1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Fu Y, Lei C, Qibo R, Huang X, Chen Y, Wang M, Zhang M. Insulin-like growth factor-1 and retinopathy of prematurity: A systemic review and meta-analysis. Surv Ophthalmol 2023; 68:1153-1165. [PMID: 37423521 DOI: 10.1016/j.survophthal.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
The prevalence of retinopathy of prematurity (ROP) is rapidly increasing worldwide. Many researchers have explored the relationship between insulin-like growth factor-1 (IGF-1) and ROP; however, the results are controversial. This meta-analysis evaluates the correlation between IGF-1 and ROP systematically. We searched for PubMed, Web of Science, Embase, the Cochrane Central Register of Controlled Trials, Ovid MEDLINE, SinoMed, ClinicalTrials.gov, and 3 Chinese databases up to June 2022. Then, the meta-regression and subgroup analysis were carried out. Twelve articles with 912 neonates were included in this meta-analysis. The results revealed that 4 of 7 covariates account for significant heterogeneity: location, measurement method of IGF-1 levels, collection time of blood sample, and the severity of ROP. The pooled analysis showed that low IGF-1 levels could serve as a risk factor associated with the development and severity of ROP. Serum IGF-1 monitoring in preterm infants after birth will be helpful in the diagnosis and treatment of ROP, and the reference value of IGF-1 should be standardized according to the measurement of IGF-1 and the region, as well as the postmenstrual age of prematurity.
Collapse
Affiliation(s)
- Yanyan Fu
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Lei
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Qibo
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Huang
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying Chen
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Wang
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Du L, Ho BM, Zhou L, Yip YWY, He JN, Wei Y, Tham CC, Chan SO, Schally AV, Pang CP, Li J, Chu WK. Growth hormone releasing hormone signaling promotes Th17 cell differentiation and autoimmune inflammation. Nat Commun 2023; 14:3298. [PMID: 37280225 DOI: 10.1038/s41467-023-39023-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Dysregulation of Th17 cell differentiation and pathogenicity contributes to multiple autoimmune and inflammatory diseases. Previously growth hormone releasing hormone receptor (GHRH-R) deficient mice have been reported to be less susceptible to the induction of experimental autoimmune encephalomyelitis. Here, we show GHRH-R is an important regulator of Th17 cell differentiation in Th17 cell-mediated ocular and neural inflammation. We find that GHRH-R is not expressed in naïve CD4+ T cells, while its expression is induced throughout Th17 cell differentiation in vitro. Mechanistically, GHRH-R activates the JAK-STAT3 pathway, increases the phosphorylation of STAT3, enhances both non-pathogenic and pathogenic Th17 cell differentiation and promotes the gene expression signatures of pathogenic Th17 cells. Enhancing this signaling by GHRH agonist promotes, while inhibiting this signaling by GHRH antagonist or GHRH-R deficiency reduces, Th17 cell differentiation in vitro and Th17 cell-mediated ocular and neural inflammation in vivo. Thus, GHRH-R signaling functions as a critical factor that regulates Th17 cell differentiation and Th17 cell-mediated autoimmune ocular and neural inflammation.
Collapse
Affiliation(s)
- Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Bo Man Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Linbin Zhou
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yolanda Wong Ying Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yingying Wei
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jian Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Vemula SL, Aramadaka S, Mannam R, Sankara Narayanan R, Bansal A, Yanamaladoddi VR, Sarvepalli SS. The Impact of Hypothyroidism on Diabetes Mellitus and Its Complications: A Comprehensive Review. Cureus 2023; 15:e40447. [PMID: 37456384 PMCID: PMC10349367 DOI: 10.7759/cureus.40447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders in the world and is characterized by excessive blood glucose levels, which lead to deranged carbohydrate, protein, and lipid metabolisms. At its core, DM is an impairment of insulin metabolism, leading to a plethora of clinical features. The thyroid gland is another vital cog in the wheel of the endocrine system, and the hormones synthesized by it are heavily involved in the control of the body's metabolism. Hypothyroidism is a state in which thyroid hormones are deficient due to various factors and is characterized by a metabolically hypoactive state. Together, insulin, implicated in DM, and thyroid hormones engage in an intricate dance and serve to regulate the body's metabolism. It is imperative to explore the relationship between these two common endocrine disorders to understand their clinical association and mold treatments specific to patients in which they coexist. Both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) have been shown to have an increased association with hypothyroidism, especially in patients with risk factors including female sex, hyperlipidemia, obesity, and anemia. This review also explores DM's macrovascular and microvascular complications and their association with hypothyroidism. It is of great use to screen for hypothyroidism in diabetic patients. Specific protocols, especially for patients at an elevated risk, provide improved quality of life to patients affected by this highly prevalent disease.
Collapse
Affiliation(s)
- Shree Laya Vemula
- Department of Internal Medicine, Anam Chenchu Subba Reddy (ACSR) Government Medical College, Nellore, IND
| | | | - Raam Mannam
- Department of General Surgery, Narayana Medical College, Nellore, IND
| | | | - Arpit Bansal
- Department of Internal Medicine, Narayana Medical College, Nellore, IND
| | | | | |
Collapse
|
5
|
Sethuraman C, Venkatasamy S. Clinical profile of Laron dwarfism - experience from a tertiary care institute in Chennai. J Pediatr Endocrinol Metab 2023; 36:466-469. [PMID: 36957988 DOI: 10.1515/jpem-2022-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVES Laron dwarfism is a rare genetic disorder first reported among Israeli jewish children, subsequently about 350 cases cases have been reported worldwide. We aim to describe the clinical profile of nine children with Laron dwarfism from Institute of Child Health, Chennai. METHODS Analysis of case records from 2010 to 2018. RESULTS Male:female ratio is 6:3. Mean age of the children at the time of diagnosis was 3 years. All children were extremely short, and mean height Z score (SD) was -7.7(0.8). All children had characteristic facies with no hypoglycaemic episodes. Microcephaly was present in four children out of which two had developmental delay. Three out of six boys had micropenis. All children had low insulin like growth factor-1 (IGF-1) and high basal growth hormone (GH) with a mean (SD) of 39.6 (11.2) ng/mL. CONCLUSIONS Suspicion of Laron syndrome should be high when child presents with features of Growth Hormone Deficiency (GHD) with extreme stunting.
Collapse
Affiliation(s)
- Chidambaram Sethuraman
- Department of Paediatrics, Institute of Child Health and Hospital for Children, Chennai, Tamil Nadu, India
| | - Seenivasan Venkatasamy
- Department of Paediatrics, Institute of Child Health and Hospital for Children, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
7
|
Systemic Cytokines in Retinopathy of Prematurity. J Pers Med 2023; 13:jpm13020291. [PMID: 36836525 PMCID: PMC9966226 DOI: 10.3390/jpm13020291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Retinopathy of prematurity (ROP), a vasoproliferative vitreoretinal disorder, is the leading cause of childhood blindness worldwide. Although angiogenic pathways have been the main focus, cytokine-mediated inflammation is also involved in ROP etiology. Herein, we illustrate the characteristics and actions of all cytokines involved in ROP pathogenesis. The two-phase (vaso-obliteration followed by vasoproliferation) theory outlines the evaluation of cytokines in a time-dependent manner. Levels of cytokines may even differ between the blood and the vitreous. Data from animal models of oxygen-induced retinopathy are also valuable. Although conventional cryotherapy and laser photocoagulation are well established and anti-vascular endothelial growth factor agents are available, less destructive novel therapeutics that can precisely target the signaling pathways are required. Linking the cytokines involved in ROP to other maternal and neonatal diseases and conditions provides insights into the management of ROP. Suppressing disordered retinal angiogenesis via the modulation of hypoxia-inducible factor, supplementation of insulin-like growth factor (IGF)-1/IGF-binding protein 3 complex, erythropoietin, and its derivatives, polyunsaturated fatty acids, and inhibition of secretogranin III have attracted the attention of researchers. Recently, gut microbiota modulation, non-coding RNAs, and gene therapies have shown promise in regulating ROP. These emerging therapeutics can be used to treat preterm infants with ROP.
Collapse
|
8
|
Postnatal serum IGF-1 levels associate with brain volumes at term in extremely preterm infants. Pediatr Res 2023; 93:666-674. [PMID: 35681088 PMCID: PMC9988684 DOI: 10.1038/s41390-022-02134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Growth factors important for normal brain development are low in preterm infants. This study investigated the link between growth factors and preterm brain volumes at term. MATERIAL/METHODS Infants born <28 weeks gestational age (GA) were included. Endogenous levels of insulin-like growth factor (IGF)-1, brain-derived growth factor, vascular endothelial growth factor, and platelet-derived growth factor (expressed as area under the curve [AUC] for serum samples from postnatal days 1, 7, 14, and 28) were utilized in a multivariable linear regression model. Brain volumes were determined by magnetic resonance imaging (MRI) at term equivalent age. RESULTS In total, 49 infants (median [range] GA 25.4 [22.9-27.9] weeks) were included following MRI segmentation quality assessment and AUC calculation. IGF-1 levels were independently positively associated with the total brain (p < 0.001, β = 0.90), white matter (p = 0.007, β = 0.33), cortical gray matter (p = 0.002, β = 0.43), deep gray matter (p = 0.008, β = 0.05), and cerebellar (p = 0.006, β = 0.08) volume adjusted for GA at birth and postmenstrual age at MRI. No associations were seen for other growth factors. CONCLUSIONS Endogenous exposure to IGF-1 during the first 4 weeks of life was associated with total and regional brain volumes at term. Optimizing levels of IGF-1 might improve brain growth in extremely preterm infants. IMPACT High serum levels of insulin-like growth factor (IGF)-1 during the first month of life were independently associated with increased total brain volume, white matter, gray matter, and cerebellar volume at term equivalent age in extremely preterm infants. IGF-1 is a critical regulator of neurodevelopment and postnatal levels are low in preterm infants. The effects of IGF-1 levels on brain development in extremely preterm infants are not fully understood. Optimizing levels of IGF-1 may benefit early brain growth in extremely preterm infants. The effects of systemically administered IGF-1/IGFBP3 in extremely preterm infants are now being investigated in a randomized controlled trial (Clinicaltrials.gov: NCT03253263).
Collapse
|
9
|
Roshan Milani S, Pourheydar B, Daneshfar S, Chodari L. Decreased Cardiac NOX4 and SIRT-1 Protein Levels Contribute to Decreased Angiogenesis in the Heart of Diabetic Rats: Rescue Effects of IGF-1 and Exercise. Adv Pharm Bull 2023; 13:202-209. [PMID: 36721814 PMCID: PMC9871268 DOI: 10.34172/apb.2023.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: Reduced angiogenesis in the heart tissue is a primary risk factor for heart disease in the diabetes condition. This study was aimed to evaluate the changes of two main angiogenesis mediators, NADPH oxidase 4 (NOX4) and sirtuin 1 (SIRT-1) protein levels in the heart of diabetic rats and the impact of Insulin-like growth factor 1 (IGF-1) and exercise on these proteins. Methods: Injection of 60 mg/kg of streptozotocin in 40 male Wistar rats led to the induction of type 1 diabetes. Angiogenesis was detected in the hearts by immunostaining for PECAM-1/ CD31 after 30 days of treatment with IGF-1 (2 mg/kg/day) and exercise. ELISA technique was utilized to establish the expression levels of NOX4 and SIRT-1 within the heart. Results: The results revealed a significant increase in HbA1c and a significant decrease in SIRT1, NOX4 levels and angiogenesis grade in the heart of diabetes group compared to control group. Meanwhile, IGF-1 and exercise alone or in combination completely masked these effects. Additionally, synergistic effect on SIRT-1, HbA1c levels and angiogenesis grade is evident when IGF-1 and exercise are applied simultaneously. Conclusion: Our findings suggest that reduction in angiogenesis in the heart of diabetic rats may be mediated by down expression of NOX4 and SIRT-1 protein levels. It was also displayed that IGF-1 and exercise as novel therapies increase NOX4 and SIRT-1 protein levels within the hearts of diabetic rats.
Collapse
Affiliation(s)
- Shiva Roshan Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saman Daneshfar
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Qi C, Song X, Wang H, Yan Y, Liu B. The role of exercise-induced myokines in promoting angiogenesis. Front Physiol 2022; 13:981577. [PMID: 36091401 PMCID: PMC9459110 DOI: 10.3389/fphys.2022.981577] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic diseases are a major cause of mortality or disability in the clinic. Surgical or medical treatment often has poor effect on patients with tissue and organ ischemia caused by diffuse stenoses. Promoting angiogenesis is undoubtedly an effective method to improve perfusion in ischemic tissues and organs. Although many animal or clinical studies tried to use stem cell transplantation, gene therapy, or cytokines to promote angiogenesis, these methods could not be widely applied in the clinic due to their inconsistent experimental results. However, exercise rehabilitation has been written into many authoritative guidelines in the treatment of ischemic diseases. The function of exercise in promoting angiogenesis relies on the regulation of blood glucose and lipids, as well as cytokines that secreted by skeletal muscle, which are termed as myokines, during exercise. Myokines, such as interleukin-6 (IL-6), chemokine ligand (CXCL) family proteins, irisin, follistatin-like protein 1 (FSTL1), and insulin-like growth factor-1 (IGF-1), have been found to be closely related to the expression and function of angiogenesis-related factors and angiogenesis in both animal and clinical experiments, suggesting that myokines may become a new molecular target to promote angiogenesis and treat ischemic diseases. The aim of this review is to show current research progress regarding the mechanism how exercise and exercise-induced myokines promote angiogenesis. In addition, the limitation and prospect of researches on the roles of exercise-induced myokines in angiogenesis are also discussed. We hope this review could provide theoretical basis for the future mechanism studies and the development of new strategies for treating ischemic diseases.
Collapse
|
11
|
Gurung S, Restrepo NK, Chestnut B, Klimkaite L, Sumanas S. Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos. Sci Rep 2022; 12:13065. [PMID: 35906287 PMCID: PMC9338088 DOI: 10.1038/s41598-022-17127-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial cells exhibit substantial phenotypic and transcriptional heterogeneity which is established during early embryogenesis. However, the molecular mechanisms involved in establishing endothelial cell diversity are still not well understood. Zebrafish has emerged as an advantageous model to study vascular development. Despite its importance, the single-cell transcriptomic profile of vascular endothelial cells during zebrafish development is still missing. To address this, we applied single-cell RNA-sequencing (scRNA-seq) of vascular endothelial cells isolated from zebrafish embryos at the 24 hpf stage. Six distinct clusters or subclusters related to vascular endothelial cells were identified which include arterial, two venous, cranial, endocardial and endothelial progenitor cell subtypes. Furthermore, we validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating heterogeneity among venous endothelial cells at this early developmental stage. This dataset will be a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity and cell-fate decisions.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laurita Klimkaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA.
| |
Collapse
|
12
|
Costa LRP, Costa GAM, Valete COS, Machado JKK, Silva MHD. In-hospital outcomes in preterm and small-for-gestational-age newborns: a cohort study. EINSTEIN-SAO PAULO 2022; 20:eAO6781. [PMID: 35584447 PMCID: PMC9094608 DOI: 10.31744/einstein_journal/2022ao6781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022] Open
Abstract
Objective To compare in-hospital outcomes between small-for-gestational-age and appropriate-for-gestational-age preterm neonates who needed intensive care. Methods A retrospective cohort study with preterm newborns, from January to December 2017. The results are presented as median, frequency, and odds ratio. Numerical variables were compared using the Wilcoxon test. Categorical variables were compared using the χ2 test. We considered p<0.05 as significant. Results Out of 129 preterm newborns included, 20.9% were small-for-gestational-age. Median gestational age was 31 2/7 weeks, birthweight was 1,450g, and length of hospital stay was 39 days. Preterm small-for-gestational-age newborns presented a higher chance of peri-intraventricular hemorrhage (odds ratio of 3.23; p=0.02), retinopathy of prematurity (odds ratio of 2.78 p=0.02), patent ductus arteriosus (odds ratio of 2.50; p=0.04) and a lower chance of presumptive early-onset sepsis (odds ratio of 0.37; p=0.03). Conclusion Preterm small-for-gestational-age neonates were associated with peri-intraventricular hemorrhage, retinopathy of prematurity and patent ductus arteriosus. This emphasizes the need of special care for these neonates.
Collapse
|
13
|
Retinopathy of prematurity: contribution of inflammatory and genetic factors. Mol Cell Biochem 2022; 477:1739-1763. [PMID: 35262882 DOI: 10.1007/s11010-022-04394-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Retinopathy of prematurity (ROP) is a retinal vasoproliferative disorder that represents an important cause of childhood visual impairment and blindness. Although oxidative stress has long been implicated in ROP etiology, other prenatal and perinatal factors are also involved. This review focuses on current research involving inflammation and genetic factors in the pathogenesis of ROP. Increasing evidence suggests that perinatal inflammation or infection contributes to ROP pathogenesis. Cytokines and chemokines with a fundamental role in inflammatory responses and that significantly contributing to angiogenesis are analyzed. Microglia cells, the retinal-resident macrophages, are crucial for retinal homeostasis, however, under sustained pathological stimuli release exaggerated amounts of inflammatory mediators and can promote pathological neovascularization. Current modulation of angiogenic cytokines, such as treatment with antibodies to vascular endothelial growth factor (anti-VEGF), has shown efficacy in the treatment of ocular neovascularization; however, some patients are refractory to anti-VEGF agents, suggesting that other angiogenic or anti-angiogenic cytokines need to be identified. Much evidence suggests that genetic factors contribute to the phenotypic variability of ROP. Several studies have implicated the involvement of candidate genes from different signaling pathways in the development of ROP. However, a genetic component with a major impact on ROP has not yet been discovered. Most studies have limitations and did not replicate results. Future research involving bioinformatics, genomics, and proteomics may contribute to finding more genes associated with ROP and may allow discovering better solutions in the management and treatment of ROP.
Collapse
|
14
|
Kara Ö, Dereli Can G. Topographic and specular microscopic evaluation of cornea and meibomian gland morphology in children with isolated growth hormone deficiency. Int Ophthalmol 2021; 41:2827-2835. [PMID: 33818674 DOI: 10.1007/s10792-021-01839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate whether the anterior segment topographic measurements, meibomian gland (MG), and non-invasive tear film break-up time (NITFBUT) differ between healthy children and children with isolated growth hormone deficiency (GHD). METHODS A total of 74 eyes of 37 children with GHD and 84 eyes of 42 age- and sex-matched healthy children were included in the study. The spherical equivalence (SE), mean keratometry (Km), corneal thickness, corneal volume (CV), anterior chamber depth (ACD), topographic NITFBUT, qualitative and quantitative MG measurements, corneal endothelial cell density (CD), and proportion of hexagonal cells (HG) were analysed. RESULTS The mean SE level of GHD group was similar between groups (p = 0.017). Back Km values were insignificantly steep in children with GHD (p = 0.004, with Bonferroni correction). Specular microscopy analysis was not different between groups. MG loss of GHD group were higher than control group (p < 0.001). The MG morphology analysis and distortion grade were not different between groups (p > 0.05). CONCLUSIONS Our results showed that the growth hormone (GH) may have an important role on the anterior segment parameters; however, it is not clear that this misregulation leads to a clinical scenario in childhood. Future studies investigating GHD and/or GH therapy on the ocular surface system are required to clearly demonstrate basic mechanism of GH action.
Collapse
Affiliation(s)
- Özlem Kara
- Department of Pediatric Endocrinology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey.
| | - Gamze Dereli Can
- Department of Ophthalmology, Bursa City Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
15
|
Matuszewski W, Baranowska-Jurkun A, Stefanowicz-Rutkowska MM, Gontarz-Nowak K, Gątarska E, Bandurska-Stankiewicz E. The Safety of Pharmacological and Surgical Treatment of Diabetes in Patients with Diabetic Retinopathy-A Review. J Clin Med 2021; 10:705. [PMID: 33670143 PMCID: PMC7916896 DOI: 10.3390/jcm10040705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-infectious pandemic of the modern world; it is estimated that in 2045 it will affect 10% of the world's population. As the prevalence of diabetes increases, the problem of its complications, including diabetic retinopathy (DR), grows. DR is a highly specific neurovascular complication of diabetes that occurs in more than one third of DM patients and accounts for 80% of complete vision loss cases in the diabetic population. We are currently witnessing many groundbreaking studies on new pharmacological and surgical methods of treating diabetes. AIM The aim of the study is to assess the safety of pharmacological and surgical treatment of DM in patients with DR. MATERIAL AND METHODS An analysis of the data on diabetes treatment methods currently available in the world literature and their impact on the occurrence and progression of DR. RESULTS A rapid decrease in glycaemia leads to an increased occurrence and progression of DR. Its greatest risk accompanies insulin therapy and sulfonylurea therapy. The lowest risk of DR occurs with the use of SGLT2 inhibitors; the use of DPP-4 inhibitors and GLP-1 analogues is also safe. Patients undergoing pancreatic islet transplants or bariatric surgeries require intensive monitoring of the state of the eye, both in the perioperative and postoperative period. CONCLUSIONS It is of utmost importance to individualize therapy in diabetic patients, in order to gradually achieve treatment goals with the use of safe methods and minimize the risk of development and progression of DR.
Collapse
Affiliation(s)
- Wojciech Matuszewski
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Angelika Baranowska-Jurkun
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Magdalena Maria Stefanowicz-Rutkowska
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Katarzyna Gontarz-Nowak
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Ewa Gątarska
- Nephrology, Transplantology and Internal Medicine Clinic, Pomeranian Medicine University in Szczecin, 70-204 Szczecin, Poland;
| | - Elżbieta Bandurska-Stankiewicz
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| |
Collapse
|
16
|
Cakir B, Hellström W, Tomita Y, Fu Z, Liegl R, Winberg A, Hansen-Pupp I, Ley D, Hellström A, Löfqvist C, Smith LE. IGF1, serum glucose, and retinopathy of prematurity in extremely preterm infants. JCI Insight 2020; 5:140363. [PMID: 33004691 PMCID: PMC7566718 DOI: 10.1172/jci.insight.140363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperglycemia, insulin insensitivity, and low IGF1 levels in extremely preterm infants are associated with an increased risk of retinopathy of prematurity (ROP), but the interactions are incompletely understood. METHODS In 117 extremely preterm infants, serum glucose levels and parenteral glucose intake were recoded daily in the first postnatal week. Serum IGF1 levels were measured weekly. Mice with oxygen-induced retinopathy alone versus oxygen-induced retinopathy plus streptozotocin-induced hyperglycemia/hypoinsulinemia were assessed for glucose, insulin, IGF1, IGFBP1, and IGFBP3 in blood and liver. Recombinant human IGF1 was injected to assess the effect on glucose and retinopathy. RESULTS The highest mean plasma glucose tertile of infants positively correlated with parenteral glucose intake [r(39) = 0.67, P < 0.0001]. IGF1 plasma levels were lower in the high tertile compared with those in low and intermediate tertiles at day 28 (P = 0.038 and P = 0.03). In high versus lower glucose tertiles, ROP was more prevalent (34 of 39 versus 19 of 39) and more severe (ROP stage 3 or higher; 71% versus 32%). In oxygen-induced retinopathy, hyperglycemia/hypoinsulinemia decreased liver IGF1 expression (P < 0.0001); rh-IGF1 treatment improved normal vascular regrowth (P = 0.027) and reduced neovascularization (P < 0.0001). CONCLUSION In extremely preterm infants, high early postnatal plasma glucose levels and signs of insulin insensitivity were associated with lower IGF1 levels and increased ROP severity. In a hyperglycemia retinopathy mouse model, decreased insulin signaling suppressed liver IGF1 production, lowered serum IGF1 levels, and increased neovascularization. IGF1 supplementation improved retinal revascularization and decreased pathological neovascularization. The data support IGF1 as a potential treatment for prevention of ROP. TRIAL REGISTRATION ClinicalTrials.gov NCT02760472 (Donna Mega). FUNDING This study has been supported by the Swedish Medical Research Council (14940, 4732, 20144-01-3, and 21144-01-3), a Swedish government grant (ALFGB2770), Lund medical faculty grants (ALFL, 11615 and 11601), the Skåne Council Foundation for Research and Development, the Linnéa and Josef Carlsson Foundation, the Knut and Alice Wallenberg Foundation, the NIH/National Eye Institute (EY022275, EY017017, EY017017-13S1, and P01 HD18655), European Commission FP7 project 305485 PREVENT-ROP, Deutsche Forschungsgemeinschaft (CA-1940/1-1), and Stiftelsen De Blindas Vänner. In extremely preterm infants, high early postnatal plasma glucose levels and signs of insulin insensitivity were associated with lower IGF1 levels and increased retinopathy of prematurity severity.
Collapse
Affiliation(s)
- Bertan Cakir
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Winberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Örebro University Hospital, Örebro, Sweden
| | - Ingrid Hansen-Pupp
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University, Lund, Sweden.,Skane University Hospital, Lund, Sweden
| | - David Ley
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University, Lund, Sweden.,Skane University Hospital, Lund, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Abstract
PURPOSE To report optical coherence tomography angiography (OCTA) values in healthy pediatric eyes and to identify factors that may modify these values. METHODS In this prospective observational cross-sectional study, macular OCTA images were acquired from healthy pediatric patients. Main outcome measures were 1) foveal avascular zone (FAZ) area at the level of the superficial retinal capillary plexus (SCP); 2) SCP and deep retinal capillary plexus (DCP) perfusion density (based on the area of vessels); 3) SCP and DCP vessel density (based on a map with vessels of 1-pixel width); and 4) CC perfusion density. Multiple regression analysis was performed to assess the effect of age, sex, ethnicity, refraction, and foveal macular thickness (FMT) on OCTA parameters. RESULTS Seventy-seven eyes from 52 subjects (23 male and 29 female) were included in analysis. Mean age was 11.1 ± 3.3 years (range = 5.0-17.0 years). Twenty-nine (55.8%) subjects were white, 14 (27.0%) Hispanic, 8 (15.4%) Asian, and 1 (1.8%) African-American. Mean refraction was -0.1 ± 2.4 diopters (D) (range = -5.75 to +9.0 D). Mean FMT was 248.6 ± 18.6 μm. Larger FAZ area was significantly associated with older age (P = 0.014). Furthermore, larger FAZ area was associated with reduced FMT (P < 0.0001). Male sex was associated only with increased SCP perfusion density (P = 0.042). Increased CC perfusion density was associated with younger age (P = 0.022). CONCLUSION We report data for pediatric OCTA parameters in healthy subjects. Several variables influence the density of macular microvascular networks, and these factors should be considered in the OCTA study of pediatric eye disorders.
Collapse
|
18
|
Saboory E, Gholizadeh-Ghaleh Aziz S, Samadi M, Biabanghard A, Chodari L. Exercise and insulin-like growth factor 1 supplementation improve angiogenesis and angiogenic cytokines in a rat model of diabetes-induced neuropathy. Exp Physiol 2020; 105:783-792. [PMID: 32053260 DOI: 10.1113/ep088069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do changes in levels of angiogenesis-related mediators [vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1) and nuclear factor-κB (NF-κB)] in the sciatic nerve mediate diabetic neuropathy in the streptozotocin-induced type 1 diabetic male rat? Can exercise and insulin-like growth factor 1 (IGF-I) treatment improve the diabetes-related decrease in angiogenesis in sciatic nerve in these animals? What is the main finding and its importance? Levels of VEGF-A, TSP-1 and NF-κB change in the sciatic nerve of diabetic rats and might mediate diabetic neuropathy. Treatment with IGF-I and exercise could increase angiogenesis in the diabetic rats by increasing VEGF-A and decreasing TSP-1 and NF-κB expression in the sciatic nerve. ABSTRACT Diabetic neuropathy is a severe complication of diabetes that affects 40-50% of diabetic people in the world. The aim of this study was to characterize alterations in angiogenesis and related molecular mediators in the sciatic nerve in diabetic conditions alone or in diabetes in combination with exercise and/or administration of insulin-like growth factor 1 (IGF-I). Forty male Wistar rats were assigned into one of five groups, namely control, diabetes, diabetes + exercise, diabetes + IGF-I and diabetes + exercise + IGF-I. Type 1 diabetes was induced by i.p. injection of streptozotocin (60 mg kg-1 ). After 30 days of treatment with exercise or IGF-I alone or in combination, diabetic neuropathy was evaluated with a hotplate, glycated haemoglobin was measured, angiogenesis was determined by immunostaining for PECAM-1/CD31, and expressions of vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1) and nuclear factor-κB (NF-κB) were determined by enzyme-linked immunosorbent assay.After 4 weeks, the diabetes group showed a significant decrease in capillary density and VEGF-A levels, but a significant increase in glycated haemoglobin in blood, TSP-1 and NF-κB levels in the sciatic nerve compared with the control group, and these effects were ameliorated by exercise and IGF-I. However, simultaneous treatment of diabetic rats with IGF-I and exercise did not have any synergistic effects. These findings indicate that diabetes-induced neuropathy may be associated, in part, with decreased angiogenesis mediated by overproduction of TSP-1 and NF-κB, in addition to reduced production of VEGF-A. The findings also showed that exercise and IGF-I can reduce neuropathy, followed by increased angiogenesis, by changes in TSP-1, NF-κB and VEGF-A production levels.
Collapse
Affiliation(s)
- Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Urmia, Zanjan, Iran
| | | | - Mahrokh Samadi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abdolrahman Biabanghard
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
19
|
IGF-binding proteins 3 and 4 are regulators of sprouting angiogenesis. Mol Biol Rep 2020; 47:2561-2572. [PMID: 32133604 DOI: 10.1007/s11033-020-05339-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We have previously identified insulin-like growth factor 2 (IGF2) and insulin-like growth factor 1 receptor (IGF1R) as essential proteins for tip cell maintenance and sprouting angiogenesis. In this study, we aim to identify other IGF family members involved in endothelial sprouting angiogenesis. METHODS Effects on sprouting were analyzed in human umbilical vein endothelial cells (HUVECs) using the spheroid-based sprouting model, and were quantified as mean number of sprouts per spheroid and average sprout length. RNA silencing technology was used to knockdown gene expression. Recombinant forms of the ligands (IGF1 and IGF2, insulin) and the IGF-binding proteins (IGFBP) 3 and 4 were used to induce excess effects. Effects on the tip cell phenotype were analyzed by measuring the fraction of CD34+ tip cells using flow cytometry and immunohistochemistry in a 3D angiogenesis model. Experiments were performed in the presence and absence of serum. RESULTS Knockdown of IGF2 inhibited sprouting in HUVECs, in particular when cultured in the absence of serum, suggesting that components in serum influence the signaling of IGF2 in angiogenesis in vitro. We then determined the effects of IGFBP3 and IGFBP4, which are both present in serum, on IGF2-IGF1R signaling in sprouting angiogenesis in the absence of serum: knockdown of IGFBP3 significantly reduced sprouting angiogenesis, whereas knockdown of IGFBP4 resulted in increased sprouting angiogenesis in both flow cytometry analysis and immunohistochemical analysis of the 3D angiogenesis model. Other IGF family members except INSR did not affect IGF2-IGF1R signaling. CONCLUSIONS Serum components and IGF binding proteins regulate IGF2 effects on sprouting angiogenesis. Whereas IGFBP3 acts as co-factor for IGF2-IGF1R binding, IGFBP4 inhibits IGF2 signaling.
Collapse
|
20
|
Wu RK, Liang JH, Zhong H, Li J, Pan CW. The Lack of Association of Breastfeeding and Myopia in Children and Adolescents: Finding from a School-Based Study and a Meta-Analysis of the Literature. Breastfeed Med 2019; 14:580-586. [PMID: 31268364 DOI: 10.1089/bfm.2019.0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: We aimed to assess the relationship between breastfeeding and myopia in a school-based study in rural China. In addition, we performed a systematic review and meta-analysis to confirm the association from available observational studies. Materials and Methods: The school-based study of 2,346 grade 7 students (mean age: 13.8 years) was conducted in southwestern part of China. Myopia was defined as spherical equivalent of less than -0.50 diopter and information regarding breastfeeding was ascertained through a questionnaire. We also performed the literature search in three databases (PubMed, EMBASE, and Cochrane Central Register of Controlled Trials) and reference lists of retrieved studies. Effect estimates were pooled using random-effects models. Results: In our school-based study, the association between breastfeeding and myopia was marginally nonsignificant after adjusting for potential confounders, including gender, body mass index, parental myopia, time for reading and writing after school, and time outdoors (odds ratio = 0.75, 95% confidence interval: 0.55-1.04, p = 0.09). In the meta-analysis of eight studies, no significant association was observed. Conclusion: Current evidence did not support that breastfeeding could reduce the risk of myopia in children and adolescents.
Collapse
Affiliation(s)
- Rong-Kun Wu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jing-Hong Liang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hua Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Li
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Tsang JKW, Liu J, Lo ACY. Vascular and Neuronal Protection in the Developing Retina: Potential Therapeutic Targets for Retinopathy of Prematurity. Int J Mol Sci 2019; 20:E4321. [PMID: 31484463 PMCID: PMC6747312 DOI: 10.3390/ijms20174321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common retinal disease in preterm babies. To prolong the lives of preterm babies, high oxygen is provided to mimic the oxygen level in the intrauterine environment for postnatal organ development. However, hyperoxia-hypoxia induced pathological events occur when babies return to room air, leading to ROP with neuronal degeneration and vascular abnormality that affects retinal functions. With advances in neonatal intensive care, it is no longer uncommon for increased survival of very-low-birth-weight preterm infants, which, therefore, increased the incidence of ROP. ROP is now a major cause of preventable childhood blindness worldwide. Current proven treatment for ROP is limited to invasive retinal ablation, inherently destructive to the retina. The lack of pharmacological treatment for ROP creates a great need for effective and safe therapies in these developing infants. Therefore, it is essential to identify potential therapeutic agents that may have positive ROP outcomes, especially in preserving retinal functions. This review gives an overview of various agents in their efficacy in reducing retinal damages in cell culture tests, animal experiments and clinical studies. New perspectives along the neuroprotective pathways in the developing retina are also reviewed.
Collapse
Affiliation(s)
- Jessica K W Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Abstract
The retina is one of the most metabolically active tissues in the body, consuming high levels of oxygen and nutrients. A well-organized ocular vascular system adapts to meet the metabolic requirements of the retina to ensure visual function. Pathological conditions affect growth of the blood vessels in the eye. Understanding the neuronal biological processes that govern retinal vascular development is of interest for translational researchers and clinicians to develop preventive and interventional therapeutics for vascular eye diseases that address early drivers of abnormal vascular growth. This review summarizes the current knowledge of the cellular and molecular processes governing both physiological and pathological retinal vascular development, which is dependent on the interaction among retinal cell populations, including neurons, glia, immune cells, and vascular endothelial cells. We also review animal models currently used for studying retinal vascular development.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| |
Collapse
|
23
|
Petricli İS, Kara C, Işık DU, Demirel N, Baş AY. Effect of birth weight on retinopathy of prematurity in discordant twin pairs. Indian J Ophthalmol 2019; 67:806-810. [PMID: 31124491 PMCID: PMC6552611 DOI: 10.4103/ijo.ijo_1197_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose: Since twin pairs with discordance have equal gestational age (GA), discordant twins may constitute an appropriate group to investigate the specific effect that birth weight (BW) has on the development of retinopathy of prematurity (ROP). The present study aims to investigate the effect of BW on any and severe stages of ROP development in twin pairs. Methods: Fifty-two discordant twin pairs (104 preterms) born ≤32 gestational weeks, who were diagnosed with a minimum of 18% discordance between their BWs, were retrospectively analyzed. Twin pairs were separated into two groups based on the BW of each pair. The rate of any stage of ROP, Type 1 ROP, and perinatal risk factors were compared statistically among twin pairs. Results: The rate of any stage of ROP and Type 1 ROP was 24.0% and 4.8% in the whole group, respectively. A statistically significant difference was shown between lower and higher BW groups at any stage of ROP development (34.6% vs. 13.4%, P = 0.02). However, no difference was observed in Type 1 ROP development (7.7% vs. 1.9%, P = 0.17). No significant differences were found between twin pairs regarding neonatal morbidities. The number of small GA (SGA) infants in the smaller twin group was statistically higher than larger group and regression analysis showed that being SGA had significant correlation with any stage of ROP (odds ratio: 4.98, P = 0.02). Conclusion: This study showed that BW serves an effective role at any stage of ROP development in discordant twin pairs; however, no significant difference in terms of Type 1 ROP.
Collapse
Affiliation(s)
- İkbal Seza Petricli
- Department of Ophthalmology, Etlik Zübeyde Hanım Women's Health Education and Research Hospital, Ankara, Turkey
| | - Caner Kara
- Department of Ophthalmology, Etlik Zübeyde Hanım Women's Health Education and Research Hospital, Ankara, Turkey
| | - Dilek Ulubaş Işık
- Department of Neonatology, Etlik Zübeyde Hanım Women's Health Education and Research Hospital, Ankara, Turkey
| | - Nihal Demirel
- Department of Neonatology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Yağmur Baş
- Department of Neonatology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
24
|
The Effect of Serum Igf-1,Igfbp-3 And Erythrocyte Transfusıons on Development of Mıld Retınopathy of Prematurıty. JOURNAL OF CONTEMPORARY MEDICINE 2019. [DOI: 10.16899/gopctd.535602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Xi G, Wai C, Clemmons D. Inhibition of Aberrant IGF-I Signaling in Diabetic Male Rat Retina Prevents and Reverses Changes of Diabetic Retinopathy. J Diabetes Res 2019; 2019:6456032. [PMID: 31049357 PMCID: PMC6458945 DOI: 10.1155/2019/6456032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia results in inhibition of cleavage of integrin-associated protein (IAP) thereby allowing it to bind to SHPS-1 which results in pathophysiologic changes in endothelial function. This study determined if an anti-rat IAP antibody directed against the SHPS-1 binding site which disrupts IAP/SHPS-1 association could inhibit these pathophysiologic changes. The anti-IAP antibody inhibited IGF-I-stimulated SHPS-1, p52Shc, MAP kinase phosphorylation, and proliferation in endothelial cells. To determine if it could reverse established pathophysiologic changes in vivo, this antibody or normal rat IgG F(ab)2 was injected intraperitoneally for 6 weeks into rats that had diabetes for 4 weeks. Optical coherence tomography (OCT) showed that retinal thickness increased at 4 weeks and this increase was maintained in rats treated with the control antibody for an additional 6 weeks. The increase was reversed by anti-IAP antibody treatment (84.6 ± 2.0 compared to 92.3 ± 2.5 μm, p < 0.01). This value was similar to nondiabetic animals (82.2 ± 1.6 μm, p, NS). The anti-IAP antibody also decreased retinal vascular permeability (0.62 ± 0.12 vs. 0.96 ± 0.25%/g/h, p < 0.001). To determine if it was effective after local injection, this antibody or control was administered via intravitreal injection. After 3 weeks, retinal thickness increased to 6.4 ± 2.8% in diabetic rats, and IAP antibody treatment prevented this increase (0.8 ± 2.5%, p < 0.01). It also prevented the increase of retinal vascular permeability (0.92 ± 0.62 vs. 1.63 ± 0.99%/g/h, p < 0.001). Biochemical analyses of retinal extracts showed that the anti-IAP antibody inhibited IAP/SHPS-1 association and SHPS-1 phosphorylation. This resulted in inhibition of AKT activation and VEGF synthesis in the retina: changes associated with increased vascular permeability. We conclude the anti-rat IAP antibody disrupts IAP/SHPS-1 association and attenuates aberrant IGF-I signaling thereby preventing or reversing the progression of retinal pathophysiological changes.
Collapse
Affiliation(s)
- Gang Xi
- Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Christine Wai
- Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - David Clemmons
- Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| |
Collapse
|
26
|
Koç E, Baş AY, Özdek Ş, Ovalı F, Başmak H. Turkish Neonatal and Turkish Ophthalmology Societies consensus guideline on the retinopathy of prematurity. TURK PEDIATRI ARSIVI 2018; 53:S151-S160. [PMID: 31236028 PMCID: PMC6568303 DOI: 10.5152/turkpediatriars.2018.01815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Retinopathy of prematurity is a pathophysiological condition that occurs in relation to abnormal proliferation in the retinal vessels in premature babies. Its exact pathogenesis is not known. In Turkey, the increased chance of survival in premature babies with much younger gestational age and much lower birth weight in parallel with the developments in neonatal care causes retinopathy of prematurity, which has led to vision problems and blindness to emerge as a more frequent problem. Early diagnosis and timely and appropriate treatment of retinopathy of prematurity contributes to the developmental process and increases the quality of life by preventing vision loss. It should be kept in mind that retinopathy of prematurity may also lead to serious medicolegal problems.
Collapse
Affiliation(s)
- Esin Koç
- Division of Neonatology, Department of Pediatrics, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Ahmet Yağmur Baş
- Division of Neonatology, Department of Pediatrics, Yıldırım Beyazit University, Faculty of Medicine, Ankara, Turkey
| | - Şengül Özdek
- Department of Ophthalmology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Fahri Ovalı
- Division of Neonatology, Department of Pediatrics, Medeniyet University, Faculty of Medicine, İstanbul, Turkey
| | - Hikmet Başmak
- Department of Ophthalmology, Osmangazi University, Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
27
|
Arroba AI, Campos-Caro A, Aguilar-Diosdado M, Valverde ÁM. IGF-1, Inflammation and Retinal Degeneration: A Close Network. Front Aging Neurosci 2018; 10:203. [PMID: 30026694 PMCID: PMC6041402 DOI: 10.3389/fnagi.2018.00203] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Retinal degenerative diseases are a group of heterogeneous diseases that include age-related macular degeneration (AMD), retinitis pigmentosa (RP), and diabetic retinopathy (DR). The progressive degeneration of the retinal neurons results in a severe deterioration of the visual function. Neuroinflammation is an early hallmark of many neurodegenerative disorders of the retina including AMD, RP and DR. Microglial cells, key components of the retinal immune defense system, are activated in retinal degenerative diseases. In the microglia the interplay between the proinflammatory/classically activated or antiinflammatory/alternatively activated phenotypes is a complex dynamic process that occurs during the course of disease due to the different environmental signals related to pathophysiological conditions. In this regard, an adequate transition from the proinflammatory to the anti-inflammatory response is necessary to counteract retinal neurodegeneration and its subsequent damage that leads to the loss of visual function. Insulin like-growth factor-1 (IGF-1) has been considered as a pleiotropic factor in the retina under health or disease conditions and several effects of IGF-1 in retinal immune modulation have been described. In this review, we provide recent insights of inflammation as a common feature of retinal diseases (AMD, RP and RD) highlighting the role of microglia, exosomes and IGF-1 in this process.
Collapse
Affiliation(s)
- Ana I Arroba
- Alberto Sols Biomedical Research Institute (IIBm) (CSIC/UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERdem), ISCIII, Madrid, Spain.,Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain
| | - Antonio Campos-Caro
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain.,Department of Endocrinology and Metabolism, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain
| | - Ángela M Valverde
- Alberto Sols Biomedical Research Institute (IIBm) (CSIC/UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERdem), ISCIII, Madrid, Spain
| |
Collapse
|
28
|
Dallinga MG, Yetkin-Arik B, Kayser RP, Vogels IMC, Nowak-Sliwinska P, Griffioen AW, van Noorden CJF, Klaassen I, Schlingemann RO. IGF2 and IGF1R identified as novel tip cell genes in primary microvascular endothelial cell monolayers. Angiogenesis 2018; 21:823-836. [PMID: 29951828 PMCID: PMC6208896 DOI: 10.1007/s10456-018-9627-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Tip cells, the leading cells of angiogenic sprouts, were identified in cultures of human umbilical vein endothelial cells (HUVECs) by using CD34 as a marker. Here, we show that tip cells are also present in primary human microvascular endothelial cells (hMVECs), a more relevant endothelial cell type for angiogenesis. By means of flow cytometry, immunocytochemistry, and qPCR, it is shown that endothelial cell cultures contain a dynamic population of CD34+ cells with many hallmarks of tip cells, including filopodia-like extensions, elevated mRNA levels of known tip cell genes, and responsiveness to stimulation with VEGF and inhibition by DLL4. Furthermore, we demonstrate that our in vitro tip cell model can be exploited to investigate cellular and molecular mechanisms in tip cells and to discover novel targets for anti-angiogenesis therapy in patients. Small interfering RNA (siRNA) was used to knockdown gene expression of the known tip cell genes angiopoietin 2 (ANGPT2) and tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1), which resulted in similar effects on tip cells and sprouting as compared to inhibition of tip cells in vivo. Finally, we identified two novel tip cell-specific genes in CD34+ tip cells in vitro: insulin-like growth factor 2 (IGF2) and IGF-1-receptor (IGF1R). Knockdown of these genes resulted in a significant decrease in the fraction of tip cells and in the extent of sprouting in vitro and in vivo. In conclusion, this study shows that by using our in vitro tip cell model, two novel essential tip cells genes are identified.
Collapse
Affiliation(s)
- Marchien G Dallinga
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Richelle P Kayser
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Ilse M C Vogels
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands.
- Ocular Angiogenesis Group, Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Meibergdreef 15, Room L3-154, 1105 AZ, Amsterdam, The Netherlands.
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
29
|
Oxygen-Induced Retinopathy from Recurrent Intermittent Hypoxia Is Not Dependent on Resolution with Room Air or Oxygen, in Neonatal Rats. Int J Mol Sci 2018; 19:ijms19051337. [PMID: 29724000 PMCID: PMC5983662 DOI: 10.3390/ijms19051337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Preterm infants often experience intermittent hypoxia (IH) with resolution in room air (RA) or hyperoxia (Hx) between events. Hypoxia is a major inducer of vascular endothelial growth factor, which plays a key role in normal and aberrant retinal angiogenesis. This study tested the hypothesis that neonatal IH which resolved with RA is less injurious to the immature retina than IH resolved by Hx between events. Newborn rats were exposed to: (1) Hx (50% O2) with brief hypoxia (12% O2); (2) RA with 12% O2; (3) Hx with RA; (4) Hx only; or (5) RA only, from P0 to P14. Pups were examined at P14 or placed in RA until P21. Retinal vascular and astrocyte integrity; retinal layer thickness; ocular and systemic biomarkers of angiogenesis; and somatic growth were determined at P14 and P21. All IH paradigms resulted in significant retinal vascular defects, disturbances in retinal astrocyte template, retinal thickening, and photoreceptor damage concurrent with elevations in angiogenesis biomarkers. These data suggest that the susceptibility of the immature retina to changes in oxygen render no differences in the outcomes between RA or O2 resolution. Interventions and initiatives to curtail O2 variations should remain a high priority to prevent severe retinopathy.
Collapse
|
30
|
Shulman JP, Hartnett ME. Pharmacotherapy and ROP: Going Back to the Basics. Asia Pac J Ophthalmol (Phila) 2018; 7:130-135. [PMID: 29701429 DOI: 10.22608/apo.201853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of blindness in preterm infants around the world. Through the development of animal models and clinical trials our understanding of the pathophysiology of this disease and approach to therapy has evolved significantly since ROP was first described in the 1940s in the United States. The mainstay of treatment in ROP remains ablative laser therapy to the avascular retina but pharmacologic agents are being more and more commonly used with new targets for pharmacotherapy emerging. This paper summarizes our current understanding of the pathophysiology of ROP based on the data gleaned from animal models and discusses current approaches to pharmacotherapy.
Collapse
|
31
|
Caicedo D, Devesa P, Arce VM, Requena J, Devesa J. Chronic limb-threatening ischemia could benefit from growth hormone therapy for wound healing and limb salvage. Ther Adv Cardiovasc Dis 2018; 12:53-72. [PMID: 29271292 PMCID: PMC5772430 DOI: 10.1177/1753944717745494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023] Open
Abstract
Revascularization for chronic limb-threatening ischemia (CLTI) is necessary to alleviate symptoms and wound healing. When it fails or is not possible, there are few alternatives to avoid limb amputation in these patients. Although experimental studies with stem cells and growth factors have shown promise, clinical trials have demonstrated inconsistent results because CLTI patients generally need arteriogenesis rather than angiogenesis. Moreover, in addition to the perfusion of the limb, there is the need to improve the neuropathic response for wound healing, especially in diabetic patients. Growth hormone (GH) is a pleiotropic hormone capable of boosting the aforementioned processes and adds special benefits for the redox balance. This hormone has the potential to mitigate symptoms in ischemic patients with no other options and improves the cardiovascular complications associated with the disease. Here, we discuss the pros and cons of using GH in such patients, focus on its effects on peripheral arteries, and analyze the possible benefits of treating CLTI with this hormone.
Collapse
Affiliation(s)
- Diego Caicedo
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Pablo Devesa
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Víctor M. Arce
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Julia Requena
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Jesús Devesa
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| |
Collapse
|
32
|
Holm M, Morken TS, Fichorova RN, VanderVeen DK, Allred EN, Dammann O, Leviton A. Systemic Inflammation-Associated Proteins and Retinopathy of Prematurity in Infants Born Before the 28th Week of Gestation. Invest Ophthalmol Vis Sci 2017; 58:6419-6428. [PMID: 29260199 PMCID: PMC5736326 DOI: 10.1167/iovs.17-21931] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To assess the association between systemic levels of inflammation-associated proteins and severe retinopathy of prematurity (ROP) in extremely preterm infants. Methods We collected whole blood on filter paper on postnatal days 1, 7, 14, 21, and 28 from 1205 infants born before the 28th week of gestation, and measured the concentrations of 27 inflammation-associated, angiogenic, and neurotrophic proteins. We calculated odds ratios with 95% confidence intervals for the association between top quartile concentrations of each protein and prethreshold ROP. Results During the first three weeks after birth, high concentrations of VEGF-R1, myeloperoxidase (MPO), IL-8, intercellular adhesion molecule (ICAM)-1, matrix metalloproteinase 9, erythropoietin, TNF-α, and basic fibroblast growth factor were associated with an increased risk for prethreshold ROP. On day 28, high levels of serum amyloid A, MPO, IL-6, TNF-α, TNF-R1/-R2, IL-8, and ICAM-1 were associated with an increased risk. Top quartile concentrations of the proinflammatory cytokines TNF-α and IL-6 were associated with increased risks of ROP when levels of neuroprotective proteins and growth factors, including BDNF, insulin-like growth factor 1, IGFBP-1, VEGFR-1 and -2, ANG-1 and PlGF, were not in the top quartile. In contrast, high concentrations of NT-4 and BDNF appeared protective only in infants without elevated inflammatory mediators. Conclusions Systemic inflammation during the first postnatal month was associated with an increased risk of prethreshold ROP. Elevated concentrations of growth factors, angiogenic proteins, and neurotrophins appeared to modulate this risk, and were capable of reducing the risk even in the absence of systemic inflammation.
Collapse
Affiliation(s)
- Mari Holm
- Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora S Morken
- Department of Neuromedicine and Movement Science (INB), Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Ophthalmology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Deborah K VanderVeen
- Department of Ophthalmology, Children's Hospital Boston, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Elizabeth N Allred
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States.,Perinatal Epidemiology Unit, Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Alan Leviton
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | | |
Collapse
|
33
|
Protective effects of agonists of growth hormone-releasing hormone (GHRH) in early experimental diabetic retinopathy. Proc Natl Acad Sci U S A 2017; 114:13248-13253. [PMID: 29180438 PMCID: PMC5740669 DOI: 10.1073/pnas.1718592114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The studies described here are relevant to the cure of diabetic retinopathy, a leading cause of blindness with currently limited therapeutic options. Here we provided evidence showing that agonists of growth hormone-releasing hormone (GHRH) can significantly diminish retinal neurovascular injury characterizing the early stages of diabetic retinopathy through antioxidant and anti-inflammatory effects. The results of the presented studies provide information on the potential therapeutic effects of GHRH agonists and shed light on the role of hypothalamic hormones in retinal physiology and their effect on visual disorders. In addition, our findings suggest protective effects of GHRH analogs in other disease conditions affecting retinal neuronal cells and, possibly, other nonretinal neurons. The potential therapeutic effects of agonistic analogs of growth hormone-releasing hormone (GHRH) and their mechanism of action were investigated in diabetic retinopathy (DR). Streptozotocin-induced diabetic rats (STZ-rats) were treated with 15 μg/kg GHRH agonist, MR-409, or GHRH antagonist, MIA-602. At the end of treatment, morphological and biochemical analyses assessed the effects of these compounds on retinal neurovascular injury induced by hyperglycemia. The expression levels of GHRH and its receptor (GHRH-R) measured by qPCR and Western blotting were significantly down-regulated in retinas of STZ-rats and in human diabetic retinas (postmortem) compared with their respective controls. Treatment of STZ-rats with the GHRH agonist, MR-409, prevented retinal morphological alteration induced by hyperglycemia, particularly preserving survival of retinal ganglion cells. The reverse, using the GHRH antagonist, MIA-602, resulted in worsening of retinal morphology and a significant alteration of the outer retinal layer. Explaining these results, we have found that MR-409 exerted antioxidant and anti-inflammatory effects in retinas of the treated rats, as shown by up-regulation of NRF-2-dependent gene expression and down-regulation of proinflammatory cytokines and adhesion molecules. MR-409 also significantly down-regulated the expression of vascular endothelial growth factor while increasing that of pigment epithelium-derived factor in diabetic retinas. These effects correlated with decreased vascular permeability. In summary, our findings suggest a neurovascular protective effect of GHRH analogs during the early stage of diabetic retinopathy through their antioxidant and anti-inflammatory properties.
Collapse
|
34
|
Choroidal thickness measurements in children with isolated growth hormone deficiency. Eye (Lond) 2017; 32:364-369. [PMID: 28912516 DOI: 10.1038/eye.2017.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
PurposeThe aim of this study was to determine the choroidal thickness measurement values in cases with isolated growth hormone deficiency (IGHD), to compare them with the healthy control group by using enhanced depth imaging optical coherence tomography (EDI-OCT), and to evaluate the effect of growth hormone (GH) treatment on choroid.Patients and methodsIn this study, 23 cases who were diagnosed with IGHD as a study group and 46 healthy subjects as a control group were included. All patients and controls underwent a complete ophthalmologic examination, including an examination with EDI-OCT. Choroidal thickness (CT) was measured at the fovea and at 1000 μm intervals from the foveal center in both temporal and nasal directions.ResultsThe mean subfoveal choroidal thickness (SFCT) was 329.04±88.49 μm in the cases with IGHD and 365.35±50.48 μm in the control group (P=0.033). The mean CT at temporal 1 and 2 mm were thinner in the IGHD group than that of control group (P=0.033 and P=0.043, respectively). Nasal quadrant measurements were also found to be thinner in the IGHD cases than that of control group, but the difference was not statistically significant. We found a significant positive correlation between pubertal staging and SFCT (rs=0.607, P=0.006). There was no statistically significant difference in CT values of the study group between before and 12 months after GH treatment (P>0.05).ConclusionThis study shows patients with IGHD has a thinner CT when compared with healthy pediatric cases. GH treatment seems to be not associated with the choroidal development.
Collapse
|
35
|
Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies. J Neuroinflammation 2017; 14:165. [PMID: 28830469 PMCID: PMC5567917 DOI: 10.1186/s12974-017-0943-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Retinopathy of prematurity (ROP) is an important cause of childhood blindness globally, and the incidence is rising. The disease is characterized by initial arrested retinal vascularization followed by neovascularization and ensuing retinal detachment causing permanent visual loss. Although neovascularization can be effectively treated via retinal laser ablation, it is unknown which children are at risk of entering this vision-threatening phase of the disease. Laser ablation may itself induce visual field deficits, and there is therefore a need to identify targets for novel and less destructive treatments of ROP. Inflammation is considered a key contributor to the pathogenesis of ROP. A large proportion of preterm infants with ROP will have residual visual loss linked to loss of photoreceptor (PR) and the integrity of the retinal pigment epithelium (RPE) in the macular region. Recent studies using animal models of ROP suggest that choroidal degeneration may be associated with a loss of integrity of the outer retina, a phenomenon so far largely undescribed in ROP pathogenesis. In this review, we highlight inflammatory and neuron-derived factors related to ROP progression, as well, potential targets for new treatment strategies. We also introduce choroidal degeneration as a significant cause of residual visual loss following ROP. We propose that ROP should no longer be considered an inner retinal vasculopathy only, but also a disease of choroidal degeneration affecting both retinal pigment epithelium and photoreceptor integrity.
Collapse
|
36
|
Shim SY, Cho SJ, Kong KA, Park EA. Gestational age-specific sex difference in mortality and morbidities of preterm infants: A nationwide study. Sci Rep 2017; 7:6161. [PMID: 28733681 PMCID: PMC5522396 DOI: 10.1038/s41598-017-06490-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/14/2017] [Indexed: 01/13/2023] Open
Abstract
This study aims to determine whether male sex has adverse effect on mortality and morbidities in very low birth weight infants (VLBWI) <30 weeks of gestation and to ascertain this sex effect, stratified by gestational age, adjusting for perinatal risk factors. This is a population-based study from Korean Neonatal Network for VLBWI born at 23+0 and 29+6 weeks of gestation between January 2013 and December 2014. The primary outcome was gestation-specific sex difference in the occurrence of mortality, combined morbidities, and individual morbidity. A total of 2228 VLBWI were enrolled (males, 51.7%). Mortality was not different between sexes. The risk of bronchopulmonary dysplasia and combined morbidities was significantly higher in males ≤25 weeks of gestation (odds ratio [OR] 2.08, 95% confidence interval [CI] 1.35-3.20 and OR 2.00, CI 1.19-3.39, respectively). Males had a significantly higher incidence of periventricular leukomalacia at 23 and 29 weeks of gestation. The risk of severe retinopathy of prematurity was higher in females >25 weeks of gestation. Although both sexes have similar risk for mortality, male sex remains an independent risk for major morbidities, especially at ≤25 weeks of gestation. The risk of each outcome for males has a specific pattern with increasing gestational age.
Collapse
Affiliation(s)
- So-Yeon Shim
- Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Su Jin Cho
- Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyoung Ae Kong
- Department of Preventive Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun Ae Park
- Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
37
|
Faro ACN, Pereira-Gurgel VM, Salvatori R, Campos VC, Melo GB, Oliveira FT, Oliveira-Santos AA, Oliveira CRP, Pereira FA, Hellström A, Oliveira-Neto LA, Valença EHO, Aguiar-Oliveira MH. Ocular findings in adult subjects with an inactivating mutation in GH releasing hormone receptor gene. Growth Horm IGF Res 2017; 34:8-12. [PMID: 28456063 DOI: 10.1016/j.ghir.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/28/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Ocular function is fundamental for environmental adaptation and survival capacity. Growth factors are necessary for a mature eyeball, needed for adequate vision. However, the consequences of the deficiency of circulating growth hormone (GH) and its effector insulin-like growth factor I (IGF-I) on the physical aspects of the human eye are still debated. A model of untreated isolated GH deficiency (IGHD), with low but measurable serum GH, may clarify this issue. The aim of this study was to assess the ocular aspects of adult IGHD individuals who have never received GH therapy. DESIGN Cross sectional study. METHODS Setting: University Hospital, Federal University of Sergipe, Brazil. PATIENTS Twenty-five adult (13 males, mean age 50.1years, range 26 to 70years old) IGHD subjects homozygous for a null mutation (c.57+1G>A) in the GHRH receptor gene, and 28 (15 males, mean age 51.1years, range 26 to 67years old) controls were submitted to an endocrine and ophthalmological assessment. Forty-six IGHD and 50 control eyes were studied. MAIN OUTCOME MEASURES Visual acuity, intraocular pressure, refraction (spherical equivalent), ocular axial length (AL), anterior chamber depth (ACD), lens thickness (LT), vitreous depth (VD), mean corneal curvature (CC) and central corneal thickness (CCT). RESULTS IGHD subjects exhibited unmeasurable serum IGF-I levels, similar visual acuity, intraocular pressure and LT, higher values of spherical equivalent and CC, and lower measures of AL, ACD, VD and CCT in comparison to controls, but within their respective normal ranges. While mean stature in IGHD group was 78% of the control group, mean head circumference was 92% and axial AL was 96%. CONCLUSIONS These observations suggest mild ocular effects in adult subjects with severe IGF-I deficiency due to non-treated IGHD.
Collapse
Affiliation(s)
- Augusto C N Faro
- Division of Ophthalmology, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Viviane C Campos
- Division of Endocrinology, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | - Carla R P Oliveira
- Division of Endocrinology, Federal University of Sergipe, Aracaju, SE, Brazil
| | - Francisco A Pereira
- Division of Endocrinology, Federal University of Sergipe, Aracaju, SE, Brazil
| | - Ann Hellström
- Sahlgrenska Academy, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | | | - Eugenia H O Valença
- Division of Speech Therapy, Federal University of Sergipe, Aracaju, SE, Brazil
| | | |
Collapse
|
38
|
Hartnett ME. Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol 2017; 62:257-276. [PMID: 28012875 PMCID: PMC5401801 DOI: 10.1016/j.survophthal.2016.12.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
The understanding, diagnosis, and treatment of retinopathy of prematurity have changed in the 70 years since the original description of retrolental fibroplasia associated with high oxygenation. It is now recognized that retinopathy of prematurity differs in appearance worldwide and as ever smaller and younger premature infants survive. New methods are being evaluated to image the retina, diagnose severe retinopathy of prematurity, and determine windows of time for treatment to save eyes and improve visual and neural outcomes. New treatments to promote physiologic retinal vascular development, vascular repair, and inhibit vasoproliferation by regulating proteins involved in vascular endothelial growth factor, insulin-like growth factor, or erythropoietin signaling. Reducing excessive oxidative/nitrosative stress and understanding progenitor cells and neurovascular and glial vascular interactions are being studied.
Collapse
Affiliation(s)
- Mary Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
39
|
IGF-1R Regulates the Extracellular Level of Active MMP-2, Pathological Neovascularization, and Functionality in Retinas of OIR Mouse Model. Mol Neurobiol 2017; 55:1123-1135. [PMID: 28097474 DOI: 10.1007/s12035-017-0386-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
In ischemic proliferative diseases such as retinopathies, persistent hypoxia leads to the release of numerous neovascular factors that participate in the formation of abnormal vessels and eventually cause blindness. The upregulation and activation of metalloproteinases (MMP-2 and MMP-9) represent a final common pathway in this process. Although many regulators of the neovascular process have been identified, the complete role of the insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) appears to be significantly more complex. In this study, we used an oxygen-induced retinopathy (OIR) mouse model as well as an in vitro model of hypoxia to study the role of MMP-2 derived from Müller glial cells (MGCs) and its relation with the IGF-1/IGF-1R system. We demonstrated that MMP-2 protein expression increased in P17 OIR mice, which coincided with the active phase of the neovascular process. Also, glutamine synthetase (GS)-positive cells were also positive for MMP-2, whereas IGF-1R was expressed by GFAP-positive cells, indicating that both proteins were expressed in MGCs. In addition, in the OIR model a single intravitreal injection of the IGF-1R blocking antibody (αIR3) administered at P12 effectively prevented pathologic neovascularization, accelerated physiological revascularization, and improved retinal functionality at P17. Finally, in MGC supernatants, the blocking antibody abolished the IGF-1 effect on active MMP-2 under normoxic and hypoxic conditions without affecting the extracellular levels of pro-MMP-2. These results demonstrate, for the first time, that the IGF-1/IGF-1R system regulates active MMP-2 levels in MGCs, thus contributing to MEC remodeling during the retinal neovascular process.
Collapse
|
40
|
The Relationship between Hyperglycemia and Retinopathy of Prematurity in Very Low Birth Weight Infants. ACTA ACUST UNITED AC 2017. [DOI: 10.14734/pn.2017.28.4.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Stahl A, Göpel W. Screening and Treatment in Retinopathy of Prematurity. DEUTSCHES ARZTEBLATT INTERNATIONAL 2016; 112:730-5. [PMID: 26568177 DOI: 10.3238/arztebl.2015.0730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND More than 11 000 children are examined for possible retinopathy of prematurity in Germany each year, and 2-5% of them are treated for it. Even though screening and treatment programs are in place, the affected children can still suffer visual impairment. METHODS In this article, we summarize the pathogenesis, screening, and treatment of retinopathy of prematurity on the basis of a selective review of pertinent literature, retrieved by a PubMed search. The article centers on publications from 2011 to 2015 on the new option of treatment with VEGF inhibitors and discusses it in comparison to laser therapy. RESULTS All premature neonates with a low gestational age at birth, low birth weight, or prolonged exposure to supplemental oxygen must undergo screening by an ophthalmologist. Laser therapy is effective for stages 1-3 and for aggressive posterior retinopathy of prematurity. Its disadvantages are the induction of scarring and the development of severe myopia in 17-40% of the children so treated. Anti-VEGF treatment (VEGF = vascular endothelial growth factor) does not induce any visible scarring and seems to cause less myopia, but long-term data on safety, dosing, and the choice of anti-VEGF drug are still lacking. CONCLUSION The available evidence for anti-VEGF treatment is on a much lower level than the evidence for laser therapy. Anti-VEGF may be a way to avoid the disadvantages of laser therapy (scarring and severe myopia). Unlike laser therapy, however, the intravitreal injection of VEGF inhibitors may suppress systemic VEGF levels and potentially harm the developing brain, lungs, or other organs. The currently open questions about anti-VEGF treatment concern its dosing, choice of drug, and long-term safety.
Collapse
Affiliation(s)
- Andreas Stahl
- Eye Center, University of Freiburg, Department of Neonatology, University Medical Center-UKSH International, Campus Lübeck
| | | |
Collapse
|
42
|
Bharwani SK, Green BF, Pezzullo JC, Bharwani SS, Bharwani SS, Dhanireddy R. Systematic review and meta-analysis of human milk intake and retinopathy of prematurity: a significant update. J Perinatol 2016; 36:913-920. [PMID: 27416321 DOI: 10.1038/jp.2016.98] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Two recent meta-analyses have studied the association of exclusive or mainly human milk intake (HMI) on retinopathy of prematurity (ROP). One of these meta-analysis found a protective effect of only or mainly HMI on Severe ROP but not on any stage ROP. However, both these meta-analyses did not find protection from any stage ROP or Severe ROP with any amount of HMI. The objective of this study was to study the association between any amount of HMI and the development of All ROP and Severe ROP in very-low birth weight infants (VLBWI) and extremely low birth weight infants (ELBWI) by systematic review using PRISMA-P guidelines and meta-analysis. STUDY DESIGN Exposure, controls and outcomes studied were any amount of HMI vs no HMI and All ROP/Severe ROP in VLBWI/ELBWI. All ROP was defined as all stages of ROP pooled together, and Severe ROP as ⩾stage 3 ROP and ROP requiring intervention. Results and effect sizes are expressed as odds ratio (OR), relative risk (RR), risk difference (RD) and number needed to treat (NNT) with 95% confidence intervals (95% CI). Data sources used were PubMed, MEDLINE, EMBASE, Cochrane Central Register of Clinical Trials, Scopus and CINAHL until 24 April 2015. Extracted data were pooled using a fixed effects model. Heterogeneity was assessed. Sensitivity analysis was performed. RESULTS Five hundred nine of 1701 infants who received any amount of HMI developed All ROP vs 310 of 760 infants without HMI developed All ROP with a pooled OR 0.63* (0.51,0.78), RR 0.76* (0.67,0.86) and RD -0.09* (-0.13,-0.05). The NNT with any amount of HMI was 11* (8,20) (*P<0.0001) to prevent one case of All ROP. 204 of 2465 infants who received any amount of HMI developed Severe ROP vs 85 of 764 infants without HMI developed Severe ROP with a pooled OR 0.74* (0.56,0.98), RR 0.77* (0.60,0.98) and RD -0.03* (-0.05,-0.00). The NNT with any amount of HMI was 33* (*P=0.04) to prevent one case of Severe ROP. CONCLUSION Any amount of HMI is strongly associated with the protection from All ROP and Severe ROP.
Collapse
Affiliation(s)
- S K Bharwani
- Neonatologist, Pediatrix Medical Group and The Womans Hospital of Texas, Houston, TX, USA
| | - B F Green
- Head of Education, Research and Clinical Services, Biomedical Libraries, Dartmouth College, Hanover, NH, USA
| | - J C Pezzullo
- Department of Medicine, Georgetown University, Washington, DC, USA
| | | | | | - R Dhanireddy
- Department of Pediatrics, Division of Neonatology, University of Tennessee Health Science Center, E201 Rout Center for Women and Newborns, Memphis, TN, USA
| |
Collapse
|
43
|
Devesa J, Almengló C, Devesa P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin Med Insights Endocrinol Diabetes 2016; 9:47-71. [PMID: 27773998 PMCID: PMC5063841 DOI: 10.4137/cmed.s38201] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction, Medical Center Foltra, Teo, Spain
| | | | - Pablo Devesa
- Research and Development, Medical Center Foltra, 15886-Teo, Spain
| |
Collapse
|
44
|
Application of multiplex immunoassay technology to investigations of ocular disease. Expert Rev Mol Med 2016; 18:e15. [PMID: 27577534 DOI: 10.1017/erm.2016.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Eye-derived fluids, including tears, aqueous humour and vitreous humour often contain molecular signatures of ocular disease states. These signatures can be composed of cytokines, chemokines, growth factors, proteases and soluble receptors. However, the small quantities (<10 µl) of these fluids severely limit the detection of these proteins by traditional enzyme-linked immunosorbent assay or Western blot. To maximise the amount of information generated from the analysis of these specimens, many researchers have employed multiplex immunoassay technologies for profiling the expression or modification of multiple proteins from minute sample volumes.
Collapse
|
45
|
Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:123-133. [PMID: 28528685 DOI: 10.1016/j.mrrev.2016.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022]
Abstract
Laron syndrome (LS) is a unique model of congenital IGF-I deficiency. It is characterized by dwarfism and obesity, and is caused by deletion or mutations of the growth hormone receptor (GH-R) gene. It is hypothesized that LS is an old disease originating in Indonesia and that the mutated gene spread to South Asia, the Middle East, the Mediterranean region and South America.
Collapse
Affiliation(s)
- Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Israel.
| | - Rivka Kauli
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Israel
| | - Lena Lapkina
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
46
|
Abstract
More than 450,000 babies are born prematurely in the USA every year. The improved survival of even the most vulnerable low body weight preterm infants has, despite improving health outcomes, led to the resurgence in preterm complications including one of the major causes for blindness in children, retinopathy of prematurity (ROP). The current mainstay in ROP therapy is laser photocoagulation and the injection of vascular endothelial growth factor (VEGF) antibodies in the late stages of the disease after the onset of neovascularization. Both are proven options for ophthalmologists to treat the severe forms of late ROP. However, laser photocoagulation destroys major parts of the retina, and the injection of VEGF antibodies, although rather simple to administer, may cause a systemic suppression of normal vascularization, which has not been studied in sufficient depth. However, the use of neither VEGF antibody nor laser treatment prevents ROP, which should be the long-term goal. It should be possible to prevent ROP by more closely mimicking the intrauterine environment after preterm birth. Such preventive measures include preventing the toxic postbirth influences (eg, oxygen excess) as well as providing the missing intrauterine factors (eg, insulin growth factor 1) and are likely to also reduce other complications of premature birth as well as ROP. This review is meant to summarize the current knowledge on the prevention of ROP with a particular emphasize on the use of insulin growth factor 1 supplementation.
Collapse
Affiliation(s)
- Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann Hellström
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Beharry KD, Valencia G, Lazzaro D, Aranda J. Pharmacologic interventions for the prevention and treatment of retinopathy of prematurity. Semin Perinatol 2016; 40:189-202. [PMID: 26831641 PMCID: PMC4808450 DOI: 10.1053/j.semperi.2015.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retinopathy of prematurity (ROP), a significant morbidity in prematurely born infants, is the most common cause of visual impairment and blindness in children and persists till adulthood. Strict control of oxygen therapy and prevention of intermittent hypoxia are the keys in the prevention of ROP, but pharmacologic interventions have decreased risk of ROP. Various drug classes such as methylxanthines (caffeine), VEGF inhibitors, antioxidants, and others have decreased ROP occurrence. The timing of pharmacologic intervention remains unsettled, but early prevention rather than controlling disease progression may be preferred. These drugs act through different mechanisms, and synergistic approaches should be considered to maximize efficacy and safety.
Collapse
|
48
|
The effect of oxygen saturation targeting on retinal blood vessel growth using retinal image data from the BOOST-II UK Trial. Eye (Lond) 2016; 30:577-81. [PMID: 26795413 PMCID: PMC4834037 DOI: 10.1038/eye.2015.280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/08/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Retinopathy of prematurity (ROP) is a disorder of developing retinal blood vessels in preterm infants. The purpose of this nested study was to investigate the effects of higher (91-95%) and lower (85-89%) oxygen saturation (SpO2) targeting on retinal blood vessel growth in preterm infants. METHODS Retinal blood vessel growth in the higher (91-95%) and lower (85-89%) oxygen saturation (SpO2) targeting groups was compared. Suitable RetCam (Clarity, Pleasanton, CA, USA) images collected in the BOOST-II UK trial were used. The distances between the centre of the optic disc and the ROP ridge in the temporal and nasal retina were measured in pixel units. RESULTS Images from 38 infants were studied, 20 from the higher SpO2 target group and 18 from the lower SpO2 target group. On average, temporal blood vessels extended further from the optic disc than nasal blood vessels, mean (standard deviation (SD)) 463.39 (55.05) pixels compared with 360.13 (44.47) pixels, respectively, P<0.0001. Temporal blood vessels extended less far from the optic disc in the higher SpO2 target group than in the lower SpO2 target group: mean (SD) 449.83 (56.16) pixels compared with 480.02 (49.94), respectively, P=0.055. Nasal retinal blood vessel measurements were broadly similar in the higher and lower SpO2 target groups; mean (SD) 353.96 (41.95) compared with 370.00 (48.82) pixels, respectively, P=0.38. CONCLUSIONS Relatively high oxygen saturation targeting (91-95%) was associated with a trend (P=0.055) towards reduced retinal blood vessel growth in this study of preterm infants.
Collapse
|
49
|
Bake S, Okoreeh AK, Alaniz RC, Sohrabji F. Insulin-Like Growth Factor (IGF)-I Modulates Endothelial Blood-Brain Barrier Function in Ischemic Middle-Aged Female Rats. Endocrinology 2016; 157:61-9. [PMID: 26556536 PMCID: PMC4701884 DOI: 10.1210/en.2015-1840] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In comparison with young females, middle-aged female rats sustain greater cerebral infarction and worse functional recovery after stroke. These poorer stroke outcomes in middle-aged females are associated with an age-related reduction in IGF-I levels. Poststroke IGF-I treatment decreases infarct volume in older females and lowers the expression of cytokines in the ischemic hemisphere. IGF-I also reduces transfer of Evans blue dye to the brain, suggesting that this peptide may also promote blood-brain barrier function. To test the hypothesis that IGF-I may act at the blood-brain barrier in ischemic stroke, 2 approaches were used. In the first approach, middle-aged female rats were subjected to middle cerebral artery occlusion and treated with IGF-I after reperfusion. Mononuclear cells from the ischemic hemisphere were stained for CD4 or triple-labeled for CD4/CD25/FoxP3 and subjected to flow analyses. Both cohorts of cells were significantly reduced in IGF-I-treated animals compared with those in vehicle controls. Reduced trafficking of immune cells to the ischemic site suggests that blood-brain barrier integrity is better maintained in IGF-I-treated animals. The second approach directly tested the effect of IGF-I on barrier function of aging endothelial cells. Accordingly, brain microvascular endothelial cells from middle-aged female rats were cultured ex vivo and subjected to ischemic conditions (oxygen-glucose deprivation). IGF-I treatment significantly reduced the transfer of fluorescently labeled BSA across the endothelial monolayer as well as cellular internalization of fluorescein isothiocyanate-BSA compared with those in vehicle-treated cultures, Collectively, these data support the hypothesis that IGF-I improves blood-brain barrier function in middle-aged females.
Collapse
MESH Headings
- Aging
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain Ischemia/drug therapy
- Brain Ischemia/immunology
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Capillary Permeability/drug effects
- Cell Hypoxia/drug effects
- Cells, Cultured
- Cerebrum/drug effects
- Cerebrum/immunology
- Cerebrum/metabolism
- Cerebrum/pathology
- Drug Implants
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Humans
- Hypoglycemia/etiology
- Insulin-Like Growth Factor I/administration & dosage
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/therapeutic use
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Microvessels/drug effects
- Microvessels/immunology
- Microvessels/metabolism
- Microvessels/pathology
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Stroke/drug therapy
- Stroke/immunology
- Stroke/metabolism
- Stroke/pathology
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Andre K Okoreeh
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Robert C Alaniz
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| |
Collapse
|
50
|
Zeilbeck LF, Müller BB, Leopold SA, Senturk B, Langmann T, Tamm ER, Ohlmann A. Norrin mediates angiogenic properties via the induction of insulin-like growth factor-1. Exp Eye Res 2015; 145:317-326. [PMID: 26706283 DOI: 10.1016/j.exer.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/29/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Norrin is an angiogenic signaling molecule that activates canonical Wnt/β-catenin signaling, and is involved in capillary formation in retina and brain. Moreover, Norrin induces vascular repair following an oxygen-induced retinopathy (OIR), the model of retinopathy of prematurity in mice. Since insulin-like growth factor (IGF)-1 is a very potent angiogenic molecule, we investigated if IGF-1 is a downstream mediator of Norrin's angiogenic properties. In retinae of transgenic mice with an ocular overexpression of Norrin (βB1-Norrin), we found at postnatal day (P)11 a significant increase of IGF-1 mRNA compared to wild-type littermates. In addition, after treatment of cultured Müller cells or dermal microvascular endothelial cells with Norrin we observed an increase of IGF-1 and its mRNA, an effect that could be blocked with DKK-1, an inhibitor of Wnt/β-catenin signaling. When OIR was induced, the expression of IGF-1 was significantly suppressed in both transgenic βB1-Norrin mice and wild-type littermates when compared to wild-type animals that were housed in room air. Furthermore, at P13, one day after the mice had returned to normoxic conditions, IGF-1 levels were significantly higher in transgenic mice compared to wild-type littermates. Finally, after intravitreal injections of inhibitory α-IGF-1 antibodies at P12 or at P12 and P14, the Norrin-mediated vascular repair was significantly attenuated. We conclude that Norrin induces the expression of IGF-1 via an activation of the Wnt/β-catenin signaling pathway, an effect that significantly contributes to the protective effects of Norrin against an OIR.
Collapse
Affiliation(s)
- Ludwig F Zeilbeck
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Birgit B Müller
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Stephanie A Leopold
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Berna Senturk
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Andreas Ohlmann
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|