) on the contralateral and tumour side associate with improved progression-free survival (HR = 0.3, 95CI = 0.1-0.8, P = 0.019) and overall survival (HR = 0.3, 95CI = 0.1-0.7, P = 0.009). PRAT measurements using CT, might become a possible tool, well correlated with other measures of obesity such as VAT and BMI, that will improve determination of obesity and contribute to assess the risk for disease progression and mortality in renal cancer patients. Present data supports the obesity paradox in RCCa, assumed that larger PRAT areas seem to protect from disease progression and death.
Collapse
|
6
|
Huang Y, Zhou J, Zhong H, Xie N, Zhang FR, Zhang Z. Identification of a novel lipid metabolism-related gene signature for predicting colorectal cancer survival. Front Genet 2022; 13:989327. [PMID: 36147494 PMCID: PMC9485806 DOI: 10.3389/fgene.2022.989327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor worldwide. Lipid metabolism is a prerequisite for the growth, proliferation and invasion of cancer cells. However, the lipid metabolism-related gene signature and its underlying molecular mechanisms remain unclear. The aim of this study was to establish a lipid metabolism signature risk model for survival prediction in CRC and to investigate the effect of gene signature on the immune microenvironment. Lipid metabolism-mediated genes (LMGs) were obtained from the Molecular Signatures Database. The consensus molecular subtypes were established using "ConsensusClusterPlus" based on LMGs and the cancer genome atlas (TCGA) data. The risk model was established using univariate and multivariate Cox regression with TCGA database and independently validated in the international cancer genome consortium (ICGC) datasets. Immune infiltration in the risk model was developed using CIBERSORT and xCell analyses. A total of 267 differentially expressed genes (DEGs) were identified between subtype 1 and subtype 2 from consensus molecular subtypes, including 153 upregulated DEGs and 114 downregulated DEGs. 21 DEGs associated with overall survival (OS) were selected using univariate Cox regression analysis. Furthermore, a prognostic risk model was constructed using the risk coefficients and gene expression of eleven-gene signature. Patients with a high-risk score had poorer OS compared with patients in the low-risk score group (p = 3.36e-07) in the TCGA cohort and the validationdatasets (p = 4.03e-05). Analysis of immune infiltration identified multiple T cells were associated with better prognosis in the low-risk group, including Th2 cells (p = 0.0208), regulatory T cells (p = 0.0425), and gammadelta T cells (p = 0.0112). A nomogram integrating the risk model and clinical characteristics was further developed to predict the prognosis of patients with CRC. In conclusion, our study revealed that the expression of lipid-metabolism genes were correlated with the immune microenvironment. The eleven-gene signature might be useful for prediction the prognosis of CRC patients.
Collapse
Affiliation(s)
- Yanpeng Huang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | | | - Haibin Zhong
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ning Xie
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei-Ran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhanmin Zhang
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Consensus molecular subtype differences linking colon adenocarcinoma and obesity revealed by a cohort transcriptomic analysis. PLoS One 2022; 17:e0268436. [PMID: 35560039 PMCID: PMC9106217 DOI: 10.1371/journal.pone.0268436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third-leading cause of cancer-related deaths in the United States and worldwide. Obesity—a worldwide public health concern—is a known risk factor for cancer including CRC. However, the mechanisms underlying the link between CRC and obesity have yet to be fully elucidated in part because of the molecular heterogeneity of CRC. We hypothesized that obesity modulates CRC in a consensus molecular subtype (CMS)-dependent manner. RNA-seq data and associated tumor and patient characteristics including body weight and height data for 232 patients were obtained from The Cancer Genomic Atlas–Colon Adenocarcinoma (TCGA-COAD) database. Tumor samples were classified into the four CMSs with the CMScaller R package; body mass index (BMI) was calculated and categorized as normal, overweight, and obese. We observed a significant difference in CMS categorization between BMI categories. Differentially expressed genes (DEGs) between obese and overweight samples and normal samples differed across the CMSs, and associated prognostic analyses indicated that the DEGs had differing associations on survival. Using Gene Set Enrichment Analysis, we found differences in Hallmark gene set enrichment between obese and overweight samples and normal samples across the CMSs. We constructed Protein-Protein Interaction networks and observed differences in obesity-regulated hub genes for each CMS. Finally, we analyzed and found differences in predicted drug sensitivity between obese and overweight samples and normal samples across the CMSs. Our findings support that obesity impacts the CRC tumor transcriptome in a CMS-specific manner. The possible associations reported here are preliminary and will require validation using in vitro and animal models to examine the CMS-dependence of the genes and pathways. Once validated the obesity-linked genes and pathways may represent new therapeutic targets to treat colon cancer in a CMS-dependent manner.
Collapse
|
8
|
Jayaprakasam VS, Paroder V, Gibbs P, Bajwa R, Gangai N, Sosa RE, Petkovska I, Golia Pernicka JS, Fuqua JL, Bates DDB, Weiser MR, Cercek A, Gollub MJ. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer. Eur Radiol 2022; 32:971-980. [PMID: 34327580 PMCID: PMC9018044 DOI: 10.1007/s00330-021-08144-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To interrogate the mesorectal fat using MRI radiomics feature analysis in order to predict clinical outcomes in patients with locally advanced rectal cancer. METHODS This retrospective study included patients who underwent neoadjuvant chemoradiotherapy for locally advanced rectal cancer from 2009 to 2015. Three radiologists independently segmented mesorectal fat on baseline T2-weighted axial MRI. Radiomics features were extracted from segmented volumes and calculated using CERR software, with adaptive synthetic sampling being employed to combat large class imbalances. Outcome variables included pathologic complete response (pCR), local recurrence, distant recurrence, clinical T-category (cT), post-treatment T category (ypT), and post-treatment N category (ypN). A maximum of eight most important features were selected for model development using support vector machines and fivefold cross-validation to predict each outcome parameter via elastic net regularization. Diagnostic metrics of the final models were calculated, including sensitivity, specificity, PPV, NPV, accuracy, and AUC. RESULTS The study included 236 patients (54 ± 12 years, 135 men). The AUC, sensitivity, specificity, PPV, NPV, and accuracy for each clinical outcome were as follows: for pCR, 0.89, 78.0%, 85.1%, 52.5%, 94.9%, 83.9%; for local recurrence, 0.79, 68.3%, 80.7%, 46.7%, 91.2%, 78.3%; for distant recurrence, 0.87, 80.0%, 88.4%, 58.3%, 95.6%, 87.0%; for cT, 0.80, 85.8%, 56.5%, 89.1%, 49.1%, 80.1%; for ypN, 0.74, 65.0%, 80.1%, 52.7%, 87.0%, 76.3%; and for ypT, 0.86, 81.3%, 84.2%, 96.4%, 46.4%, 81.8%. CONCLUSION Radiomics features of mesorectal fat can predict pathological complete response and local and distant recurrence, as well as post-treatment T and N categories. KEY POINTS • Mesorectal fat contains important prognostic information in patients with locally advanced rectal cancer (LARC). • Radiomics features of mesorectal fat were significantly different between those who achieved complete vs incomplete pathologic response (accuracy 83.9%, 95% CI: 78.6-88.4%). • Radiomics features of mesorectal fat were significantly different between those who did vs did not develop local or distant recurrence (accuracy 78.3%, 95% CI: 72.0-83.7% and 87.0%, 95% CI: 81.6-91.2% respectively).
Collapse
Affiliation(s)
- Vetri Sudar Jayaprakasam
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Viktoriya Paroder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| | - Peter Gibbs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Raazi Bajwa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Natalie Gangai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Ramon E Sosa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Iva Petkovska
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Jennifer S Golia Pernicka
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - James Louis Fuqua
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - David D B Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Martin R Weiser
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Marc J Gollub
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| |
Collapse
|
9
|
Lange M, Angelidou G, Ni Z, Criscuolo A, Schiller J, Blüher M, Fedorova M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep Med 2021; 2:100407. [PMID: 34755127 PMCID: PMC8561168 DOI: 10.1016/j.xcrm.2021.100407] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodeling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodeling at the molecular level, we provide in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. We generate a human WAT reference lipidome by performing tissue-tailored preanalytical and analytical workflows, which allow accurate identification and semi-absolute quantification of 1,636 and 737 lipid molecular species, respectively. Deep lipidomic profiling allows identification of main lipid (sub)classes undergoing depot-/phenotype-specific remodeling. Previously unanticipated diversity of WAT ceramides is now uncovered. AdipoAtlas reference lipidome serves as a data-rich resource for the development of WAT-specific high-throughput methods and as a scaffold for systems medicine data integration.
Collapse
Affiliation(s)
- Mike Lange
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Georgia Angelidou
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
- Thermo Fisher Scientific, Dreieich, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Weldenegodguad M, Pokharel K, Niiranen L, Soppela P, Ammosov I, Honkatukia M, Lindeberg H, Peippo J, Reilas T, Mazzullo N, Mäkelä KA, Nyman T, Tervahauta A, Herzig KH, Stammler F, Kantanen J. Adipose gene expression profiles reveal insights into the adaptation of northern Eurasian semi-domestic reindeer (Rangifer tarandus). Commun Biol 2021; 4:1170. [PMID: 34620965 PMCID: PMC8497613 DOI: 10.1038/s42003-021-02703-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Reindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.
Collapse
Affiliation(s)
- Melak Weldenegodguad
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland ,grid.9668.10000 0001 0726 2490Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kisun Pokharel
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Laura Niiranen
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Päivi Soppela
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, Yakutsk, The Sakha Republic (Yakutia) Russia
| | | | - Heli Lindeberg
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Maaninka, Finland
| | - Jaana Peippo
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland ,NordGen—Nordic Genetic Resource Center, Ås, Norway
| | - Tiina Reilas
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Nuccio Mazzullo
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Kari A. Mäkelä
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tommi Nyman
- grid.454322.60000 0004 4910 9859Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Arja Tervahauta
- grid.9668.10000 0001 0726 2490Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Karl-Heinz Herzig
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.10858.340000 0001 0941 4873Medical Research Center, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Oulu University Hospital, Oulu, Finland ,grid.22254.330000 0001 2205 0971Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Florian Stammler
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
11
|
Holowatyj AN, Gigic B, Warby CA, Ose J, Lin T, Schrotz-King P, Ulrich CM, Bernard JJ. The Use of Human Serum Samples to Study Malignant Transformation: A Pilot Study. Cells 2021; 10:2670. [PMID: 34685650 PMCID: PMC8534413 DOI: 10.3390/cells10102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity and excess adiposity account for approximately 20% of all cancer cases; however, biomarkers of risk remain to be elucidated. While fibroblast growth factor-2 (FGF2) is emerging as an attractive candidate biomarker for visceral adipose tissue mass, the role of circulating FGF2 in malignant transformation remains unknown. Moreover, functional assays for biomarker discovery are limited. We sought to determine if human serum could stimulate the 3D growth of a non-tumorigenic cell line. This type of anchorage-independent 3D growth in soft agar is a surrogate marker for acquired tumorigenicity of cell lines. We found that human serum from cancer-free men and women has the potential to stimulate growth in soft agar of non-tumorigenic epithelial JB6 P+ cells. We examined circulating levels of FGF2 in humans in malignant transformation in vitro in a pilot study of n = 33 men and women. Serum FGF2 levels were not associated with colony formation in epithelial cells (r = 0.05, p = 0.80); however, a fibroblast growth factor receptor-1 (FGFR1) selective inhibitor significantly blocked serum-stimulated transformation, suggesting that FGF2 activation of FGFR1 may be necessary, but not sufficient for the transforming effects of human serum. This pilot study indicates that the FGF2/FGFR1 axis plays a role in JB6 P+ malignant transformation and describes an assay to determine critical serum factors that have the potential to promote tumorigenesis.
Collapse
Affiliation(s)
- Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christy A. Warby
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Petra Schrotz-King
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
12
|
Gibbs T, Washington MK, Eng C, Idrees K, Davis J, Holowatyj AN. Histologic and Racial/Ethnic Patterns of Appendiceal Cancer among Young Patients. Cancer Epidemiol Biomarkers Prev 2021; 30:1149-1155. [PMID: 33795212 PMCID: PMC8806661 DOI: 10.1158/1055-9965.epi-20-1505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/16/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Appendiceal cancer incidence among individuals age < 50 years (early-onset appendiceal cancer) is rising with unknown etiologies. Distinct clinicopathologic/demographic features of early-onset appendiceal cancer remain unexplored. We compared patterns of appendiceal cancer among individuals by age of disease-onset. METHODS Using the NIH/NCI's Surveillance, Epidemiology, and End Results program data, we identified individuals age 20+ years diagnosed with appendiceal cancer from 2007 to 2016. Cochran-Armitage trend tests and multinomial logistic regression models were used to examine age-related differences in clinicopathologic/demographic features of appendiceal cancer. RESULTS We identified 8,851 patients with appendiceal cancer during the 10-year study period. Histologic subtype, tumor grade, stage, sex and race/ethnicity all significantly differed by age of appendiceal cancer diagnosis. After adjustment for race/ethnicity, sex, stage, insurance status, and tumor grade, young patients were 82% more likely to be Hispanic [OR, 1.82; 95% confidence interval (CI), 1.48-2.25; P < 0.001] and 4-fold more likely to be American Indian or Alaska Native (OR, 4.02; 95% CI, 1.77-9.16; P = 0.0009) compared with late-onset cases. Patients with early-onset appendiceal cancer were also 2- to 3.5-fold more likely to be diagnosed with neuroendocrine tumors of the appendix (goblet cell carcinoid: OR, 1.96; 95% CI, 1.59-2.41; P < 0.0001; carcinoid: OR, 3.52; 95% CI, 2.80-4.42; P < 0.0001) compared with patients with late-onset appendiceal cancer. Among patients with neuroendocrine tumors, early-onset cases were also 45% to 61% less likely to present with high-grade (III-IV) tumors. CONCLUSIONS Approximately one in every three patients with appendiceal cancer is diagnosed before age 50 years in the United States. Appendiceal cancer in young patients is classified by distinct histologic and demographic features. IMPACT Early-onset appendiceal cancer determinants can inform discovery of risk factors and molecular biomarkers of appendiceal cancer in young patients, with implications for appendiceal cancer prevention, detection, and treatment.
Collapse
Affiliation(s)
| | - Mary K Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Cathy Eng
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kamran Idrees
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Andreana N Holowatyj
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Holowatyj AN, Viskochil R, Ose D, Tingey B, Haaland B, Wilson D, Larson M, Feltz S, Lewis MA, Colman H, Ulrich CM. Diabetes, Body Fatness, and Insulin Prescription Among Adolescents and Young Adults with Cancer. J Adolesc Young Adult Oncol 2021; 10:217-225. [PMID: 32749900 PMCID: PMC8064923 DOI: 10.1089/jayao.2020.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose: Rates of obesity and obesity-related health consequences, including type 2 diabetes (T2D) and cancer, continue to rise. While cancer patients are at an increased risk of developing T2D, the prevalence of T2D and insulin prescription among young patients with cancer remains unknown. Methods: Using the Total Cancer Care Study cohort at Huntsman Cancer Institute (Salt Lake City, UT), we identified individuals age 18-39 years at cancer diagnosis between 2009 and 2019. Multivariable logistic regression was used to investigate associations between body mass index (BMI) with insulin prescription within 1 year of cancer diagnosis. Results: In total, 344 adolescents and young adults (AYAs) were diagnosed with primary invasive cancer. Within this cohort, 19 patients (5.5%) were ever diagnosed with T2D, 48 AYAs ever received an insulin prescription (14.0%), and 197 were overweight or obese (BMI: 25+ kg/m2) at cancer diagnosis. Each kg/m2 unit increase in BMI was associated with 6% increased odds of first insulin prescription within 1 year of cancer diagnosis among AYAs, even after adjustment for age, sex, smoking history, marital status, glucocorticoid prescription, and cancer treatments (odds ratio = 1.06, 95% confidence interval 1.02-1.11; p = 0.005). Conclusion: One in every 18 AYAs with cancer ever had T2D, 1 in 7 AYA patients with cancer ever received an insulin prescription, and higher BMI was associated with increased risk of insulin prescription within a year of cancer diagnosis among AYAs. Understanding the incidence of T2D and insulin prescription/use is critical for short-term and long-term clinical management of AYAs with cancer.
Collapse
Affiliation(s)
- Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Richard Viskochil
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dominik Ose
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin Tingey
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin Haaland
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dalton Wilson
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | | - Sara Feltz
- Data Science Services, University of Utah, Salt Lake City, Utah, USA
| | - Mark A. Lewis
- Department of Internal Medicine, Intermountain Healthcare, Murray, Utah, USA
| | - Howard Colman
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Heo JW, Kim SE, Sung MK. Sex Differences in the Incidence of Obesity-Related Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms22031253. [PMID: 33513939 PMCID: PMC7865604 DOI: 10.3390/ijms22031253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer is the second leading cause of death worldwide, with 9.6 million people estimated to have died of cancer in 2018. Excess body fat deposition is a risk factor for many types of cancer. Men and women exhibit differences in body fat distribution and energy homeostasis regulation. This systematic review aimed to understand why sex disparities in obesity are associated with sex differences in the incidence of gastrointestinal cancers. Cancers of the esophagus, liver, and colon are representative gastrointestinal cancers, and obesity is a convincing risk factor for their development. Numerous epidemiological studies have found sex differences in the incidence of esophageal, liver, and colorectal cancers. We suggest that these sexual disparities are partly explained by the availability of estrogens and other genetic factors regulating inflammation, cell growth, and apoptosis. Sex differences in gut microbiota composition may contribute to differences in the incidence and phenotype of colorectal cancer. To establish successful practices in personalized nutrition and medicine, one should be aware of the sex differences in the pathophysiology and associated mechanisms of cancer development.
Collapse
Affiliation(s)
| | - Sung-Eun Kim
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| | - Mi-Kyung Sung
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| |
Collapse
|
15
|
Lee SH, Choi NH, Koh IU, Kim BJ, Lee S, Kim SC, Choi SS. Putative positive role of inflammatory genes in fat deposition supported by altered gene expression in purified human adipocytes and preadipocytes from lean and obese adipose tissues. J Transl Med 2020; 18:433. [PMID: 33183332 PMCID: PMC7664034 DOI: 10.1186/s12967-020-02611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
Background Obesity is a chronic low-grade inflammatory disease that is generally characterized by enhanced inflammation in obese adipose tissue (AT). Here, we investigated alterations in gene expression between lean and obese conditions using mRNA-Seq data derived from human purified adipocytes (ACs) and preadipocytes (preACs). Results Total mRNA-seq data were generated with 27 AC and 21 preAC samples purified from human visceral AT collected during resection surgery in cancer patients, where the samples were classified into lean and obese categories by BMI > 25 kg/m2. We defined four classes of differentially expressed genes (DEGs) by comparing gene expression between (1) lean and obese ACs, (2) lean and obese preACs, (3) lean ACs and lean preACs, and 4) obese ACs and obese preACs. Based on an analysis of comparison 1, numerous canonical obesity-related genes, particularly inflammatory genes including IL-6, TNF-α and IL-1β, i.e., the genes that are expected to be upregulated in obesity conditions, were found to be expressed at significantly lower levels in obese ACs than in lean ACs. In contrast, some inflammatory genes were found to be expressed at higher levels in obese preACs than lean preACs in the analysis of comparison 2. The analysis of comparisons 3 and 4 showed that inflammatory gene classes were expressed at higher levels in differentiated ACs than undifferentiated preACs under both lean and obese conditions; however, the degree of upregulation was significantly greater for lean than for obese conditions. We validated our observations using previously published microarray transcriptome data deposited in the GEO database (GSE80654). Conclusions Taken together, our analyses suggest that inflammatory genes are expressed at lower levels in obese ACs than in lean ACs because lean adipogenesis involves even greater enhancement of inflammatory responses than does obese adipogenesis.
Collapse
Affiliation(s)
- Sang-Hyeop Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Korea
| | - Nak-Hyeon Choi
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chuncheongbuk-do, 28159, Korea
| | - In-Uk Koh
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chuncheongbuk-do, 28159, Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chuncheongbuk-do, 28159, Korea
| | - Song Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Song-Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Korea.
| |
Collapse
|
16
|
Deutelmoser H, Lorenzo Bermejo J, Benner A, Weigl K, Park HA, Haffa M, Herpel E, Schneider M, Ulrich CM, Hoffmeister M, Chang-Claude J, Brenner H, Scherer D. Genotype-Based Gene Expression in Colon Tissue-Prediction Accuracy and Relationship with the Prognosis of Colorectal Cancer Patients. Int J Mol Sci 2020; 21:E8150. [PMID: 33142733 PMCID: PMC7662650 DOI: 10.3390/ijms21218150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) survival has environmental and inherited components. The expression of specific genes can be inferred based on individual genotypes-so called expression quantitative trait loci. In this study, we used the PrediXcan method to predict gene expression in normal colon tissue using individual genotype data from 91 CRC patients and examined the correlation ρ between predicted and measured gene expression levels. Out of 5434 predicted genes, 58% showed a negative ρ value and only 16% presented a ρ higher than 0.10. We subsequently investigated the association between genotype-based gene expression in colon tissue for genes with ρ > 0.10 and survival of 4436 CRC patients. We identified an inverse association between the predicted expression of ARID3B and CRC-specific survival for patients with a body mass index greater than or equal to 30 kg/m2 (HR (hazard ratio) = 0.66 for an expression higher vs. lower than the median, p = 0.005). This association was validated using genotype and clinical data from the UK Biobank (HR = 0.74, p = 0.04). In addition to the identification of ARID3B expression in normal colon tissue as a candidate prognostic biomarker for obese CRC patients, our study illustrates the challenges of genotype-based prediction of gene expression, and the advantage of reassessing the prediction accuracy in a subset of the study population using measured gene expression data.
Collapse
Affiliation(s)
- Heike Deutelmoser
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (H.D.); (M.H.); (C.M.U.); (H.B.)
- Institute of Medical Biometry and Informatics, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany;
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany;
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69121 Heidelberg, Germany;
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69121 Heidelberg, Germany; (K.W.); (M.H.)
| | - Hanla A. Park
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69121 Heidelberg, Germany; (H.A.P.); (J.C.-C.)
| | - Mariam Haffa
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (H.D.); (M.H.); (C.M.U.); (H.B.)
- Division of Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Esther Herpel
- NCT Tissue Bank, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany;
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany;
| | - Cornelia M. Ulrich
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (H.D.); (M.H.); (C.M.U.); (H.B.)
- Huntsman Cancer Institute, 2000 Cir of Hope Dr 1950, Salt Lake City, UT 84112, USA
- Department of Population Health Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69121 Heidelberg, Germany; (K.W.); (M.H.)
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69121 Heidelberg, Germany; (H.A.P.); (J.C.-C.)
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf (UKE), Martinstraße 52, 20246 Hamburg, Germany
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (H.D.); (M.H.); (C.M.U.); (H.B.)
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69121 Heidelberg, Germany; (K.W.); (M.H.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dominique Scherer
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (H.D.); (M.H.); (C.M.U.); (H.B.)
- Institute of Medical Biometry and Informatics, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany;
| |
Collapse
|
17
|
Holowatyj AN, Haffa M, Lin T, Scherer D, Gigic B, Ose J, Warby CA, Himbert C, Abbenhardt-Martin C, Achaintre D, Boehm J, Boucher KM, Gicquiau A, Gsur A, Habermann N, Herpel E, Kauczor HU, Keski-Rahkonen P, Kloor M, von Knebel-Doeberitz M, Kok DE, Nattenmüller J, Schirmacher P, Schneider M, Schrotz-King P, Simon T, Ueland PM, Viskochil R, Weijenberg MP, Scalbert A, Ulrich A, Bowers LW, Hursting SD, Ulrich CM. Multi-omics Analysis Reveals Adipose-tumor Crosstalk in Patients with Colorectal Cancer. Cancer Prev Res (Phila) 2020; 13:817-828. [PMID: 32655010 PMCID: PMC7877796 DOI: 10.1158/1940-6207.capr-19-0538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Obesity and obesity-driven cancer rates are continuing to rise worldwide. We hypothesize that adipocyte-colonocyte interactions are a key driver of obesity-associated cancers. To understand the clinical relevance of visceral adipose tissue in advancing tumor growth, we analyzed paired tumor-adjacent visceral adipose, normal mucosa, and colorectal tumor tissues as well as presurgery blood samples from patients with sporadic colorectal cancer. We report that high peroxisome proliferator-activated receptor gamma (PPARG) visceral adipose tissue expression is associated with glycoprotein VI (GPVI) signaling-the major signaling receptor for collagen-as well as fibrosis and adipogenesis pathway signaling in colorectal tumors. These associations were supported by correlations between PPARG visceral adipose tissue expression and circulating levels of plasma 4-hydroxyproline and serum intercellular adhesion molecule 1 (ICAM1), as well as gene set enrichment analysis and joint gene-metabolite pathway results integration that yielded significant enrichment of genes defining epithelial-to-mesenchymal transition-as in fibrosis and metastasis-and genes involved in glycolytic metabolism, confirmed this association. We also reveal that elevated prostaglandin-endoperoxide synthase 2 (PTGS2) colorectal tumor expression is associated with a fibrotic signature in adipose-tumor crosstalk via GPVI signaling and dendritic cell maturation in visceral adipose tissue. Systemic metabolite and biomarker profiling confirmed that high PTGS2 expression in colorectal tumors is significantly associated with higher concentrations of serum amyloid A and glycine, and lower concentrations of sphingomyelin, in patients with colorectal cancer. This multi-omics study suggests that adipose-tumor crosstalk in patients with colorectal cancer is a critical microenvironment interaction that could be therapeutically targeted.See related spotlight by Colacino et al., p. 803.
Collapse
Affiliation(s)
- Andreana N Holowatyj
- Huntsman Cancer Institute, Salt Lake City, Utah.
- University of Utah, Salt Lake City, Utah
- Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Mariam Haffa
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, Utah
- University of Utah, Salt Lake City, Utah
| | | | | | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, Utah
- University of Utah, Salt Lake City, Utah
| | - Christy A Warby
- Huntsman Cancer Institute, Salt Lake City, Utah
- University of Utah, Salt Lake City, Utah
| | - Caroline Himbert
- Huntsman Cancer Institute, Salt Lake City, Utah
- University of Utah, Salt Lake City, Utah
| | - Clare Abbenhardt-Martin
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David Achaintre
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Juergen Boehm
- Huntsman Cancer Institute, Salt Lake City, Utah
- University of Utah, Salt Lake City, Utah
| | | | - Audrey Gicquiau
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Andrea Gsur
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Nina Habermann
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Esther Herpel
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- University Hospital, Heidelberg, Germany
| | | | | | - Matthias Kloor
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | | | - Peter Schirmacher
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Petra Schrotz-King
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Per M Ueland
- Maastricht University, Maastricht, the Netherlands
| | - Richard Viskochil
- Huntsman Cancer Institute, Salt Lake City, Utah
- University of Utah, Salt Lake City, Utah
| | | | | | | | - Laura W Bowers
- Purdue University, West Lafayette, Indiana
- University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Stephen D Hursting
- University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, Utah.
- University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
19
|
Haffa M, Holowatyj AN, Kratz M, Toth R, Benner A, Gigic B, Habermann N, Schrotz-King P, Böhm J, Brenner H, Schneider M, Ulrich A, Herpel E, Schirmacher P, Straub BK, Nattenmüller J, Kauczor HU, Lin T, Ball CR, Ulrich CM, Glimm H, Scherer D. Transcriptome Profiling of Adipose Tissue Reveals Depot-Specific Metabolic Alterations Among Patients with Colorectal Cancer. J Clin Endocrinol Metab 2019; 104:5225-5237. [PMID: 31225875 PMCID: PMC6763280 DOI: 10.1210/jc.2019-00461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
CONTEXT Adipose tissue inflammation and dysregulated energy homeostasis are key mechanisms linking obesity and cancer. Distinct adipose tissue depots strongly differ in their metabolic profiles; however, comprehensive studies of depot-specific perturbations among patients with cancer are lacking. OBJECTIVE We compared transcriptome profiles of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from patients with colorectal cancer and assessed the associations of different anthropometric measures with depot-specific gene expression. DESIGN Whole transcriptomes of VAT and SAT were measured in 233 patients from the ColoCare Study, and visceral and subcutaneous fat area were quantified via CT. RESULTS VAT compared with SAT showed elevated gene expression of cytokines, cell adhesion molecules, and key regulators of metabolic homeostasis. Increased fat area was associated with downregulated lipid and small molecule metabolism and upregulated inflammatory pathways in both compartments. Comparing these patterns between depots proved specific and more pronounced gene expression alterations in SAT and identified unique associations of integrins and lipid metabolism-related enzymes. VAT gene expression patterns that were associated with visceral fat area poorly overlapped with patterns associated with self-reported body mass index (BMI). However, subcutaneous fat area and BMI showed similar associations with SAT gene expression. CONCLUSIONS This large-scale human study demonstrates pronounced disparities between distinct adipose tissue depots and reveals that BMI poorly correlates with fat mass-associated changes in VAT. Taken together, these results provide crucial evidence for the necessity to differentiate between distinct adipose tissue depots for a correct characterization of gene expression profiles that may affect metabolic health of patients with colorectal cancer.
Collapse
Affiliation(s)
- Mariam Haffa
- Division of Translational Functional Cancer Genomics, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases Dresden and German Cancer Research Center, Dresden, Germany
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Andreana N Holowatyj
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Mario Kratz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Reka Toth
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Biljana Gigic
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nina Habermann
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Böhm
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Hermann Brenner
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- NCT Tissue Bank, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Beate K Straub
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Medicine Mainz, Mainz, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Claudia R Ball
- Division of Translational Functional Cancer Genomics, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases Dresden and German Cancer Research Center, Dresden, Germany
- Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Hanno Glimm
- Division of Translational Functional Cancer Genomics, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases Dresden and German Cancer Research Center, Dresden, Germany
- Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- DKTK, Dresden, Germany
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University Heidelberg, Heidelberg, Germany
- Correspondence and Reprint Requests: Dominique Scherer, PhD, Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany. E-mail:
| |
Collapse
|