1
|
Systematic Bayesian posterior analysis guided by Kullback-Leibler divergence facilitates hypothesis formation. J Theor Biol 2023; 558:111341. [PMID: 36335999 DOI: 10.1016/j.jtbi.2022.111341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Bayesian inference produces a posterior distribution for the parameters of a mathematical model that can be used to guide the formation of hypotheses; specifically, the posterior may be searched for evidence of alternative model hypotheses, which serves as a starting point for hypothesis formation and model refinement. Previous approaches to search for this evidence are largely qualitative and unsystematic; further, demonstrations of these approaches typically stop at hypothesis formation, leaving the questions they raise unanswered. Here, we introduce a Kullback-Leibler (KL) divergence-based ranking to expedite Bayesian hypothesis formation and investigate the hypotheses it generates, ultimately generating novel, biologically significant insights. Our approach uses KL divergence to rank parameters by how much information they gain from experimental data. Subsequently, rather than searching all model parameters at random, we use this ranking to prioritize examining the posteriors of the parameters that gained the most information from the data for evidence of alternative model hypotheses. We test our approach with two examples, which showcase the ability of our approach to systematically uncover different types of alternative hypothesis evidence. First, we test our KL divergence ranking on an established example of Bayesian hypothesis formation. Our top-ranked parameter matches the one previously identified to produce alternative hypotheses. In the second example, we apply our ranking in a novel study of a computational model of prolactin-induced JAK2-STAT5 signaling, a pathway that mediates beta cell proliferation. Within the top 3 ranked parameters (out of 33), we find a bimodal posterior revealing two possible ranges for the prolactin receptor degradation rate. We go on to refine the model, incorporating new data and determining which degradation rate is most plausible. Overall, while the effectiveness of our approach depends on having a properly formulated prior and on the form of the posterior distribution, we demonstrate that our approach offers a novel and generalizable quantitative framework for Bayesian hypothesis formation and use it to produce a novel, biologically-significant insight into beta cell signaling.
Collapse
|
2
|
Liu W, Wang X. Research Advances on Suppressor of Cytokine Signaling 3 (SOCS3) in Animal Carbohydrate and Lipid Metabolism Processes. Pak J Biol Sci 2022; 25:1100-1108. [PMID: 36978278 DOI: 10.3923/pjbs.2022.1100.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The SOCS3 proteins played important roles in regulating the energy metabolism processes. They are crucial intracellular inhibitors related to animal obesity, immunity and inflammation. This makes SOCS3 genes very important in animal genetics and breeding. The research was conducted to investigate and explore the recent advance in the present studies on SOCS3 in animal energy and lipid metabolism processes. All the references were carefully retrieved from the PubMed database by searching key words "suppressor of cytokine signaling (SOCS)", "SOCS3", "animal carbohydrate metabolism", "animal lipid metabolism", "animal energy metabolism", "insulin resistance", "leptin", "obesity", "SOCS*" and "AMPK". All the related references retrieved were initially screened and fully reviewed for manual inspection. This effort intends to get a quick understanding and make insights into the mechanisms of Suppressor of Cytokine Signaling 3 (SOCS3) and their molecular interactions with the other cellular proteins. In this review, it was found that SOCS3 proteins could regulate cytokine receptors' signal transduction mainly through the JAK/STAT and GH/IGF-I and mTOR-STAT3-SOCS3 signaling pathways, whereas the genetic mutations or knockouts of SOCS3 genes had significant effects on animal energy metabolism. The review summarized all the relevant research reports on SOCS3 in the animal carbohydrate and lipid metabolism processes, which can provide practical reference for the genetic breeding of high-quality domestic animal breeds. It is also of great significance to further research on the genetic regulation mechanism of SOCS3 genes affecting energy metabolism and the well development of the animal breeding system.
Collapse
|
3
|
Wang S, Wu J, Wang N, Zeng L, Wu Y. The role of growth hormone receptor in β cell function. Growth Horm IGF Res 2017; 36:30-35. [PMID: 28915386 DOI: 10.1016/j.ghir.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/10/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Growth hormone (GH) exerts numerous effects on tissues through binding to its receptor, GHR, which resides on cell membranes in many different organs and tissues. Endocrine pancreatic β cells are the only source of insulin secretion in response to metabolic demand, thereby regulating blood glucose and maintaining metabolic homeostasis. β cell dysfunction is the main composition of diabetes mellitus. Numerous studies have provided strong evidence that GHR signaling plays an independent role in β cell function. In this review, we focus on the role of GHR signaling in β cell actions and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Jin Wu
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Ning Wang
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Li Zeng
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China.
| | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
4
|
Mahony R, Ahmed S, Diskin C, Stevenson NJ. SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell Mol Life Sci 2016; 73:3323-36. [PMID: 27137184 PMCID: PMC11108554 DOI: 10.1007/s00018-016-2234-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Since their discovery, SOCS have been characterised as regulatory cornerstones of intracellular signalling. While classically controlling the JAK/STAT pathway, their inhibitory effects are documented across several cascades, underpinning their essential role in homeostatic maintenance and disease. After 20 years of extensive research, SOCS3 has emerged as arguably the most important family member, through its regulation of both cytokine- and pathogen-induced cascades. In fact, low expression of SOCS3 is associated with autoimmunity and oncogenesis, while high expression is linked to diabetes and pathogenic immune evasion. The induction of SOCS3 by both viruses and bacteria and its impact upon inflammatory disorders, underscores this protein's increasing clinical potential. Therefore, with the aim of highlighting SOCS3 as a therapeutic target for future development, this review revisits its multi-faceted immune regulatory functions and summarises its role in a broad ranges of diseases.
Collapse
Affiliation(s)
- R Mahony
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - S Ahmed
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - C Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Ye C, Driver JP. Suppressors of Cytokine Signaling in Sickness and in Health of Pancreatic β-Cells. Front Immunol 2016; 7:169. [PMID: 27242781 PMCID: PMC4860527 DOI: 10.3389/fimmu.2016.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) are a family of eight proteins that negatively regulate Janus kinase and signal transducers and activators of transcription signaling in cells that utilize this pathway to respond to extracellular stimuli. SOCS are best known for attenuating cytokine signaling in the immune system. However, they are also expressed in many other cell types, including pancreatic β-cells, where there is considerable interest in harnessing SOCS molecules to prevent cytokine-mediated apoptosis during diabetes and allogeneic transplantation. Apart from their potential as therapeutic targets, SOCS molecules play a central role for regulating important functions in β-cells, including growth, glucose sensing, and insulin secretion. This review will discuss SOCS proteins as central regulators for diverse cellular processes important for normal β-cell function as well as their protective anti-apoptotic effects during β-cell stress.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| | - John P Driver
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| |
Collapse
|
6
|
Prause M, Berchtold LA, Urizar AI, Hyldgaard Trauelsen M, Billestrup N, Mandrup-Poulsen T, Størling J. TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing β-cells. Mol Cell Endocrinol 2016; 420:24-36. [PMID: 26610752 DOI: 10.1016/j.mce.2015.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-1β (IL-1β) and interferon-γ (IFNγ) contribute to type 1 diabetes (T1D) by inducing β-cell death. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are adaptors that transduce signaling from a variety of membrane receptors including cytokine receptors. We show here that IL-1β and IFNγ upregulate the expression of TRAF2 in insulin-producing INS-1E cells and isolated rat pancreatic islets. siRNA-mediated knockdown (KD) of TRAF2 in INS-1E cells reduced IL-1β-induced phosphorylation of JNK1/2, but not of p38 or ERK1/2 mitogen-activated protein kinases. TRAF2 KD did not modulate NFκB activation by cytokines, but reduced cytokine-induced inducible nitric oxide synthase (iNOS) promotor activity and expression. We further observed that IFNγ-stimulated phosphorylation of STAT3 required TRAF2. KD of TRAF2 or STAT3 reduced cytokine-induced caspase 3/7 activation, but, intriguingly, potentiated cytokine-mediated loss of plasma membrane integrity and augmented the number of propidium iodide-positive cells. Finally, we found that TRAF2 KD increased cytokine-induced production of reactive oxygen species (ROS). In summary, our data suggest that TRAF2 is an important mediator of IL-1β and IFNγ signaling in pancreatic β-cells.
Collapse
Affiliation(s)
- Michala Prause
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hyldgaard Trauelsen
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
7
|
Ibarra Urizar A, Friberg J, Christensen DP, Lund Christensen G, Billestrup N. Inflammatory Cytokines Stimulate Bone Morphogenetic Protein-2 Expression and Release from Pancreatic Beta Cells. J Interferon Cytokine Res 2016; 36:20-9. [DOI: 10.1089/jir.2014.0199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Josefine Friberg
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Dan Ploug Christensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Gitte Lund Christensen
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
8
|
Mohan R, Mao Y, Zhang S, Zhang YW, Xu CR, Gradwohl G, Tang X. Differentially Expressed MicroRNA-483 Confers Distinct Functions in Pancreatic β- and α-Cells. J Biol Chem 2015; 290:19955-66. [PMID: 26109062 DOI: 10.1074/jbc.m115.650705] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 01/08/2023] Open
Abstract
Insulin secreted from pancreatic β-cells and glucagon secreted from pancreatic α-cells are the two major hormones working in the pancreas in an opposing manner to regulate and maintain a normal glucose homeostasis. How microRNAs (miRNAs), a population of non-coding RNAs so far demonstrated to be differentially expressed in various types of cells, regulate gene expression in pancreatic β-cells and its closely associated α-cells is not completely clear. In this study, miRNA profiling was performed and compared between pancreatic β-cells and their partner α-cells. One novel miRNA, miR-483, was identified for its highly differential expression in pancreatic β-cells when compared to its expression in α-cells. Overexpression of miR-483 in β-cells increased insulin transcription and secretion by targeting SOCS3, a member of suppressor of cytokine signaling family. In contrast, overexpression of miR-483 decreased glucagon transcription and secretion in α-cells. Moreover, overexpressed miR-483 protected against proinflammatory cytokine-induced apoptosis in β-cells. This correlates with a higher expression level of miR-483 and the expanded β-cell mass observed in the islets of prediabetic db/db mice. Together, our data suggest that miR-483 has opposite effects in α- and β-cells by targeting SOCS3, and the imbalance of miR-483 and its targets may play a crucial role in diabetes pathogenesis.
Collapse
Affiliation(s)
- Ramkumar Mohan
- From the Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931
| | - Yiping Mao
- From the Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931
| | - Shungang Zhang
- From the Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931
| | - Yu-Wei Zhang
- the College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China, and
| | - Cheng-Ran Xu
- the College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China, and
| | - Gérard Gradwohl
- the Institute of Genetics and Molecular and Cellular Biology, Department of Development and Stem cells, University of Strasbourg, 67404 Illkirch, France
| | - Xiaoqing Tang
- From the Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931,
| |
Collapse
|
9
|
Huang Y, Wang Y, Li X, Chen Z, Li X, Wang H, Ni M, Li J. Molecular mechanism of ER stress-induced gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in macrophages. FEBS J 2015; 282:2361-78. [PMID: 25827060 DOI: 10.1111/febs.13284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/12/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, whose members are capable of inducing apoptosis and inflammation. Endoplasmic reticulum stress (ERS) plays a key role in immune surveillance in macrophages. TRAIL mRNA and protein expression have previously been detected in macrophages; however, whether ERS has any effects on TRAIL expression in macrophages has not yet been determined. Here, we demonstrate that thapsigargin (TG) and tunicamycin (TM), two ERS inducers activated macrophages were able to increase TRAIL mRNA and protein expression in RAW264.7 macrophages, the culture supernatant of THP-1 cells, and mouse peritoneal macrophages, indicating that ERS as a potent inducer of TRAIL transcription and expression in macrophages. This effect was blocked by the specific JNK inhibitor SP600125 and transcription factor AP-1 inhibitor SR 1130. Interestingly, at the molecular level, regulation of TRAIL expression by ERS was accompanied by a significant decrease in cytokine signaling suppressor 3 (SOCS3). SOCS3 siRNA clearly increased the expression of TRAIL mRNA and protein under ERS by activating the AP-1 components phosphorylated c-Jun and phosphorylated c-Fos in RAW264.7 cells. In contrast, over-expression of SOCS3 reversed ERS-induced TRAIL expression. These findings provide in vitro evidence that SOCS3 plays a critical negative role in the regulation of ERS-induced TRAIL expression via the Jun N-terminal kinase/AP-1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yarui Wang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Zhaolin Chen
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaohui Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Huan Wang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Mingming Ni
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Lebrun P, Cognard E, Gontard P, Bellon-Paul R, Filloux C, Berthault MF, Magnan C, Ruberte J, Luppo M, Pujol A, Pachera N, Herchuelz A, Bosch F, Van Obberghen E. The suppressor of cytokine signalling 2 (SOCS2) is a key repressor of insulin secretion. Diabetologia 2010; 53:1935-46. [PMID: 20499047 DOI: 10.1007/s00125-010-1786-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Suppressor of cytokine signalling (SOCS) proteins are powerful inhibitors of pathways involved in survival and function of pancreatic beta cells. Whereas SOCS1 and SOCS3 have been involved in immune and inflammatory processes, respectively, in beta cells, nothing is known about SOCS2 implication in the pancreas. METHODS Transgenic (tg) mice were generated that constitutively produced SOCS2 in beta cells (betaSOCS2) to define whether this protein is implicated in beta cell functioning and/or survival. RESULTS Constitutive production of SOCS2 in beta cells leads to hyperglycaemia and glucose intolerance. This phenotype is not a consequence of decreased beta cell mass or inhibition of insulin synthesis. However, insulin secretion to various secretagogues is profoundly altered in intact animals and isolated islets. Interestingly, constitutive SOCS2 production dampens the rise in cytosolic free calcium concentration induced by glucose, while glucose metabolism is unchanged. Moreover, tg islets have a depletion in endoplasmic reticulum Ca(2+) stores, suggesting that SOCS2 interferes with calcium fluxes. Finally, in betaSOCS2 mice proinsulin maturation is impaired, leading to an altered structure of insulin secretory granules and augmented levels of proinsulin. The latter is likely to be due to decreased production of prohormone convertase 1 (PC1/3), which plays a key role in proinsulin cleavage. CONCLUSIONS/INTERPRETATIONS SOCS2 was shown to be a potent regulator of proinsulin processing and insulin secretion in beta cells. While its constitutive production is insufficient to induce overt diabetes in this mouse model, it causes glucose intolerance. Thus, increased SOCS2 production could be an important event predisposing to beta cell failure.
Collapse
Affiliation(s)
- P Lebrun
- INSERM U907, Avenue de Valombrose, Nice, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kostromina E, Gustavsson N, Wang X, Lim CY, Radda GK, Li C, Han W. Glucose intolerance and impaired insulin secretion in pancreas-specific signal transducer and activator of transcription-3 knockout mice are associated with microvascular alterations in the pancreas. Endocrinology 2010; 151:2050-9. [PMID: 20215569 PMCID: PMC2869255 DOI: 10.1210/en.2009-1199] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Maintenance of glucose homeostasis depends on adequate amount and precise pattern of insulin secretion, which is determined by both beta-cell secretory processes and well-developed microvascular network within endocrine pancreas. The development of highly organized microvasculature and high degrees of capillary fenestrations in endocrine pancreas is greatly dependent on vascular endothelial growth factor-A (VEGF-A) from islet cells. However, it is unclear how VEGF-A production is regulated in endocrine pancreas. To understand whether signal transducer and activator of transcription (STAT)-3 is involved in VEGF-A regulation and subsequent islet and microvascular network development, we generated a mouse line carrying pancreas-specific deletion of STAT3 (p-KO) and performed physiological analyses both in vivo and using isolated islets, including glucose and insulin tolerance tests, and insulin secretion measurements. We also studied microvascular network and islet development by using immunohistochemical methods. The p-KO mice exhibited glucose intolerance and impaired insulin secretion in vivo but normal insulin secretion in isolated islets. Microvascular density in the pancreas was reduced in p-KO mice, along with decreased expression of VEGF-A, but not other vasotropic factors in islets in the absence of pancreatic STAT3 signaling. Together, our study suggests that pancreatic STAT3 signaling is required for the normal development and maintenance of endocrine pancreas and islet microvascular network, possibly through its regulation of VEGF-A.
Collapse
Affiliation(s)
- Elena Kostromina
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore 138667
| | | | | | | | | | | | | |
Collapse
|
12
|
Bruun C, Heding PE, Rønn SG, Frobøse H, Rhodes CJ, Mandrup-Poulsen T, Billestrup N. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells. Mol Cell Endocrinol 2009; 311:32-8. [PMID: 19643162 DOI: 10.1016/j.mce.2009.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/19/2009] [Accepted: 07/20/2009] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction of the pancreatic insulin-producing beta cells. Suppressor of cytokine signalling-3 (SOCS-3) proteins regulate signalling induced by a number of cytokines including growth hormone, IFNgamma and IL-1beta which signals via very distinctive pathways. The objective of this study was to investigate the effect of SOCS-3 on TNFalpha-induced signalling in beta cells. We found that apoptosis induced by TNFalpha alone or in combination with IL-1beta was suppressed by expression of SOCS-3 in the beta cell line INSr3#2. SOCS-3 inhibited TNFalpha-induced phosphorylation of the mitogen activated protein kinases ERK1/2, p38 and JNK in INSr3#2 cells and in primary rat islets. Furthermore, SOCS-3 repressed TNFalpha-induced degradation of IkappaB, NFkappaB DNA binding and transcription of the NFkappaB-dependent MnSOD promoter. Finally, expression of Socs-3 mRNA was induced by TNFalpha in rat islets in a transient manner with maximum expression after 1-2h. The ability of SOCS-3 to regulate signalling induced by the three major pro-inflammatory cytokines involved in the pathogenesis of T1DM makes SOCS-3 an interesting therapeutic candidate for protection of the beta cell mass.
Collapse
Affiliation(s)
- Christine Bruun
- Hagedorn Research Institute, Niels Steensens Vej 6, NSK2.02, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Tonnesen MF, Grunnet LG, Friberg J, Cardozo AK, Billestrup N, Eizirik DL, Størling J, Mandrup-Poulsen T. Inhibition of nuclear factor-kappaB or Bax prevents endoplasmic reticulum stress- but not nitric oxide-mediated apoptosis in INS-1E cells. Endocrinology 2009; 150:4094-103. [PMID: 19556421 DOI: 10.1210/en.2009-0029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress by mechanisms that include ER Ca(2+) depletion via NO-dependent down-regulation of sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) contributes to beta-cell death in type 1 diabetes. To clarify whether the molecular pathways elicited by NO and ER Ca(2+) depletion differ, we here compare the direct effects of NO, in the form of the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP), with the effects of SERCA2 inhibitor thapsigargin (TG) on MAPK, nuclear factor kappaB (NFkappaB), Bcl-2 proteins, ER stress, and apoptosis. Exposure of INS-1E cells to TG or SNAP caused caspase-3 cleavage and apoptosis. Both TG and SNAP induced activation of the proapoptotic transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP). However, other classical ER stress-induced markers such as up-regulation of ER chaperone Bip and alternative splicing of the transcription factor Xbp-1 were exclusively activated by TG. TG exposure caused NFkappaB activation, as assessed by IkappaB degradation and NFkappaB DNA binding. Inhibition of NFkappaB or the Bcl-2 family member Bax pathways protected beta-cells against TG- but not SNAP-induced beta-cell death. These data suggest that NO generation and direct SERCA2 inhibition cause two quantitative and qualitative different forms of ER stress. In contrast to NO, direct ER stress induced by SERCA inhibition causes activation of ER stress signaling pathways and elicit proapoptotic signaling via NFkappaB and Bax.
Collapse
|
14
|
Jacobsen MLB, Rønn SG, Bruun C, Larsen CM, Eizirik DL, Mandrup-Poulsen T, Billestrup N. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells. Diabetologia 2009; 52:281-8. [PMID: 19002429 DOI: 10.1007/s00125-008-1199-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine-induced Fas and chemokine expression in beta cells. METHODS Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas mRNA expression. The ability of SOCS-3 to influence the activity of cytokine-responsive Fas and Mcp-1 (also known as Ccl2) promoters was measured by reporter analysis. RESULTS IL-1beta induced a time-dependent increase in Mcp-1 and Mip-2 (also known as Cxcl2) mRNA expression after 6 h of stimulation in insulinoma (INS)-1 and neonatal rat islet cells. This induction was inhibited when Socs3 was expressed in the cells. In INS-1 cells, IL-1beta + IFN-gamma induced a tenfold and eightfold increase of Fas mRNA expression after 6 and 24 h, respectively. This induction was inhibited at both time-points when expression of Socs3 was induced. In promoter studies SOCS-3 significantly inhibited the cytokine-induced activity of Mcp-1 and Fas promoter constructs. CONCLUSIONS/INTERPRETATION SOCS-3 inhibits the expression of cytokine-induced chemokine and death-receptor Fas mRNA.
Collapse
Affiliation(s)
- M L B Jacobsen
- Steno Diabetes Centre, Niels Steensens Vej 6, NSK2.02, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Signal transducer and activator of transcription (STAT)5A and -5B are latent transcription factors activated by cytokines and hormones of the cytokine family. In pancreatic insulin-secreting β-cells, STAT5A and -5B are activated primarily by prolactin and growth hormone stimulation and are important mediators of the potent stimulation of proliferation and insulin production caused by these hormones. STAT5A and -5B are both expressed in β-cells and control the expression of a number of mRNAs implicated in cell replication control, insulin biosynthesis and secretion. In addition to STAT5A and -5B being transcriptional activators, they may also repress gene transcription. By these means, STAT5 proteins increase the levels of anti-apoptotic transcripts in β-cells and repress expression of pro-apoptotic genes. This review focuses on the anti-apoptotic role of STAT5 signaling, providing a mechanism for β-cell resistance to pro-apoptotic cytokines, Type 1 diabetes mellitus and obesity-associated β-cell stress. It is clear from studies of STAT5 signaling in pancreatic β-cells that STAT5 is important for postnatal β-cell compensatory growth (as in pregnancy or obesity) and in the defense against β-cell stress factors.
Collapse
Affiliation(s)
- Louise T Dalgaard
- a Roskilde University, Department of Science, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | - Nils Billestrup
- b Steno Diabetes Center, Niels Steensens Vej 2, DK-2820 Gentofte, Denmark.
| | - Jens H Nielsen
- c University of Copenhagen, Department of Biomedical Research, Panum Institute, Bldg 6.5, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
16
|
Mori H, Shichita T, Yu Q, Yoshida R, Hashimoto M, Okamoto F, Torisu T, Nakaya M, Kobayashi T, Takaesu G, Yoshimura A. Suppression of SOCS3 expression in the pancreatic beta-cell leads to resistance to type 1 diabetes. Biochem Biophys Res Commun 2007; 359:952-8. [PMID: 17562326 DOI: 10.1016/j.bbrc.2007.05.198] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta-cells during islet inflammation, which involves inflammatory cytokines and free radicals. However, mechanisms for protecting beta-cells from destruction have not been clarified. In this study, we define the role of SOCS3 on beta-cell destruction using beta-cell-specific SOCS3-conditional knockout (cKO) mice. The beta-cell-specific SOCS3-deficient mice were resistant to the development of diabetes caused by streptozotocin (STZ), a genotoxic methylating agent, which has been used to trigger beta-cell destruction. The islets from cKO mice demonstrated hyperactivation of STAT3 and higher induction of Bcl-xL than did islets from WT mice, and SOCS3-deficient beta-cells were more resistant to apoptosis induced by STZ in vitro than were WT beta-cells. These results suggest that enhanced STAT3 signaling protects beta-cells from destruction induced by a genotoxic stress and that STAT3/SOCS3 can be a potential therapeutic target for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Larsen L, Tonnesen M, Ronn SG, Størling J, Jørgensen S, Mascagni P, Dinarello CA, Billestrup N, Mandrup-Poulsen T. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 2007; 50:779-89. [PMID: 17265033 DOI: 10.1007/s00125-006-0562-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/30/2006] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS The immune-mediated elimination of pancreatic beta cells in type 1 diabetes involves release of cytotoxic cytokines such as IL-1beta and IFNgamma, which induce beta cell death in vitro by mechanisms that are both dependent and independent of nitric oxide (NO). Nuclear factor kappa B (NFkappaB) is a critical signalling molecule in inflammation and is required for expression of the gene encoding inducible NO synthase (iNOS) and of pro-apoptotic genes. NFkappaB has recently been shown to associate with chromatin-modifying enzymes histone acetyltransferases and histone deacetylases (HDAC), and positive effects of HDAC inhibition have been obtained in several inflammatory diseases. Thus, the aim of this study was to investigate whether HDAC inhibition protects beta cells against cytokine-induced toxicity. MATERIALS AND METHODS The beta cell line, INS-1, or intact rat islets were precultured with HDAC inhibitors suberoylanilide hydroxamic acid or trichostatin A in the absence or presence of IL-1beta and IFNgamma. Effects on insulin secretion and NO formation were measured by ELISA and Griess reagent, respectively. iNOS levels and NFkappaB activity were measured by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone-DNA complex ELISA. RESULTS HDAC inhibition reduced cytokine-mediated decrease in insulin secretion and increase in iNOS levels, NO formation and apoptosis. IL-1beta induced a bi-phasic phosphorylation of inhibitor protein kappa Balpha (IkappaBalpha) with the 2nd peak being sensitive to HDAC inhibition. No effect was seen on IkappaBalpha degradation and NFkappaB DNA binding. CONCLUSIONS/INTERPRETATION HDAC inhibition prevents cytokine-induced beta cell apoptosis and impaired beta cell function associated with a downregulation of NFkappaB transactivating activity.
Collapse
Affiliation(s)
- L Larsen
- Steno Diabetes Center, 2 Niels Steensens Vej, 2820, Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Sif G Rønn
- Steno Diabetes Center, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | | | | |
Collapse
|
19
|
Frobøse H, Rønn SG, Heding PE, Mendoza H, Cohen P, Mandrup-Poulsen T, Billestrup N. Suppressor of Cytokine Signaling-3 Inhibits Interleukin-1 Signaling by Targeting the TRAF-6/TAK1 Complex. Mol Endocrinol 2006; 20:1587-96. [PMID: 16543409 DOI: 10.1210/me.2005-0301] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractIL-1 plays a major role in inflammation and autoimmunity through activation of nuclear factor κ B (NFκB) and MAPKs. Although a great deal is known about the mechanism of activation of NFκB and MAPKs by IL-1, much less is known about the down-regulation of this pathway. Suppressor of cytokine signaling (SOCS)-3 was shown to inhibit IL-1-induced transcription and activation of NFκB and the MAPKs JNK and p38, but the mechanism is unknown. We show here that SOCS-3 inhibits NFκB-dependent transcription induced by overexpression of the upstream IL-1 signaling molecules MyD88, IL-1R-activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFβ-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex. By coimmunoprecipitation, it was shown that SOCS-3 inhibited the association between TRAF6 and TAK1 and that SOCS-3 coimmunoprecipitated with TAK1 and TRAF6. Furthermore, SOCS-3 inhibited the IL-1-induced catalytic activity of TAK1. Because ubiquitination of TRAF6 is required for activation of TAK1, we analyzed the role of SOCS-3 on TRAF6 ubiquitination and found that SOCS-3 inhibited ubiquitin modification of TRAF6. These results indicate that SOCS-3 inhibits IL-1 signal transduction by inhibiting ubiquitination of TRAF6, thus preventing association and activation of TAK1.
Collapse
Affiliation(s)
- Helle Frobøse
- Steno Diabetes Center, Niels Steensens Vej 2, 2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Larsen L, Størling J, Darville M, Eizirik DL, Bonny C, Billestrup N, Mandrup-Poulsen T. Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia 2005; 48:2582-90. [PMID: 16283237 DOI: 10.1007/s00125-005-0039-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The beta cell destruction and insulin deficiency that characterises type 1 diabetes mellitus is partially mediated by cytokines, such as IL-1beta, and by nitric oxide (NO)-dependent and -independent effector mechanisms. IL-1beta activates mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK), and the nuclear factor kappa B (NFkappaB) pathway. Both pathways are required for expression of the gene encoding inducible nitric oxide synthase (iNOS) and for IL-1beta-mediated beta cell death. The molecular mechanisms by which these two pathways regulate beta cell Nos2 expression are currently unknown. Therefore, the aim of this study was to clarify the putative crosstalk between MAPK and NFkappaB activation in beta cells. MATERIALS AND METHODS The MAPKs ERK, p38 and JNK were inhibited by SB203580, PD98059 or Tat-JNK binding domain or by cells overexpressing the JNK binding domain. The effects of MAPK inhibition on IL-1beta-induced iNOS production and kappa B inhibitor protein (IkappaB) degradation were examined by western blotting. NFkappaB DNA binding was investigated by electrophoretic mobility shift assay, while NFkappaB-induced gene transcription was evaluated by gene reporter assays. RESULTS Inhibition of the MAPKs did not affect IkappaB degradation or NFkappaB DNA binding. However, inhibition of ERK reduced NFkappaB-mediated Nos2 expression; serine 276 phosphorylation of the p65 unit of the NFkappaB complex seemed critical, as evaluated by amino acid mutation analysis. CONCLUSIONS/INTERPRETATION ERK activity is required for NFkappaB-mediated transcription of Nos2 in insulin-producing INS-1E cells, indicating that ERK regulates Nos2 expression by increasing the transactivating capacity of NFkappaB. This may involve phosphorylation of Ser276 on p65 by an as yet unidentified kinase.
Collapse
Affiliation(s)
- L Larsen
- Steno Diabetes Center, 2 Niels Steensens Vej, 2820, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang H, Iezzi M, Theander S, Antinozzi PA, Gauthier BR, Halban PA, Wollheim CB. Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells. Diabetologia 2005; 48:720-31. [PMID: 15756539 DOI: 10.1007/s00125-005-1692-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 12/06/2004] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS Mutations in genes encoding HNF-4alpha, HNF-1alpha and IPF-1/Pdx-1 are associated with, respectively, MODY subtypes-1, -3 and -4. Impaired glucose-stimulated insulin secretion is the common primary defect of these monogenic forms of diabetes. A regulatory circuit between these three transcription factors has also been suggested. We aimed to explore how Pdx-1 regulates beta cell function and gene expression patterns. METHODS We studied two previously established INS-1 stable cell lines permitting inducible expression of, respectively, Pdx-1 and its dominant-negative mutant. We used HPLC for insulin processing, adenovirally encoded aequorin for cytosolic [Ca2+], and transient transfection of human growth hormone or patch-clamp capacitance recordings to monitor exocytosis. RESULTS Induction of DN-Pdx-1 resulted in defective glucose-stimulated and K+-depolarisation-induced insulin secretion in INS-1 cells, while overexpression of Pdx-1 had no effect. We found that DN-Pdx-1 caused down-regulation of fibroblast growth factor receptor 1 (FGFR1), and consequently prohormone convertases (PC-1/3 and -2). As a result, DN-Pdx-1 severely impaired proinsulin processing. In addition, induction of Pdx-1 suppressed the expression of glucagon-like peptide 1 receptor (GLP-1R), which resulted in marked reduction of both basal and GLP-1 agonist exendin-4-stimulated cellular cAMP levels. Induction of DN-Pdx-1 did not affect glucokinase activity, glycolysis, mitochondrial metabolism or ATP generation. The K+-induced cytosolic [Ca2+] rise and Ca2+-evoked exocytosis (membrane capacitance) were not abrogated. CONCLUSIONS/INTERPRETATION The severely impaired proinsulin processing combined with decreased GLP-1R expression and cellular cAMP content, rather than metabolic defects or altered exocytosis, may contribute to the beta cell dysfunction induced by Pdx-1 deficiency.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Calcium Signaling/physiology
- Cell Line, Tumor
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Doxycycline/pharmacology
- Exocytosis/physiology
- Gene Expression/drug effects
- Gene Expression/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glucagon-Like Peptide-1 Receptor
- Glucokinase/genetics
- Glucose/metabolism
- Glucose/pharmacology
- Glycolysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Human Growth Hormone/genetics
- Human Growth Hormone/metabolism
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Mitochondria/metabolism
- Mutation
- Proinsulin/metabolism
- Proprotein Convertases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Glucagon/genetics
- Receptors, Glucagon/physiology
- Signal Transduction/physiology
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transfection
Collapse
Affiliation(s)
- H Wang
- Department of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Emanuelli B, Glondu M, Filloux C, Peraldi P, Van Obberghen E. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells. Diabetes 2004; 53 Suppl 3:S97-S103. [PMID: 15561930 DOI: 10.2337/diabetes.53.suppl_3.s97] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Defects in insulin secretion, resulting from loss of function or destruction of pancreatic beta-cells, trigger diabetes. Interleukin (IL)-1beta is a proinflammatory cytokine that is involved in type 1 and type 2 diabetes development and impairs beta-cell survival and function. Because effective insulin signaling is required for the optimal beta-cell function, we assessed the effect of IL-1beta on the insulin pathway in a rat pancreatic beta-cell line. We show that IL-1beta decreases insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS) proteins as well as phosphatidylinositol 3-kinase (PI3K) activation, and that this action is not due to the IL-1beta-dependent nitric oxide (NO) production in RINm5F cells. We next analyzed if suppressor of cytokine signaling (SOCS)-3, which can be induced by multiple cytokines and which we identified as an insulin action inhibitor, was implicated in the IL-1beta inhibitory effect on insulin signaling in these cells. We show that IL-1beta increases SOCS-3 expression and induces SOCS-3/IR complex formation in RINm5F cells. Moreover, we find that ectopically expressed SOCS-3 associates with the IR and reduces insulin-dependent IR autophosphorylation and IRS/PI3K pathway in a way comparable to IL-1beta treatment in RINm5F cells. We propose that IL-1beta decreases insulin action in beta-cells through the induction of SOCS-3 expression, and that this effect potentially alters insulin-induced beta-cell survival.
Collapse
Affiliation(s)
- Brice Emanuelli
- INSERM U145, IFR-50, Faculty of Medicine, 06107 Nice Cedex 2. France
| | | | | | | | | |
Collapse
|
23
|
Theiss AL, Fruchtman S, Lund PK. Growth factors in inflammatory bowel disease: the actions and interactions of growth hormone and insulin-like growth factor-I. Inflamm Bowel Dis 2004; 10:871-80. [PMID: 15626905 DOI: 10.1097/00054725-200411000-00021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple growth hormones (GHs) and factors are relevant to inflammatory bowel disease (IBD) due to their trophic effects on epithelial cells to promote mucosal integrity, renewal, and repair, on mesenchymal cells to promote wound healing, and on intestinal immune cells to modulate inflammation. The anabolic effects of GHs and factors outside the intestine are relevant to minimizing nutritional insufficiency, catabolic state, and the inability to maintain body weight due to inflammation-induced malabsorption. GHs and factors can, however, have a dual role, whereby trophic effects can be beneficial but, if excessive, can promote complications including the increased risk of intestinal tumors/adenocarcinoma and fibrosis. This review focuses on GH and insulin-like growth factor (IGF-I), for which evidence suggests such a dual role may exist. The actions of GH and IGF-I on the healthy intestine are compared with effects during intestinal inflammation or associated complications. Interactions between these growth factors and others relevant to IBD are considered. The role of the newly discovered suppressors of cytokine signaling proteins, which may dictate the balance between beneficial and excessive actions of GH and IGF-I, is also addressed.
Collapse
Affiliation(s)
- Arianne L Theiss
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| | | | | |
Collapse
|
24
|
Karlsen AE, Heding PE, Frobøse H, Rønn SG, Kruhøffer M, Orntoft TF, Darville M, Eizirik DL, Pociot F, Nerup J, Mandrup-Poulsen T, Billestrup N. Suppressor of cytokine signalling (SOCS)-3 protects beta cells against IL-1beta-mediated toxicity through inhibition of multiple nuclear factor-kappaB-regulated proapoptotic pathways. Diabetologia 2004; 47:1998-2011. [PMID: 15578154 DOI: 10.1007/s00125-004-1568-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown. METHODS The effect of SOCS-3 expression on the global gene-expression profile following IL-1beta exposure was microarray-analysed using a rat beta cell line (INS-1) with inducible SOCS-3 expression. Subsequently, functional analyses were performed. RESULTS Eighty-two known genes and several expressed sequence tags (ESTs) changed expression level 2.5-fold or more in response to IL-1beta alone. Following 6 h of IL-1beta exposure, 23 transcripts were up-regulated. Of these, several, including all eight transcripts relating to immune/inflammatory response pathways, were suppressed by SOCS-3. Following 24 h of IL-1beta exposure, secondary response genes were detected, affecting metabolism, energy generation, protein synthesis and degradation, growth arrest, and apoptosis. The majority of these changes were prevented by SOCS-3 expression. Multiple IL-1beta-induced NF-kappaB-dependent proapoptotic early response genes were inhibited by SOCS-3 expression, suggesting that SOCS-3 inhibits NF-kappaB-mediated signalling. These observations were experimentally confirmed in functional analyses. CONCLUSIONS/INTERPRETATION This study suggests that there is an unexpected cross-talk between the SOCS/IFN and the IL-1beta pathways of signalling in pancreatic beta cells, which could lead to a novel perspective of blocking two important proapoptotic pathways in pancreatic beta cells by influencing a single signalling molecule, namely SOCS-3.
Collapse
Affiliation(s)
- A E Karlsen
- Steno Diabetes Center, Niels Steensensvej 2, 2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sitko JC, Guevara CI, Cacalano NA. Tyrosine-phosphorylated SOCS3 Interacts with the Nck and Crk-L Adapter Proteins and Regulates Nck Activation. J Biol Chem 2004; 279:37662-9. [PMID: 15173187 DOI: 10.1074/jbc.m404007200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor signal transduction. Although the affect of SOCS proteins on the Jak-STAT pathway has been well characterized, their role in the regulation of other signaling modules is not well understood. In the present study, we demonstrate that SOCS3 physically interacts with the SH2/SH3-containing adapter proteins Nck and Crk-L, which are known to couple activated receptors to multiple downstream signaling pathways and the actin cytoskeleton. Our data show that the SOCS3/Nck and SOCS3/Crk-L interactions depend on tyrosine phosphorylation of SOCS3 Tyr(221) within the conserved SOCS box motif and intact SH2 domains of Nck and Crk-L. Furthermore, SOCS3 Tyr(221) forms a YXXP motif, which is a consensus binding site for the Nck and Crk-L SH2 domains. Expression of SOCS3 in NIH3T3 cells induces constitutive recruitment of a Nck-GFP fusion protein to the plasma membrane and constitutive tyrosine phosphorylation of endogenous Nck. Our findings suggest that SOCS3 regulates multiple cytokine and growth factor-activated signaling pathways by acting as a recruitment factor for adapter proteins.
Collapse
Affiliation(s)
- John C Sitko
- Department of Radiation Oncology, University of California Los Angeles, School of Medicine, Center for Health Sciences, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
26
|
Brelje TC, Stout LE, Bhagroo NV, Sorenson RL. Distinctive roles for prolactin and growth hormone in the activation of signal transducer and activator of transcription 5 in pancreatic islets of langerhans. Endocrinology 2004; 145:4162-75. [PMID: 15142985 DOI: 10.1210/en.2004-0201] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although the beta-cells of the pancreatic islets of Langerhans express both prolactin (PRL) and GH receptors, we have observed that PRL is considerably more effective than GH in the up-regulation of islet function in vitro. This study examined whether differences in the activation of the Janus kinase 2/signal transducer and activator of transcription (STAT) 5 signaling pathway by these closely related receptors may be involved in this disparity. The activation of STAT5B by PRL was biphasic, with an initial peak within 30 min, a nadir between 1 and 3 h, and prolonged activation after 4 h. In contrast, the response to GH was transient for 1 h. The importance of the long-term activation of STAT5B by PRL was supported by the similar dose response curves for STAT5B activation and the PRL-induced increases in insulin secretion and islet cell proliferation. Because the pulsatile secretion of GH affects its actions in other target tissues, the ability of pretreatment with either hormone to affect subsequent stimulation was also examined. Surprisingly, the response to PRL was inhibited by prior exposure for less than 3 h to either PRL or GH and disappeared with a longer pretreatment with either hormone. Similar to other tissues, the response to GH was inhibited by any length of prior exposure to GH. However, pretreatment with PRL had no effect. These experiments are the first demonstration of the transient desensitization of the PRL receptor by either PRL or GH pretreatment in any tissue and the desensitization of GH stimulation in islet cells. These observations provide insight into the mechanisms that regulate the desensitization of these receptors and, more importantly, allow the long-term activation of STAT5B by the PRL receptor. These results may apply to other members of the cytokine superfamily of receptors. We also demonstrate that the increase in islet cell proliferation required continuous stimulation with PRL, whereas the smaller effect with GH occurred with either continuous or pulsatile stimulation. In summary, this study demonstrates that islets are sensitive to the temporal pattern of stimulation by these hormones and provides a new basis for understanding their physiological roles in the regulation of islet function.
Collapse
Affiliation(s)
- T Clark Brelje
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|