1
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
2
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
3
|
Yamamuro T, Kawabata T, Fukuhara A, Saita S, Nakamura S, Takeshita H, Fujiwara M, Enokidani Y, Yoshida G, Tabata K, Hamasaki M, Kuma A, Yamamoto K, Shimomura I, Yoshimori T. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat Commun 2020; 11:4150. [PMID: 32811819 PMCID: PMC7434891 DOI: 10.1038/s41467-020-17985-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
The systemic decline in autophagic activity with age impairs homeostasis in several tissues, leading to age-related diseases. A mechanistic understanding of adipocyte dysfunction with age could help to prevent age-related metabolic disorders, but the role of autophagy in aged adipocytes remains unclear. Here we show that, in contrast to other tissues, aged adipocytes upregulate autophagy due to a decline in the levels of Rubicon, a negative regulator of autophagy. Rubicon knockout in adipocytes causes fat atrophy and hepatic lipid accumulation due to reductions in the expression of adipogenic genes, which can be recovered by activation of PPARγ. SRC-1 and TIF2, coactivators of PPARγ, are degraded by autophagy in a manner that depends on their binding to GABARAP family proteins, and are significantly downregulated in Rubicon-ablated or aged adipocytes. Hence, we propose that age-dependent decline in adipose Rubicon exacerbates metabolic disorders by promoting excess autophagic degradation of SRC-1 and TIF2.
Collapse
Affiliation(s)
- Tadashi Yamamuro
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Kawabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shotaro Saita
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Fujiwara
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Enokidani
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Gota Yoshida
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Abstract
Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Moray J Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
5
|
Liu C, Zhang Y, Zhang K, Bian C, Zhao Y, Zhang J. Expression of estrogen receptors, androgen receptor and steroid receptor coactivator-3 is negatively correlated to the differentiation of astrocytic tumors. Cancer Epidemiol 2014; 38:291-7. [PMID: 24680642 DOI: 10.1016/j.canep.2014.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/25/2014] [Accepted: 03/02/2014] [Indexed: 12/17/2022]
Abstract
Astrocytic tumors are the most common primary brain tumors. It has been reported that androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERβ) and their coactivator SRC-1 and SRC-3 are involved in the regulation of the growth and development of many tumors, but their expression profiles and significances in the astrocytic tumors remain largely unknown. In this study, the expression of AR, ERs, and SRCs, and the possible roles of them in astrocytic neoplasm were evaluated and compared to normal brain tissues by nickel-intensified immunohistochemistry with tissue microarrays. The results showed that there were no age- or gender-differences regarding to the levels of these receptors or coactivators in astrocytic or normal brain tissues. In the high-grade astrocytic tissue, the levels of AR, ERs and SRC-3 were significantly decreased when compared to the low-grade astrocytic tissues, but the levels of SRC-1 remain unchanged. Correlation analysis revealed that the levels of AR, ERs and SRC-3 were negatively correlated to tumor differentiation, and the levels of SRC-3 were positively correlated to that of ERα. Furthermore, the decreased levels of SRC-3 were associated with an increase of ERβ in astrocytic tumors when compared to that of normal brain tissues. These above results indicate a combination of decreased expression of ERs, AR and SRC-3 but not SRC-1 may be involved in the tumorigenesis of gliomas, ERα/SRC-3 axis may play central role in the regulation these tumors.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Yanlei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Kaiyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Matsusue Y, Horii-Hayashi N, Kirita T, Nishi M. Distribution of corticosteroid receptors in mature oligodendrocytes and oligodendrocyte progenitors of the adult mouse brain. J Histochem Cytochem 2013; 62:211-26. [PMID: 24309510 DOI: 10.1369/0022155413517700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of glucocorticoid receptors (GRs) was investigated immunohistochemically in two different lineages of oligodendrocytes, using carbonic anhydrase (CA) II and neuron glial antigen (NG) 2 as markers of mature oligodendrocytes and oligodendrocyte progenitors, respectively. We focused on the gray matter regions, including CA1, CA3 and the dentate gyrus of the hippocampus, the primary somatosensory cortex barrel field and the basolateral amygdala, and the white matter regions, including the corpus callosum, external capsule and fimbria of the hippocampus. More than 80% of CAII-immunoreactive (IR) cells and more than 95% of NG2-IR cells expressed GRs in various regions of the brain. In contrast, neither CAII-IR cells nor NG2-IR cells expressed mineralocorticoid receptors (MRs) in the same regions. The intensity of GR expression was drastically reduced in CA II-IR cells and NG2-IR cells in the same regions in adrenalectomized mice. Finally, steroid receptor co-activator (SRC)-1 and p300, both of which are cofactors for GR, were expressed in the gray and white matter regions in NG2-IR cells, but not in CAII-IR cells. These results suggest that the expression of GRs in oligodendrocytes and their progenitor cells mediates several functions in vivo, including differentiation and myelination, as a major target of glucocorticoids and their cofactors.
Collapse
Affiliation(s)
- Yumiko Matsusue
- Department of Oral and Maxillofacial Surgery, Nara Medical University (YM, TK)
| | | | | | | |
Collapse
|
7
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Shackleford G, Makoukji J, Grenier J, Liere P, Meffre D, Massaad C. Differential regulation of Wnt/beta-catenin signaling by Liver X Receptors in Schwann cells and oligodendrocytes. Biochem Pharmacol 2013; 86:106-14. [DOI: 10.1016/j.bcp.2013.02.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
|
9
|
Slezak M, Korostynski M, Gieryk A, Golda S, Dzbek J, Piechota M, Wlazlo E, Bilecki W, Przewlocki R. Astrocytes are a neural target of morphine action via glucocorticoid receptor-dependent signaling. Glia 2013; 61:623-35. [PMID: 23339081 DOI: 10.1002/glia.22460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 12/05/2012] [Indexed: 12/18/2022]
Abstract
Chronic opioid use leads to the structural reorganization of neuronal networks, involving genetic reprogramming in neurons and glial cells. Our previous in vivo studies have revealed that a significant fraction of the morphine-induced alterations to the striatal transcriptome included glucocorticoid (GC) receptor (GR)-dependent genes. Additional analyses suggested glial cells to be the locus of these changes. In the current study, we aimed to differentiate the direct transcriptional effects of morphine and a GR agonist on primary striatal neurons and astrocytes. Whole-genome transcriptional profiling revealed that while morphine had no significant effect on gene expression in both cell types, dexamethasone significantly altered the transcriptional profile in astrocytes but not neurons. We obtained a complete dataset of genes undergoing the regulation, which includes genes related to glucose metabolism (Pdk4), circadian activity (Per1) and cell differentiation (Sox2). There was also an overlap between morphine-induced transcripts in striatum and GR-dependent transcripts in cultured astrocytes. We further analyzed the regulation of expression of one gene belonging to both groups, serum and GC regulated kinase 1 (Sgk1). We identified two transcriptional variants of Sgk1 that displayed selective GR-dependent upregulation in cultured astrocytes but not neurons. Moreover, these variants were the only two that were found to be upregulated in vivo by morphine in a GR-dependent fashion. Our data suggest that the morphine-induced, GR-dependent component of transcriptome alterations in the striatum is confined to astrocytes. Identification of this mechanism opens new directions for research on the role of astrocytes in the central effects of opioids.
Collapse
Affiliation(s)
- Michal Slezak
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring. Neuroscience 2012; 220:131-41. [DOI: 10.1016/j.neuroscience.2012.06.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/27/2012] [Accepted: 06/13/2012] [Indexed: 11/20/2022]
|
11
|
González-Arenas A, Hansberg-Pastor V, Hernández-Hernández OT, González-García TK, Henderson-Villalpando J, Lemus-Hernández D, Cruz-Barrios A, Rivas-Suárez M, Camacho-Arroyo I. Estradiol increases cell growth in human astrocytoma cell lines through ERα activation and its interaction with SRC-1 and SRC-3 coactivators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:379-86. [DOI: 10.1016/j.bbamcr.2011.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 02/07/2023]
|
12
|
Amazit L, Roseau A, Khan JA, Chauchereau A, Tyagi RK, Loosfelt H, Leclerc P, Lombès M, Guiochon-Mantel A. Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity. Mol Endocrinol 2011; 25:394-408. [PMID: 21273440 PMCID: PMC3320859 DOI: 10.1210/me.2010-0458] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/13/2010] [Indexed: 02/08/2023] Open
Abstract
The progesterone receptor (PR), a ligand-activated transcription factor, recruits the primary coactivator steroid receptor coactivator-1 (SRC-1) gene promoters. It is known that PR transcriptional activity is paradoxically coupled to its ligand-dependent down-regulation. However, despite its importance in PR function, the regulation of SRC-1 expression level during hormonal exposure is poorly understood. Here we report that SRC-1 expression level (but not other p160 family members) is down-regulated by the agonist ligand R5020 in a PR-dependent manner. In contrast, the antagonist RU486 fails to induce down-regulation of the coactivator and impairs PR agonist-dependent degradation of SRC-1. We show that SRC-1 proteolysis is a proteasome- and ubiquitin-mediated process that, predominantly but not exclusively, occurs in the cytoplasmic compartment in which SRC-1 colocalizes with proteasome antigens as demonstrated by confocal imaging. Moreover, SRC-1 was stabilized in the presence of leptomycin B or several proteasomal inhibitors. Two degradation motifs, amino-acids 2-16 corresponding to a PEST motif and amino acids 41-136 located in the basic helix loop helix domain of the coactivator, were identified and shown to control the stability as well as the hormone-dependent down-regulation of the coactivator. SRC-1 degradation is of physiological importance because the two nondegradable mutants that still interacted with PR as demonstrated by coimmunoprecipitation failed to stimulate transcription of exogenous and endogenous target genes, suggesting that concomitant PR/SRC-1 ligand-dependent degradation is a necessary step for PR transactivation activity. Collectively our findings are consistent with the emerging role of proteasome-mediated proteolysis in the gene-regulating process and indicate that the ligand-dependent down-regulation of SRC-1 is critical for PR transcriptional activity.
Collapse
Affiliation(s)
- Larbi Amazit
- Institut National de la Santé et de la Recherche Médicale Unité 693, 63 Rue Gabriel Péri, Le Kremlin-Bicêtre F-94276, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tognoni CM, Chadwick JG, Ackeifi CA, Tetel MJ. Nuclear receptor coactivators are coexpressed with steroid receptors and regulated by estradiol in mouse brain. Neuroendocrinology 2011; 94:49-57. [PMID: 21311177 PMCID: PMC3150972 DOI: 10.1159/000323780] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/18/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS The steroid hormones, including estradiol (E) and progesterone, act in the brain to regulate female reproductive behavior and physiology. These hormones mediate many of their biological effects by binding to their respective intracellular receptors. The receptors for estrogens (ER) and progestins (PR) interact with nuclear receptor coactivators to initiate transcription of steroid-responsive genes. Work from our laboratory and others reveals that nuclear receptor coactivators, including steroid receptor coactivator-1 (SRC-1) and SRC-2, function in brain to modulate ER-mediated induction of the PR gene and hormone-dependent behaviors. In order for steroid receptors and coactivators to function together, both must be expressed in the same cells. METHODS Triple-label immunofluorescence was used to determine if E-induced PR cells also express SRC-1 or SRC-2 in reproductively relevant brain regions of the female mouse. RESULTS The majority of E-induced PR cells in the medial preoptic area (61%), ventromedial nucleus of the hypothalamus (63%) and arcuate nucleus (76%) coexpressed both SRC-1 and SRC-2. A smaller proportion of PR cells expressed either SRC-1 or SRC-2, while a few PR cells expressed neither coactivator. In addition, compared to control animals, 17β-estradiol benzoate (EB) treatment increased SRC-1 levels in the arcuate nucleus, but not the medial preoptic area or the ventromedial nucleus of the hypothalamus. EB did not alter SRC-2 expression in any of the three brain regions analyzed. CONCLUSIONS Taken together, the present findings identify a population of cells in which steroid receptors and nuclear receptor coactivators may interact to modulate steroid sensitivity in brain and regulate hormone-dependent behaviors in female mice. Given that cell culture studies reveal that SRC-1 and SRC-2 can mediate distinct steroid-signaling pathways, the present findings suggest that steroids can produce a variety of complex responses in these specialized brain cells.
Collapse
Affiliation(s)
| | | | | | - Marc J. Tetel
- *Marc J. Tetel, Neuroscience Program, Wellesley College, 106 Central St., Wellesley, MA 02481 (USA), Tel. +1 781 283 3003, E-Mail
| |
Collapse
|
14
|
Yore MA, Im D, Webb LK, Zhao Y, Chadwick JG, Molenda-Figueira HA, Haidacher SJ, Denner L, Tetel MJ. Steroid receptor coactivator-2 expression in brain and physical associations with steroid receptors. Neuroscience 2010; 169:1017-28. [PMID: 20678994 PMCID: PMC2921768 DOI: 10.1016/j.neuroscience.2010.05.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/11/2010] [Accepted: 05/24/2010] [Indexed: 12/18/2022]
Abstract
Estradiol and progesterone bind to their respective receptors in the hypothalamus and hippocampus to influence a variety of behavioral and physiological functions, including reproduction and cognition. Work from our lab and others has shown that the nuclear receptor coactivators, steroid receptor coactivator-1 (SRC-1) and SRC-2, are essential for efficient estrogen receptor (ER) and progestin receptor (PR) transcriptional activity in brain and for hormone-dependent behaviors. While the expression of SRC-1 in brain has been studied extensively, little is known about the expression of SRC-2 in brain. In the present studies, we found that SRC-2 was highly expressed throughout the hippocampus, amygdala and hypothalamus, including the medial preoptic area (MPOA), ventral medial nucleus (VMN), arcuate nucleus (ARC), bed nucleus of the stria terminalis, supraoptic nucleus and suprachiasmatic nucleus. In order for coactivators to function with steroid receptors, they must be expressed in the same cells. Indeed, SRC-2 and ER(alpha) were coexpressed in many cells in the MPOA, VMN and ARC, all brain regions known to be involved in female reproductive behavior and physiology. While in vitro studies indicate that SRC-2 physically associates with ER and PR, very little is known about receptor-coactivator interactions in brain. Therefore, we used pull-down assays to test the hypotheses that SRC-2 from hypothalamic and hippocampal tissue physically associate with ER and PR subtypes in a ligand-dependent manner. SRC-2 from both brain regions interacted with ER(alpha) bound to agonist, but not in the absence of ligand or in the presence of the selective ER modulator, tamoxifen. Analysis by mass spectrometry confirmed these ligand-dependent interactions between ER(alpha) and SRC-2 from brain. In dramatic contrast, SRC-2 from brain showed little to no interaction with ERbeta. Interestingly, SRC-2 from both brain regions interacted with PR-B, but not PR-A, in a ligand-dependent manner. Taken together, these findings reveal that SRC-2 is expressed in brain regions known to mediate a variety of steroid-dependent functions. Furthermore, SRC-2 is expressed in many ER(alpha) containing cells in the hypothalamus. Finally, SRC-2 from brain interacts with ER and PR in a subtype-specific manner, which may contribute to the functional differences of these steroid receptor subtypes in brain.
Collapse
Affiliation(s)
| | - DaEun Im
- Neuroscience Program, Wellesley College, Wellesley, MA 02481
| | - Lena K. Webb
- Neuroscience Program, Skidmore College, Saratoga Springs, NY 12866
| | - Yingxin Zhao
- Department of Internal Medicine, Stark Diabetes Center, McCoy Stem Cells and Diabetes Mass Spectrometry Research Laboratory, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | | | - Heather A. Molenda-Figueira
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003
| | - Sigmund J. Haidacher
- Department of Internal Medicine, Stark Diabetes Center, McCoy Stem Cells and Diabetes Mass Spectrometry Research Laboratory, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Larry Denner
- Department of Internal Medicine, Stark Diabetes Center, McCoy Stem Cells and Diabetes Mass Spectrometry Research Laboratory, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA 02481
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
15
|
Hernández-Hernández OT, Rodríguez-Dorantes M, González-Arenas A, Camacho-Arroyo I. Progesterone and estradiol effects on SRC-1 and SRC-3 expression in human astrocytoma cell lines. Endocrine 2010; 37:194-200. [PMID: 20963570 DOI: 10.1007/s12020-009-9288-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/16/2009] [Indexed: 01/09/2023]
Abstract
Progesterone (P(4)) and estradiol (E(2)) regulate many cell functions through their interaction with specific intracellular receptors, which require the participation of coactivators such as SRC-1 and SRC-3 for enhancing their transcriptional activity. Coactivator expression is altered in many cancers and in some of them their expression is regulated by P(4) and E(2). In this study, we determined progesterone and estrogen receptor isoform expression in two human astrocytoma cell lines with different evolution grade (U373, grade III; and D54, grade IV) by Western Blot. We studied the role of P(4) and E(2) on SRC-1 and SRC-3 expression in U373 and D54 cell lines by RT-PCR and Western blot. In U373 cells, P(4) did not modify SRC-1 expression, but in D54 cells it increased SRC-1 mRNA expression after 12 h of treatment without significant changes after 24 h. P(4) also increased SRC-1 protein content after 24 h, but reduced it after 48 h. E(2) did not change SRC-1 expression in any cell line. SRC-3 expression was not regulated by either E(2) or P(4). Our data suggest that SRC-1 and SRC-3 expression is differentially regulated by sex steroid hormones in astrocytomas and that P(4) regulates SRC-1 expression depending on the evolution grade of human astrocytoma cells.
Collapse
Affiliation(s)
- Olivia Tania Hernández-Hernández
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Coyoacán, Mexico DF, Mexico
| | | | | | | |
Collapse
|
16
|
Tetel MJ. Modulation of steroid action in the central and peripheral nervous systems by nuclear receptor coactivators. Psychoneuroendocrinology 2009; 34 Suppl 1:S9-19. [PMID: 19541426 PMCID: PMC2795054 DOI: 10.1016/j.psyneuen.2009.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/08/2009] [Accepted: 05/10/2009] [Indexed: 01/05/2023]
Abstract
Steroid hormones act in the central and peripheral nervous systems to regulate a variety of functions, including development, cell proliferation, cognition and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the nuclear receptor superfamily of transcriptional activators. A variety of cell culture studies reveal that nuclear receptor coactivators are recruited to the steroid receptor complex and are critical in modulating steroid-dependent transcription. Thus, in addition to the availability of the hormone and its receptor, the expression of nuclear receptor coactivators is essential for modulating steroid receptor-mediated transcription. This review will discuss the significance of nuclear receptor coactivators in modulating steroid-dependent gene expression in the central and peripheral nervous systems and the regulation of behavior.
Collapse
Affiliation(s)
- Marc J. Tetel
- Neuroscience Program, Wellesley College, 106 Central St., Wellesley, MA 02481
| |
Collapse
|
17
|
Trousson A, Makoukji J, Petit PX, Bernard S, Slomianny C, Schumacher M, Massaad C. Cross-talk between oxysterols and glucocorticoids: differential regulation of secreted phopholipase A2 and impact on oligodendrocyte death. PLoS One 2009; 4:e8080. [PMID: 19956653 PMCID: PMC2779104 DOI: 10.1371/journal.pone.0008080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
Background Oxysterols are oxidized forms of cholesterol. They have been shown to be implicated in cholesterol turnover, inflammation and in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. Glial cells are targets of oxysterols: they inhibit astrocyte proliferation after brain injury, and we have previously shown that 25-hydroxycholesterol (25OH) provokes oligodendrocyte apoptosis and stimulates the expression of sPLA2 type IIA (sPLA2-IIA), which has a protective effect. Methodology/Principal Findings As glucocorticoids are well-known for their anti-inflammatory effects, our aim was to understand their direct effects on oxysterol-induced responses in oligodendrocytes (sPLA2-IIA stimulation and apoptosis). We demonstrate that the synthetic glucocorticoid dexamethasone (Dex) abolishes the stimulation of sPLA2-IIA by 25-hydroxycholesterol (25-OH). This inhibition is mediated by the glucocorticoid receptor (GR), which decreases the expression of the oxysterol receptor Pregnane X Receptor (PXR) and interferes with oxysterol signaling by recruiting a common limiting coactivator PGC1α. Consistent with the finding that sPLA2-IIA can partially protect oligodendrocytes against oxysterol-triggered apoptosis, we demonstrate here that the inhibition of sPLA2-IIA by Dex accelerates the apoptotic phenomenon, leading to a shift towards necrosis. We have shown by atomic force microscopy and electron microscopy that 25-OH and Dex alters oligodendrocyte shape and disorganizes the cytoplasm. Conclusions/Significance Our results provide a new understanding of the cross-talk between oxysterol and glucocorticoid signaling pathways and their respective roles in apoptosis and oligodendrocyte functions.
Collapse
Affiliation(s)
- Amalia Trousson
- UMR788, Inserm and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre, France
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
| | - Joelle Makoukji
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
| | - Patrice X. Petit
- Cancer, Apoptosis, and Mitochondria Team, UMR8104 CNRS, Institut Cochin, Paris, France
| | - Sophie Bernard
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
| | | | - Michael Schumacher
- UMR788, Inserm and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre, France
| | - Charbel Massaad
- UMR788, Inserm and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre, France
- UPR 2228, CNRS and University Paris Descartes, IFR95, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol 2009; 30:328-42. [PMID: 19401208 PMCID: PMC2720417 DOI: 10.1016/j.yfrne.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Collapse
|
19
|
Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proc Natl Acad Sci U S A 2009; 106:8038-42. [PMID: 19416907 DOI: 10.1073/pnas.0812062106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adaptation to stress in vertebrates occurs via activation of hormonal and neuronal signaling cascades in which corticotropin-releasing hormone (CRH) plays a central role. Expression of brain CRH is subject to strong, brain-region specific regulation by glucocorticoid hormones and neurogenic intracellular signals. We hypothesized that Steroid Receptor Coactivator 1 (SRC-1), a transcriptional coregulator of the glucocorticoid receptor, is involved in the sensitivity of CRH regulation by stress-related factors. In the brains of SRC-1 knockout mice we found basal CRH mRNA levels to be lower in the central nucleus of the amygdala. Hypothalamic CRH up-regulation after chronic (but not acute) stress, as well as region-dependent up- and down-regulation induced by synthetic glucocorticoids, were significantly attenuated compared with wild type. The impaired induction of the crh gene by neurogenic signals was corroborated in AtT-20 cells, where siRNA and overexpression experiments showed that SRC-1 is necessary for full induction of a CRH promoter reporter gene by forskolin, suggestive of involvement of transcription factor CREB. In conclusion, SRC-1 is involved in positive and negative regulation of the crh gene, and an important factor for the adaptive capacity of stress.
Collapse
|
20
|
Gross KL, Lu NZ, Cidlowski JA. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol Cell Endocrinol 2009; 300:7-16. [PMID: 19000736 PMCID: PMC2674248 DOI: 10.1016/j.mce.2008.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptor agonists are mainstays in the treatment of various malignancies of hematological origin. Glucocorticoids are included in therapeutic regimens for their ability to stimulate intracellular signal transduction cascades that culminate in alterations in the rate of transcription of genes involved in cell cycle progression and programmed cell death. Unfortunately, subpopulations of patients undergoing systemic glucocorticoid therapy for these diseases are or become insensitive to glucocorticoid-induced cell death, a phenomenon recognized as glucocorticoid resistance. Multiple factors contributing to glucocorticoid resistance have been identified. Here we summarize several of these mechanisms and describe the processes involved in generating a host of glucocorticoid receptor isoforms from one gene. The potential role of glucocorticoid receptor isoforms in determining cellular responsiveness to glucocorticoids is emphasized.
Collapse
Affiliation(s)
| | | | - John A. Cidlowski
- Corresponding Author. Mailing address: National Institute of Environmental Health Sciences, P.O. Box 12233, MD F3-07, Research Triangle Park, NC 27709, Phone: 919-541-1564. Fax: 919-541-1367. E-mail:
| |
Collapse
|
21
|
Abstract
Steroid hormones act both in the brain and throughout the body to influence behaviour and physiology. Many of these effects of steroid hormones are elicited by transcriptional events mediated by their respective receptors. A variety of cell culture studies reveal that nuclear receptor coactivators are critical for modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coactivators are essential for steroid-dependent transactivation of genes. This review discusses the mounting evidence indicating that nuclear receptor coactivators are critical for modulating steroid hormone action in the brain and in the regulation of behaviour.
Collapse
Affiliation(s)
- M J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA.
| |
Collapse
|
22
|
Trousson A, Bernard S, Petit PX, Liere P, Pianos A, El Hadri K, Lobaccaro JMA, Ghandour MS, Raymondjean M, Schumacher M, Massaad C. 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J Neurochem 2009; 109:945-58. [PMID: 19250336 DOI: 10.1111/j.1471-4159.2009.06009.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In several neurodegenerative diseases of the CNS, oligodendrocytes are implicated in an inflammatory process associated with altered levels of oxysterols and inflammatory enzymes such as secreted phospholipase A2 (sPLA2). In view of the scarce literature related to this topic, we investigated oxysterol effects on these myelinating glial cells. Natural oxysterol 25-hydroxycholesterol (25-OH; 1 and 10 microM) altered oligodendrocyte cell line (158N) morphology and triggered apoptosis (75% of apoptosis after 72 h). These effects were mimicked by 22(S)-OH (1 and 10 microM) which does not activate liver X receptor (LXR) but not by a synthetic LXR ligand (T0901317). Therefore, oxysterol-induced apoptosis appears to be independent of LXR. Interestingly, sPLA2 type IIA (sPLA2-IIA) over-expression partially rescued 158N cells from oxysterol-induced apoptosis. In fact, 25-OH, 24(S)-OH, and T0901317 stimulated sPLA2-IIA promoter and sPLA2 activity in oligodendrocyte cell line. Accordingly, administration of T0901317 to mice enhanced sPLA2 activity in brain extracts by twofold. Short interfering RNA strategy allowed to establish that stimulation of sPLA2-IIA is mediated by pregnane X receptor (PXR) at high oxysterol concentration (10 microM) and by LXR beta at basal oxysterol concentration. Finally, GC coupled to mass spectrometry established that oligodendrocytes contain oxysterols and express their biosynthetic enzymes, suggesting that they may act through autocrine/paracrine mechanism. Our results show the diversity of oxysterol signalling in the CNS and highlight the positive effects of the LXR/PXR pathway which may open new perspectives in the treatment of demyelinating and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amalia Trousson
- UMR788, INSERM and University Paris-Sud 11, IFR 93, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun Y, Tao YG, Kagan BL, He Y, Simons SS. Modulation of transcription parameters in glucocorticoid receptor-mediated repression. Mol Cell Endocrinol 2008; 295:59-69. [PMID: 18583028 PMCID: PMC2662735 DOI: 10.1016/j.mce.2008.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 12/25/2022]
Abstract
Glucocorticoid receptors (GRs) affect both gene induction and gene repression. The disparities of receptor binding to DNA and increased vs. decreased gene expression have suggested significant mechanistic differences between GR-mediated induction and repression. Numerous transcription factors are known to modulate three parameters of gene induction: the total activity (Vmax) and position of the dose-response curve with glucocorticoids (EC50) and the percent partial agonist activity with antiglucocorticoids. We have examined the effects on GR-mediated repression of five modulators (coactivators TIF2 [GRIP1, SRC-2] and SRC-1, corepressor SMRT, and comodulators STAMP and Ubc9), a glucocorticoid steroid (deacylcortivazol [DAC]) of very different structure, and an inhibitor of histone deacetylation (trichostatin A [TSA]). These factors interact with different domains of GR and thus are sensitive topological probes of GR action. These agents altered the Vmax, EC50, and percent partial agonist activity of endogenous and exogenous repressed genes similarly to that previously observed for GR-regulated gene induction. Collectively, these results suggest that GR-mediated induction and repression share many of the same molecular interactions and that the causes for different levels of gene transcription arise from more distal downstream steps.
Collapse
Affiliation(s)
| | | | | | | | - S. Stoney Simons
- Address correspondence to Dr. S. Stoney Simons, Jr., Bldg. 10, Room 8N-307B, NIDDK/CEB, NIH, Bethesda, MD 20892-1772 (Phone: 301-496-6796; FAX: 301-402-3572; e-mail: )
| |
Collapse
|
24
|
van der Laan S, Lachize SB, Vreugdenhil E, de Kloet ER, Meijer OC. Nuclear receptor coregulators differentially modulate induction and glucocorticoid receptor-mediated repression of the corticotropin-releasing hormone gene. Endocrinology 2008; 149:725-32. [PMID: 18006628 DOI: 10.1210/en.2007-1234] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nuclear receptor coregulators are proteins that modulate the transcriptional activity of steroid receptors and may explain cell-specific effects of glucocorticoid receptor action. Based on the uneven distribution of a number of coregulators in CRH-expressing cells in the hypothalamus of the rat brain, we tested the hypothesis that these proteins are involved as mediators in the glucocorticoid-induced repression of the CRH promoter. Therefore, we assessed the role of coregulator proteins on both induction and repression of CRH in the AtT-20 cell line, a model system for CRH repression by glucocorticoids. The steroid receptor coactivator 1a (SRC1a), SRC-1e, nuclear corepressor (N-CoR), and silencing mediator of the retinoid and thyroid hormone receptor (SMRT) were studied in this system. We show that the concentration of glucocorticoid receptor and the type of ligand, i.e. corticosterone or dexamethasone, determines the repression. Furthermore, overexpression of SRC1a, but not SRC1e, increased both efficacy and potency of the glucocorticoid receptor-mediated repression of the forskolin-induced CRH promoter. Unexpectedly, cotransfection of the corepressors N-CoR and SMRT did not affect the corticosterone-dependent repression but resulted in a marked decrease of the forskolin stimulation of the CRH gene. Altogether, our data demonstrate that 1) the concentration of the receptor, 2) the type of ligand, and 3) the coregulator recruited all determine the expression and the repression of the CRH gene. We conclude that modulation of coregulator activity may play a role in the control of the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- S van der Laan
- Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research and Leiden University Medical Centre, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Romeo RD, Ali FS, Karatsoreos IN, Bellani R, Chhua N, Vernov M, McEwen BS. Glucocorticoid receptor mRNA expression in the hippocampal formation of male rats before and after pubertal development in response to acute or repeated stress. Neuroendocrinology 2008; 87:160-7. [PMID: 17923777 DOI: 10.1159/000109710] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 09/13/2007] [Indexed: 12/16/2022]
Abstract
Numerous studies have established that adolescence is marked by substantial changes in stress reactivity and hippocampal function. Glucocorticoid receptors (GRs) in the hippocampus are imperative in corticosterone-dependent gene transcription when glucocorticoid levels are relatively high, such as during periods of stress. As reported previously, in reaction to acute stress, prepubertal animals show a significantly more protracted corticosterone response compared to adults. Chronic stress, however, results in a higher peak response, but a faster return to baseline in prepubertal compared to adult animals. Thus, depending on the developmental stage and experience of the animal, the hippocampus is exposed to different concentrations and durations of corticosterone. The present set of experiments assessed the effects of acute or repeated stress on GR mRNA expression in the dorsal and ventral hippocampal formation either before or after pubertal maturation in male rats. We found that acute stress results in a significant decrease in GR mRNA in the CA1 pyramidal cell layer and dentate gyrus in the dorsal and ventral hippocampal formation of both prepubertal and adult males. In response to repeated stress, we found no differences in GR expression in either the dorsal or ventral hippocampus. Thus, despite the dramatic differences in corticosterone concentration following stress at these two developmental stages, the stress-induced changes in GR expression in the hippocampus before and after pubertal maturation were more similar than different. These data point to a dissociation between differential stress-induced corticosterone responses and regulation of hippocampal GR levels in prepubertal and adult animals.
Collapse
Affiliation(s)
- Russell D Romeo
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Schumacher M, Guennoun R, Stein DG, De Nicola AF. Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116:77-106. [PMID: 17659348 DOI: 10.1016/j.pharmthera.2007.06.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Progesterone and its metabolites promote the viability of neurons in the brain and spinal cord. Their neuroprotective effects have been documented in different lesion models, including traumatic brain injury (TBI), experimentally induced ischemia, spinal cord lesions and a genetic model of motoneuron disease. Progesterone plays an important role in developmental myelination and in myelin repair, and the aging nervous system appears to remain sensitive to some of progesterone's beneficial effects. Thus, the hormone may promote neuroregeneration by several different actions by reducing inflammation, swelling and apoptosis, thereby increasing the survival of neurons, and by promoting the formation of new myelin sheaths. Recognition of the important pleiotropic effects of progesterone opens novel perspectives for the treatment of brain lesions and diseases of the nervous system. Over the last decade, there have been a growing number of studies showing that exogenous administration of progesterone or some of its metabolites can be successfully used to treat traumatic brain and spinal cord injury, as well as ischemic stroke. Progesterone can also be synthesized by neurons and by glial cells within the nervous system. This finding opens the way for a promising therapeutic strategy, the use of pharmacological agents, such as ligands of the translocator protein (18 kDa) (TSPO; the former peripheral benzodiazepine receptor or PBR), to locally increase the synthesis of steroids with neuroprotective and neuroregenerative properties. A concept is emerging that progesterone may exert different actions and use different signaling mechanisms in normal and injured neural tissue.
Collapse
|
27
|
Amazit L, Pasini L, Szafran AT, Berno V, Wu RC, Mielke M, Jones ED, Mancini MG, Hinojos CA, O'Malley BW, Mancini MA. Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol Cell Biol 2007; 27:6913-32. [PMID: 17646391 PMCID: PMC2099228 DOI: 10.1128/mcb.01695-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The steroid receptor coactivator 3 gene (SRC-3) (AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family transcription coactivator and a known oncogene. Despite its importance, the functional regulation of SRC-3 remains poorly understood within a cellular context. Using a novel combination of live-cell, high-throughput, and fluorescent microscopy, we report SRC-3 to be a nucleocytoplasmic shuttling protein whose intracellular mobility, solubility, and cellular localization are regulated by phosphorylation and estrogen receptor alpha (ERalpha) interactions. We show that both chemical inhibition and small interfering RNA reduction of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by epidermal growth factor signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known participants in the phosphocode that regulates SRC-3 activity. Accordingly, the cytoplasmic localization of a nonphosphorylatable SRC-3 mutant further supported these results. In the presence of ERalpha, U0126 also dramatically reduces (i) ligand-dependent colocalization of SRC-3 and ERalpha, (ii) the formation of ER-SRC-3 complexes in cell lysates, and (iii) SRC-3 targeting to a visible, ERalpha-occupied and -regulated prolactin promoter array. Taken together, these results indicate that phosphorylation coordinates SRC-3 coactivator function by linking the probabilistic formation of transient nuclear receptor-coactivator complexes with its molecular dynamics and cellular compartmentalization. Technically and conceptually, these findings have a new and broad impact upon evaluating mechanisms of action of gene regulators at a cellular system level.
Collapse
Affiliation(s)
- Larbi Amazit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007; 28:387-439. [PMID: 17431228 DOI: 10.1210/er.2006-0050] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.
Collapse
Affiliation(s)
- Michael Schumacher
- INSERM UMR 788, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fonte C, Trousson A, Grenier J, Schumacher M, Massaad C. Opposite effects of CBP and p300 in glucocorticoid signaling in astrocytes. J Steroid Biochem Mol Biol 2007; 104:220-7. [PMID: 17475479 DOI: 10.1016/j.jsbmb.2007.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the nervous system, glucocorticoid hormones play a major role during development, and they continue to affect functional and structural plasticity throughout life. Glucocorticoid actions are mediated by their cognate nuclear receptor, the glucocorticoid receptor (GR). The transcriptional activity of the GR is enhanced by the recruitment of one of the transcriptional coactivators of the p160 family (SRCs), which are a docking platform for secondary coactivators like CBP, or its close homologue p300. Here, we investigated the implication of CBP and p300 coactivators in glial cells of the central and peripheral nervous system, namely in primary cultures of astrocytes and in Schwann cells. We show that both coregulators behave differently in either cell type. CBP enhances GR transcriptional activation in astrocytes, and has no effect in Schwann cells, whereas p300 exerts an inhibitory effect in both glial cells. Studies with p300 deletion mutants show that the repressive capacity of p300 is related to its acetyltransferase activity. This work shows striking differences between CBP and p300 actions in astrocytes. Moreover, in astrocytes the opposite effects of CBP and p300 could lead to a balance in the transactivation potency of the GR, in order to fine tune the action of glucocorticoids.
Collapse
Affiliation(s)
- Cosima Fonte
- INSERM UMR788, University Paris-Sud (Paris XI), 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cedex, France
| | | | | | | | | |
Collapse
|
30
|
Trousson A, Grenier J, Fonte C, Massaad-Massade L, Schumacher M, Massaad C. Recruitment of the p160 coactivators by the glucocorticoid receptor: dependence on the promoter context and cell type but not hypoxic conditions. J Steroid Biochem Mol Biol 2007; 104:305-11. [PMID: 17481888 DOI: 10.1016/j.jsbmb.2007.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the nervous system, glucocorticoids exert beneficial or noxious effects, depending on their concentration and time-exposure. They act via the glucocorticoid receptor (GR) which recruits the p160 coactivators (SRC-1, SRC-2 and SRC-3). It was often shown that the three SRCs are interchangeable. The aim of the present study was to evaluate if the GR-SRCs interactions are dependent on several parameters like the target promoter structure, cell type or exogenous stressful parameters like hypoxia. We investigated the GR-SRCs interactions in two glial cells: astrocytes for the central nervous system and Schwann cells for the peripheral nervous system. We have shown by performing functional studies (overexpression and siRNA knock-down) that the recruitment of the three p160 by the GR is promoter-dependent and cell-specific. Moreover, we have shown that hypoxia (5% of oxygen) enhanced GR transactivation in both glial cells. Although hypoxia enhanced GR transactivation, it did not alter the interactions between the GR and the three p160s. Finally, we have shown that the potentiation of GR transactivation by hypoxia is due to an increase of the GR transcripts in Schwann cells but not in astrocytes. Altogether, these results reveal that the p160s are not interchangeable and that their recruitment by the GR is a multiparametric event.
Collapse
Affiliation(s)
- Amalia Trousson
- Inserm UMR788, Université Paris-Sud 11, 80, rue du Général Leclerc 94276 Le Kremlin-Bicêtre Cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Tetel MJ, Siegal NK, Murphy SD. Cells in behaviourally relevant brain regions coexpress nuclear receptor coactivators and ovarian steroid receptors. J Neuroendocrinol 2007; 19:262-71. [PMID: 17244199 PMCID: PMC2692344 DOI: 10.1111/j.1365-2826.2007.01526.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oestradiol and progesterone act in the brain to elicit profound effects on behaviour and physiology. One physiological function of oestradiol is the induction of progesterone receptor (PR) expression in a variety of behaviourally relevant brain regions, including the ventromedial nucleus of the hypothalamus (VMN), the medial preoptic nucleus of the preoptic area (MPOA), the arcuate nucleus (ARC) and the medial central grey (MCG). Ligand-dependent transcriptional activity of steroid receptors, including oestrogen receptors (ER) and Pr, is dramatically influenced by nuclear receptor coactivators. In previous studies, we have found that two of these nuclear receptor coactivators, steroid receptor coactivator-1 (SRC-1) and CREB-binding protein (CBP), are important in ER-mediated induction of PR in the VMN and in steroid-dependent behaviours. For nuclear receptor coactivators to function in hormone-dependent transcription in the brain and regulate behaviour, both receptor and coactivator must be expressed in the same cell. In the present study, we used a dual-label immunohistochemical technique to investigate if individual cells in behaviourally relevant brain regions coexpress nuclear receptor coactivators and steroid receptors. Confocal analysis revealed that in oestrogen-primed rats, most of the E-induced PR cells in the VMN (89.6%), MPOA (63%), ARC (82.6%), and many in the MCG (39%), also express SRC-1. In addition, the majority of the cells containing E-induced PR in the VMN (78.3%), MPOA (83.1%), ARC (83.6%), and MCG (60%) also express CBP. These results, taken together with the findings that virtually all oestradiol-induced PR containing cells in the brain express ER, suggest that these neurones represent sites of functional interaction of nuclear receptor coactivators with ovarian steroid receptors in the brain. The present findings provide neuroanatomical evidence that nuclear receptor coactivators are integral in mediating steroid hormone action in behaviourally relevant brain regions.
Collapse
Affiliation(s)
- M J Tetel
- Department of Biological Sciences and Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA.
| | | | | |
Collapse
|
32
|
Abstract
Hormonal and locally produced steroids act in the nervous system as neuroendocrine regulators, as trophic factors and as neuromodulators and have a major impact on neural development and function. Glial cells play a prominent role in the local production of steroids and in the mediation of steroid effects on neurons and other glial cells. In this review, we examine the role of glia in the synthesis and metabolism of steroids and the functional implications of glial steroidogenesis. We analyze the mechanisms of steroid signaling on glia, including the role of nuclear receptors and the mechanisms of membrane and cytoplasmic signaling mediated by changes in intracellular calcium levels and activation of signaling kinases. Effects of steroids on functional parameters of glia, such as proliferation, myelin formation, metabolism, cytoskeletal reorganization, and gliosis are also reviewed, as well as the implications of steroid actions on glia for the regulation of synaptic function and connectivity, the regulation of neuroendocrine events, and the response of neural tissue to injury.
Collapse
|
33
|
Groyer G, Eychenne B, Girard C, Rajkowski K, Schumacher M, Cadepond F. Expression and functional state of the corticosteroid receptors and 11 beta-hydroxysteroid dehydrogenase type 2 in Schwann cells. Endocrinology 2006; 147:4339-50. [PMID: 16763064 DOI: 10.1210/en.2005-1625] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To investigate the role of steroid receptors in mediating the reported effects of steroids on Schwann cell (SC) myelination and growth, we determined mRNA contents and transcriptional activities of the corticosteroid (glucocorticosteroid and mineralocorticosteroid) receptors (GR and MR) and sex steroid (progesterone, androgen, and estrogen alpha and beta) receptors in rat SC cultured under proliferative (in the presence of insulin and forskolin, which induces a high intracellular cAMP content) and quiescent conditions. We found no or very low expression and activity of the sex steroid receptors, as shown by mRNA concentrations determined with real-time PCR and transcriptional activities using transient expression of reporter plasmids in SC. These data and binding studies in SC lines demonstrated that the levels of the sex steroid receptors were the limiting factors. GR was clearly expressed (approximately 8000 sequences/ng total RNA) and functional. No significant modification in GR mRNA levels was observed, but an increase in transcriptional efficiency was recorded in proliferating cells compared with quiescent cells. MR was also significantly expressed at the mRNA level (approximately 450 sequences/ng total RNA) under the two culture conditions. No MR transcriptional activity was observed in SC, but a low specific binding of aldosterone was detected in SC lines. 11 beta-Hydroxysteroid-dehydrogenase type 2 (HSD2), an enzyme that inactivates glucocorticoids, was strongly expressed and active in quiescent SC, although in proliferating cells, HSD2 exhibited a strong decrease in activity and mRNA concentration. These data support a physiological role for HSD2 regulation of glucocorticosteroid concentrations in nerve SC.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics
- 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism
- Animals
- Cell Division
- Cells, Cultured
- Colforsin/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Genes, Reporter/genetics
- Glucocorticoids/pharmacology
- Gonadal Steroid Hormones/metabolism
- Insulin/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Schwann Cells/chemistry
- Schwann Cells/cytology
- Schwann Cells/metabolism
- Sciatic Nerve/cytology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Ghislaine Groyer
- Unité Mixte de Recherche 788, Institut National de la Santé et de la Recherche Médicale and University Paris-Sud 11, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
34
|
van Gemert NG, Meijer OC, Morsink MC, Joëls M. Effect of brief corticosterone administration on SGK1 and RGS4 mRNA expression in rat hippocampus. Stress 2006; 9:165-70. [PMID: 17060050 DOI: 10.1080/10253890600966169] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Acute stress and corticosterone enhance 5-HT1A receptor-mediated responses in rat hippocampal CA1 cells within 1-2 h, through a process involving transcriptional regulation of unknown genes. Earlier studies showed that regulation of the 5-HT1A receptor gene cannot explain the functional effects. We here tested the hypothesis that corticosterone targets genes encoding RGS4 or SGK1, which can both affect the 5-HT1A receptor associated Kir channel, thus affecting 5-HT1A receptor function. To this end, the effect of a single corticosterone injection on hippocampal expression of RGS4 and SGK1 mRNAs, measured by in situ hybridization, was studied. Expression of RGS4 or SGK1 mRNA was not affected by the corticosterone injection, neither in the CA1 area nor in other hippocampal subregions. Strikingly, SGK1 mRNA expression was strongly up-regulated in the corpus callosum. We reject, however, the hypothesis that the effect of corticosterone on 5-HT1A responsiveness is mediated via altered RGS4 or SGK1 mRNA expression.
Collapse
Affiliation(s)
- Neeltje G van Gemert
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Grenier J, Trousson A, Fonte C, Schumacher M, Massaad C. Hasard ou connivence : le récepteur des glucocorticoïdes et ses coactivateurs au bord de la crise de nerfs. Med Sci (Paris) 2006; 22:16-8. [PMID: 16386211 DOI: 10.1051/medsci/200622116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Julien Grenier
- Inserm UMR 488, Faculté de médecine Paris-Sud, le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|