1
|
Wu L, Lan D, Sun B, Su R, Pei F, Kuang Z, Su Y, Lin S, Wang X, Zhang S, Chen X, Jia J, Zeng C. Luoshi Neiyi Prescription inhibits estradiol synthesis and inflammation in endometriosis through the HIF1A/EZH2/SF-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118659. [PMID: 39098622 DOI: 10.1016/j.jep.2024.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endometriosis (EMS) is a common gynecological disease that causes dysmenorrhea, chronic pelvic pain and infertility. Luoshi Neiyi Prescription (LSNYP), a traditional Chinese medicine (TCM) formula, is used to relieve EMS in the clinic. AIMS This study aimed to examine the active components of LSNYP and the possible mechanism involved in its treatment of EMS. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was used to identify the chemical components of LSNYP. Human primary ectopic endometrial stromal cells (ecESCs) and eutopic endometrial stromal cells (euESCs) were isolated, and the expression levels of hypoxia inducible factor 1A (HIF1A), enhancer of zeste homolog 2 (EZH2) and steroidogenic factor 1 (SF-1) were detected by immunofluorescence and qPCR. Cobalt chloride (CoCl2) was utilized to construct an in vitro hypoxic environment, and lentiviruses were engineered to downregulate HIF1A and EZH2 and upregulate EZH2. Subsequently, the expression levels of HIF1A, EZH2, and SF-1 were measured using qPCR or western blotting. The binding of EZH2 to the SF-1 locus in ESCs was examined via ChIP. Furthermore, the effects of LSNYP on the HIF1A/EZH2/SF-1 pathway were evaluated both in vitro and in vivo. RESULTS A total of 185 components were identified in LSNYP. The protein and gene expression levels of HIF1A and SF-1 were increased, whereas those of EZH2 were decreased in ecESCs. After treating euESCs with 50 μmol L-1 CoCl2 for 24 h, cell viability and estradiol (E2) production were enhanced. Hypoxia decreased EZH2 protein expression, while si-HIF1A increased it. SF-1 was increased when EZH2 was downregulated in normal and hypoxic environments, whereas the overexpression of EZH2 led to a decrease in SF-1 expression. ChIP revealed that hypoxia reduced EZH2 binding to the SF-1 locus in euESCs. In vitro, LSNYP-containing serum decreased E2 and prostaglandin E2 (PGE2) production, inhibited cell proliferation and invasion, and reduced the expression of HIF1A, SF-1, steroidogenic acute regulatory protein (StAR), and aromatase cytochrome P450 (P450arom). In vivo, LSNYP suppressed inflammation and adhesion and inhibited the HIF1A/EZH2/SF-1 pathway in endometriotic tissues. CONCLUSIONS LSNYP may exert pharmacological effects on EMS by inhibiting E2 synthesis and inflammation through regulation of the HIF1A/EZH2/SF-1 pathway. These results suggest that LSNYP may be a promising candidate for the treatment of EMS.
Collapse
Affiliation(s)
- Lizheng Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Dantong Lan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rui Su
- Department of Gynecology, Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong, 510801, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Zijun Kuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yixuan Su
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xuanyin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Siyuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
2
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Rethinking the pathogenesis of endometriosis: Complex interactions of genomic, epigenetic, and environmental factors. J Obstet Gynaecol Res 2024; 50:1771-1784. [PMID: 39293995 DOI: 10.1111/jog.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
AIM Endometriosis is a complex, multifactorial disease. Recent advances in molecular biology underscore that somatic mutations within the epithelial component of the normal endometrium, alongside aberrant epigenetic alterations within endometrial stromal cells, may serve as stimulators for the proliferation of endometriotic tissue within the peritoneal cavity. Nevertheless, pivotal inquiries persist: the deterministic factors driving endometriosis development in certain women while sparing others, notwithstanding comparable experiences of retrograde menstruation. Within this review, we endeavor to synopsize the current understanding of diverse pathophysiologic mechanisms underlying the initiation and progression of endometriosis and delineate avenues for future research. METHODS A literature search without time restriction was conducted utilizing PubMed and Google Scholar. RESULTS Given that aberrant clonal expansion stemming from cancer-associated mutations is common in normal endometrial tissue, only endometrial cells harboring mutations imparting proliferative advantages may be selected for survival outside the uterus. Endometriotic cells capable of engendering metabolic plasticity and modulating mitochondrial dynamics, thereby orchestrating responses to hypoxia, oxidative stress, inflammation, hormonal stimuli, and immune surveillance, and adeptly acclimating to their harsh surroundings, stand a chance at viability. CONCLUSION The genesis of endometriosis appears to reflect the evolutionary principles of mutation, selection, clonal expansion, and adaptation to the environment.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| |
Collapse
|
3
|
Deng N, Li G, Zhang L, Wang P, Liu M, He B, Tang Y, Cai H, Lu J, Wang H, Deng W, Bao H, Kong S. H3K27me3 timely dictates uterine epithelial transcriptome remodeling and thus transformation essential for normal embryo implantation. Cell Death Differ 2024; 31:1013-1028. [PMID: 38698061 PMCID: PMC11303564 DOI: 10.1038/s41418-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Uterine luminal epithelia (LE), the first layer contacting with the blastocyst, acquire receptivity for normal embryo implantation. Besides the well-accepted transcriptional regulation dominated by ovarian estrogen and progesterone for receptivity establishment, the involvement of epigenetic mechanisms remains elusive. This study systematically profiles the transcriptome and genome-wide H3K27me3 distribution in the LE throughout the preimplantation. Combining genetic and pharmacological approaches targeting the PRC2 core enzyme Ezh1/2, we demonstrate that the defective remodeling of H3K27me3 in the preimplantation stage disrupts the differentiation of LE, and derails uterine receptivity, resulting in implantation failure. Specifically, crucial epithelial genes, Pgr, Gata2, and Sgk1, are transcriptionally silenced through de novo deposition of H3K27me3 for LE transformation, and their sustained expression in the absence of H3K27me3 synergistically confines the nuclear translocation of FOXO1. Further functional studies identify several actin-associated genes, including Arpin, Tmod1, and Pdlim2, as novel direct targets of H3K27me3. Their aberrantly elevated expression impedes the morphological remodeling of LE, a hindrance alleviated by treatment with cytochalasin D which depolymerizes F-actin. Collectively, this study uncovers a previously unappreciated epigenetic regulatory mechanism for the transcriptional silencing of key LE genes via H3K27me3, essential for LE differentiation and thus embryo implantation.
Collapse
Affiliation(s)
- Na Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Leilei Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Peiran Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
4
|
Wu L, Lin S, Hu Y, Jing S, Sun B, Chen X, Jia J, Zeng C, Pei F. Potential mechanism of Luoshi Neiyi prescription in endometriosis based on serum pharmacochemistry and network pharmacology. Front Pharmacol 2024; 15:1395160. [PMID: 39135784 PMCID: PMC11317381 DOI: 10.3389/fphar.2024.1395160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Endometriosis (EMs) is characterized by ectopic growth of active endometrial tissue outside the uterus. The Luoshi Neiyi prescription (LSNYP) has been extensively used for treating EMs in China. However, data on the active chemical components of LSNYP are insufficient, and its pharmacological mechanism in EMs treatment remains unclear. This study aimed to explore the potential mechanism of LSNYP for EMs through network pharmacology based on the components absorbed into the blood. Methods Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze blood components, and a series of network pharmacology strategies were utilized to predict targets of these components and EMs. Protein-protein interaction (PPI) network analysis, component-target-disease network construction, gene ontology (GO) functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Additionally, molecular docking, molecular dynamics simulations, and in vitro and in vivo experiments were conducted to validate the HIF1A/EZH2/ANTXR2 pathway associated with hypoxic pathology in EMs. Results Thirty-four absorbed components suitable for network pharmacology analysis were identified, and core targets, such as interleukin 6, EGFR, HIF1A, and EZH2, were founded. Enrichment results indicated that treatment of EMs with LSNYP may involve the regulation of hypoxia and inflammatory-related signaling pathways and response to oxidative stress and transcription factor activity. Experimental results demonstrated that LSNYP could decrease the expression of HIF1A, ANTXR2, YAP1, CD44, and β-catenin, and increased EZH2 expression in ectopic endometrial stromal cells and endometriotic tissues. Molecular docking and molecular dynamics simulations manifested that there was stable combinatorial activity between core components and key targets of the HIF1A/EZH2/ANTXR2 pathway. Conclusion LSNYP may exert pharmacological effects on EMs via the HIF1A/EZH2/ANTXR2 pathway; hence, it is a natural herb-related therapy for EMs.
Collapse
Affiliation(s)
- Lizheng Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongjun Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shangwen Jing
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Qin CM, Wei XW, Wu JY, Liu XQ, Lin Y. Decreased NSD2 impairs stromal cell proliferation in human endometrium via reprogramming H3K36me2. Reproduction 2024; 167:e230254. [PMID: 38236723 PMCID: PMC10895284 DOI: 10.1530/rep-23-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
In brief The proliferation of the endometrium is regulated by histone methylation. This study shows that decreased NSD2 impairs proliferative-phase endometrial stromal cell proliferation in patients with recurrent implantation failure via epigenetic reprogramming of H3K36me2 methylation on the promoter region of MCM7. Abstract Recurrent implantation failure (RIF) is a formidable challenge in assisted reproductive technology because of its unclear molecular mechanism. Impaired human endometrial stromal cell (HESC) proliferation disrupts the rhythm of the menstrual cycle, resulting in devastating disorders between the embryo and the endometrium. The molecular function of histone methylation enzymes in modulating HESC proliferation remains largely uncharacterized. Herein, we found that the levels of histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2) and the dimethylation of lysine 36 on histone H3 are decreased significantly in the proliferative-phase endometrium of patients with RIF. Knockdown of NSD2 in an HESC cell line markedly impaired cell proliferation and globally reduced H3K36me2 binding to chromatin, leading to altered expression of many genes. Transcriptomic analyses revealed that cell cycle-related gene sets were downregulated in the endometrium of patients with RIF and in NSD2‑knockdown HESCs. Furthermore, RNA-sequencing and CUT&Tag sequencing analysis suggested that NSD2 knockdown reduced the binding of H3K36me2 to the promoter region of cell cycle marker gene MCM7 (encoding minichromosome maintenance complex component 7) and downregulated its expression. The interaction of H3K36me2 with the MCM7 promoter was verified using chromatin immunoprecipitation-quantitative real-time PCR. Our results demonstrated a unifying epigenome-scale mechanism by which decreased NSD2 impairs endometrial stromal cell proliferation in the proliferative-phase endometrium of patients with RIF.
Collapse
Affiliation(s)
- Chuan-Mei Qin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Wei Wei
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Yi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Qing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Lynch VJ, Wagner GP. Cooption of polyalanine tract into a repressor domain in the mammalian transcription factor HoxA11. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:486-495. [PMID: 34125492 DOI: 10.1002/jez.b.23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
An enduring problem in biology is explaining how novel functions of genes originated and how those functions diverge between species. Despite detailed studies on the functional evolution of a few proteins, the molecular mechanisms by which protein functions have evolved are almost entirely unknown. Here, we show that a polyalanine tract in the homeodomain transcription factor HoxA11 arose in the stem-lineage of mammals and functions as an autonomous repressor module by physically interacting with the PAH domains of SIN3 proteins. These results suggest that long polyalanine tracts, which are common in transcription factors and often associated with disease, may tend to function as repressor domains and can contribute to the diversification of transcription factor functions despite the deleterious consequences of polyalanine tract expansion.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Gunter P Wagner
- Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Bi S, Tu Z, Chen D, Zhang S. Histone modifications in embryo implantation and placentation: insights from mouse models. Front Endocrinol (Lausanne) 2023; 14:1229862. [PMID: 37600694 PMCID: PMC10436591 DOI: 10.3389/fendo.2023.1229862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Embryo implantation and placentation play pivotal roles in pregnancy by facilitating crucial maternal-fetal interactions. These dynamic processes involve significant alterations in gene expression profiles within the endometrium and trophoblast lineages. Epigenetics regulatory mechanisms, such as DNA methylation, histone modification, chromatin remodeling, and microRNA expression, act as regulatory switches to modulate gene activity, and have been implicated in establishing a successful pregnancy. Exploring the alterations in these epigenetic modifications can provide valuable insights for the development of therapeutic strategies targeting complications related to pregnancy. However, our current understanding of these mechanisms during key gestational stages remains incomplete. This review focuses on recent advancements in the study of histone modifications during embryo implantation and placentation, while also highlighting future research directions in this field.
Collapse
Affiliation(s)
- Shilei Bi
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Shuang Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| |
Collapse
|
8
|
Sirohi VK, Medrano TI, Kannan A, Bagchi IC, Cooke PS. Uterine-specific Ezh2 deletion enhances stromal cell senescence and impairs placentation, resulting in pregnancy loss. iScience 2023; 26:107028. [PMID: 37360688 PMCID: PMC10285549 DOI: 10.1016/j.isci.2023.107028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal uterine remodeling facilitates embryo implantation, stromal cell decidualization and placentation, and perturbation of these processes may cause pregnancy loss. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that epigenetically represses gene transcription; loss of uterine EZH2 affects endometrial physiology and induces infertility. We utilized a uterine Ezh2 conditional knockout (cKO) mouse to determine EZH2's role in pregnancy progression. Despite normal fertilization and implantation, embryo resorption occurred mid-gestation in Ezh2cKO mice, accompanied by compromised decidualization and placentation. Western blot analysis revealed Ezh2-deficient stromal cells have reduced amounts of the histone methylation mark H3K27me3, causing upregulation of senescence markers p21 and p16 and indicating that enhanced stromal cell senescence likely impairs decidualization. Placentas from Ezh2cKO dams on gestation day (GD) 12 show architectural defects, including mislocalization of spongiotrophoblasts and reduced vascularization. In summary, uterine Ezh2 loss impairs decidualization, increases decidual senescence, and alters trophoblast differentiation, leading to pregnancy loss.
Collapse
Affiliation(s)
- Vijay K. Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I. Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Yang SC, Park M, Hong KH, La H, Park C, Wang P, Li G, Chen Q, Choi Y, DeMayo FJ, Lydon JP, Skalnik DG, Lim HJ, Hong SH, Park SH, Kim YS, Kim HR, Song H. CFP1 governs uterine epigenetic landscapes to intervene in progesterone responses for uterine physiology and suppression of endometriosis. Nat Commun 2023; 14:3220. [PMID: 37270588 DOI: 10.1038/s41467-023-39008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Kwon-Ho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Peike Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qionghua Chen
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Francesco J DeMayo
- Department of Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 12233, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology and Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David G Skalnik
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hyunjung J Lim
- Department of Veterinary Science, Konkuk University, Seoul, 05029, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24431, Korea
- KW-Bio Co., Ltd, Wonju, 26493, Korea
| | - So Hee Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea.
| |
Collapse
|
10
|
Tang L, Xu XH, Xu S, Liu Z, He Q, Li W, Sun J, Shuai W, Mao J, Zhao JY, Jin L. Dysregulated Gln-Glu-α-ketoglutarate axis impairs maternal decidualization and increases the risk of recurrent spontaneous miscarriage. Cell Rep Med 2023; 4:101026. [PMID: 37137303 DOI: 10.1016/j.xcrm.2023.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Recurrent spontaneous miscarriage (RSM) affects 1%-2% of fertile women worldwide and poses a risk of future pregnancy complications. Increasing evidence has indicated that defective endometrial stromal decidualization is a potential cause of RSM. Here, we perform liquid chromatography with mass spectrometry (LC-MS)-based metabolite profiling in human endometrial stromal cells (ESCs) and differentiated ESCs (DESCs) and find that accumulated α-ketoglutarate (αKG) derived from activated glutaminolysis contributes to maternal decidualization. Contrarily, ESCs obtained from patients with RSM show glutaminolysis blockade and aberrant decidualization. We further find that enhanced Gln-Glu-αKG flux decreases histone methylation and supports ATP production during decidualization. In vivo, feeding mice a Glu-free diet leads to a reduction of αKG, impaired decidualization, and an increase of fetal loss rate. Isotopic tracing approaches demonstrate Gln-dependent oxidative metabolism as a prevalent direction during decidualization. Our results demonstrate an essential prerequisite of Gln-Glu-αKG flux to regulate maternal decidualization, suggesting αKG supplementation as a putative strategy to rectify deficient decidualization in patients with RSM.
Collapse
Affiliation(s)
- Linchen Tang
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Xiang-Hong Xu
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China.
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zeying Liu
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Qizhi He
- Department of Pathology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Wenxuan Li
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Jiaxue Sun
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Wen Shuai
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Jingwen Mao
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Liping Jin
- Clinical and Translational Research Center, Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, P.R. China.
| |
Collapse
|
11
|
Žukauskaitė D, Vitkevičienė A, Žlibinaitė A, Baušytė R, Ramašauskaitė D, Navakauskienė R. Histone H4 hyperacetylation but not DNA methylation regulates the expression of decidualization-associated genes during induced human endometrial stromal cells decidualization. Int J Biochem Cell Biol 2023; 156:106362. [PMID: 36621666 DOI: 10.1016/j.biocel.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The efficiency of endometrial stromal cells (ESC) decidualization is a critical player in successful embryo implantation and further pregnancy development. Epigenetic mechanisms strictly regulate massive changes that affect endometrium in each cycle, so investigating epigenetic patterns could help identify endometrial targets for infertility treatment solutions. The aim of our study was to analyze the changes in epigenetic modulators, histone modifications, and DNA methylation during induced human ESC in vitro decidualization. Decidualization markers and epigenetic factors' gene and protein expression levels were assessed during ESC cells in vitro decidualization, performing RT-qPCR and immunoblot tests. Furthermore, chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP) analysis by the following qPCR were conducted to evaluate the level of H4hyperAc and 5-methylcytosine in the decidualization-associated gene promoter and exon regions accordingly. Our results revealed that ESC decidualization caused the down-regulation of HDAC2 and subunits of PRC2. We observed the increased global level of H4hyperAc and H3K27me3. We also demonstrated that H4hyperAc was specifically enriched in the decidualization-associated genes (WNT4, HAND2, STAT5A) promoter regions during ESC decidualization. In contrast, the DNA methylation level in these promoter regions was relatively low before ESC induction and did not vary through ESC decidualization. Our findings demonstrate that specific gene promoters' histone acetylation increases during the induced ESC decidualization, which indicates the importance of epigenetic regulation in endometrial decidualization.
Collapse
Affiliation(s)
- Deimantė Žukauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Akvilė Žlibinaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Raminta Baušytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania
| | - Diana Ramašauskaitė
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
12
|
Role of EZH2 in Uterine Gland Development. Int J Mol Sci 2022; 23:ijms232415665. [PMID: 36555314 PMCID: PMC9779349 DOI: 10.3390/ijms232415665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a core component of polycomb repressive complex 2 that plays a vital role in transcriptional repression of gene expression. Conditional ablation of EZH2 using progesterone receptor (Pgr)-Cre in the mouse uterus has uncovered its roles in regulating uterine epithelial cell growth and stratification, suppressing decidual myofibroblast activation, and maintaining normal female fertility. However, it is unclear whether EZH2 plays a role in the development of uterine glands, which are required for pregnancy success. Herein, we created mice with conditional deletion of Ezh2 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase that is expressed in mesenchyme-derived cells of the female reproductive tract. Strikingly, these mice showed marked defects in uterine adenogenesis. Unlike Ezh2 Pgr-Cre conditional knockout mice, deletion of Ezh2 using Amhr2-Cre did not lead to the differentiation of basal-like cells in the uterus. The deficient uterine adenogenesis was accompanied by impaired uterine function and pregnancy loss. Transcriptomic profiling using next generation sequencing revealed dysregulation of genes associated with signaling pathways that play fundamental roles in development and disease. In summary, this study has identified an unrecognized role of EZH2 in uterine gland development, a postnatal event critical for pregnancy success and female fertility.
Collapse
|
13
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
14
|
Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting Cluster in the Decidual Microenvironment of Early Pregnancy. Cells 2022; 11:cells11193130. [PMID: 36231092 PMCID: PMC9563431 DOI: 10.3390/cells11193130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal–maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.
Collapse
|
15
|
Deng W, Wang H. Efficient cell chatting between embryo and uterus ensures embryo implantation. Biol Reprod 2022; 107:339-348. [PMID: 35774025 PMCID: PMC9310511 DOI: 10.1093/biolre/ioac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation is one of the hottest topics during female reproduction since it is the first dialogue between maternal uterus and developing embryo whose disruption will contribute to adverse pregnancy outcome. Numerous achievements have been made to decipher the underlying mechanism of embryo implantation by genetic and molecular approaches accompanied with emerging technological advances. In recent decades, raising concepts incite insightful understanding on the mechanism of reciprocal communication between implantation competent embryos and receptive uterus. Enlightened by these gratifying evolvements, we aim to summarize and revisit current progress on the critical determinants of mutual communication between maternal uterus and embryonic signaling on the perspective of embryo implantation to alleviate infertility, enhance fetal health, and improve contraceptive design.
Collapse
Affiliation(s)
- Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
16
|
Tavares M, Khandelwal G, Muter J, Viiri K, Beltran M, Brosens JJ, Jenner RG. JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. Cell Rep 2022; 39:110889. [PMID: 35649353 PMCID: PMC9637993 DOI: 10.1016/j.celrep.2022.110889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.
Collapse
Affiliation(s)
- Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keijo Viiri
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
17
|
Muter J, Kong CS, Brosens JJ. The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:804921. [PMID: 36303960 PMCID: PMC9580781 DOI: 10.3389/frph.2021.804921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- *Correspondence: Joanne Muter
| | - Chow-Seng Kong
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
18
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Menstrual Blood-Derived Endometrial Stem Cells' Impact for the Treatment Perspective of Female Infertility. Int J Mol Sci 2021; 22:ijms22136774. [PMID: 34202508 PMCID: PMC8268036 DOI: 10.3390/ijms22136774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/05/2022] Open
Abstract
When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues—the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins’ expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders.
Collapse
|
20
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
21
|
Abstract
The characteristics of fetal membrane cells and their phenotypic adaptations to support pregnancy or promote parturition are defined by global patterns of gene expression controlled by chromatin structure. Heritable epigenetic chromatin modifications that include DNA methylation and covalent histone modifications establish chromatin regions permissive or exclusive of regulatory interactions defining the cell-specific scope and potential of gene activity. Non-coding RNAs acting at the transcriptional and post-transcriptional levels complement the system by robustly stabilizing gene expression patterns and contributing to ordered phenotype transitions. Here we review currently available information about epigenetic gene regulation in the amnion and the chorion laeve. In addition, we provide an overview of epigenetic phenomena in the decidua, which is the maternal tissue fused to the chorion membrane forming the anatomical and functional unit called choriodecidua. The relationship of gene expression with DNA (CpG) methylation, histone acetylation and methylation, micro RNAs, long non-coding RNAs and chromatin accessibility is discussed in the context of normal pregnancy, parturition and pregnancy complications. Data generated using clinical samples and cell culture models strongly suggests that epigenetic events are associated with the phenotypic transitions of fetal membrane cells during the establishment, maintenance and termination of pregnancy potentially driving and consolidating the changes as pregnancy progresses. Disease conditions and environmental factors may produce epigenetic footprints that indicate exposures and mediate adverse pregnancy outcomes. Although knowledge is expanding rapidly, fetal membrane epigenetics is still in an early stage of development necessitating further research to realize its remarkable basic and translational potential.
Collapse
Affiliation(s)
- Tamas Zakar
- Department of Maternity & Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan W. Paul
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
22
|
Sakabe NJ, Aneas I, Knoblauch N, Sobreira DR, Clark N, Paz C, Horth C, Ziffra R, Kaur H, Liu X, Anderson R, Morrison J, Cheung VC, Grotegut C, Reddy TE, Jacobsson B, Hallman M, Teramo K, Murtha A, Kessler J, Grobman W, Zhang G, Muglia LJ, Rana S, Lynch VJ, Crawford GE, Ober C, He X, Nóbrega MA. Transcriptome and regulatory maps of decidua-derived stromal cells inform gene discovery in preterm birth. SCIENCE ADVANCES 2020; 6:eabc8696. [PMID: 33268355 PMCID: PMC7710387 DOI: 10.1126/sciadv.abc8696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 05/29/2023]
Abstract
While a genetic component of preterm birth (PTB) has long been recognized and recently mapped by genome-wide association studies (GWASs), the molecular determinants underlying PTB remain elusive. This stems in part from an incomplete availability of functional genomic annotations in human cell types relevant to pregnancy and PTB. We generated transcriptome (RNA-seq), epigenome (ChIP-seq of H3K27ac, H3K4me1, and H3K4me3 histone modifications), open chromatin (ATAC-seq), and chromatin interaction (promoter capture Hi-C) annotations of cultured primary decidua-derived mesenchymal stromal/stem cells and in vitro differentiated decidual stromal cells and developed a computational framework to integrate these functional annotations with results from a GWAS of gestational duration in 56,384 women. Using these resources, we uncovered additional loci associated with gestational duration and target genes of associated loci. Our strategy illustrates how functional annotations in pregnancy-relevant cell types aid in the experimental follow-up of GWAS for PTB and, likely, other pregnancy-related conditions.
Collapse
Affiliation(s)
- Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Knoblauch
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Debora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Nicole Clark
- Department of Pediatrics, Center for Genomic and Computational Biology, Duke University, Durham, NC 27705, USA
| | - Cristina Paz
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Cynthia Horth
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Ziffra
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Harjot Kaur
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Xiao Liu
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rebecca Anderson
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jean Morrison
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Virginia C Cheung
- Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chad Grotegut
- Department of Obstetrics and Gynecology, Duke University Health System, Durham, NC 27713, USA
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, University of Gothenberg, Gothenberg, Sweden
- Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Mikko Hallman
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Kari Teramo
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Amy Murtha
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Duke University School of Medicine, Durham, NC 27713, USA
| | - John Kessler
- Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, IL 60611, USA
| | - William Grobman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ge Zhang
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Louis J Muglia
- Department of Obstetrics and Gynecology, University of Chicago, Chicago IL 60637, USA
| | - Sarosh Rana
- Department of Obstetrics and Gynecology, University of Chicago, Chicago IL 60637, USA
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Gregory E Crawford
- Department of Pediatrics, Center for Genomic and Computational Biology, Duke University, Durham, NC 27705, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
- Department of Obstetrics and Gynecology, University of Chicago, Chicago IL 60637, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Marcelo A Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Xiong Y, Wang Y, Ma L, Zhang Y, Qu X, Huang L, Wen X, Liu H, Zhang M, Zhang Y. Mixed-lineage leukaemia 1 contributes to endometrial stromal cells progesterone responsiveness during decidualization. J Cell Mol Med 2020; 25:297-308. [PMID: 33201593 PMCID: PMC7810960 DOI: 10.1111/jcmm.16030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Studies have reported that non‐receptive endometrium or abnormal decidualization was closely related to recurrent implantation failure (RIF). MLL1 is a histone H3 lysine 4 trimethylation (H3K4me3) transferase that regulates the transcriptional activation of target genes. The role of MLL1 has been underexplored during decidualization. In our research, we found the expression of MLL1 was closely related to endometrial receptivity, and it was responsible to hormone stimulation. Inhibiting the function of MLL1 by MM102 reduced the transformation of HESCs. Furthermore, down‐regulation of MLL1 by siRNA transfection significantly decreased PGR and its target genes expression. MLL1 act as a co‐activator of ERα, and both of them were recruited to PGR regulatory regions, thus promote PGR transcription. Our study showed that MLL1 plays a key role in promoting progesterone signalling transmission.
Collapse
Affiliation(s)
- Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yan Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ying Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Xinlan Qu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China.,Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Huang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Xue Wen
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Huimin Liu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China.,Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Nanjappa MK, Mesa AM, Medrano TI, Jefferson WN, DeMayo FJ, Williams CJ, Lydon JP, Levin ER, Cooke PS. The histone methyltransferase EZH2 is required for normal uterine development and function in mice†. Biol Reprod 2020; 101:306-317. [PMID: 31201420 DOI: 10.1093/biolre/ioz097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 01/04/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a rate-limiting catalytic subunit of a histone methyltransferase, polycomb repressive complex, which silences gene activity through the repressive histone mark H3K27me3. EZH2 is critical for epigenetic effects of early estrogen treatment, and may be involved in uterine development and pathologies. We investigated EZH2 expression, regulation, and its role in uterine development/function. Uterine epithelial EZH2 expression was associated with proliferation and was high neonatally then declined by weaning. Pre-weaning uterine EZH2 expression was comparable in wild-type and estrogen receptor 1 knockout mice, showing neonatal EZH2 expression is ESR1 independent. Epithelial EZH2 was upregulated by 17β-estradiol (E2) and inhibited by progesterone in adult uteri from ovariectomized mice. To investigate the uterine role of EZH2, we developed a EZH2 conditional knockout (Ezh2cKO) mouse using a cre recombinase driven by the progesterone receptor (Pgr) promoter that produced Ezh2cKO mice lacking EZH2 in Pgr-expressing tissues (e.g. uterus, mammary glands). In Ezh2cKO uteri, EZH2 was deleted neonatally. These uteri had reduced H3K27me3, were larger than WT, and showed adult cystic endometrial hyperplasia. Ovary-independent uterine epithelial proliferation and increased numbers of highly proliferative uterine glands were seen in adult Ezh2cKO mice. Female Ezh2cKO mice were initially subfertile, and then became infertile by 9 months. Mammary gland development in Ezh2cKO mice was inhibited. In summary, uterine EZH2 expression is developmentally and hormonally regulated, and its loss causes aberrant uterine epithelial proliferation, uterine hypertrophy, and cystic endometrial hyperplasia, indicating a critical role in uterine development and function.
Collapse
Affiliation(s)
- Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California-Irvine, Irvine, California, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Bansal R, Hussain S, Chanana UB, Bisht D, Goel I, Muthuswami R. SMARCAL1, the annealing helicase and the transcriptional co-regulator. IUBMB Life 2020; 72:2080-2096. [PMID: 32754981 DOI: 10.1002/iub.2354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
The ATP-dependent chromatin remodeling proteins play an important role in DNA repair. The energy released by ATP hydrolysis is used for myriad functions ranging from nucleosome repositioning and nucleosome eviction to histone variant exchange. In addition, the distant member of the family, SMARCAL1, uses the energy to reanneal stalled replication forks in response to DNA damage. Biophysical studies have shown that this protein has the unique ability to recognize and bind specifically to DNA structures possessing double-strand to single-strand transition regions. Mutations in SMARCAL1 have been linked to Schimke immuno-osseous dysplasia, an autosomal recessive disorder that exhibits variable penetrance and expressivity. It has long been hypothesized that the variable expressivity and pleiotropic phenotypes observed in the patients might be due to the ability of SMARCAL1 to co-regulate the expression of a subset of genes within the genome. Recently, the role of SMARCAL1 in regulating transcription has been delineated. In this review, we discuss the biophysical and functional properties of the protein that help it to transcriptionally co-regulate DNA damage response as well as to bind to the stalled replication fork and stabilize it, thus ensuring genomic stability. We also discuss the role of SMARCAL1 in cancer and the possibility of using this protein as a chemotherapeutic target.
Collapse
Affiliation(s)
- Ritu Bansal
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saddam Hussain
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Upasana Bedi Chanana
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepa Bisht
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Isha Goel
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Endometrial Decidualization: The Primary Driver of Pregnancy Health. Int J Mol Sci 2020; 21:ijms21114092. [PMID: 32521725 PMCID: PMC7312091 DOI: 10.3390/ijms21114092] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
Interventions to prevent pregnancy complications have been largely unsuccessful. We suggest this is because the foundation for a healthy pregnancy is laid prior to the establishment of the pregnancy at the time of endometrial decidualization. Humans are one of only a few mammalian viviparous species in which decidualization begins during the latter half of each menstrual cycle and is therefore independent of the conceptus. Failure to adequately prepare (decidualize) the endometrium hormonally, biochemically, and immunologically in anticipation of the approaching blastocyst—including the downregulation of genes involved in the pro- inflammatory response and resisting tissue invasion along with the increased expression of genes that promote angiogenesis, foster immune tolerance, and facilitate tissue invasion—leads to abnormal implantation/placentation and ultimately to adverse pregnancy outcome. We hypothesize, therefore, that the primary driver of pregnancy health is the quality of the soil, not the seed.
Collapse
|
27
|
Xiong Y, Wen X, Liu H, Zhang M, Zhang Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J Steroid Biochem Mol Biol 2020; 200:105640. [PMID: 32087250 DOI: 10.1016/j.jsbmb.2020.105640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Bisphenol A(BPA) is one of the most widespread endocrine disruptors in the environment and is associated with reproductive diseases. In this study, we focused on the correlation between environmentally relevant levels of BPA exposure and histone modification during endometrial stromal cells decidualization. BPA exposure changed the morphology of decidualized endometrial stromal cells, with inhibition of mixed-lineage leukemia 1(MLL1) and induction of enhancer of zeste homolog2 (EZH2) during in vitro decidualization. The expression of HOXA10, PRL and IGFBP-1 was down-regulated upon BPA treatment. Furthermore, chromatin immunoprecipitation quantitative PCR(ChIP-qPCR) was performed to evaluate the recruitment of histone-3, lysine-4 trimethylation (H3K4me3) and histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. The decreased H3K4me3 and the increased H3K27me3 at HOXA10, PRL and IGFBP-1 promoter regions were consistent with the expression of MLL1 and EZH2 respectively. The effect of BPA on MLL1 and EZH2 could be abrogated by ICI 182,780. Our study provides the first indication that environmentally relevant levels of BPA exposure can regulate the expression of decidualization-related genes by affecting histone modification, impairing endometrial decidualization.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Xue Wen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Huimin Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Ming Zhang
- Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China; Reroductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China.
| |
Collapse
|
28
|
Liu H, Huang X, Mor G, Liao A. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol Life Sci 2020; 77:2091-2101. [PMID: 31813015 PMCID: PMC11105058 DOI: 10.1007/s00018-019-03395-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
Decidualization is a critical event for the blastocyst implantation, placental development and fetal growth and the normal term. In mice, the embryo implantation to the uterine epithelial would trigger the endometrial stromal cells to differentiate into decidual stromal cells. However, decidualization in women takes place from the secretory phase of each menstrual cycle and continues to early pregnancy if there is conceptus. Deficient decidualization is often associated with pregnancy specific complications and reproductive disorders. Dramatic changes occur in the gene expression profiles during decidualization, which is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Recently, emerging evidences showed that epigenetic modifications, mainly including DNA methylation, histone modification, and non-coding RNAs, play an important role in the decidualization process via affecting the target genes' expression. In this review, we will focus on the epigenetic modifications in decidualization and open novel avenues to predict and treat the pregnancy complications caused by abnormal decidualization.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
29
|
Ochiai A, Kuroda K. Preconception resveratrol intake against infertility: Friend or foe? Reprod Med Biol 2020; 19:107-113. [PMID: 32273814 PMCID: PMC7138940 DOI: 10.1002/rmb2.12303] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resveratrol is an antiaging, antioxidant, anti-inflammatory, and insulin-sensitizing natural polyphenolic compound. Growing evidence indicates that resveratrol has potential therapeutic effects in infertile women with diminished ovarian function, polycystic ovary syndrome (PCOS), or endometriosis. However, only one clinical trial in women undergoing in vitro fertilization (IVF) cycles using resveratrol has ever been reported. This review focuses on the potential therapeutic effects of resveratrol on pregnancy and on its advantages and disadvantages in pregnancy outcomes during infertility treatment. METHODS We performed a literature review to describe the known impacts of resveratrol on the ovary and endometrium. RESULTS Resveratrol upregulates sirtuin (SIRT)1 expression in ovaries, which is associated with protection against oxidative stress. It leads to the activation of telomerase activity and mitochondrial function, improving ovarian function. In the endometrium, resveratrol downregulates the CRABP2-RAR pathway leading to suppressing decidual and senescent changes of endometrial cells, which is essential for embryo implantation and placentation. Moreover, resveratrol may also induce deacetylation of important decidual-related genes. CONCLUSIONS Resveratrol has potential therapeutic effects for improving ovarian function; however, it also has anti-deciduogenic actions in uterine endometrium. In addition, its teratogenicity has not yet been ruled out; thus, resveratrol should be avoided during the luteal phase and pregnancy.
Collapse
Affiliation(s)
- Asako Ochiai
- Department of Obstetrics and GynecologyFaculty of MedicineJuntendo UniversityTokyoJapan
| | - Keiji Kuroda
- Department of Obstetrics and GynecologyFaculty of MedicineJuntendo UniversityTokyoJapan
- Center for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| |
Collapse
|
30
|
Zhou X, Xu B, Zhang D, Jiang X, Chang HM, Leung PCK, Xia X, Zhang A. Loss of CDYL Results in Suppression of CTNNB1 and Decreased Endometrial Receptivity. Front Cell Dev Biol 2020; 8:105. [PMID: 32158757 PMCID: PMC7051920 DOI: 10.3389/fcell.2020.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Impaired endometrial receptivity is one of the major causes of recurrent implantation failure (RIF), although the underlying molecular mechanism has not been fully elucidated. In the present study, we demonstrated that chromodomain Y like (CDYL) was highly expressed in the endometrium at mid-secretory phase during the normal menstrual cycles. However, the expression of CDYL was downregulated in the endometrial tissues obtained from women with RIF, consistently with the protein level of LIF, which is a marker of endometrial receptivity. In CDYL-knockdown human endometrial Ishikawa cells, we identified 1738 differentially expressed genes (DEGs). Importantly, the catenin beta 1 (CTNNB1) expression was dramatically reduced responding to the CDYL inhibition, both in Ishikawa cells as well as the primary endometrial epithelial and stromal cells. In addition, the expression of CTNNB1was decreased in the endometrium from RIF patients as well. These results suggested that the expression of CTNNB1 was regulated by CDYL in endometrium. The cell migration was impaired by CDYL-knockdown in Ishikawa cells and primary endometrial stromal cells (ESCs), which could be rescued by CDYL or CTNNB1 overexpression. Collectively, our findings indicated that the decreased expression of CDYL may suppress endometrial cell migration capability by affecting CTNNB1 expression, which would contribute to poor endometrial receptivity in women with RIF.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bufang Xu
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Jiang
- Department of Obstetrics and Gynecology, Chinese People's Armed Police Force Shanghai Corps Hospital, Shanghai, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Xiaoyu Xia
- Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aijun Zhang
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Sang Y, Li Y, Xu L, Li D, Du M. Regulatory mechanisms of endometrial decidualization and pregnancy-related diseases. Acta Biochim Biophys Sin (Shanghai) 2020; 52:105-115. [PMID: 31854442 DOI: 10.1093/abbs/gmz146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrial decidualization is one of the earliest changes by which the uterus adapts to pregnancy. During this period, the endometrium undergoes complex changes in its biochemistry, physiology, and function at various levels, providing a suitable microenvironment for embryo implantation and development. Favorable decidualization lays an essential foundation for subsequent gestation, without which pregnancy failure or pregnancy complications may occur. The interaction between pregnancy-related hormones and cytokines produced by embryonic and uterine cells is known to be essential for decidualization, in which some transcription factors also play pivotal roles. Increasing evidence has revealed the importance of metabolism in regulating decidualization. Here, we summarize and discuss these crucial elements in decidualization and the relationship between decidualization and pregnancy complications. A better comprehension of these issues should help to improve the prediction of pregnancy outcomes and the use of appropriate intervention.
Collapse
Affiliation(s)
- Yifei Sang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yanhong Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ling Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Dajin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
32
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
33
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
34
|
Ochiai A, Kuroda K, Ikemoto Y, Ozaki R, Nakagawa K, Nojiri S, Takeda S, Sugiyama R. Influence of resveratrol supplementation on IVF–embryo transfer cycle outcomes. Reprod Biomed Online 2019; 39:205-210. [DOI: 10.1016/j.rbmo.2019.03.205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
35
|
Puppe J, Opdam M, Schouten PC, Jóźwiak K, Lips E, Severson T, van de Ven M, Brambillasca C, Bouwman P, van Tellingen O, Bernards R, Wesseling J, Eichler C, Thangarajah F, Malter W, Pandey GK, Ozretić L, Caldas C, van Lohuizen M, Hauptmann M, Rhiem K, Hahnen E, Reinhardt HC, Büttner R, Mallmann P, Schömig-Markiefka B, Schmutzler R, Linn S, Jonkers J. EZH2 Is Overexpressed in BRCA1-like Breast Tumors and Predictive for Sensitivity to High-Dose Platinum-Based Chemotherapy. Clin Cancer Res 2019; 25:4351-4362. [PMID: 31036541 DOI: 10.1158/1078-0432.ccr-18-4024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE BRCA1-deficient breast cancers carry a specific DNA copy-number signature ("BRCA1-like") and are hypersensitive to DNA double-strand break (DSB) inducing compounds. Here, we explored whether (i) EZH2 is overexpressed in human BRCA1-deficient breast tumors and might predict sensitivity to DSB-inducing drugs; (ii) EZH2 inhibition potentiates cisplatin efficacy in Brca1-deficient murine mammary tumors. EXPERIMENTAL DESIGN EZH2 expression was analyzed in 497 breast cancers using IHC or RNA sequencing. We classified 370 tumors by copy-number profiles as BRCA1-like or non-BRCA1-like and examined its association with EZH2 expression. Additionally, we assessed BRCA1 loss through mutation or promoter methylation status and investigated the predictive value of EZH2 expression in a study population of breast cancer patients treated with adjuvant high-dose platinum-based chemotherapy compared with standard anthracycline-based chemotherapy. To explore whether EZH2 inhibition by GSK126 enhances sensitivity to platinum drugs in EZH2-overexpressing breast cancers we used a Brca1-deficient mouse model. RESULTS The highest EZH2 expression was found in BRCA1-associated tumors harboring a BRCA1 mutation, BRCA1-promoter methylation or were classified as BRCA1 like. We observed a greater benefit from high-dose platinum-based chemotherapy in BRCA1-like and non-BRCA1-like patients with high EZH2 expression. Combined treatment with the EZH2 inhibitor GSK126 and cisplatin decreased cell proliferation and improved survival in Brca1-deficient mice in comparison with single agents. CONCLUSIONS Our findings demonstrate that EZH2 is expressed at significantly higher levels in BRCA1-deficient breast cancers. EZH2 overexpression can identify patients with breast cancer who benefit significantly from intensified DSB-inducing platinum-based chemotherapy independent of BRCA1-like status. EZH2 inhibition improves the antitumor effect of platinum drugs in Brca1-deficient breast tumors in vivo.
Collapse
Affiliation(s)
- Julian Puppe
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Obstetrics and Gynecology, Medical Faculty, University Hospital Cologne, Cologne, Germany
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Philip C Schouten
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Katarzyna Jóźwiak
- Department of Epidemiology and Biostatistics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tesa Severson
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Chiara Brambillasca
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Peter Bouwman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René Bernards
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christian Eichler
- Department of Obstetrics and Gynecology, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Fabinshy Thangarajah
- Department of Obstetrics and Gynecology, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Wolfram Malter
- Department of Obstetrics and Gynecology, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Gaurav Kumar Pandey
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Luka Ozretić
- Department of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Maarten van Lohuizen
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael Hauptmann
- Department of Epidemiology and Biostatistics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kerstin Rhiem
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Eric Hahnen
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | | | - Reinhard Büttner
- Department of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | | | - Rita Schmutzler
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Sabine Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Fang X, Ni N, Lydon JP, Ivanov I, Bayless KJ, Rijnkels M, Li Q. Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit Is Required for Uterine Epithelial Integrity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1212-1225. [PMID: 30954472 DOI: 10.1016/j.ajpath.2019.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
Abstract
Normal proliferation and differentiation of uterine epithelial cells are critical for uterine development and function. Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a core component of polycomb repressive complexes 2, possesses histone methyltransferase activity that catalyzes the trimethylation of lysine 27 of histone H3. EZH2 has been involved in epithelial-mesenchymal transition, a key event in development and carcinogenesis. However, its role in uterine epithelial cell function remains unknown. To determine the role of uterine EZH2, Ezh2 was conditionally deleted using progesterone receptor Cre recombinase, which is expressed in both epithelial and mesenchymal compartments of the uterus. Loss of EZH2 promoted stratification of uterine epithelium, an uncommon and detrimental event in the uterus. The abnormal epithelium expressed basal cell markers, including tumor protein 63, cytokeratin 5 (KRT5), KRT6A, and KRT14. These results suggest that EZH2 serves as a guardian of uterine epithelial integrity, partially via inhibiting the differentiation of basal-like cells and preventing epithelial stratification. The observed epithelial abnormality was accompanied by fertility defects, altered uterine growth and function, and the development of endometrial hyperplasia. Thus, the Ezh2 conditional knockout mouse model may be useful to explore mechanisms that regulate endometrial homeostasis and uterine function.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.
| |
Collapse
|
37
|
Lin SC, Lee HC, Hsu CT, Huang YH, Li WN, Hsu PL, Wu MH, Tsai SJ. Targeting Anthrax Toxin Receptor 2 Ameliorates Endometriosis Progression. Theranostics 2019; 9:620-632. [PMID: 30809297 PMCID: PMC6376465 DOI: 10.7150/thno.30655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Rationale: Endometriosis is a highly prevalent gynecological disease in women of reproductive age that markedly reduces life quality and fertility. Unfortunately, there is no cure for this disease, which highlights that more efforts are needed to investigate the underlying mechanism for designing novel therapeutic regimens. This study aims to investigate druggable membrane receptors distinctively expressed in endometriotic cells. Methods: Bioinformatic analysis of public databases was employed to identify potential druggable candidates. Normal endometrial tissues and ectopic endometriotic lesions were obtained for the determination of target genes. Primary endometrial and endometriotic stromal cells as well as two different mouse models of endometriosis were used to characterize molecular mechanisms and therapeutic outcomes of endometriosis, respectively. Results: Anthrax toxin receptor 2 (ANTXR2) mRNA and protein are upregulated in the endometriotic specimens. Elevation of ANTXR2 promotes endometriotic cell adhesion, proliferation, and angiogenesis. Furthermore, hypoxia is the driving force for ANTXR2 upregulation via altering histone modification of ANTXR2 promoter by reducing the repressive mark, histone H3 lysine 27 (H3K27) trimethylation, and increasing the active mark, H3K4 trimethylation. Activation of ANTXR2 signaling leads to increased Yes-associated protein 1 (YAP1) nuclear translocation and transcriptional activity, which contributes to numerous pathological processes of endometriosis. Pharmacological blocking of ANTXR2 signaling not only prevents endometriotic lesion development but also causes the regression of established lesion. Conclusion: Taken together, we have identified a novel target that contributes to the disease pathogenesis of endometriosis and provided a potential therapeutic regimen to treat it.
Collapse
Affiliation(s)
- Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Chi Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Ting Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Huang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics & Gynecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
38
|
Wu MH, Hsiao KY, Tsai SJ. Hypoxia: The force of endometriosis. J Obstet Gynaecol Res 2019; 45:532-541. [PMID: 30618168 DOI: 10.1111/jog.13900] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
AIM Summarize recent findings of how hypoxia regulates numerous important processes to facilitate the implantation, proliferation and progression of ectopic endometriotic lesions. METHODS Most up-to-date evidences about how hypoxia contributes to the disease pathogenesis of endometriosis and potential therapeutic approaches were collected by conducting a comprehensive search of medical literature electronic databases. Quality of data was analyzed by experienced experts including gynecologist and basic scientists. RESULTS Uterus is a highly vascularized organ, which makes endometrial cells constantly expose to high concentration of oxygen. When endometrial tissues shed off from the eutopic uterus and retrograde to the peritoneal cavity, they face severe hypoxic stress. Even with successful implantation to ovaries or peritoneum, the hypoxic stress remains as a critical issue because endometrial cells are used to live in the well-oxygenated environment. Under the hypoxia condition, cells undergo epigenetic modulation and evolve several survival processes including steroidogenesis, angiogenesis, inflammation and metabolic switch. The complex gene regulatory network driven by hypoxia ensures endometriotic cells can survive under the hostile peritoneal microenvironment. CONCLUSION Hypoxia plays critical roles in promoting pathological processes to facilitate the development of endometriosis. Targeting hypoxia-mediated gene network represents an alternative approach for the treatment of endometriosis.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
39
|
Kimura M, Kajihara T, Mizuno Y, Sato T, Ishihara O. Loss of high-mobility group N5 contributes to the promotion of human endometrial stromal cell decidualization. Reprod Med Biol 2018; 17:493-499. [PMID: 30377405 PMCID: PMC6194248 DOI: 10.1002/rmb2.12226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/15/2018] [Accepted: 07/19/2018] [Indexed: 01/04/2023] Open
Abstract
PURPOSE High-mobility group N (HMGN) proteins are the only non-histone proteins that specifically bind within the nucleosome between core histones and DNA. Among them, HMGN5 is one of the candidates that could participate in mouse endometrial decidualization; however, the specific role of HMGN5 remains to be clarified in human endometrial stromal cells (HESCs). METHODS Primary HESCs were isolated from hysterectomy specimens and incubated with or without 8-bromo-cyclic adenosine monophosphate (8-br-cAMP) and medroxyprogesterone acetate (MPA). RESULTS We demonstrated that HMGN5 expression in decidualized HESCs stimulated by 8-br-cAMP and MPA decreased significantly. The inhibition of HMGN5 expression by small interfering RNA (siRNA) induced the major decidual marker genes expression, including IGFBP1 (insulin-like growth factor binding protein 1) and PRL (prolactin). In addition, microRNA-542-3p (miR-542-3p), which was identified as a regulatory miRNA of IGFBP1 during decidualization, was significantly suppressed by HMGN5 siRNA. However, the expression of HMGN5 was not alternated by miR-542-3p overexpression. CONCLUSIONS These findings suggest that the down-regulation of HMGN5 plays a role in the promotion of human endometrial stromal decidualization and acts upstream of miR-542-3p.
Collapse
Affiliation(s)
- Machiko Kimura
- Department of Obstetrics and GynecologySaitama Medical UniversitySaitamaJapan
| | - Takeshi Kajihara
- Department of Obstetrics and GynecologySaitama Medical UniversitySaitamaJapan
| | - Yumi Mizuno
- Department of Obstetrics and GynecologySaitama Medical UniversitySaitamaJapan
| | - Tomomi Sato
- Department of Obstetrics and GynecologySaitama Medical UniversitySaitamaJapan
- Department of AnatomySaitama Medical UniversitySaitamaJapan
| | - Osamu Ishihara
- Department of Obstetrics and GynecologySaitama Medical UniversitySaitamaJapan
| |
Collapse
|
40
|
Katoh N, Kuroda K, Tomikawa J, Ogata-Kawata H, Ozaki R, Ochiai A, Kitade M, Takeda S, Nakabayashi K, Hata K. Reciprocal changes of H3K27ac and H3K27me3 at the promoter regions of the critical genes for endometrial decidualization. Epigenomics 2018; 10:1243-1257. [PMID: 30212243 DOI: 10.2217/epi-2018-0006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Decidualization is essential for embryo implantation and placental development. We aimed to obtain transcriptome and epigenome profiles for primary endometrial stromal cells (ESCs) and in vitro decidualized cells. MATERIALS & METHODS ESCs isolated from human endometrial tissues remained untreated (D0), or decidualized for 4 days (D4) and 8 days (D8) in the presence of 8-bromo-cAMP and progesterone. RESULTS Among the epigenetic modifications examined (DNA methylation, H3K27ac, H3K9me3 and H3K27me3), the H3K27ac patterns changed most dramatically, with a moderate correlation with gene expression changes, upon decidualization. Subsets of up- and down-regulated genes upon decidualization were associated with reciprocal changes of H3K27ac and H3K27me3 modifications at their promoter region, and were enriched with genes essential for decidualization such as WNT4, ZBTB16, PROK1 and GREB1. CONCLUSION Our dataset is useful to further elucidate the molecular mechanisms underlying decidualization.
Collapse
Affiliation(s)
- Noriko Katoh
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan.,Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Keiji Kuroda
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Rie Ozaki
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Asako Ochiai
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Mari Kitade
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Satoru Takeda
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| |
Collapse
|
41
|
Wu SP, Li R, DeMayo FJ. Progesterone Receptor Regulation of Uterine Adaptation for Pregnancy. Trends Endocrinol Metab 2018; 29:481-491. [PMID: 29705365 PMCID: PMC6004243 DOI: 10.1016/j.tem.2018.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Progesterone acts through the progesterone receptor to direct physiological adaption of the uterus in preparation and completion of pregnancy. Genome-wide transcriptome and cistrome analyses have uncovered new members and novel modifiers of the progesterone signaling pathway. Genetically engineered mice allow functional assessment of newly identified genes in vivo and provide insights on the impact of progesterone receptor-dependent molecular mechanisms on pregnancy at the organ system level. Progesterone receptor isoforms collectively mediate progesterone signaling via their distinct and common downstream target genes, which makes the stoichiometry of isoforms relevant in modifying the progesterone activity. This review discusses recent advances on the discovery of the progesterone receptor network, with special focus on the endometrium at early pregnancy and myometrium during parturition.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
42
|
Nancy P, Siewiera J, Rizzuto G, Tagliani E, Osokine I, Manandhar P, Dolgalev I, Clementi C, Tsirigos A, Erlebacher A. H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition. J Clin Invest 2018; 128:233-247. [PMID: 29202469 PMCID: PMC5749543 DOI: 10.1172/jci95937] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
Uncovering the causes of pregnancy complications such as preterm labor requires greater insight into how the uterus remains in a noncontractile state until term and then surmounts this state to enter labor. Here, we show that dynamic generation and erasure of the repressive histone modification tri-methyl histone H3 lysine 27 (H3K27me3) in decidual stromal cells dictate both elements of pregnancy success in mice. In early gestation, H3K27me3-induced transcriptional silencing of select gene targets ensured uterine quiescence by preventing the decidua from expressing parturition-inducing hormone receptors, manifesting type 1 immunity, and most unexpectedly, generating myofibroblasts and associated wound-healing responses. In late gestation, genome-wide H3K27 demethylation allowed for target gene upregulation, decidual activation, and labor entry. Pharmacological inhibition of H3K27 demethylation in late gestation not only prevented term parturition, but also inhibited delivery while maintaining pup viability in a noninflammatory model of preterm parturition. Immunofluorescence analysis of human specimens suggested that similar regulatory events might occur in the human decidua. Together, these results reveal the centrality of regulated gene silencing in the uterine adaptation to pregnancy and suggest new areas in the study and treatment of pregnancy disorders.
Collapse
Affiliation(s)
- Patrice Nancy
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Johan Siewiera
- Department of Pathology, NYU School of Medicine, New York, New York, USA
- Department of Laboratory Medicine, and
| | | | - Elisa Tagliani
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | | | | | - Igor Dolgalev
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Caterina Clementi
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | | | - Adrian Erlebacher
- Department of Pathology, NYU School of Medicine, New York, New York, USA
- Department of Laboratory Medicine, and
| |
Collapse
|
43
|
Daiwile AP, Sivanesan S, Tarale P, Naoghare PK, Bafana A, Parmar D, Kannan K. Role of fluoride induced histone trimethylation in development of skeletal fluorosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:159-165. [PMID: 29275289 DOI: 10.1016/j.etap.2017.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/25/2017] [Accepted: 12/16/2017] [Indexed: 05/19/2023]
Abstract
Chronic exposure to fluoride has been associated with the development of skeletal fluorosis. Limited reports are available on fluoride induced histone modification. However, the role of histone modification in the pathogenesis of skeletal fluorosis is not investigated. In the present study, we have investigated the role of fluoride induced histone modification on fluorosis development using human osteosarcoma (HOS) cell line. The expression of histone methyltransferases (EHMT1 and EHZ2) and level of global histone trimethylation (H3K9 and H3K27) have been assessed and observed to be increased significantly after fluoride exposure (8 mg/L). EpiTect chromatin immunoprecipitation (CHIP) qPCR Array (Human TGFβ/BMP signaling pathway) was performed to assess the H3K9 trimethylation at promoter regions of pathway-specific genes. H3K9 ChIP PCR array analysis identified hyper H3K9 trimethylation in promoter regions of TGFBR2 and SMAD3. qPCR and STRING analysis was carried out to determine the repressive epigenetic effect of H3K9 trimethylation on expression pattern and functional association of identified genes. Identified genes (TGFBR2 and SMAD3) showed down-regulation which confirms the repressive epigenetic effect of promoter H3K9 hyper trimethylation. Expression of two other vital genes COL1A1 and MMP13 involved in TGFBR2-SMAD signaling pathway was also found to be down-regulated with a decrease in expression of TGFBR2 and SMAD3. STRING analysis revealed functional association and involvement of identified genes TGFBR2, SMAD3, COL1A1 and MMP13 in the collagen and cartilage development/morphogenesis, connective tissue formation, bio-mineral tissue development, endochondral bone formation, bone and skeletal morphogenesis. In conclusion, present investigation is a first attempt to link fluoride induced hyper H3K9 tri-methylation mediated repression of TGFBR2 and SMAD3 with the development of skeletal fluorosis.
Collapse
Affiliation(s)
- Atul P Daiwile
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Saravanadevi Sivanesan
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - Prashant Tarale
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Pravin K Naoghare
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Amit Bafana
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow 226001, India
| | - Krishnamurthi Kannan
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
44
|
Abstract
Decidualization is an intricate biological process where extensive morphological, functional, and genetic changes take place in endometrial stromal cells to support the development of an implanting blastocyst. Deficiencies in decidualization are associated with pregnancy complications and reproductive diseases. Decidualization is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Transforming growth factor β (TGFβ) superfamily signaling regulates multifaceted reproductive processes. However, the role of TGFβ signaling in uterine decidualization is poorly understood. Recent studies using the Cre-LoxP strategy have shed new light on the critical role of TGFβ signaling machinery in uterine decidualization. Herein, we focus on reviewing exciting findings from studies using both mouse genetics and in vitro cultured human endometrial stromal cells. We also delve into emerging mechanisms that underlie decidualization, such as non-coding RNAs and epigenetic modifications. We envision that future studies aimed at defining the interrelationship among TGFβ signaling circuitries and their potential interactions with epigenetic modifications/non-coding RNAs during uterine decidualization will open new avenues to treat pregnancy complications associated with decidualization deficiencies.
Collapse
Affiliation(s)
- Nan Ni
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
45
|
Huang JY, Yu PH, Li YC, Kuo PL. NLRP7 contributes to in vitro decidualization of endometrial stromal cells. Reprod Biol Endocrinol 2017; 15:66. [PMID: 28810880 PMCID: PMC5558772 DOI: 10.1186/s12958-017-0286-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NACHT), leucine rich repeat (LRR) and pyrin domain (PYD) 7 containing protein, NLRP7, is a member of the NLR family which serves as innate immune sensors. Mutations and genetic variants of NLRP7 have been found in women with infertility associated conditions, such as recurrent hydatidiform mole, recurrent miscarriage, and preeclampsia. Decidualization of endometrial stromal cells is a hallmark of tissue remodeling to support embryo implantation and proper placental development. Given defective decidualization has been implicated in miscarriage as well as preeclampsia, we aimed to explore the link between the NLRP7 gene and decidualization. METHODS Endometrial samples obtained from pregnant women in the first trimester and non-pregnant women were used to study NLRP7 expression pattern. The human telomerase reverse transcriptase (hTERT)-immortalized human endometrial stromal cells (T-HESCs) were used to study the effect of NLRP7 on decidualization. Decidualization of T-HESCs was induced with 1 μM medroxyprogesterone acetate (MPA) and 0.5 mM 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP). siRNA was used to knock down NLRP7 while lentiviral vectors were used to overexpress NLRP7 in cells. NLRP7 expression was detected by immunofluorescence, qRT-PCR, and Western blotting. Decidualization markers, Insulin-like growth factor-binding protein 1 (IGFBP-1) and prolactin (PRL), were detected by qRT-PCR and ELISA. Nuclear translocation of NLRP7 was detected by the subcellular fractionation and confocal microscopy. The effect of NLRP7 on progesterone receptor (PR) activity was evaluated by a reporter system. RESULTS NLRP7 was up-regulated in the decidual stromal cells of human first-trimester endometrium. After in vitro decidualization, T-HESCs presented with the swollen phenotype and increased expressions of IGFBP-1 and PRL. Knockdown or over-expression of NLRP7 reduced or enhanced the decidualization, respectively, according to the expression level of IGFBP-1. NLRP7 was found to translocate in the nucleus of decidualized T-HESCs and able to promote PR activity. CONCLUSIONS NLRP7 was upregulated and translocated to the nucleus of the endometrial stromal cells in an in vitro decidualization model. Overexpressed NLRP7 promoted the IGFBP-1 expression and PR reporter activation. IGFBP-1 expression decreased with the knockdown of NLRP7. Therefore, we suggest that NLRP7 contributes to in vitro decidualization of endometrial stromal cells.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Pei-Hsiu Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Yueh-Chun Li
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South Dist, Taichung City, 402, Taiwan.
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan.
| |
Collapse
|
46
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 2: histone modifications, chromatin remodeling and noncoding RNAs. Epigenomics 2017; 9:873-892. [PMID: 28523964 DOI: 10.2217/epi-2016-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. In a previous review, we assessed DNA methylation alterations. The present review examines the contribution of histone modifications, chromatin remodeling and noncoding RNA alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology & Immunology, University of Porto); I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database. J Proteomics 2016; 150:281-289. [PMID: 27705816 DOI: 10.1016/j.jprot.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/10/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Insecticide resistance is an increasingly global problem that hampers pest control. We sought the mechanism responsible for survival following pyrethroid treatment and the factors connected to paralysis/death of the pollen beetle Meligethes aeneus through a proteome-level analysis using nanoLC coupled with Orbitrap Fusion™ Tribrid™ mass spectrometry. A tolerant field population of beetles was treated with deltamethrin, and the ensuing proteome changes were observed in the survivors (resistant), dead (paralyzed) and control-treated beetles. The protein database consisted of the translated transcriptome, and the resulting changes were manually annotated via BLASTP. We identified a number of high-abundance changes in which there were several dominant proteins, e.g., the electron carrier cytochrome b5, ribosomal proteins 60S RPL28, 40S RPS23 and RPS26, eIF4E-transporter, anoxia up-regulated protein, 2 isoforms of vitellogenin and pathogenesis-related protein 5. Deltamethrin detoxification was influenced by different cytochromes P450, which were likely boosted by increased cytochrome b5, but glutathione-S-transferase ε and UDP-glucuronosyltransferases also contributed. Moreover, we observed changes in proteins related to RNA interference, RNA binding and epigenetic modifications. The high changes in ribosomal proteins and associated factors suggest specific control of translation. Overall, we showed modulation of expression processes by epigenetic markers, alternative splicing and translation. Future functional studies will benefit. BIOLOGICAL SIGNIFICANCE Insects develop pesticide resistance, which has become one of the key issues in plant protection. This growing resistance increases the demand for pesticide applications and the development of new substances. Knowledge in the field regarding the resistance mechanism and its responses to pesticide treatment provides us the opportunity to propose a solution for this issue. Although the pollen beetle Meligethes aeneus was effectively controlled with pyrethroids for many years, there have been reports of increasing resistance. We show protein changes including production of isoforms in response to deltamethrin at the protein level. These results illustrate the insect's survival state as a resistant beetle and in its paralyzed state (evaluated as dead) relative to resistant individuals.
Collapse
|
48
|
Gao F, Das SK. Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomol Concepts 2015; 5:95-107. [PMID: 25372745 DOI: 10.1515/bmc-2013-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022] Open
Abstract
DNA methylation at cytosines is an important epigenetic modification that participates in gene expression regulation without changing the original DNA sequence. With the rapid progress of high-throughput sequencing techniques, whole-genome distribution of methylated cytosines and their regulatory mechanism have been revealed gradually. This has allowed the uncovering of the critical roles played by DNA methylation in the maintenance of cell pluripotency, determination of cell fate during development, and in diverse diseases. Recently, rediscovery of 5-hydroxymethylcytosine, and other types of modification on DNA, have uncovered more dynamic aspects of cell methylome regulation. The interaction of DNA methylation and other epigenetic changes remodel the chromatin structure and determine the state of gene transcription, not only permanently, but also transiently under certain stimuli. The uterus is a reproductive organ that experiences dramatic hormone stimulated changes during the estrous cycle and pregnancy, and thus provides us with a unique model for studying the dynamic regulation of epigenetic modifications. In this article, we review the current findings on the roles of genomic DNA methylation and hydroxymethylation in the regulation of gene expression, and discuss the progress of studies for these epigenetic changes in the uterus during implantation and decidualization.
Collapse
|
49
|
Yoshie M, Kusama K, Tamura K. Molecular Mechanisms of Human Endometrial Decidualization Activated by Cyclic Adenosine Monophosphate Signaling Pathways. ACTA ACUST UNITED AC 2015. [DOI: 10.1274/jmor.32.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Abstract
Epigenetic mechanisms may play an important role in the etiology of endometriosis. The modification of histones by methylation of lysine residues has been shown to regulate gene expression by changing chromatin structure. We have previously shown that endometriotic lesions had aberrant levels of histone acetylation (lower) and methylation (higher) than control tissues. We aimed to determine the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3), a well-known repressive mark, by immunoassay of fresh tissues and immunohistochemistry (IHC) of an endometriosis-focused tissue microarray. Also, we aimed to determine levels of expression of enhancer of zeste homolog 2 (EZH2), the enzyme responsible for trimethylation of H3K27me3, in cell lines. Average levels of H3K27me3 measured by immunoassay were not significantly different in lesions compared to endometrium from patients and controls. However, there was a trend of higher levels of H3K27me3 in secretory versus proliferative endometrium. The results of IHC showed that lesions (ovarian, fallopian, and peritoneal) and secretory endometrium from controls have higher percentage of H3K27me3-positive nuclei than eutopic endometrium from patients. Endometriotic epithelial cells express high levels of EZH2, which is upregulated by progesterone. This study provides evidence in support of a role of H3K27me3 in the pathogenesis of endometriosis and for EZH2 as a potential therapeutic target for this disease, but more studies are necessary to understand the molecular mechanisms at play.
Collapse
Affiliation(s)
- Mariano Colón-Caraballo
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Janice B Monteiro
- Department of Biochemistry, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Idhaliz Flores
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA Department of Obstetrics and Gynaecology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| |
Collapse
|