1
|
Ahmad S, Ali MZ, Abbasi SW, Abbas S, Ahmed I, Abbas S, Nawaz S, Ziab M, Ahmed I, Fakhro KA, Khan MA, Akil AAS. A GHRHR founder mutation causes isolated growth hormone deficiency type IV in a consanguineous Pakistani family. Front Endocrinol (Lausanne) 2023; 14:1066182. [PMID: 36960394 PMCID: PMC10029353 DOI: 10.3389/fendo.2023.1066182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 03/09/2023] Open
Abstract
Background Isolated growth hormone deficiency (IGHD) is caused by a severe shortage or absence of growth hormone (GH), which results in aberrant growth and development. Patients with IGHD type IV (IGHD4) have a short stature, reduced serum GH levels, and delayed bone age. Objectives To identify the causative mutation of IGHD in a consanguineous family comprising four affected patients with IGHD4 (MIM#618157) and explore its functional impact in silico. Methods Clinical and radiological studies were performed to determine the phenotypic spectrum and hormonal profile of the disease, while whole-exome sequencing (WES) and Sanger sequencing were performed to identify the disease-causing mutation. In-silico studies involved protein structural modeling and docking, and molecular dynamic simulation analyses using computational tools. Finally, data from the Qatar Genome Program (QGP) were screened for the presence of the founder variant in the Qatari population. Results All affected individuals presented with a short stature without gross skeletal anomalies and significantly reduced serum GH levels. Genetic mapping revealed a homozygous nonsense mutation [NM_000823:c.G214T:p.(Glu72*)] in the third exon of the growth-hormone-releasing hormone receptor gene GHRHR (MIM#139191) that was segregated in all patients. The substituted amber codon (UAG) seems to truncate the protein by deleting the C-terminus GPCR domain, thus markedly disturbing the GHRHR receptor and its interaction with the growth hormone-releasing hormone. Conclusion These data support that a p.Glu72* founder mutation in GHRHR perturbs growth hormone signaling and causes IGHD type IV. In-silico and biochemical analyses support the pathogenic effect of this nonsense mutation, while our comprehensive phenotype and hormonal profiling has established the genotype-phenotype correlation. Based on the current study, early detection of GHRHR may help in better therapeutic intervention.
Collapse
Affiliation(s)
- Safeer Ahmad
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zeeshan Ali
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Safdar Abbas
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ahmed
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Shakil Abbas
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Shoaib Nawaz
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
| | - Mubarak Ziab
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| | - Khalid A. Fakhro
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College-Doha, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Ammira Al-Shabeeb Akil
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
2
|
Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone. Proc Natl Acad Sci U S A 2019; 116:11664-11672. [PMID: 31123147 DOI: 10.1073/pnas.1906931116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Implantable devices for on-demand and pulsatile drug delivery have attracted considerable attention; however, many devices in clinical use are embedded with the electronic units and battery inside, hence making them large and heavy for implantation. Therefore, we propose an implantable device with multiple drug reservoirs capped with a stimulus-responsive membrane (SRM) for on-demand and pulsatile drug delivery. The SRM is made of thermosensitive POSS(MEO2MA-co-OEGMA) and photothermal nanoparticles of reduced graphene oxide (rGO), and each of the drug reservoirs is filled with the same amount of human growth hormone (hGH). Therefore, with noninvasive near-infrared (NIR) irradiation from the outside skin, the rGO nanoparticles generate heat to rupture the SRM in the implanted device, which can open a single selected drug reservoir to release hGH. Therefore, the device herein is shown to release hGH reproducibly only at the times of NIR irradiation without drug leakage during no irradiation. When implanted in rats with growth hormone deficiency and irradiated with an NIR light from the outside skin, the device exhibits profiles of hGH and IGF1 plasma concentrations, as well as body weight change, similar to those in animals treated with conventional s.c. hGH injections.
Collapse
|
3
|
Roelfsema F, Yang RJ, Liu PY, Takahashi PY, Veldhuis JD. Feedback on LH in Testosterone-Clamped Men Depends on the Mode of Testosterone Administration and Body Composition. J Endocr Soc 2018; 3:235-249. [PMID: 30623162 PMCID: PMC6320245 DOI: 10.1210/js.2018-00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 11/19/2022] Open
Abstract
Context Quantitative studies of the short-term feedback of testosterone (T) on luteinizing hormone (LH) secretion in healthy men are relatively rare. Such studies require the shutting down of endogenous T secretion and the imposition of experimentally controlled IV T addback. Objective To evaluate whether pulsatile and continuous T delivery confers equivalent negative feedback on LH secretion. Design This was a placebo-controlled, blinded, and prospectively randomized crossover study comprising 16 healthy men [age range 23 to 54 years and a body mass index (BMI) between 22.3 and 34.2 kg/m2]. Subjects received ketoconazole to block endogenous T secretion and received continuous or 90-minute pulses of IV T addback. Setting The study was performed in a Clinical Translational Research Unit. Interventions Subjects underwent 14 hours of blood sampling at 10-minute intervals, with a bolus IV injection of 33 ng/kg gonadotropin-releasing hormone (GnRH). Main Outcome Measures Log-transformed LH and T concentration ratios before and after GnRH administration. Results Despite higher T concentrations during pulsatile T feedback, LH concentrations and secretion rates, whether driven by endogenous or exogenous GnRH, were similar to those during continuous T infusion, indicating diminished pulsatile T feedback. Feedback correlated negatively with BMI. Under controlled T feedback, basal but not pulsatile LH secretion correlated negatively with CT-estimated visceral fat mass. Conclusion Feedback by pulsatile T delivery has diminished inhibitory strength compared with continuous infusion. Feedback is negatively correlated with BMI.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology and Metabolism, Leiden University Medical Center, Leiden, Netherlands
| | - Rebecca J Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| | - Peter Y Liu
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota.,Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Harbor-University of California Los Angeles Medical Center, and Los Angeles Biomedical Research Institute, Los Angeles, California
| | - Paul Y Takahashi
- Department of Primary Care Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Abstract
Human growth is a very complex phenomenon influenced by genetic, hormonal, nutritional and environmental factors, from fetal life to puberty. Although the GH-IGF axis has a central role with specific actions on growth, numerous genes are involved in the control of stature. Genome-wide association studies have identified >600 variants associated with human height, still explaining only a small fraction of phenotypic variation. Since short stature in childhood is a common reason for referral, pediatric endocrinologists must be aware of the multifactorial and polygenic contributions to height. Multiple disorders characterized by growth failure of prenatal and/or postnatal onset due to single gene defects have been described. Their early diagnosis, facilitated by advances in genomic technologies, is of upmost importance for their clinical management and to provide genetic counseling. Here we review the current clinical and genetic information regarding different syndromes and hormone abnormalities with proportionate short stature as the main feature, and provide an update of the approach for diagnosis and management.
Collapse
Affiliation(s)
- Jesús Argente
- Full Professor of Pediatrics & Pediatric Endocrinology, Director, Department of Pediatrics, Universidad Autónoma de Madrid, Spain, Chairman, Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain, Centro de Investigación Biomédica en Red de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain, IMDEA Food Institute,CEIUAM+CSIC, Madrid, Spain.
| | - Luis A Pérez-Jurado
- Full Professor of Genetics. Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain, Hospital del Mar Research Institute (IMIM), Barcelona, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain, SA Clinical Genetics, Women's and Children's Hospital, North Adelaide, SA, Australia, Clinical Professor, University of Adelaide, SA, Australia
| |
Collapse
|
5
|
van der Spoel E, Jansen SW, Akintola AA, Ballieux BE, Cobbaert CM, Slagboom PE, Blauw GJ, Westendorp RGJ, Pijl H, Roelfsema F, van Heemst D. Growth hormone secretion is diminished and tightly controlled in humans enriched for familial longevity. Aging Cell 2016; 15:1126-1131. [PMID: 27605408 PMCID: PMC6398524 DOI: 10.1111/acel.12519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2016] [Indexed: 01/16/2023] Open
Abstract
Reduced growth hormone (GH) signaling has been consistently associated with increased health and lifespan in various mouse models. Here, we assessed GH secretion and its control in relation with human familial longevity. We frequently sampled blood over 24 h in 19 middle‐aged offspring of long‐living families from the Leiden Longevity Study together with 18 of their partners as controls. Circulating GH concentrations were measured every 10 min and insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 3 (IGFBP3) every 4 h. Using deconvolution analysis, we found that 24‐h total GH secretion was 28% lower (P = 0.04) in offspring [172 (128–216) mU L−1] compared with controls [238 (193–284) mU L−1]. We used approximate entropy (ApEn) to quantify the strength of feedback/feedforward control of GH secretion. ApEn was lower (P = 0.001) in offspring [0.45 (0.39–0.53)] compared with controls [0.66 (0.56–0.77)], indicating tighter control of GH secretion. No significant differences were observed in circulating levels of IGF‐1 and IGFBP3 between offspring and controls. In conclusion, GH secretion in human familial longevity is characterized by diminished secretion rate and more tight control. These data imply that the highly conserved GH signaling pathway, which has been linked to longevity in animal models, is also associated with human longevity.
Collapse
Affiliation(s)
- Evie van der Spoel
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Steffy W. Jansen
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Abimbola A. Akintola
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Bart E. Ballieux
- Department of Clinical Chemistry and Laboratory Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - P. Eline Slagboom
- Section Molecular Epidemiology; Department of Medical Statistics; Leiden University Medical Center; Leiden The Netherlands
| | - Gerard Jan Blauw
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Rudi G. J. Westendorp
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
- Department of Public Health and Center of Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - Hanno Pijl
- Section Endocrinology; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Ferdinand Roelfsema
- Section Endocrinology; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Diana van Heemst
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
6
|
Arman A, Dündar BN, Çetinkaya E, Erzaim N, Büyükgebiz A. Novel growth hormone-releasing hormone receptor gene mutations in Turkish children with isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol 2014; 6:202-8. [PMID: 25541890 PMCID: PMC4293654 DOI: 10.4274/jcrpe.1518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Isolated growth hormone deficiency (IGHD) is defined as a medical condition associated with growth failure due to insufficient production of GH or lack of GH action. Mutations in the gene encoding for GH-releasing hormone receptor (GHRHR) have been detected in patients with IGHD type IB. However, genetic defects on GHRHR causing IGHD in the Turkish population have not yet been reported. To identify mutations on GHRHR gene in a population of Turkish children with IGHD. METHODS Ninety-six Turkish children with IGHD were included in this study. Exon1-13 and exon/intron boundaries of GHRHR were amplified by suitable primers. The polymerase chain reaction products for GHRHR gene were sequenced with primers. RESULTS We analyzed the GHRHR gene for mutations in ninety-six patients with IGHD based on sequence results. We identified novel p.K264E, p.S317T, p.S330L, p.G369V, p.T257A and C base insertion on position 380 (c.380inserC) mutations. In 5 of the patients, the mutation was homozygote and in 1-heterozygote (p.S317T). CONCLUSION Six new missense mutations and one first case of insertion mutations for the GHRHR gene are reported.
Collapse
Affiliation(s)
- Ahmet Arman
- Marmara University Faculty of Medicine, Department of Medical Genetics, İstanbul, Turkey. E-ma-il:
| | - Bumin Nuri Dündar
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | | | - Nilüfer Erzaim
- Yeditepe University Faculty of Medicine, Department of Genetics and Bioengineering, İstanbul, Turkey
| | - Atilla Büyükgebiz
- Bilim University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| |
Collapse
|
7
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
8
|
Vis DJ, Westerhuis JA, Hoefsloot HCJ, Roelfsema F, van der Greef J, Hendriks MMWB, Smilde AK. Network identification of hormonal regulation. PLoS One 2014; 9:e96284. [PMID: 24852517 PMCID: PMC4031081 DOI: 10.1371/journal.pone.0096284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/06/2014] [Indexed: 11/28/2022] Open
Abstract
Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined. The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment.
Collapse
Affiliation(s)
- Daniel J. Vis
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- * E-mail:
| | - Johan A. Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Huub C. J. Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Ferdinand Roelfsema
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan van der Greef
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- TNO Quality of Life, Zeist, The Netherlands
| | - Margriet M. W. B. Hendriks
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Age K. Smilde
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| |
Collapse
|
9
|
Norman C, Rollene NL, Erickson D, Miles JM, Bowers CY, Veldhuis JD. Estradiol regulates GH-releasing peptide's interactions with GH-releasing hormone and somatostatin in postmenopausal women. Eur J Endocrinol 2014; 170:121-9. [PMID: 24114435 PMCID: PMC3892701 DOI: 10.1530/eje-13-0733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Estrogen stimulates pulsatile secretion of GH, via mechanisms that are largely unknown. An untested hypothesis is that estradiol (E₂) drives GH secretion by amplifying interactions among GH-releasing hormone (GHRH), somatostatin (SS), and GH-releasing peptide (GHRP). DESIGN The design comprised double-blind randomized prospective administration of transdermal E₂ vs placebo to healthy postmenopausal women (n=24) followed by pulsatile GHRH or SS infusions for 13 h overnight with or without continuous GHRP2 stimulation. METHODS End points were mean concentrations, deconvolved secretion, and approximate entropy (ApEn; a regularity measure) of GH. RESULTS By generalized ANOVA models, it was observed that E₂ vs placebo supplementation: i) augmented mean (13-h) GH concentrations (P=0.023), GHRH-induced pulsatile GH secretion over the first 3 h (P=0.0085) and pulsatile GH secretion over the next 10 h (P=0.054); ii) increased GHRP-modulated (P=0.022) and SS-modulated (P<0.001) GH ApEn; and iii) did not amplify GHRH/GHRP synergy during pulsatile GH secretion. By linear regression, E₂ concentrations were found to be positively correlated with GH secretion during GHRP2 infusion (P=0.022), whereas BMI was found to be negatively correlated with GH secretion during GHRH (P=0.006) and combined GHRH/GHRP (P=0.015) stimulation. E₂ and BMI jointly determined triple (combined l-arginine, GHRH, and GHRP2) stimulation of GH secretion after saline (R²=0.44 and P=0.003) and pulsatile GHRH (R²=0.39 and P=0.013) infusions. CONCLUSION In summary, in postmenopausal women, E₂ supplementation augments the amount (mass) and alters the pattern (regularity) of GH secretion via interactions among GHRH, SS, GHRP, and BMI. These outcomes introduce a more complex model of E₂ supplementation in coordinating GH secretion in aging women.
Collapse
|
10
|
Norman C, Rollene N, Weist SM, Wigham JR, Erickson D, Miles JM, Bowers CY, Veldhuis JD. Short-term estradiol supplementation potentiates low-dose ghrelin action in the presence of GHRH or somatostatin in older women. J Clin Endocrinol Metab 2014; 99:E73-80. [PMID: 24203062 PMCID: PMC3879681 DOI: 10.1210/jc.2013-3043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Ghrelin is a potent gastric-derived GH-releasing peptide. How ghrelin interacts with sex steroids, GHRH, and somatostatin (SS) is not known. OBJECTIVE Our objective was to test the hypotheses that ghrelin's interactions with GHRH (synergistic) and SS (disinhibitory) are ghrelin dose-dependent and amplified by estrogen. SUBJECTS, SETTING, AND DESIGN: Healthy postmenopausal women were treated with placebo (n=12) or 17β-estradiol (E2) (n=12) at the Center for Translational Science Activities in a randomized double-blind prospective study. METHODS Ghrelin dose-dependence was assessed by nonlinear curve fitting of the relationship between deconvolved GH secretory-burst mass and 5 randomly ordered ghrelin doses (0, 0.03, 0.135, 0.6, and 2.7 μg/kg bolus iv) during saline, GHRH, and SS infusion. RESULTS Under placebo, neither GHRH nor SS altered the ED50 of ghrelin (range 0.64-0.67 μg/kg). Under E2 (median E2 88 pg/mL), the ED50 of ghrelin declined in the presence of GHRH to 0.52 μg/kg. In contrast, the efficacy of ghrelin rose markedly during GHRH vs saline exposure with and without E2: placebo and saline 52±1.0 vs GHRH 173±3.8 μg/L; and E2 and saline 56±0.90 vs GHRH 174±3.7 μg/L. Sensitivity to ghrelin was similar under all conditions. SUMMARY Short-term E2 supplementation in postmenopausal women reduces the ED50 (increases the potency) of ghrelin when GHRH is present, without altering ghrelin efficacy (maximal effect) or hypothalamo-pituitary sensitivity (slope of dose response) to ghrelin. The data suggest possible physiological interactions among sex steroids (endogenous), ghrelin, and GHRH during E2 replacement in postmenopausal women.
Collapse
Affiliation(s)
- Catalina Norman
- Endocrine Research Unit (C.N., S.M.W., J.R.W., D.E., J.M.M., J.D.V.), Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905; Naval Medical Center Portsmouth (N.R.), Division of Reproductive Endocrinology, Portsmouth, Virginia 23708; and Tulane University Health Sciences Center (C.Y.B.), Endocrinology and Metabolism Section, Peptide Research Section, New Orleans, Louisiana 70112
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Thyroid hormones are extremely important for metabolism, development, and growth during the lifetime. The hypothalamo-pituitary-thyroid axis is precisely regulated for these purposes. Much of our knowledge of this hormonal axis is derived from experiments in animals and mutations in man. This review examines the hypothalamo-pituitary-thyroid axis particularly in relation to the regulated 24-hour serum TSH concentration profiles in physiological and pathophysiological conditions, including obesity, primary hypothyroidism, pituitary diseases, psychiatric disorders, and selected neurological diseases. Diurnal TSH rhythms can be analyzed with novel and precise techniques, eg, operator-independent deconvolution and approximate entropy. These approaches provide indirect insight in the regulatory components in pathophysiological conditions.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Leiden University Medical Center, Department of Endocrinology and Metabolic Diseases, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|
12
|
Soneda A, Adachi M, Muroya K, Asakura Y, Takagi M, Hasegawa T, Inoue H, Itakura M. Novel compound heterozygous mutations of the growth hormone-releasing hormone receptor gene in a case of isolated growth hormone deficiency. Growth Horm IGF Res 2013; 23:89-97. [PMID: 23602557 DOI: 10.1016/j.ghir.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To elucidate the pathogenesis of isolated growth hormone (GH) deficiency in a Japanese girl without consanguinity. DESIGN A 2-year-old girl of height 77.2 cm (-3.0 SD for Japanese girls) was found to have an insulin-like growth factor (IGF)-1 level of 7 ng/mL and IGF binding protein-3 (IGFBP-3) level of 0.41 μg/mL. GH responded modestly to a series of pharmacological stimulants, increasing to 2.81 ng/mL with insulin-induced hypoglycemia, 3.78 ng/mL with arginine, and 3.93 with GH-releasing hormone (GHRH). Following direct sequencing of the GHRH receptor (GHRHR) gene, evaluation by the luciferase reporter assay, immunofluorescence study, and in vitro splicing assay with minigene constructs was conducted. RESULTS Novel compound heterozygous GHRHR gene mutations were identified in the patient. A p.G136V substitution elicited no luciferase activity increment in response to GHRH stimulation, with normal membranous expression. Splicing assay demonstrated that the IVS2+3a>g mutation would lead to aberrant splicing. CONCLUSIONS A case of isolated GH deficiency due to novel GHRHR gene mutations was identified.
Collapse
Affiliation(s)
- Akiko Soneda
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Peroni CN, Hayashida CY, Nascimento N, Longuini VC, Toledo RA, Bartolini P, Bowers CY, Toledo SPA. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient little mice. Clinics (Sao Paulo) 2012; 67:265-72. [PMID: 22473409 PMCID: PMC3297037 DOI: 10.6061/clinics/2012(03)11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.
Collapse
Affiliation(s)
- Cibele N Peroni
- Biotechnology Department, National Nuclear Energy Commission, Cidade Universitária, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wańkowska M. Influence of testicular hormones on the somatostatin-GH system during the growth promoted transition to puberty in sheep. Theriogenology 2011; 77:615-27. [PMID: 22056019 DOI: 10.1016/j.theriogenology.2011.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to investigate whether the growth promoted transition to puberty in lambs involved changes in the effects of testicular hormones on somatostatin in hypothalamic neurons and GH secretion. The study was performed in infants (9-week-old) testis-intact (TEI) and orchidectomized (ORCHX) at the sixth week of age, and pubertal lambs (16-week-old) TEI and ORCHX at the 12th week of age (n = 20). In TEI lambs, the changes included a pubertal increase in immunoreactive somatostatin in the periventricular nucleus and median eminence with simultaneous neuropeptide depletion in the median eminence, and a decrease in the percentage of the hypophyseal area (PA) occupied by GH-immunoreactive cells (P < 0.05). The mean concentration of GH in the peripheral blood plasma was greater (P < 0.001) in early infancy (5 wk), because of the greater (P < 0.0001) pulse amplitude, and then uniformly low until puberty. The postnatal increase in the body weight (BW) was prominent (P < 0.01) in middle-late infancy (9-12 wk) because of the large daily live-weight gain. After orchidectomy somatostatin was abundant. This effect on nerve terminals in the median eminence was greater (P < 0.01) in infancy and lesser (P < 0.05) in puberty. Conversely, the PA occupied by GH cells was lower in the ORCHX pubertal lambs compared to TEI lambs (P < 0.05). The GH concentration and pulse characteristics were less (P < 0.05) in the infantile and pubertal ORCHX lambs compared to the TEI lambs. However, this effect was weak (P < 0.05) until middle infancy because of no influence on the GH basal concentration, and strong (P < 0.001) after late infancy. The BW did not differ (P > 0.05) between TEI and ORCHX lambs. Findings suggest activation of GH negative autofeedback loop in middle infancy. Testicular factors may play an inhibitory role in regulating somatostatin accumulation and a stimulatory role in GH secretion until puberty. The start of puberty is related to an attenuation in the stimulatory role of gonadal factors in regulating somatostatin depletion in nerve terminals associated with an intensification of the stimulatory role of gonadal factors in regulating GH secretion. From a somatic perspective of growth rate, these mechanisms do not seem to be important. Thus, testicular factors modulate mechanisms within the somatostatin-GH system to integrate somatotropic and gonadotropic functions at the time of growth-promoted sexual maturation in sheep.
Collapse
Affiliation(s)
- Marta Wańkowska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland.
| |
Collapse
|
15
|
Veldhuis JD, Erickson D, Wigham J, Weist S, Miles JM, Bowers CY. Gender, sex-steroid, and secretagogue-selective recovery from growth hormone-induced feedback in older women and men. J Clin Endocrinol Metab 2011; 96:2540-7. [PMID: 21613353 PMCID: PMC3146792 DOI: 10.1210/jc.2011-0298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT GH negatively regulates its own secretion. How gender, sex steroids, and secretagogues modulate GH autofeedback is not known. HYPOTHESIS/OBJECTIVE Supplementation with sex steroids and/or a peptidyl secretagogue will enhance the escape of GH from autoinhibition, thus framing a mechanism for amplifying pulsatile GH secretion. SUBJECTS AND SETTING Ten healthy postmenopausal women and 10 comparably aged men participated at the Clinical-Translational Science Unit. DESIGN/INTERVENTIONS Randomly ordered, double-blind, prospective crossover treatment with placebo vs. testosterone (men) or placebo vs. estradiol (women). Autofeedback was imposed by an iv pulse of GH. Recovery of feedback inhibition was quantified during constant infusion of saline, GHRH, or GH-releasing peptide-2 (three peptide categories). OUTCOMES/RESULTS During negative feedback, total (integrated) GH recovery depended upon gender (P = 0.017), sex hormone (P < 0.001), and peptide category (P < 0.001). Mechanistic analysis revealed that feedback-suppressed nadir GH concentrations were determined by sex-steroid treatment (P = 0.018) but not by gender (P = 0.444). Peak GH escape was controlled by both treatment (P = 0.004) and gender (P = 0.003). Nadir GH and peak GH during feedback were enhanced by GHRH or GHRP-2 (P < 0.001 for both). Gender × peptide (P = 0.012 for nadir GH), treatment × peptide (P < 0.001 total and peak GH), and gender × treatment (P = 0.017 nadir GH) regulated GH recovery interactively. CONCLUSION Gender, sex-steroid supplementation, and secretagogue type confer distinct feedback-rescuing effects, introducing a new level of complexity in the control of pulsatile GH regulation.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Veldhuis JD, Erickson D, Miles JM, Bowers CY. Complex regulation of GH autofeedback under dual-peptide drive: studies under a pharmacological GH and sex steroid clamp. Am J Physiol Endocrinol Metab 2011; 300:E1158-65. [PMID: 21467302 PMCID: PMC3118586 DOI: 10.1152/ajpendo.00054.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the postulate that sex difference, sex steroids, and peptidyl secretagogues control GH autofeedback, 11 healthy postmenopausal women and 14 older men were each given 1) a single iv pulse of GH to enforce negative feedback and 2) continuous iv infusion of saline vs. combined GHRH/GHRP-2 to drive feedback escape during pharmacological estradiol (E(2); women) or testosterone (T; men) supplementation vs. placebo in a double-blind, prospectively randomized crossover design. By three-way ANCOVA, sex difference, sex hormone treatment, peptide stimulation, and placebo/saline responses (covariate) controlled total (integrated) GH recovery during feedback (each P < 0.001). Both sex steroid milieu (P = 0.019) and dual-peptide stimulation (P < 0.001) determined nadir (maximally feedback-suppressed) GH concentrations. E(2)/T exposure elevated nadir GH concentrations during saline infusion (P = 0.003), whereas dual-peptide infusion did so independently of T/E(2) and sex difference (P = 0.001). All three of sex difference (P = 0.001), sex steroid treatment (P = 0.005), and double-peptide stimulation (P < 0.001) augmented recovery of peak (maximally feedback-escaped) GH concentrations. Peak GH responses to dual-peptidyl agonists were greater in women than in men (P = 0.016). E(2)/T augmented peak GH recovery during saline infusion (P < 0.001). Approximate entropy analysis corroborated independent effects of sex steroid treatment (P = 0.012) and peptide infusion (P < 0.001) on GH regularity. In summary, sex difference, sex steroid supplementation, and combined peptide drive influence nadir, peak, and entropic measurements of GH release under controlled negative feedback. To the degree that the pharmacological sex steroid, GH, and dual-peptide clamps provide prephysiological regulatory insights, these outcomes suggest major determinants of pulsatile GH secretion in the feedback domain.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, MayoClinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Isolated growth hormone deficiency is the most common pituitary hormone deficiency and can result from congenital or acquired causes, although the majority of cases are idiopathic with no identifiable etiology. Known genes involved in the genetic etiology of isolated growth hormone deficiency include those that encode growth hormone (GH1), growth-hormone-releasing hormone receptor (GHRHR) and transcription factor SOX3. However, mutations are identified in a relatively small percentage of patients, which suggests that other, yet unidentified, genetic factors are involved. Among the known factors, heterozygous mutations in GH1 remain the most frequent cause of isolated growth hormone deficiency. The identification of mutations has clinical implications for the management of patients with this condition, as individuals with heterozygous GH1 mutations vary in phenotype and can, in some cases, develop additional pituitary hormone deficiencies. Lifelong follow-up of these patients is, therefore, recommended. Further studies in the genetic etiology of isolated growth hormone deficiency will help to elucidate mechanisms implicated in the control of growth and may influence future treatment options. Advances in pharmacogenomics will also optimize the treatment of isolated growth hormone deficiency and other conditions associated with short stature, for which recombinant human growth hormone is a licensed therapy.
Collapse
|
18
|
Veldhuis JD, Hudson SA, Bailey JN, Erickson D. Regulation of basal, pulsatile, and entropic (patterned) modes of GH secretion in a putatively low-somatostatin milieu in women. Am J Physiol Endocrinol Metab 2009; 297:E483-9. [PMID: 19491298 PMCID: PMC2724111 DOI: 10.1152/ajpendo.00136.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatostatin (SS) released by hypothalamic neurons inhibits GH exocytosis noncompetitively. Therefore, we postulated that attenuation of GH feedback-induced SS outflow would help to unmask covariates of endogenous secretagogue drive. To this end, 42 healthy pre- and postmenopausal women were randomly assigned to receive leuprolide plus estradiol (E(2)) or leuprolide plus placebo. A putatively low-SS milieu was imposed by L-arginine infusion. Deconvolution and regularity analyses were applied to 6-h GH concentration-time profiles. By two-way ANOVA, age negatively (P < 0.001) and E(2) positively (P = 0.001) determined pulsatile GH secretion in the presumptively SS-deficient milieu (P < 0.001). Comparable effects were exerted on the mass of GH secreted per burst per unit distribution volume (age P = 0.001, E(2) P < 0.001, overall P < 0.001). E(2) alone predicted basal (nonpulsatile) GH secretion (P = 0.004). Stepwise forward-selection multivariate regression demonstrated that age (P = 0.0017) and E(2) (P = 0.0002) together explained 46% of intersubject variability in pulsatile GH secretion (P < 0.001) and fully replaced the negative univariate effect of abdominal visceral fat (r(2) = 0.32, P < 0.001). Moreover, age and E(2) (but not AVF) interacted to supervise GH regularity (P = 0.007). We conclude that age and E(2) availability individually and together constitute primary predictors of basal, pulsatile, and patterned GH secretion in an inferentially feedback-silenced context in healthy women. Therefore, both factors must be considered in framing hypotheses of endogenous GH drive.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Departments of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
19
|
Veldhuis JD, Hudson SB, Erickson D, Bailey JN, Reynolds GA, Bowers CY. Relative effects of estrogen, age, and visceral fat on pulsatile growth hormone secretion in healthy women. Am J Physiol Endocrinol Metab 2009; 297:E367-74. [PMID: 19470834 PMCID: PMC2724113 DOI: 10.1152/ajpendo.00230.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth hormone (GH) secretion is subject to complex regulation. How pre- and postmenopausal age (PRE, POST), estradiol (E(2)) availability, and abdominal visceral fat (AVF) jointly affect peptidyl-secretagogue drive of GH secretion is not known. To this end, healthy PRE (n = 20) and POST (n = 22) women underwent a low- vs. high-E(2) clamp before receiving a continuous intravenous infusion of GH-releasing hormone (GHRH) or GH-releasing peptide (GHRP-2). According to analysis of covariance, PRE and POST women achieved age-independent hypo- and euestrogenemia under respective low- and high-E(2) clamps. All four of age (P < 0.001), E(2) status (P = 0.006), secretagogue type (P < 0.001), and an age x peptide interaction (P = 0.014) controlled pulsatile GH secretion. Independently of E(2) status, POST women had lower GH responses to both GHRH (P = 0.028) and GHRP-2 (P < 0.001) than PRE women. Independently of age, GHRP-2 was more stimulatory than GHRH during low E(2) (P = 0.011) and high E(2) (P < 0.001). Stepwise forward-selection multivariate analysis revealed that computerized tomographic estimates of AVF explained 22% of the variability in GHRH action (P = 0.002), whereas age and E(2) together explained 60% of the variability in GHRP-2 drive (P < 0.001). These data establish that age, estrogen status, and AVF are triple covariates of continuous peptide-secretagogue drive of pulsatile GH secretion in women. Each factor must be controlled for to allow valid comparisons of GH-axis activity.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Departments of Internal Medicine, Endocrine Research Unit, Clinical Translational Research Unit, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Veldhuis JD, Keenan DM, Bailey JN, Adeniji AM, Miles JM, Bowers CY. Novel relationships of age, visceral adiposity, insulin-like growth factor (IGF)-I and IGF binding protein concentrations to growth hormone (GH) releasing-hormone and GH releasing-peptide efficacies in men during experimental hypogonadal clamp. J Clin Endocrinol Metab 2009; 94:2137-43. [PMID: 19351723 PMCID: PMC2690428 DOI: 10.1210/jc.2009-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sex steroids influence GH secretion in complex ways. HYPOTHESIS Analyses in a low sex-steroid milieu will help unveil the effects of age and other nonsteroidal regulators on GH secretion. CONTEXT The study was conducted in a tertiary medical center. SUBJECTS The study group included 13 healthy young men and 12 healthy older men. METHODS We used GnRH agonist-induced down-regulation of testosterone and estradiol secretion, followed by consecutive infusion of l-arginine and GHRH or GHRP-2, to test secretagogue efficacies. OUTCOMES We measured basal and pulsatile GH secretion. RESULTS During experimental testosterone/estradiol deprivation, older (57 +/- 1.7 yr) men maintained: 1) 6.8-fold less pulsatile GH secretion (P < 0.001); and 2) 2-fold lower maximal GH responses to GHRH (P = 0.0065) and GHRP-2 (P = 0.022) than young (23 +/- 1.1 yr old) individuals. Stepwise forward-selection regression analyses identified: 1) abdominal visceral fat as a dominant negative predictor of both GHRH (R(2) = 0.49; P = 0.001) and GHRP-2 (R(2) = 0.38; P = 0.005) efficacies; and 2) fasting IGF-I concentration as a major positive correlate of GHRH (R(2) = 0.52; P < 0.001) and GHRP-2 (R(2) = 0.31; P = 0.018) efficacies. Unstimulated pulsatile GH secretion was jointly correlated with IGF-I and IGFBP-3 (P = 0.039). CONCLUSION Measures of body composition (abdominal visceral fat) and pulsatile GH action (IGF-I) explain up to one half of interindividual variability in the efficacies of GHRH and GHRP-2 in sex steroid-depleted men. Accordingly, normative ranges for maximal single peptide-stimulated GH secretion in short-term hypogonadal states should incorporate the influence of these determinants as well as age.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Veldhuis JD, Mielke KL, Cosma M, Soares-Welch C, Paulo R, Miles JM, Bowers CY. Aromatase and 5alpha-reductase inhibition during an exogenous testosterone clamp unveils selective sex steroid modulation of somatostatin and growth hormone secretagogue actions in healthy older men. J Clin Endocrinol Metab 2009; 94:973-81. [PMID: 19088159 PMCID: PMC2681279 DOI: 10.1210/jc.2008-2108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND How endogenous testosterone (Te), 5alpha-dihydrotestosterone (DHT), and estradiol (E(2)) regulate pulsatile GH secretion is not understood. HYPOTHESIS Conversion of Te to androgenic (Te-->DHT) or estrogenic (Te-->E(2)) products directs GH secretion. SUBJECTS AND LOCATION: Healthy older men (N = 42, ages 50-79 yr) participated at an academic medical center. METHODS We inhibited 5alpha-reduction with dutasteride and aromatization with anastrozole during a pharmacological Te clamp and infused somatostatin (SS), GHRH, GH-releasing peptide-2 (GHRP-2), and L-arginine/GHRH/GHRP-2 (triple stimulus) to modulate GH secretion. ENDPOINTS Deconvolution-estimated basal and pulsatile GH secretion was assessed. RESULTS Administration of Te/placebo elevated Te by 2.8-fold, DHT by 2.6-fold, and E(2) concentrations by 1.9-fold above placebo/placebo. Te/dutasteride and Te/anastrozole reduced stimulated DHT and E(2) by 89 and 86%, respectively. Stepwise forward-selection regression analysis revealed that 1) Te positively determines mean (P = 0.017) and peak (P < 0.001) GH concentrations, basal GH secretion (P = 0.015), and pulsatile GH secretion stimulated by GHRP-2 (P < 0.001); 2) Te and E(2) jointly predict GH responses to the triple stimulus (positively for Te, P = 0.006, and negatively for E(2), P = 0.031); and 3) DHT correlates positively with pulsatile GH secretion during SS infusion (P = 0.011). These effects persisted when abdominal visceral fat was included in the regression. CONCLUSION The present outcomes suggest a tetrapartite model of GH regulation in men, in which systemic concentrations of Te, DHT, and E(2) along with abdominal visceral fat determine the selective actions of GH secretagogues and SS.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Department of Internal Medicine and Pediatrics, Endocrine Research Unit, Clinical Translational Research Center, Mayo Medical and Graduate Schools, Mayo Clinic, Rochester Minnesota 55901, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Veldhuis JD, Reynolds GA, Iranmanesh A, Bowers CY. Twenty-four hour continuous ghrelin infusion augments physiologically pulsatile, nycthemeral, and entropic (feedback-regulated) modes of growth hormone secretion. J Clin Endocrinol Metab 2008; 93:3597-603. [PMID: 18593763 PMCID: PMC2567861 DOI: 10.1210/jc.2008-0620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ghrelin is a 28-amino acid acylated peptide that potentiates GHRH stimulation and opposes somatostatin inhibition acutely. Whether prolonged ghrelin administration can sustain physiological patterns of GH secretion remains unknown. HYPOTHESIS Continuous delivery of ghrelin will amplify physiological patterns of GH secretion over 24 h. SUBJECTS Men and women ages 29-69 yr, body mass indices 23-52 kg/m2, were included in the study. LOCATION The study was performed at an academic medical center. METHODS Twenty-four hour continuous sc infusion of saline vs. ghrelin (1 microg/kg.h) with frequent sampling was examined. Deconvolution and entropy analyses were performed. OUTCOMES IGF-I concentrations were determined. Basal, pulsatile, nycthemeral, and entropic measures of GH secretion were calculated. RESULTS Ghrelin infusion compared with saline infusion for 24 h elevated (median) acylated ghrelin, GH, and IGF-I concentrations by 8.1-fold (P < 0.001),11-fold (P < 0.001), and 1.4-fold (P = 0.002). GH secretory-burst mass and frequency increased by 6.6-fold (P = 0.004) and 1.7-fold (P < 0.001), respectively, resulting in a 12-fold increase in pulsatile GH secretion (P < 0.001). Interpulse variability decreased significantly (P = 0.046), whereas GH secretory-burst shape and half-life did not change. The amplitude of the nycthemeral GH rhythm increased by 3.4-fold (P < 0.001), and GH patterns became more irregular (higher approximate entropy P < 0.001). Combining GHRH with ghrelin was not an additive in driving GH secretion. CONCLUSIONS Continuous ghrelin infusion for 24 h elevates acylated ghrelin, GH and IGF-I concentrations, and stimulates pulsatile, nycthemeral, and entropic modes of GH secretion. The consistency of outcomes in a heterogeneous cohort of adults suggests potentially broad utility of this physiological secretagogue in hyposomatotropic states.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Clinical Translational Science Unit, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
23
|
Kok P, Roelfsema F, Frölich M, van Pelt J, Meinders AE, Pijl H. Short-term treatment with bromocriptine improves impaired circadian growth hormone secretion in obese premenopausal women. J Clin Endocrinol Metab 2008; 93:3455-61. [PMID: 18559918 DOI: 10.1210/jc.2008-0001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT A profound reduction of spontaneous as well as stimulated GH secretion has been consistently observed in obesity. Dopamine promotes GH release through activation of dopamine D2 receptors (D2Rs). Dopamine D2R availability in the brain is reduced in obese humans in proportion to body adiposity. We hypothesized that impaired dopamine D2R signaling is mechanistically involved in the deficient GH secretion associated with obesity. OBJECTIVE To test this hypothesis, we studied the effect of short-term bromocriptine (B) (a D2R agonist) treatment on spontaneous 24-h GH secretion in obese women, while body weight and caloric intake remained constant. DESIGN This was a prospective, fixed order, cross-over study. SETTING The study was performed in the Clinical Research Center at Leiden University Medical Center. PARTICIPANTS There were 18 healthy obese women (body mass index 33.2 +/- 0.6 kg/m2) studied twice in the early follicular phase of their menstrual cycle. INTERVENTION(S) Eight days of treatment with B and placebo (Pl) was performed. MAIN OUTCOME MEASURE(S) Blood was collected during 24 h at 10-min intervals for determination of GH concentrations. GH secretion parameters were calculated using deconvolution analysis. RESULTS Short-term treatment with B significantly enhanced diurnal GH secretion (Pl 121.4 +/- 16.4 vs. B 155.4 +/- 15.2 microg/liter(volume of distribution).24 h; P = 0.01), whereas IGF-I concentrations remained constant (Pl 22.4 +/- 2.4 vs. B 21.8 +/- 1.6 nmol/liter; P = 0.928). CONCLUSIONS Activation of dopamine D2Rs by B favorably affects impaired nyctohemeral GH secretion in obese women. Reduced dopaminergic neuronal signaling might be involved in the pathogenesis of obesity associated hyposomatotropism.
Collapse
Affiliation(s)
- Petra Kok
- Department of General Internal Medicine, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Hilal L, Hajaji Y, Vie-Luton MP, Ajaltouni Z, Benazzouz B, Chana M, Chraïbi A, Kadiri A, Amselem S, Sobrier ML. Unusual phenotypic features in a patient with a novel splice mutation in the GHRHR gene. Mol Med 2008; 14:286-92. [PMID: 18297129 DOI: 10.2119/2007-00128.hilal] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/15/2008] [Indexed: 11/06/2022] Open
Abstract
Isolated growth hormone deficiency (IGHD) may be of genetic origin. One of the few genes involved in that condition encodes the growth hormone releasing hormone receptor (GHRHR) that, through its ligand (GHRH), plays a pivotal role in the GH synthesis and secretion by the pituitary. Our objective is to describe the phenotype of two siblings born to a consanguineous union presenting with short stature (IGHD) and Magnetic Resonance Imaging (MRI) abnormalities, and to identify the molecular basis of this condition. Our main outcome measures were clinical and endocrinological investigations, MRI of the pituitary region, study of the GHRHR gene sequence and transcripts. In both patients, the severe growth retardation (-5SD) was combined with anterior pituitary hypoplasia. In addition to these classical phenotypic features for IGHD, one of the patients had a Chiari I malformation, an arachnoid cyst, and a dysmorphic anterior pituitary. A homozygous sequence variation in the consensus donor splice site of intron 1 (IVS1 + 2T > G) of the GHRHR gene was identified in both patients. Using in vitro transcription assay, we showed that this mutation results in abnormal splicing of GHRHR transcripts. In this report, which broadens the phenotype associated with GHRHR defects, we discuss the possible role of the GHRHR in the proper development of extrapituitary structures, through a mechanism that could be direct or secondary to severe GH deficiency.
Collapse
Affiliation(s)
- Latifa Hilal
- Laboratoire de Génétique et de Physiologie Neuroendocrinienne, Equipe des Bases Moléculaires de Maladies Génétiques, UFR de Génétique et Biologie Moléculaire, Université Ibn Tofaïl, Faculté des Sciences, Kenitra, Maroc
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cosma M, Bailey J, Miles JM, Bowers CY, Veldhuis JD. Pituitary and/or peripheral estrogen-receptor alpha regulates follicle-stimulating hormone secretion, whereas central estrogenic pathways direct growth hormone and prolactin secretion in postmenopausal women. J Clin Endocrinol Metab 2008; 93:951-8. [PMID: 18089703 PMCID: PMC2266945 DOI: 10.1210/jc.2007-1322] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Estradiol (E(2)) stimulates GH and prolactin secretion and suppresses FSH secretion in postmenopausal women. Whether central nervous system (CNS) or pituitary mechanisms (or both) mediate such actions is not known. OBJECTIVE Our objective was to distinguish between hypothalamic and pituitary or peripheral (hepatic) actions of E2. SETTING This study was performed in an academic medical center. DESIGN This was a double-blind, prospectively randomized, placebo (Pl)-controlled study. METHODS The capability of a selective, noncompetitive, non-CNS permeant estrogen receptor (ER)-alpha antagonist, fulvestrant (FUL) to antagonize the effects of transdermal E2 and Pl on GH, prolactin, and FSH secretion was assessed in 43 women (ages 50-80 yr) in a four parallel-cohort study. Each woman received four secretagogue infusions to stimulate GH secretion. IGF-I and its binding proteins were measured secondarily. RESULTS Administration of Pl/E2 increased GH and prolactin concentrations by 100%, and suppressed FSH concentrations by more than 50% (each P<or=0.004 compared with Pl/Pl). Treatment with FUL/E2 compared with Pl/E2 partially relieved estrogen's inhibition of FSH secretion (P=0.041), without altering E2's stimulation of prolactin secretion. ANOVA further revealed that: 1) estrogen milieu (P=0.014) and secretagogue type (P<0.001) each determined GH concentrations; 2) FUL/Pl suppressed IGF-I concentrations (P<0.001); 3) FUL abrogated estrogen's elevation of IGF binding protein-1 concentrations (P<0.001); and 4) FUL did not oppose estrogen's suppression of IGF binding protein-3 concentrations (P<0.001). SUMMARY AND CONCLUSIONS Responses to a non-CNS permeant ERalpha antagonist indicate that E2 inhibits FSH secretion in part via pituitary/peripheral ERalpha, drives prolactin output via nonpituitary/nonperipheral-ERalpha effects, and directs GH secretion and IGF-I-binding proteins by complex mechanisms.
Collapse
Affiliation(s)
- Mihaela Cosma
- Endocrine Research Unit, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, 200 First Street S.W., Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
26
|
Walenkamp MJE, Pereira AM, Oostdijk W, Stokvis-Brantsma WH, Pfaeffle RW, Blankenstein O, Wit JM. Height gain with combined growth hormone and gonadotropin-releasing hormone analog therapy in two pubertal siblings with a growth hormone-releasing hormone receptor mutation. J Clin Endocrinol Metab 2008; 93:204-7. [PMID: 17925337 DOI: 10.1210/jc.2007-1572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Patients with GHRH receptor (GHRH-R) mutations present with familial isolated GH deficiency, which untreated leads to a severely compromised adult height. Few data are available about the efficacy of treatment with GH in combination with a GnRH analog (GnRHa) in adolescence. OBJECTIVE The objective of the study was to describe the evolution of growth and skeletal age of a brother and sister of Moroccan descent with a homozygous GHRH-R mutation who presented at an advanced age (16 and 14.9 yr, respectively) and pubertal stage (Tanner stage G4 and B3, respectively) with a height of -5.1 sd score and -7.3 sd score on treatment with a combination of GH and GnRHa for 2.5 and 3 yr followed by GH alone. METHODS GH was given in a dosage of 0.7 mg/m2.d (25 microg/kg.d) sc and triptorelin in a dosage of 3.75 mg per 4 wk im. Height and pubertal stage were measured three-monthly, bone age yearly. RESULTS Combined GH and GnRHa treatment resulted in a height gain of 24 and 28.2 cm, respectively, compared with the initial predicted adult height by the method of Bayley and Pinneau. Adult height was within the population range and well within the target range. CONCLUSIONS Our patients demonstrate that, in case of isolated GH deficiency caused by a GHRH-R mutation, combined treatment of GH and GnRHa can be very effective in increasing final height, even at an advanced bone age and pubertal stage.
Collapse
Affiliation(s)
- Marie J E Walenkamp
- Department of Pediatrics J6-S, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gleeson H, Barreto ESDA, Salvatori R, Costa L, Oliveira CRP, Pereira RMC, Clayton P, Aguiar-Oliveira MH. Metabolic effects of growth hormone (GH) replacement in children and adolescents with severe isolated GH deficiency due to a GHRH receptor mutation. Clin Endocrinol (Oxf) 2007; 66:466-74. [PMID: 17371461 DOI: 10.1111/j.1365-2265.2007.02753.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The interpretation of the true effect of GH replacement therapy (GHRT) on metabolic status in GH deficiency (GHD) is often complicated by differing aetiologies of GHD and by the presence of additional hormone deficits. OBJECTIVE To study the growth and response of the lipid profile and body composition to GHRT in a cohort of children with the same mutation in the GHRH receptor gene. Design Nine GH-deficient subjects (mean age 12.8 years, range 5-17.5 years; three male) in a rural community in Northeast Brazil were treated with GHRT for 2 years and compared with indigenous normal controls. MAIN OUTCOME MEASURES Total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TG) and body composition were measured at baseline and after 3, 12 and 24 months of GHRT. RESULTS At baseline, the subjects with GHD had an adverse lipid profile, including elevated TC, elevated LDL-C and elevated TG. GHRT normalized TG in 3 months, LDL-C in 12 months and TC in 24 months. At baseline, older pubertal subjects with GHD had adverse body composition, including higher percentage fat mass (%FM), and GHRT induced a reduction in %FM that was maintained after 24 months. By contrast, younger prepubertal subjects did not have an adverse body composition. CONCLUSIONS Lipid profile was abnormal at baseline, while abnormal body composition was only seen in older subjects in late puberty, indicating that body composition is less sensitive to the effect of GHD than lipid profile. GHRT improves lipid profile at all ages, while it affects body composition only towards the end of growth, emphasizing its importance in achieving normal somatic development in the transition period.
Collapse
Affiliation(s)
- Helena Gleeson
- Christie Hospital, Department of Endocrinology, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Salvatori R, Serpa MG, Parmigiani G, Britto AVO, Oliveira JLM, Oliveira CRP, Prado CM, Farias CT, Almeida JC, Vicente TAR, Aguiar-Oliveira MH. GH response to hypoglycemia and clonidine in the GH-releasing hormone resistance syndrome. J Endocrinol Invest 2006; 29:805-8. [PMID: 17114911 DOI: 10.1007/bf03347374] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GH secretion by the pituitary is the result of the balance between the stimulatory effect of GHRH and the inhibitory effect of SS. Patients with mutations in GHRH receptor (GHRH-R) gene (GHRH-R) offer a unique model to study the mechanism of action of different GH secretion stimuli. In the past, we have demonstrated a small but significant GH response to a GH secretagogue (GHRP-2) in a homogenous cohort of patients with severe GH deficiency (GHD) due to a homozygous null mutation in GHRH-R (IVS1+1G-->A). Now, we sought to determine if we could detect a GH response to hypoglycemia (ITT: insulin tolerance test) or clonidine (CL) in these patients. Nine young GHD subjects underwent both ITT and CL tests, and 2 additional subjects underwent only CL test. There was a small but significant GH increase during ITT, but not during CL test. These results indicate that a minimal albeit significant GH response to ITT can occur despite complete lack of GHRH-R function.
Collapse
Affiliation(s)
- R Salvatori
- Division of Endocrinology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Veldhuis JD, Keenan DM, Iranmanesh A, Mielke K, Miles JM, Bowers CY. Estradiol potentiates ghrelin-stimulated pulsatile growth hormone secretion in postmenopausal women. J Clin Endocrinol Metab 2006; 91:3559-65. [PMID: 16804038 DOI: 10.1210/jc.2006-0948] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Ghrelin and an estrogen-rich milieu individually amplify pulsatile GH secretion by increasing the amount of hormone released per burst. However, how these distinct agonists interact in controlling pulsatile GH output is not known. OBJECTIVE The objective of the study was to test the hypothesis that elevated estradiol (E(2)) concentrations potentiate hypothalamo-pituitary responses to a near-physiological ghrelin stimulus. DESIGN This was a double-blind, placebo-controlled, prospectively randomized, parallel-cohort study. SETTING The study was conducted at an academic medical center. SUBJECTS Twenty-one postmenopausal women participated in the study. INTERVENTIONS Eleven subjects received placebo (Pl) and 10 others E(2) transdermally in escalating doses over 3 wk to mimic late follicular-phase E(2) concentrations. Saline or a submaximally stimulatory amount of ghrelin (0.3 microg/kg) was infused iv on separate randomly ordered mornings fasting after 17-21 d of Pl or E(2) administration. OUTCOMES Outcomes included serum concentrations of E(2), ghrelin, GH, IGF-I, IGF binding protein (IGFBP)-1 and IGFBP-3, and the estimated mass and waveform of stimulated GH secretory bursts. RESULTS Administration of E(2) yielded late follicular-phase E(2) concentrations. Compared with Pl, E(2) did not alter ghrelin concentrations but reduced IGF-I and IGFBP-3 and elevated IGFBP-1 concentrations. Compared with saline, ghrelin infusion amplified pulsatile GH secretion by 7.1-fold (P < 0.01). The effect of E(2) alone was 2.0-fold placebo and that of combined ghrelin/E(2) 10.4-fold (P < 0.01). Ghrelin and E(2) accelerated initial GH release individually but nonadditively by more than 2-fold (P < 0.01). CONCLUSIONS Estrogen augments ghrelin's near-physiological stimulation of pulsatile GH secretion and mimics ghrelin's acceleration of initial GH release. Thus, we hypothesize that estrogen and a GH secretagogue act via independent as well as convergent mechanisms.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Acromegaly is a chronic debilitating disorder caused by a growth hormone (GH)-producing pituitary adenoma. Active acromegaly is associated with a two- to fourfold increased mortality risk, mainly from cardiovascular disease. Transsphenoidal surgery is considered as the treatment of choice because of the rapidity of cure and normalisation of survival. Secondary treatment modalities are radiotherapy and medical treatment, and are important because surgery in the best hands cures only approximately 60% in long-term studies. Medical treatment with slow-release formulations of somatostatin are now widely used, also as primary treatment, and appear to be safe and effective in 50-60% of the patients. However, no data on mortality risk with these drugs is available. Recently, a GH-receptor blocking agent, pegvisomant, was licensed for use in acromegaly and appears to normalise IGF-1 in almost all patients. This article examines the pathophysiology of acromegaly, currently used medicines and their safety and efficacy, and the new drugs that are in development.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Veldhuis JD, Roemmich JN, Richmond EJ, Bowers CY. Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr Rev 2006; 27:101-40. [PMID: 16434512 DOI: 10.1210/er.2005-0006] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Integrative neuroendocrine control of the gonadotropic and somatotropic axes in childhood, puberty, and young adulthood proceeds via multiple convergent and divergent pathways in the human and experimental animal. Emerging ensemble concepts are required to embody independent, parallel, and interacting mechanisms that subserve physiological adaptations and pathological disruption of reproduction and growth. Significant advances in systems biology will be needed to address these challenges.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo Medical School, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
32
|
Campos-Barros A, Heath KE, Argente J. Genetic Basis of Proportional Short Stature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:341-83. [PMID: 16370145 DOI: 10.1007/0-387-26274-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angel Campos-Barros
- Hospital Infantil Universitario Niño Jesús, Department of Paediatric Endocrinology, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
33
|
Zhan X, Desiderio DM. Comparative proteomics analysis of human pituitary adenomas: current status and future perspectives. MASS SPECTROMETRY REVIEWS 2005; 24:783-813. [PMID: 15495141 DOI: 10.1002/mas.20039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article will review the published research on the elucidation of the mechanisms of pituitary adenoma formation. Mass spectrometry (MS) plays a key role in those studies. Comparative proteomics has been used with the long-term goal to locate, detect, and characterize the differentially expressed proteins (DEPs) in human pituitary adenomas; to identify tumor-related and -specific biomarkers; and to clarify the basic molecular mechanisms of pituitary adenoma formation. The methodology used for comparative proteomics, the current status of human pituitary proteomics studies, and future perspectives are reviewed. The methodologies that are used in comparative proteomics studies of human pituitary adenomas are readily exportable to other different areas of cancer research.
Collapse
Affiliation(s)
- Xianquan Zhan
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
34
|
Farhy LS, Veldhuis JD. Deterministic construct of amplifying actions of ghrelin on pulsatile growth hormone secretion. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1649-63. [PMID: 15718392 DOI: 10.1152/ajpregu.00451.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Virginia, Charlottesville, USA
| | | |
Collapse
|
35
|
Soares-Welch C, Farhy L, Mielke KL, Mahmud FH, Miles JM, Bowers CY, Veldhuis JD. Complementary secretagogue pairs unmask prominent gender-related contrasts in mechanisms of growth hormone pulse renewal in young adults. J Clin Endocrinol Metab 2005; 90:2225-32. [PMID: 15634714 PMCID: PMC1289271 DOI: 10.1210/jc.2004-1365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study examines the thesis that pulsatile GH secretion is controlled simultaneously by three principal signals; viz., GHRH, GH-releasing peptide (GHRP, ghrelin), and somatostatin (SS). According to this ensemble notion, no single regulatory peptide acts alone or can be interpreted in isolation. Therefore, to investigate gender-specific control of pulsatile GH secretion, we designed dual-effector stimulation paradigms in eight young men and six women as follows: 1) L-arginine/GHRH (to clamp low SS and high GHRH input); 2) L-arginine/GHRP-2 (to clamp low SS and high GHRP drive); 3) GHRH/GHRP-2 (to clamp high GHRH and high GHRP feedforward); vs. 4) saline (unclamped). Statistical comparisons revealed that: 1) fasting pulsatile GH secretion was 7.6-fold higher in women than men (P < 0.001); 2) L-arginine/GHRH and L-arginine/GHRP-2 evoked, respectively, 4.6- and 2.2-fold greater burst-like GH release in women than men (P < 0.001 and P = 0.015); and 3) GHRH/GHRP-2 elicited comparable GH secretion by gender. In the combined cohorts, estradiol concentrations positively predicted responses to L-arginine/GHRP-2 (r2= 0.49, P = 0.005), whereas testosterone negatively predicted those to L-arginine/GHRH (r2= 0.56, P = 0.002). Based upon a simplified biomathematical model of three-peptide control, the current outcomes suggest that women maintain greater GHRH potency, GHRP efficacy, and opposing SS outflow than men. This inference upholds recent clinical precedence and yields valid predictions of sex differences in self-renewable GH pulsatility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes D. Veldhuis
- Address all correspondence and requests for reprints to: Johannes D. Veldhuis, Division of Endocrinology and Metabolism, Departments of Internal Medicine and Pediatrics, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
36
|
Erickson D, Keenan DM, Farhy L, Mielke K, Bowers CY, Veldhuis JD. Determinants of dual secretagogue drive of burst-like growth hormone secretion in premenopausal women studied under a selective estradiol clamp. J Clin Endocrinol Metab 2005; 90:1741-51. [PMID: 15613434 PMCID: PMC1236972 DOI: 10.1210/jc.2004-1621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study tests the hypothesis that estradiol (E(2)), compared with placebo (Pl), amplifies combined-secretagogue stimulation of GH secretion in premenopausal women studied at comparable IGF-I and testosterone concentrations. To this end, 13 women underwent GnRH agonist-induced gonadal down-regulation followed by graded transdermal addback of E(2) or Pl and randomly ordered iv infusions of saline or paired secretagogues on separate morning fasting. GH secretion was assessed by frequent blood sampling, immunochemiluminometry, and variable-waveform deconvolution analysis. Two-way ANOVA revealed that specific secretagogue combination (P < 0.001), E(2) status (P = 0.012), and their interaction (P = 0.038) jointly determined GH secretory-burst mass. Compared with Pl, the E(2)-clamped milieu elevated mean fasting GH concentrations (P = 0.032), the mass of GH secreted in bursts (P = 0.037), and maximal stimulation by paired l-arginine/GH-releasing peptide (GHRP)-2 (P = 0.028). E(2) also markedly accelerated the initial release of GH induced by GHRH/GHRP-2 (P < 0.001) and l-arginine/GHRH (P < 0.01). By linear regression analysis, E(2) concentrations positively forecast 41% of intersubject variability in GH secretion stimulated by combined l-arginine/GHRP-2 (P = 0.018), whereas abdominal visceral-fat mass negatively predicted 49% of that due to l-arginine/GHRH (P = 0.012). These data indicate that pulsatile GH secretion in young women studied at constant IGF-I and testosterone concentrations is dictated 3-fold jointly by secretagogue pair, E(2) availability, and intraabdominal adiposity. Moreover, the rapidity of GH release is controlled 2-fold jointly by E(2) and GHRH.
Collapse
Affiliation(s)
| | | | | | | | | | - Johannes D. Veldhuis
- Address all correspondence and requests for reprints to: Johannes D. Veldhuis, Endocrine Research Unit, Department of Internal Medicine, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
37
|
Le Tissier PR, Carmignac DF, Lilley S, Sesay AK, Phelps CJ, Houston P, Mathers K, Magoulas C, Ogden D, Robinson ICAF. Hypothalamic growth hormone-releasing hormone (GHRH) deficiency: targeted ablation of GHRH neurons in mice using a viral ion channel transgene. Mol Endocrinol 2005; 19:1251-62. [PMID: 15661833 DOI: 10.1210/me.2004-0223] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Animal and clinical models of GHRH excess suggest that GHRH provides an important trophic drive to pituitary somatotrophs. We have adopted a novel approach to silence or ablate GHRH neurons, using a modified H37A variant of the influenza virus M2 protein ((H37A)M2). In mammalian cells, (H37A)M2 forms a high conductance monovalent cation channel that can be blocked by the antiviral drug rimantadine. Transgenic mice with (H37A)M2 expression targeted to GHRH neurons developed postweaning dwarfism with hypothalamic GHRH transcripts detectable by RT-PCR but not by in situ hybridization and immunocytochemistry, suggesting that expression of (H37A)M2 had silenced or ablated virtually all the GHRH cells. GHRH-M2 mice showed marked anterior pituitary hypoplasia with GH deficiency, although GH cells were still present. GHRH-M2 mice were also deficient in prolactin but not TSH. Acute iv injections of GHRH in GHRH-M2 mice elicited a significant GH response, whereas injections of GHRP-6 did not. Twice daily injections of GHRH (100 microg/d) for 7 d in GHRH-M2 mice doubled their pituitary GH but not PRL contents. Rimantadine treatment failed to restore growth or pituitary GH contents. Our results show the importance of GHRH neurons for GH and prolactin production and normal growth.
Collapse
Affiliation(s)
- Paul R Le Tissier
- Division of Molecular Neuroendocrinology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Erickson D, Keenan DM, Mielke K, Bradford K, Bowers CY, Miles JM, Veldhuis JD. Dual secretagogue drive of burst-like growth hormone secretion in postmenopausal compared with premenopausal women studied under an experimental estradiol clamp. J Clin Endocrinol Metab 2004; 89:4746-54. [PMID: 15356089 DOI: 10.1210/jc.2004-0424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show that in an experimentally enforced estradiol-predominant milieu, postmenopausal compared with premenopausal women maintain 1) decreased fasting GH and IGF-I concentrations, 2) reduced basal and pulsatile GH secretion, and 3) attenuated GH secretion after maximal stimulation by the paired secretagogues l-arginine/GH-releasing peptide (GHRP)-2, l-arginine/GHRH, and GHRP-2/GHRH. These foregoing outcomes are selective, because menopausal status did not determine mean GH secretory-burst frequency or peptide-induced waveform shortening. Abdominal visceral fat mass predicted up to 25% of the variability in fasting and stimulated GH secretion in the combined cohorts under fixed systemic estradiol availability. Accordingly, as much as three-fourths of interindividual differences in burst-like GH secretion among healthy pre- and postmenopausal women arise from age-related mechanisms independently of short-term systemic estrogen availability and relative intraabdominal adiposity.
Collapse
Affiliation(s)
- Dana Erickson
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Souza AHO, Salvatori R, Martinelli CE, Carvalho WMO, Menezes CA, Barretto ESDA, Barreto Filho JAS, Alcântara MRSD, Oliveira CRP, Alcântara PRSD, Ramalho RJR, Oliveira HA, Lima IBD, Carneiro JN, Santos MM, Gill MS, Clayton PE, Oliveira MHA. Hormônio do crescimento ou somatotrófico: novas perspectivas na deficiência isolada de GH a partir da descrição da mutação no gene do receptor do GHRH nos indivíduos da cidade de Itabaianinha, Brasil. ACTA ACUST UNITED AC 2004; 48:406-13. [PMID: 15640904 DOI: 10.1590/s0004-27302004000300013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Além de influenciar o crescimento corpóreo, o hormônio do crescimento, ou somatotrófico, desempenha importante papel no metabolismo, composição corporal, perfil lipídico, estado cardiovascular e longevidade. Seu controle é multi-regulado por hormônios, metabólitos e peptídeos hipotalâmicos. Dados sobre a Deficiência Isolada de GH (DIGH) obtidos a partir da descrição da mutação IVS1+1G®A no gene do receptor do hormônio liberador do GH (GHRH-R) em indivíduos da cidade de Itabaianinha, SE, são revisados. São abordadas novas perspectivas sobre o modelo de resistência ao GHRH, a importância do GHRH no controle da secreção de GH, a freqüência das mutações do gene do GHRH-R, a relevância diagnóstica do IGF-I e os achados metabólicos, cardiovasculares e de qualidade de vida nestes indivíduos.
Collapse
Affiliation(s)
- Anita Hermínia O Souza
- Serviço de Endocrinologia, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, SE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bowers CY, Granda R, Mohan S, Kuipers J, Baylink D, Veldhuis JD. Sustained elevation of pulsatile growth hormone (GH) secretion and insulin-like growth factor I (IGF-I), IGF-binding protein-3 (IGFBP-3), and IGFBP-5 concentrations during 30-day continuous subcutaneous infusion of GH-releasing peptide-2 in older men and women. J Clin Endocrinol Metab 2004; 89:2290-300. [PMID: 15126555 DOI: 10.1210/jc.2003-031799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We test the interlinked hypotheses that in healthy older adults: 1). i.v. injection of GH-releasing peptide-2 (GHRP-2) and GHRH synergizes more in aging women than men; 2). sc infusion of both GHRP-2 (1 microg/kg.h = 1) and GHRH (1, 3, or 10) for 24 h augments GH secretion more than either agonist alone; and 3). continuous sc delivery of GHRP-2 (1) for 30 d stimulates daily GH secretion and IGF-I, IGF-binding protein-3 (IGFBP-3), and IGFBP-5. Acute two-peptide synergy was 3-fold greater in young (n = 16) than older volunteers (n = 17; P < 0.025) and was 2.3-fold higher in elderly women than men (P < 0.025). The 24-h infusion of GHRP-2 (1) combined with GHRH (3 or 10) in men and with GHRH (10) in women drove GH secretion more than GHRH alone (P <or= 0.024). In the entire cohort (n = 11), GHRP-2/GHRH (1/10) stimulated GH secretion more than either GHRP-2 (1; P = 0.021) or GHRH (10; P = 0.012). The 30-d delivery of GHRP-2 (1; n = 17 subjects): 1). stimulated pulsatile, rhythmic, and entropic GH secretion by more than 3-fold on d 1 and more than 1.8-fold on d 14 and 30 (each P < 0.001 vs. saline); 2). elevated IGF-I to a stable plateau on d 1, 14, and 30 (P < 0.025 vs. baseline); and 3). increased IGFBP-3 (P < 0.01) and IGFBP-5 (P < 0.025) on d 14 and/or 30. Safety screening tests remained normal. In summary, in healthy elderly women and men: 1). acute synergy of GHRP-2 and GHRH is greater in the female; 2). 24-h combined GHRP-2 and GHRH drive is more effective than either agonist alone; and 3). 30-d stimulation with GHRP-2 sustains a physiologically activated somatotropic axis. We conclude that age, gender, stimulus duration, and secretagogue combination determine acute, intermediate, and extended responses of the somatotropic axis in the older adult.
Collapse
Affiliation(s)
- Cyril Y Bowers
- Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA.
| |
Collapse
|
42
|
Kok P, Buijs MM, Kok SW, Van Ierssel IHAP, Frölich M, Roelfsema F, Voshol PJ, Meinders AE, Pijl H. Acipimox enhances spontaneous growth hormone secretion in obese women. Am J Physiol Regul Integr Comp Physiol 2003; 286:R693-8. [PMID: 14670810 DOI: 10.1152/ajpregu.00595.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that a high circulating free fatty acid (FFA) concentration is involved in the pathogenesis of hyposomatotropism associated with obesity. To evaluate this hypothesis, 10 healthy premenopausal women (body mass index 33.8 +/- 1.0 kg/m(2)) were studied in the follicular phase of their menstrual cycle at two occasions with a time interval of at least 8 wk, where body weight remained stable. Subjects were randomly assigned to treatment with either acipimox (an inhibitor of lipolysis, 250 mg orally 4 times daily) or placebo in a double-blind crossover design, starting 1 day before admission until the end of the blood sampling period. Blood samples were taken during 24 h with a sampling interval of 10 min for assessment of growth hormone (GH) concentrations, and GH secretion was estimated by deconvolution analysis. Identical methodology was used to study GH secretion in a historical control group of age-matched normal weight women. GH secretion was clearly blunted in obese women (total daily release 66 +/- 10 vs. lean controls: 201 +/- 23 mU x l(Vd)(-1) x 24 h(-1), P = 0.005, where l(Vd) is lite of distribution volume). Acipimox considerably enhanced total (113 +/- 50 vs. 66 +/- 10 mU x l(Vd)(-1) x 24 h(-1), P = 0.02) and pulsatile GH secretion (109 +/- 49 vs. 62 +/- 30 mU x l(Vd)(-1) x 24 h(-1), P = 0.02), but GH output remained lower compared with lean controls. Further analysis did not show any relationship between the effects of acipimox on GH secretion and regional body fat distribution. In conclusion, acipimox unleashes spontaneous GH secretion in obese women. It specifically enhances GH secretory burst mass. This might mean that lowering of systemic FFA concentrations by acipimox modulates neuroendocrine mechanisms that orchestrate the activity of the somatotropic ensemble.
Collapse
Affiliation(s)
- Petra Kok
- Department of General Internal Medicine, Leiden University Medical Center, C4-83, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Klerman EB, Adler GK, Jin M, Maliszewski AM, Brown EN. A statistical model of diurnal variation in human growth hormone. Am J Physiol Endocrinol Metab 2003; 285:E1118-26. [PMID: 12888486 DOI: 10.1152/ajpendo.00562.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The diurnal pattern of growth hormone (GH) serum levels depends on the frequency and amplitude of GH secretory events, the kinetics of GH infusion into and clearance from the circulation, and the feedback of GH on its secretion. We present a two-dimensional linear differential equation model based on these physiological principles to describe GH diurnal patterns. The model characterizes the onset times of the secretory events, the secretory event amplitudes, as well as the infusion, clearance, and feedback half-lives of GH. We illustrate the model by using maximum likelihood methods to fit it to GH measurements collected in 12 normal, healthy women during 8 h of scheduled sleep and a 16-h circadian constant-routine protocol. We assess the importance of the model components by using parameter standard error estimates and Akaike's Information Criterion. During sleep, both the median infusion and clearance half-life estimates were 13.8 min, and the median number of secretory events was 2. During the constant routine, the median infusion half-life estimate was 12.6 min, the median clearance half-life estimate was 11.7 min, and the median number of secretory events was 5. The infusion and clearance half-life estimates and the number of secretory events are consistent with current published reports. Our model gave an excellent fit to each GH data series. Our analysis paradigm suggests an approach to decomposing GH diurnal patterns that can be used to characterize the physiological properties of this hormone under normal and pathological conditions.
Collapse
Affiliation(s)
- Elizabeth B Klerman
- Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
44
|
Veldhuis JD, Bowers CY. Sex-steroid modulation of growth hormone (GH) secretory control: three-peptide ensemble regulation under dual feedback restraint by GH and IGF-I. Endocrine 2003; 22:25-40. [PMID: 14610296 DOI: 10.1385/endo:22:1:25] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 08/04/2003] [Indexed: 11/11/2022]
Abstract
Technical, genetic, and clinical developments have unveiled a burgeoning array of novel effectors of GH secretion. The present appraisal of central neuroregulatory components of the somatotropic axis highlights a simplifying concept of ensemble control by the final common peptides, GH-releasing hormone (GHRH), GH-releasing peptide(s) (GHRP, ghrelin), and somatostatin. These potent signals act individually, antagonistically, and synergistically to direct pulsatile GH secretion. GHRH, GHRP/ghrelin, and somatostatin further adapt to autonegative feedback by GH and IGF-I. Estradiol modulates the impact of each of the primary peptidyl inputs; viz.: (i) enhances submaximally effective feedforward by discrete pulses of (injected) recombinant human GHRH-1,44-amide (as defined by increased agonistic potency and pituitary sensitivity); (ii) potentiates the submaximally stimulatory effects of GHRP-2, a hexapeptidyl mimetic of ghrelin; (iii) blunts dose-dependent inhibition of fasting GH secretion by somatostatin- 14; and (iv) relieves rhGH-enforced negative feedback on GHRP-2 (but not on basal, exercise, or GHRH)-stimulated GH secretion. The foregoing estrogenic activities collectively augment GH secretory burst mass by amplifying feedforward (via both GHRH and GHRP) and attenuating feedback (imposed by somatostatin and GH). Whether testosterone fully mimics the foregoing mechanistic actions of estradiol is not known. In conclusion, the present conceptual platform of tri-peptide-directed feedforward and GH/IGF-I-mediated feedback should aid in unraveling some of the complex regulatory dynamics targeted by sex-steroid hormones.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Division of Endocrinology and Metabolism, Department of Internal Medicine, General Clinical Research Center, Mayo Medical and Graduate School of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
45
|
|
46
|
Abstract
Age and gender impact the full repertoire of neurohormone systems, including most prominently the somatotropic, gonadotropic and lactotropic axes. For example, daily GH production is approximately 2-fold higher in young women than men and varies by 20-fold by sexual developmental status and age. Deconvolution estimates of 24-h GH secretion rates exceed 1200 microg/m2 in adolescents and fall below 60 microg/m2 in aged individuals. The present overview highlights plausible factors driving such lifetime variations in GH availability, i.e., estrogen, aromatizable androgen, hypothalamic peptides and negative feedback by GH and IGF-I. In view of the daunting complexity of potential neuromodulatory signals, we underline the utility of conceptualizing a simplified three-peptide regulatory ensemble of GHRH, GHRP (ghrelin) and somatostatin. The foregoing signals act as individual and conjoint mediators of adaptive GH control. Regulation is enforced at 3-fold complementary time scales, which embrace pulsatile (burst-like), entropic (orderly) and 24-h rhythmic (nycthemeral) modes of GH release. This unifying platform offers a convergent perspective of multivalent control of GH outflow.
Collapse
Affiliation(s)
- J D Veldhuis
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical School of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
47
|
Dimaraki EV, Jaffe CA, Bowers CY, Marbach P, Barkan AL. Pulsatile and nocturnal growth hormone secretions in men do not require periodic declines of somatostatin. Am J Physiol Endocrinol Metab 2003; 285:E163-70. [PMID: 12670836 DOI: 10.1152/ajpendo.00334.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a continuous subcutaneous octreotide infusion to create constant supraphysiological somatostatinergic tone, we have previously shown that growth hormone (GH) pulse generation in women is independent of endogenous somatostatin (SRIH) declines. Generalization of these results to men is problematic, because GH regulation is sexually dimorphic. We have therefore studied nine healthy young men (age 26 +/- 6 yr, body mass index 23.3 +/- 1.2 kg/m2) during normal saline and octreotide infusion (8.4 microg/h) that provided stable plasma octreotide levels (764.5 +/- 11.6 pg/ml). GH was measured in blood samples obtained every 10 min for 24 h. Octreotide suppressed 24-h mean GH by 52 +/- 13% (P = 0.016), GH pulse amplitude by 47 +/- 12% (P = 0.012), and trough GH by 39 +/- 12% (P = 0.030), whereas GH pulse frequency and the diurnal rhythm of GH secretion remained essentially unchanged. The response of GH to GH-releasing hormone (GHRH) was suppressed by 38 +/- 15% (P = 0.012), but the GH response to GH-releasing peptide-2 was unaffected. We conclude that, in men as in women, declines in hypothalamic SRIH secretion are not required for pulse generation and are not the cause of the nocturnal augmentation of GH secretion. We propose that GH pulses are driven primarily by GHRH, whereas ghrelin might be responsible for the diurnal rhythm of GH.
Collapse
Affiliation(s)
- Eleni V Dimaraki
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
48
|
Okimura Y, Ukai K, Hosoda H, Murata M, Iguchi G, Iida K, Kaji H, Kojima M, Kangawa K, Chihara K. The role of circulating ghrelin in growth hormone (GH) secretion in freely moving male rats. Life Sci 2003; 72:2517-24. [PMID: 12650860 DOI: 10.1016/s0024-3205(03)00147-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To examine the physiological significance of plasma ghrelin in generating pulsatile growth hormone (GH) secretion in rats, plasma GH and ghrelin levels were determined in freely moving male rats. Plasma GH was pulsatilely secreted as reported previously. Plasma ghrelin levels were measured by both N-RIA recognizing the active form of ghrelin and C-RIA determining total amount of ghrelin. Mean +/- SE plasma ghrelin levels determined by N-RIA and C-RIA were 21.6 +/- 8.5 and 315.5 +/- 67.5 pM, respectively, during peak periods when plasma GH levels were greater than 100 ng / ml. During trough periods when plasma GH levels were less than 10 ng / ml, they were 16.5 +/- 4.5 and 342.1 +/- 29.8 pM, respectively. There were no significant differences in plasma ghrelin levels between two periods. Next, effect of a GH secretagogue antagonist, [D-Lys-3]-GHRP-6, on plasma GH profiles was examined. There were no significant differences in both peak GH levels and area under the curves of GH (AUCs) between [D-Lys-3]-GHRP-6-treated and control rats. These findings suggest circulating ghrelin in peripheral blood does not play a role in generating pulsatile GH secretion in freely moving male rats.
Collapse
Affiliation(s)
- Yasuhiko Okimura
- Department of Basic Allied Medicine, Kobe University School of Medicine, 7-10-2 Tomogaoka, Kobe 654-0142, Suma, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Karen Lin-Su
- Division of Pediatric Endocrinology, Weill Medical College of Cornell University, New York, USA
| | | |
Collapse
|
50
|
Salvatori R, Aguiar-Oliveira MH, Monte LVB, Hedges L, Santos NL, Pereira RMC, Phillips JA. Detection of a recurring mutation in the human growth hormone-releasing hormone receptor gene. Clin Endocrinol (Oxf) 2002; 57:77-80. [PMID: 12100073 DOI: 10.1046/j.1365-2265.2002.01565.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Mutations in the gene encoding for the GH-releasing hormone receptor (GHRHR) have been recently described in patients with familial isolated GH deficiency (IGHD) type IB. To date, all reported mutations have been found in kindreds sharing common ancestors. The only exception is a T to A transversion which causes a substitution of histidine for leucine in codon 144 (L144H) and creates a DraIII restriction site. This mutation was described in two families with different ethnic background residing in two different continents (Europe and North America). DESIGN We searched for GHRHR mutations in a new family with IGHD from a third continent (South America) and found the affected individuals to be homozygous for the same L144H change. We performed linkage analysis with intra- and para-genic polymorphisms to determine if the three families carrying the L144H allele are related. RESULTS Linkage analysis studies demonstrated that one of the three families does not share the same para- and intragenic GHRHR polymorphisms with the other two. CONCLUSIONS The L144H mutation has arisen at least twice and should be considered for initial genetic analysis in patients with familial IGHD in whom the a GHRHR mutation is suspected.
Collapse
Affiliation(s)
- Roberto Salvatori
- Department of Medicine and The Ilyssa Center for Molecular and Cellular Endocrinology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|