1
|
Röthe J, Kraft R, Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D. The adhesion GPCR GPR116/ADGRF5 has a dual function in pancreatic islets regulating somatostatin release and islet development. Commun Biol 2024; 7:104. [PMID: 38228886 PMCID: PMC10791652 DOI: 10.1038/s42003-024-05783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.
Collapse
Affiliation(s)
- Juliane Röthe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Robert Kraft
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Medical Department II - Gastroenterology, Hepatology, Infectious Diseases, Pneumology, University Medical Center, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Infectious Diseases, and Pneumology, University Hospital, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Buchold
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
2
|
Yan S, Yao N, Li X, Sun M, Yang Y, Cui W, Li B. The Association between the Differential Expression of lncRNA and Type 2 Diabetes Mellitus in People with Hypertriglyceridemia. Int J Mol Sci 2023; 24:ijms24054279. [PMID: 36901708 PMCID: PMC10002095 DOI: 10.3390/ijms24054279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Compared with diabetic patients with normal blood lipid, diabetic patients with dyslipidemia such as high triglycerides have a higher risk of clinical complications, and the disease is also more serious. For the subjects with hypertriglyceridemia, the lncRNAs affecting type 2 diabetes mellitus (T2DM) and the specific mechanisms remain unclear. Transcriptome sequencing was performed on peripheral blood samples of new-onset T2DM (six subjects) and normal blood control (six subjects) in hypertriglyceridemia patients using gene chip technology, and differentially expressed lncRNA profiles were constructed. Validated by the GEO database and RT-qPCR, lncRNA ENST00000462455.1 was selected. Subsequently, fluorescence in situ hybridization (FISH), real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8 assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) were used to observe the effect of ENST00000462455.1 on MIN6. When silencing the ENST00000462455.1 for MIN6 in high glucose and high fat, the relative cell survival rate and insulin secretion decreased, the apoptosis rate increased, and the expression of the transcription factors Ins1, Pdx-1, Glut2, FoxO1, and ETS1 that maintained the function and activity of pancreatic β cells decreased (p < 0.05). In addition, we found that ENST00000462455.1/miR-204-3p/CACNA1C could be the core regulatory axis by using bioinformatics methods. Therefore, ENST00000462455.1 was a potential biomarker for hypertriglyceridemia patients with T2DM.
Collapse
Affiliation(s)
- Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
- School of Nursing, Jilin University, Changchun 130021, China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (W.C.); (B.L.); Tel.: +86-431-85619455 (W.C.); +86-43185619451 (B.L.)
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (W.C.); (B.L.); Tel.: +86-431-85619455 (W.C.); +86-43185619451 (B.L.)
| |
Collapse
|
3
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Super-conserved receptors expressed in the brain: biology and medicinal chemistry efforts. Future Med Chem 2022; 14:899-913. [PMID: 35535715 DOI: 10.4155/fmc-2022-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The super-conserved receptors expressed in the brain (SREB) constitute a family of orphan G protein-coupled receptors that include GPR27 (SREB1), GPR85 (SREB2) and GPR173 (SREB3). Their sequences are highly conserved in vertebrates, and they are almost exclusively expressed in the central nervous system. This family of receptors has attracted much attention due to their putative physiological functions and their potential as novel drug targets. The SREB family has been postulated to play important roles in a wide range of different diseases, including pancreatic β-cell insulin secretion and regulation, schizophrenia, autism and atherosclerosis. This review intends to provide a comprehensive overview of the SREB family and its recent advances in biology and medicinal chemistry.
Collapse
|
5
|
Effects of Arachidonic Acid and Its Metabolites on Functional Beta-Cell Mass. Metabolites 2022; 12:metabo12040342. [PMID: 35448529 PMCID: PMC9031745 DOI: 10.3390/metabo12040342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/26/2023] Open
Abstract
Arachidonic acid (AA) is a polyunsaturated 20-carbon fatty acid present in phospholipids in the plasma membrane. The three primary pathways by which AA is metabolized are mediated by cyclooxygenase (COX) enzymes, lipoxygenase (LOX) enzymes, and cytochrome P450 (CYP) enzymes. These three pathways produce eicosanoids, lipid signaling molecules that play roles in biological processes such as inflammation, pain, and immune function. Eicosanoids have been demonstrated to play a role in inflammatory, renal, and cardiovascular diseases as well type 1 and type 2 diabetes. Alterations in AA release or AA concentrations have been shown to affect insulin secretion from the pancreatic beta cell, leading to interest in the role of AA and its metabolites in the regulation of beta-cell function and maintenance of beta-cell mass. In this review, we discuss the metabolism of AA by COX, LOX, and CYP, the roles of these enzymes and their metabolites in beta-cell mass and function, and the possibility of targeting these pathways as novel therapies for treating diabetes.
Collapse
|
6
|
Pang H, Fan W, Shi X, Li J, Wang Y, Luo S, Lin J, Huang G, Li X, Xie Z, Zhou Z. Characterization of lncRNA Profiles of Plasma-Derived Exosomes From Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:822221. [PMID: 35634499 PMCID: PMC9135040 DOI: 10.3389/fendo.2022.822221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDS Exosomes contain several types of transcripts, including long non-coding RNAs (lncRNAs), and have been shown to exert important effects in human diseases. However, the roles of exosomal lncRNAs in type 1 diabetes mellitus (T1DM) have not been well investigated. In the present study, we characterized the plasma-derived exosomal lncRNAs expression profiles of T1DM and predict their potential function in the pathogenesis of T1DM. MATERIAL AND METHODS Exosomal lncRNA expression profiles were detected by Illumina Hiseq platform (T1DM subjects N=10; age-, sex- matched Control subjects N=10). Six exosomal lncRNAs were selected to validate their expression level by using quantitative real-time PCR (qRT-PCR) (T1DM subjects N=30; age-, sex- matched Control subjects N=30). Bioinformatics analysis approaches were carried out to explore the potential biological function of differentially expressed lncRNAs. RESULTS A total of 162 differentially expressed exosomal lncRNAs were identified in T1DM patients compared with control subjects, among which 77 up-regulated and 85 down-regulated. The expression level of the selected six lncRNAs didn't show significant difference in the following qRT-PCR analysis. Gene Ontology analysis enriched terms such as activation of phospholipase D activity, neuronal cell body membrane, and calcium sensitive guanylate cyclase activator activity for cis-acting genes of lncRNAs, and metal ion binding for trans-acting genes. The most enriched Kyoto Encyclopedia of Genes and Genomes pathways for the lncRNAs were associated with oxidative phosphorylation and Parkinson's disease for cis-acting genes, and pathways in cancer as well as focal adhesion for trans-acting genes. CONCLUSIONS This study characterized the lncRNA profiles of plasma-derived exosomes from T1DM for the first time and these results highlighted the potential role of exosomal lncRNAs in T1DM pathogenesis. A better understanding of exosomal lncRNA profiling will provide novel insights into its molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiguo Xie
- *Correspondence: Zhiguang Zhou, ; Zhiguo Xie,
| | | |
Collapse
|
7
|
Postić S, Gosak M, Tsai WH, Pfabe J, Sarikas S, Stožer A, Korošak D, Yang SB, Slak Rupnik M. pH-Dependence of Glucose-Dependent Activity of Beta Cell Networks in Acute Mouse Pancreatic Tissue Slice. Front Endocrinol (Lausanne) 2022; 13:916688. [PMID: 35837307 PMCID: PMC9273738 DOI: 10.3389/fendo.2022.916688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular pH has the potential to affect various aspects of the pancreatic beta cell function. To explain this effect, a number of mechanisms was proposed involving both extracellular and intracellular targets and pathways. Here, we focus on reassessing the influence of extracellular pH on glucose-dependent beta cell activation and collective activity in physiological conditions. To this end we employed mouse pancreatic tissue slices to perform high-temporally resolved functional imaging of cytosolic Ca2+ oscillations. We investigated the effect of either physiological H+ excess or depletion on the activation properties as well as on the collective activity of beta cell in an islet. Our results indicate that lowered pH invokes activation of a subset of beta cells in substimulatory glucose concentrations, enhances the average activity of beta cells, and alters the beta cell network properties in an islet. The enhanced average activity of beta cells was determined indirectly utilizing cytosolic Ca2+ imaging, while direct measuring of insulin secretion confirmed that this enhanced activity is accompanied by a higher insulin release. Furthermore, reduced functional connectivity and higher functional segregation at lower pH, both signs of a reduced intercellular communication, do not necessary result in an impaired insulin release.
Collapse
Affiliation(s)
- Sandra Postić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sandra Postić,
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Wen-Hao Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Johannes Pfabe
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Srdjan Sarikas
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Dean Korošak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Shi-Bing Yang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea – European Center Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Bosma KJ, Andrei SR, Katz LS, Smith AA, Dunn JC, Ricciardi VF, Ramirez MA, Baumel-Alterzon S, Pace WA, Carroll DT, Overway EM, Wolf EM, Kimple ME, Sheng Q, Scott DK, Breyer RM, Gannon M. Pharmacological blockade of the EP3 prostaglandin E 2 receptor in the setting of type 2 diabetes enhances β-cell proliferation and identity and relieves oxidative damage. Mol Metab 2021; 54:101347. [PMID: 34626853 PMCID: PMC8529552 DOI: 10.1016/j.molmet.2021.101347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Type 2 diabetes is characterized by hyperglycemia and inflammation. Prostaglandin E2, which signals through four G protein-coupled receptors (EP1-4), is a mediator of inflammation and is upregulated in diabetes. We have shown previously that EP3 receptor blockade promotes β-cell proliferation and survival in isolated mouse and human islets ex vivo. Here, we analyzed whether systemic EP3 blockade could enhance β-cell mass and identity in the setting of type 2 diabetes using mice with a spontaneous mutation in the leptin receptor (Leprdb). METHODS Four- or six-week-old, db/+, and db/db male mice were treated with an EP3 antagonist daily for two weeks. Pancreata were analyzed for α-cell and β-cell proliferation and β-cell mass. Islets were isolated for transcriptomic analysis. Selected gene expression changes were validated by immunolabeling of the pancreatic tissue sections. RESULTS EP3 blockade increased β-cell mass in db/db mice through enhanced β-cell proliferation. Importantly, there were no effects on α-cell proliferation. EP3 blockade reversed the changes in islet gene expression associated with the db/db phenotype and restored the islet architecture. Expression of the GLP-1 receptor was slightly increased by EP3 antagonist treatment in db/db mice. In addition, the transcription factor nuclear factor E2-related factor 2 (Nrf2) and downstream targets were increased in islets from db/db mice in response to treatment with an EP3 antagonist. The markers of oxidative stress were decreased. CONCLUSIONS The current study suggests that EP3 blockade promotes β-cell mass expansion in db/db mice. The beneficial effects of EP3 blockade may be mediated through Nrf2, which has recently emerged as a key mediator in the protection against cellular oxidative damage.
Collapse
Affiliation(s)
- Karin J Bosma
- Dept. of Veterans Affairs Tennessee Valley Authority, Nashville, TN, USA; Dept. of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer R Andrei
- Dept. of Veterans Affairs Tennessee Valley Authority, Nashville, TN, USA; Dept. of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley A Smith
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jennifer C Dunn
- Dept. of Veterans Affairs Tennessee Valley Authority, Nashville, TN, USA; Dept. of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Marisol A Ramirez
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Dept. of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William A Pace
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Darian T Carroll
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Emily M Overway
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elysa M Wolf
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Michelle E Kimple
- Dept. of Medicine, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Quanhu Sheng
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Dept. of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard M Breyer
- Dept. of Veterans Affairs Tennessee Valley Authority, Nashville, TN, USA; Dept. of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Gannon
- Dept. of Veterans Affairs Tennessee Valley Authority, Nashville, TN, USA; Dept. of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
10
|
Breton TS, Sampson WGB, Clifford B, Phaneuf AM, Smidt I, True T, Wilcox AR, Lipscomb T, Murray C, DiMaggio MA. Characterization of the G protein-coupled receptor family SREB across fish evolution. Sci Rep 2021; 11:12066. [PMID: 34103644 PMCID: PMC8187511 DOI: 10.1038/s41598-021-91590-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
The SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA.
| | - William G B Sampson
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Benjamin Clifford
- Science Department, Southern Maine Community College, South Portland, ME, USA
| | - Anyssa M Phaneuf
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Ilze Smidt
- Department of Biology, Bates College, Lewiston, ME, USA
| | - Tamera True
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Andrew R Wilcox
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Taylor Lipscomb
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, USA.,Livingston Stone National Fish Hatchery, US Fish and Wildlife Service, Shasta Lake, CA, USA
| | - Casey Murray
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, USA
| |
Collapse
|
11
|
González-Moro I, Santin I. Long non-coding RNA-regulated pathways in pancreatic β cells: Their role in diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:325-355. [PMID: 33832652 DOI: 10.1016/bs.ircmb.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides that have not coding potential, but act as gene expression regulators through several molecular mechanisms. Several studies have identified tons of lncRNAs that are expressed in pancreatic β cells and many of them have been shown to have β cell-specific expression, suggesting a potential role in the regulation of basal β cell functions. Indeed, accumulating evidence based on numerous studies, has highlighted the implication of lncRNAs in the regulation of pancreatic β cell differentiation and proliferation, insulin synthesis and secretion, and apoptosis. In addition, several lncRNAs have shown to be implicated in pancreatic β cell dysfunction linked to different types of diabetes, including type 1 and type 2 diabetes, and monogenic forms of the disease. Pathogenic conditions linked to diabetes (inflammation or lipoglucotoxicity, for example) dysregulate the expression of several lncRNAs, suggesting that changes in lncRNA may alter potentially important pathways for β cell function, and eventually leading to β cell dysfunction and diabetes development. In this sense, functional characterization of some lncRNAs has demonstrated that these non-coding molecules participate in the regulation of several crucial pathways at the pancreatic β cell level, and dysregulation of these pathways leads to pathogenic phenotypes. In this review, we provide an overview of the action mechanisms of functionally characterized lncRNAs in healthy β cells and describe the contribution of some diabetes-associated lncRNAs to pancreatic β cell failure.
Collapse
Affiliation(s)
- Itziar González-Moro
- Department of Biochemistry and Molecular biology, University of the Basque Country, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Izortze Santin
- Department of Biochemistry and Molecular biology, University of the Basque Country, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; CIBER (Centro de Investigación Biomédica en Red) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021; 39:522-535. [PMID: 33497522 DOI: 10.1002/stem.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand β-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and β-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human β-cells, to cell lines, to pluripotent stem cell-derived β-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are β-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying β-cell biology, improving β-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.
Collapse
Affiliation(s)
- Phillip L Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long Noncoding RNAs and Circular RNAs in Autoimmune Diseases. Biomolecules 2020; 10:E1044. [PMID: 32674342 PMCID: PMC7407480 DOI: 10.3390/biom10071044] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Immune responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled, autoimmune diseases can occur. Autoimmune diseases (ADs) are a family of disorders characterized by the body's immune response being directed against its own tissues, with consequent chronic inflammation and tissue damage. Despite enormous efforts to identify new drug targets and develop new therapies to prevent and ameliorate AD symptoms, no definitive solutions are available today. Additionally, while substantial progress has been made in drug development for some ADs, most treatments only ameliorate symptoms and, in general, ADs are still incurable. Hundreds of genetic loci have been identified and associated with ADs by genome-wide association studies. However, the whole list of molecular factors that contribute to AD pathogenesis is still unknown. Noncoding (nc)RNAs, such as microRNAs, circular (circ)RNAs, and long noncoding (lnc)RNAs, regulate gene expression at different levels in various diseases, including ADs, and serve as potential drug targets as well as biomarkers for disease progression and response to therapy. In this review, we will focus on the potential roles and genetic regulation of ncRNA in four autoimmune diseases-systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Giampaolo Murgia
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Maria Laura Idda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, 07100 Sassari, Italy
| |
Collapse
|
14
|
Guay C, Jacovetti C, Bayazit MB, Brozzi F, Rodriguez-Trejo A, Wu K, Regazzi R. Roles of Noncoding RNAs in Islet Biology. Compr Physiol 2020; 10:893-932. [PMID: 32941685 DOI: 10.1002/cphy.c190032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and β-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between β-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Adriana Rodriguez-Trejo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Xiong L, Gong Y, Wu L, Li J, He W, Zhu X, Xiao H. LncRNA-Malat1 is Involved in Lipotoxicity-Induced ß-cell Dysfunction and the Therapeutic Effect of Exendin-4 via Ptbp1. Endocrinology 2020; 161:5824261. [PMID: 32324218 DOI: 10.1210/endocr/bqaa065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) have crucial roles in various biological processes. However, the contribution of lncRNAs to β-cell dysfunction and their roles in diabetes therapeutics remain poorly understood. The aim of this study was to identify the lncRNAs dysregulated in diabetic islets and to explore the lncRNAs involved in β-cell function as potential therapeutic targets. By using RNA sequencing and real-time PCR, we identified thousands of lncRNAs in the islets of db/db mice and db/m littermate mice. Among the differentially expressed lncRNAs, lncRNA-Malat1 (metastasis-associated lung adenocarcinoma transcript 1) was reduced in the islets of db/db mice and palmitate-treated MIN6 cells. The results of TUNEL, Western blot and flow cytometric analyses, and GSIS assays revealed that Malat1 knockdown significantly induced β-cell apoptosis and inhibited insulin secretion. Mechanistically, RNA immunoprecipitation showed that Malat1 enhanced polypyrimidine tract-binding protein 1 (Ptbp1) protein stability by direct interaction, thereby adjusting the ratio of pyruvate kinase muscle (PKM) isoforms 1 and 2 (PKM1/PKM2). Moreover, luciferase assay and chromatin immunoprecipitation indicated that Malat1 was transcriptionally activated by pancreatic and duodenal homeobox 1 (Pdx1), through which exendin-4 alleviated lipotoxicity-induced β-cell damage. In summary, our findings suggested the involvement of Malat1 in β-cell dysfunction under diabetic conditions via the Malat1/Ptbp1/PKM2 pathway. In addition, exendin-4 ameliorated β-cell impairment by Pdx1-mediated Malat1 upregulation. Hence, Malat1 may serve as a therapeutic target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Gong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liting Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaonan Zhu
- Department of Pharmacology, Zhong‑Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Bosma KJ, Rahim M, Singh K, Goleva SB, Wall ML, Xia J, Syring KE, Oeser JK, Poffenberger G, McGuinness OP, Means AL, Powers AC, Li WH, Davis LK, Young JD, O’Brien RM. Pancreatic islet beta cell-specific deletion of G6pc2 reduces fasting blood glucose. J Mol Endocrinol 2020; 64:235-248. [PMID: 32213654 PMCID: PMC7331801 DOI: 10.1530/jme-20-0031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/25/2022]
Abstract
The G6PC1, G6PC2 and G6PC3 genes encode distinct glucose-6-phosphatase catalytic subunit (G6PC) isoforms. In mice, germline deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin (FPI) while, in isolated islets, glucose-6-phosphatase activity and glucose cycling are abolished and glucose-stimulated insulin secretion (GSIS) is enhanced at submaximal but not high glucose. These observations are all consistent with a model in which G6PC2 regulates the sensitivity of GSIS to glucose by opposing the action of glucokinase. G6PC2 is highly expressed in human and mouse islet beta cells however, various studies have shown trace G6PC2 expression in multiple tissues raising the possibility that G6PC2 also affects FBG through non-islet cell actions. Using real-time PCR we show here that expression of G6pc1 and/or G6pc3 are much greater than G6pc2 in peripheral tissues, whereas G6pc2 expression is much higher than G6pc3 in both pancreas and islets with G6pc1 expression not detected. In adult mice, beta cell-specific deletion of G6pc2 was sufficient to reduce FBG without changing FPI. In addition, electronic health record-derived phenotype analyses showed no association between G6PC2 expression and phenotypes clearly unrelated to islet function in humans. Finally, we show that germline G6pc2 deletion enhances glycolysis in mouse islets and that glucose cycling can also be detected in human islets. These observations are all consistent with a mechanism by which G6PC2 action in islets is sufficient to regulate the sensitivity of GSIS to glucose and hence influence FBG without affecting FPI.
Collapse
Affiliation(s)
- Karin J. Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kritika Singh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Slavina B. Goleva
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Martha L. Wall
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jing Xia
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039
| | - Kristen E. Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Greg Poffenberger
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Anna L. Means
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- VA Tennessee Valley Healthcare System, Nashville, TN 37232
| | - Wen-hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039
| | - Lea K. Davis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- To whom correspondence should be addressed: Department of Molecular Physiology and Biophysics, 8415 MRB IV, 2213 Garland Ave, Vanderbilt University Medical School, Nashville, TN 37232-0615,
| |
Collapse
|
17
|
Guay C, Abdulkarim B, Tan JY, Dubuis G, Rütti S, Laybutt DR, Widmann C, Regazzi R, Marques AC. Loss-of-function of the long non-coding RNA A830019P07Rik in mice does not affect insulin expression and secretion. Sci Rep 2020; 10:6413. [PMID: 32286361 PMCID: PMC7156487 DOI: 10.1038/s41598-020-62969-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/19/2020] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to diverse cellular functions and the dysregulation of their expression or function can contribute to diseases, including diabetes. The contributions of lncRNAs to β-cell development, function and survival has been extensively studied in vitro. However, very little is currently known on the in vivo roles of lncRNAs in the regulation of glucose and insulin homeostasis. Here we investigated the impact of loss-of-function in mice of the lncRNA A830019P07Rik, hereafter P07Rik, which was previously reported to be associated with reduced plasma insulin levels. Compared with wild-type littermates, male and female P07Rik mutant mice did not show any defect in glycaemia and plasma insulin levels in both fed and fasted state. Furthermore, P07Rik mutant mice displayed similar glucose and insulin levels in response to an intra-peritoneal glucose tolerance test. Ex vivo, islets from mutant P07Rik released similar amount of insulin in response to increased glucose concentration as wildtype littermates. In contrast with previous reports, our characterization of P07Rik mouse mutants revealed that loss of function of this lncRNA does not affect glucose and insulin homeostasis in mice.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Baroj Abdulkarim
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Jennifer Y Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Gilles Dubuis
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sabine Rütti
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre Européen d'Etude du Diabète, Strasbourg, France
| | - David Ross Laybutt
- Garvan Institute of Medical Research, St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Ana Claudia Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, Pan Y, Zhang YF, Du H, Li L, Jin L. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. Diabetologia 2020; 63:811-824. [PMID: 32008054 DOI: 10.1007/s00125-020-05090-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Although obesity is a predisposing factor for pancreatic beta cell dysfunction, the mechanisms underlying its negative effect on insulin-secreting cells is still poorly understood. The aim of this study was to identify islet long non-coding RNAs (lncRNAs) involved in obesity-mediated beta cell dysfunction. METHODS RNA sequencing was performed to analyse the islets of high-fat diet (HFD)-fed mice and those of normal chow-fed mice (NCD). The function in beta cells of the selected lncRNA 1810019D21Rik (referred to in this paper as ROIT [regulator of insulin transcription]) was assessed after its overexpression or knockdown in MIN6 cells and primary islet cells, as well as in siRNA-treated mice. Then, RNA pull-down, RNA immunoprecipitation, coimmunoprecipitation and bisulphite sequencing were performed to investigate the mechanism of ROIT regulation of islet function. RESULTS ROIT was dramatically downregulated in the islets of the obese mice, as well as in the sera of obese donors with type 2 diabetes, and was suppressed by HNF1B. Overexpression of ROIT in MIN6 cells and islets led to improved glucose homeostasis and insulin transcription. Investigation of the mechanism involved showed that ROIT bound to DNA methyltransferase 3a and caused its degradation through the ubiquitin proteasome pathway, which blocked the methylation of the Nkx6.1 promoter. CONCLUSIONS/INTERPRETATION These findings functionally suggest a novel link between obesity and beta cell dysfunction via ROIT. Elucidating a precise mechanism for the effect of obesity on lncRNA expression will broaden our understanding of the pathophysiological development of diabetes and facilitate the design of better tools for diabetes prevention and treatment. DATA AVAILABILITY The raw RNA sequencing data are available from the NCBI Gene Expression Omnibus (GEO series accession number GSE139991).
Collapse
Affiliation(s)
- Fang Fang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yu Hong Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Dan Wei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Ting Sheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Jia Min Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yan Feng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Hong Du
- Department of Endocrinology, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, People's Republic of China
| | - Ling Li
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Chopra DG, Yiv N, Hennings TG, Zhang Y, Ku GM. Deletion of Gpr27 in vivo reduces insulin mRNA but does not result in diabetes. Sci Rep 2020; 10:5629. [PMID: 32221326 PMCID: PMC7101378 DOI: 10.1038/s41598-020-62358-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2020] [Indexed: 12/02/2022] Open
Abstract
Gpr27 is a highly conserved, orphan G protein coupled receptor (GPCR) previously implicated in pancreatic beta cell insulin transcription and glucose-stimulated insulin secretion in vitro. Here, we characterize a whole-body mouse knockout of Gpr27. Gpr27 knockout mice were born at expected Mendelian ratios and exhibited no gross abnormalities. Insulin and Pdx1 mRNA in Gpr27 knockout islets were reduced by 30%, but this did not translate to a reduction in islet insulin content or beta cell mass. Gpr27 knockout mice exhibited slightly worsened glucose tolerance with lower plasma insulin levels while maintaining similar insulin tolerance. Unexpectedly, Gpr27 deletion reduced expression of Eif4e3, a neighboring gene, likely by deleting transcription start sites on the anti-sense strand of the Gpr27 coding exon. Our data confirm that loss of Gpr27 reduces insulin mRNA in vivo but has only minor effects on glucose tolerance.
Collapse
Affiliation(s)
| | - Nicholas Yiv
- Diabetes Center, UCSF, San Francisco, CA, 94143, USA
| | - Thomas G Hennings
- Diabetes Center, UCSF, San Francisco, CA, 94143, USA
- Biomedical Sciences Graduate Program, UCSF, San Francisco, CA, 94143, USA
| | - Yaohuan Zhang
- Metabolic Biology Graduate Program, UCB, Berkeley, CA, 94720, USA
| | - Gregory M Ku
- Diabetes Center, UCSF, San Francisco, CA, 94143, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, UCSF, San Francisco, CA, 94143, USA.
| |
Collapse
|
20
|
Zhang TN, Wang W, Yang N, Huang XM, Liu CF. Regulation of Glucose and Lipid Metabolism by Long Non-coding RNAs: Facts and Research Progress. Front Endocrinol (Lausanne) 2020; 11:457. [PMID: 32765426 PMCID: PMC7381111 DOI: 10.3389/fendo.2020.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA with a length that exceeds 200 nucleotides. Previous studies have shown that lncRNAs play an important role in the pathogenesis of various diseases. Research in both animal models and humans has begun to unravel the profound complexity of lncRNAs and demonstrated that lncRNAs exert direct effects on glucose and lipid metabolism both in vivo and in vitro. Such research has elucidated the regulatory role of lncRNAs in glucose and lipid metabolism in human disease. lncRNAs mediate glucose and lipid metabolism under physiological and pathological conditions and contribute to various metabolism disorders. This review provides an update on our understanding of the regulatory role of lncRNAs in glucose and lipid metabolism in various diseases. As our understanding of the function of lncRNAs improves, the future is promising for the development of new diagnostic biomarkers that utilize lncRNAs and treatments that target lncRNAs to improve clinical outcomes.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Tie-Ning Zhang
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT, United States
- Xin-Mei Huang
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Chun-Feng Liu
| |
Collapse
|
21
|
The Long Noncoding RNA Paupar Modulates PAX6 Regulatory Activities to Promote Alpha Cell Development and Function. Cell Metab 2019; 30:1091-1106.e8. [PMID: 31607563 PMCID: PMC7205457 DOI: 10.1016/j.cmet.2019.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
Many studies have highlighted the role of dysregulated glucagon secretion in the etiology of hyperglycemia and diabetes. Accordingly, understanding the mechanisms underlying pancreatic islet α cell development and function has important implications for the discovery of new therapies for diabetes. In this study, comparative transcriptome analyses between embryonic mouse pancreas and adult mouse islets identified several pancreatic lncRNAs that lie in close proximity to essential pancreatic transcription factors, including the Pax6-associated lncRNA Paupar. We demonstrate that Paupar is enriched in glucagon-producing α cells where it promotes the alternative splicing of Pax6 to an isoform required for activation of essential α cell genes. Consistently, deletion of Paupar in mice resulted in dysregulation of PAX6 α cell target genes and corresponding α cell dysfunction, including blunted glucagon secretion. These findings illustrate a distinct mechanism by which a pancreatic lncRNA can coordinate glucose homeostasis by cell-specific regulation of a broadly expressed transcription factor.
Collapse
|
22
|
Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy. Ann N Y Acad Sci 2019; 1411:120-139. [PMID: 29377199 DOI: 10.1111/nyas.13552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and the Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
23
|
Mungamuri SK. Targeting the epigenome as a therapeutic strategy for pancreatic tumors. THERANOSTIC APPROACH FOR PANCREATIC CANCER 2019:211-244. [DOI: 10.1016/b978-0-12-819457-7.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
24
|
Abstract
Chronic, noncommunicable, and inflammation-associated diseases remain the largest cause of morbidity and mortality globally and within the United States. This is mainly due to our limited understanding of the molecular mechanisms that underlie these complex pathologies. The available evidence indicates that studies of epigenetics (traditionally defined as the heritable changes to gene expression that are independent of changes to DNA) are significantly advancing our knowledge of these inflammatory conditions. This review will focus on epigenetic studies of three diseases, that are among the most burdensome globally: cardiovascular disease, the number one cause of deaths worldwide, type 2 diabetes and, Alzheimer’s disease. The current status of epigenetic research, including the ability to predict disease risk, and key pathophysiological defects are discussed. The significance of defining the contribution of epigenetic defects to nonresolving inflammation and aging, each associated with these diseases, is highlighted, as these are likely to provide new insights into inflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Eleni Stylianou
- Consultant Biomedical Scientist and Bioinformaticist, North Royalton, OH, USA,
| |
Collapse
|
25
|
Wong WKM, Sørensen AE, Joglekar MV, Hardikar AA, Dalgaard LT. Non-Coding RNA in Pancreas and β-Cell Development. Noncoding RNA 2018; 4:E41. [PMID: 30551650 PMCID: PMC6315983 DOI: 10.3390/ncrna4040041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and β-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and β-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and β-cell differentiation as well as in the perinatal period, where a burst of β-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and β-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or β-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with β-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and β-cell function. Altogether, these observations support significant and important actions of ncRNAs in β-cell development and function.
Collapse
Affiliation(s)
- Wilson K M Wong
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Anand A Hardikar
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| |
Collapse
|
26
|
Font-Cunill B, Arnes L, Ferrer J, Sussel L, Beucher A. Long Non-coding RNAs as Local Regulators of Pancreatic Islet Transcription Factor Genes. Front Genet 2018; 9:524. [PMID: 30459811 PMCID: PMC6232259 DOI: 10.3389/fgene.2018.00524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
The transcriptional programs of differentiated cells are tightly regulated by interactions between cell type-specific transcription factors and cis-regulatory elements. Long non-coding RNAs (lncRNAs) have emerged as additional regulators of gene transcription. Current evidence indicates that lncRNAs are a very heterogeneous group of molecules. For example, selected lncRNAs have been shown to regulate gene expression in cis or trans, although in most cases the precise underlying molecular mechanisms is unknown. Recent studies have uncovered a large number of lncRNAs that are selectively expressed in pancreatic islet cells, some of which were shown to regulate β cell transcriptional programs. A subset of such islet lncRNAs appears to control the expression of β cell-specific transcription factor (TF) genes by local cis-regulation. In this review, we discuss current knowledge of molecular mechanisms underlying cis-regulatory lncRNAs and discuss challenges involved in using genetic perturbations to define their function. We then discuss known examples of pancreatic islet lncRNAs that appear to exert cis-regulation of TF genes. We propose that cis-regulatory lncRNAs could represent a molecular target for modulation of diabetes-relevant genes.
Collapse
Affiliation(s)
- Berta Font-Cunill
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Luis Arnes
- Department of Systems Biology, Columbia University Medical Center, New York, NY, United States.,Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, United States
| | - Jorge Ferrer
- Department of Medicine, Imperial College London, London, United Kingdom.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Lori Sussel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anthony Beucher
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Sanchez-Parra C, Jacovetti C, Dumortier O, Lee K, Peyot ML, Guay C, Prentki M, Laybutt DR, Van Obberghen E, Regazzi R. Contribution of the Long Noncoding RNA H19 to β-Cell Mass Expansion in Neonatal and Adult Rodents. Diabetes 2018; 67:2254-2267. [PMID: 30115652 DOI: 10.2337/db18-0201] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/03/2018] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cell expansion throughout the neonatal period is essential to generate the appropriate mass of insulin-secreting cells required to maintain blood glucose homeostasis later in life. Hence, defects in this process can predispose to diabetes development during adulthood. Global profiling of transcripts in pancreatic islets of newborn and adult rats revealed that the transcription factor E2F1 controls expression of the long noncoding RNA H19, which is profoundly downregulated during the postnatal period. H19 silencing decreased β-cell expansion in newborns, whereas its re-expression promoted proliferation of β-cells in adults via a mechanism involving the microRNA let-7 and the activation of Akt. The offspring of rats fed a low-protein diet during gestation and lactation display a small β-cell mass and an increased risk of developing diabetes during adulthood. We found that the islets of newborn rats born to dams fed a low-protein diet express lower levels of H19 than those born to dams that did not eat a low-protein diet. Moreover, we observed that H19 expression increases in islets of obese mice under conditions of increased insulin demand. Our data suggest that the long noncoding RNA H19 plays an important role in postnatal β-cell mass expansion in rats and contributes to the mechanisms compensating for insulin resistance in obesity.
Collapse
Affiliation(s)
- Clara Sanchez-Parra
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Olivier Dumortier
- University Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, France
| | - Kailun Lee
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Marie-Line Peyot
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Québec, Canada
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Prentki
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Québec, Canada
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Emmanuel Van Obberghen
- University Côte d'Azur, Centre Hospitalier Universitaire, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, France
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Inhibition of Lincpint expression affects insulin secretion and apoptosis in mouse pancreatic β cells. Int J Biochem Cell Biol 2018; 104:171-179. [DOI: 10.1016/j.biocel.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022]
|
29
|
Lee J, Pappalardo Z, Chopra DG, Hennings TG, Vaughn I, Lan C, Choe JJ, Ang K, Chen S, Arkin M, McManus MT, German MS, Ku GM. A Genetic Interaction Map of Insulin Production Identifies Mfi as an Inhibitor of Mitochondrial Fission. Endocrinology 2018; 159:3321-3330. [PMID: 30059978 PMCID: PMC6112596 DOI: 10.1210/en.2018-00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022]
Abstract
Insulin production by the pancreatic β cell is critical for the glucose homeostasis of the whole organism. Although the transcription factors required for insulin production are known, the upstream pathways that control insulin production are less clear. To further elucidate this regulatory network, we created a genetic interaction map of insulin production by performing ∼20,000 pairwise RNA interference knockdowns of insulin promoter regulators. Our map correctly predicted known physical complexes in the electron transport chain and a role for Spry2 in the unfolded protein response. To further validate our map, we used it to predict the function of an unannotated gene encoding a 37-kDa protein with no identifiable domains we have termed mitochondrial fission factor interactor (Mfi). We have shown that Mfi is a binding partner of the mitochondrial fission factor and that Mfi inhibits dynamin-like protein 1 recruitment to mitochondria. Our data provide a resource to understand the regulatory network of insulin promoter activity.
Collapse
Affiliation(s)
- Jessica Lee
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Zachary Pappalardo
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | | | - Thomas G Hennings
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California
| | - Ian Vaughn
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Christopher Lan
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Justin J Choe
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Kenny Ang
- Small Molecules Discovery Center, University of California, San Francisco, San Francisco, California
| | - Steven Chen
- Small Molecules Discovery Center, University of California, San Francisco, San Francisco, California
| | - Michelle Arkin
- Small Molecules Discovery Center, University of California, San Francisco, San Francisco, California
| | - Michael T McManus
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| | - Michael S German
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Gregory M Ku
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, California
- Correspondence: Gregory M. Ku, MD, PhD, Diabetes Center, University of California, San Francisco, 513 Parnassus Avenue, HSW 1002A, Box 0534, San Francisco, California 94143. E-mail:
| |
Collapse
|
30
|
Singer RA, Sussel L. Islet Long Noncoding RNAs: A Playbook for Discovery and Characterization. Diabetes 2018; 67:1461-1470. [PMID: 29937433 PMCID: PMC6054438 DOI: 10.2337/dbi18-0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
Diabetes is a complex group of metabolic disorders that can be accompanied by several comorbidities, including increased risk of early death. Decades of diabetes research have elucidated many genetic drivers of normal islet function and dysfunction; however, a lack of suitable treatment options suggests our knowledge about the disease remains incomplete. The establishment of long noncoding RNAs (lncRNAs), once dismissed as "junk" DNA, as essential gene regulators in many biological processes has redefined the central role for RNA in cells. Studies showing that misregulation of lncRNAs can lead to disease have contributed to the emergence of lncRNAs as attractive candidates for drug targeting. These findings underscore the need to reexamine islet biology in the context of a regulatory role for RNA. This review will 1) highlight what is known about lncRNAs in the context of diabetes, 2) summarize the strategies used in lncRNA discovery pipelines, and 3) discuss future directions and the potential impact of studying the role of lncRNAs in diabetes.
Collapse
Affiliation(s)
- Ruth A Singer
- Columbia University Medical Center, New York, NY
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Graduate School of Arts and Sciences, Columbia University Medical Center, New York, NY
| | - Lori Sussel
- Columbia University Medical Center, New York, NY
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
31
|
Goyal N, Kesharwani D, Datta M. Lnc-ing non-coding RNAs with metabolism and diabetes: roles of lncRNAs. Cell Mol Life Sci 2018; 75:1827-1837. [PMID: 29387902 PMCID: PMC11105777 DOI: 10.1007/s00018-018-2760-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/29/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes is a complex metabolic disorder characterized by insulin resistance and pancreatic β-cell dysfunction. Deregulated glucose and lipid metabolism are the primary underlying manifestations associated with this disease and its complications. Long non-coding RNAs (lncRNAs) are a novel class of functional RNAs that regulate a variety of biological processes by a diverse interplay of mechanisms including recruitment of epigenetic modifiers, transcriptional and post-transcriptional regulation, control of mRNA decay, and sequestration of transcription factors. Although the underlying causes that define the diabetic phenotype are extremely intricate, most of the studies in the last decades were mostly centered on protein-coding genes. However, current opinion in the recent past has authenticated the contributions of diverse lncRNAs as critical regulatory players during the manifestation of diabetes. The current review will highlight the importance of lncRNAs in regulating cellular processes that govern metabolic homeostasis in key metabolic tissues. A more in-depth understanding of lncRNAs may enable their exploitation as biomarkers or for therapeutic applications during diabetes and its associated complications.
Collapse
Affiliation(s)
- Neha Goyal
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Devesh Kesharwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India.
| |
Collapse
|
32
|
Capobianco E. Systems and precision medicine approaches to diabetes heterogeneity: a Big Data perspective. Clin Transl Med 2017; 6:23. [PMID: 28744848 PMCID: PMC5526830 DOI: 10.1186/s40169-017-0155-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/26/2017] [Indexed: 12/15/2022] Open
Abstract
Big Data, and in particular Electronic Health Records, provide the medical community with a great opportunity to analyze multiple pathological conditions at an unprecedented depth for many complex diseases, including diabetes. How can we infer on diabetes from large heterogeneous datasets? A possible solution is provided by invoking next-generation computational methods and data analytics tools within systems medicine approaches. By deciphering the multi-faceted complexity of biological systems, the potential of emerging diagnostic tools and therapeutic functions can be ultimately revealed. In diabetes, a multidimensional approach to data analysis is needed to better understand the disease conditions, trajectories and the associated comorbidities. Elucidation of multidimensionality comes from the analysis of factors such as disease phenotypes, marker types, and biological motifs while seeking to make use of multiple levels of information including genetics, omics, clinical data, and environmental and lifestyle factors. Examining the synergy between multiple dimensions represents a challenge. In such regard, the role of Big Data fuels the rise of Precision Medicine by allowing an increasing number of descriptions to be captured from individuals. Thus, data curations and analyses should be designed to deliver highly accurate predicted risk profiles and treatment recommendations. It is important to establish linkages between systems and precision medicine in order to translate their principles into clinical practice. Equivalently, to realize their full potential, the involved multiple dimensions must be able to process information ensuring inter-exchange, reducing ambiguities and redundancies, and ultimately improving health care solutions by introducing clinical decision support systems focused on reclassified phenotypes (or digital biomarkers) and community-driven patient stratifications.
Collapse
Affiliation(s)
- Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL, USA.
| |
Collapse
|
33
|
Long Non-Coding RNAs in Metabolic Organs and Energy Homeostasis. Int J Mol Sci 2017; 18:ijms18122578. [PMID: 29189723 PMCID: PMC5751181 DOI: 10.3390/ijms18122578] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/15/2022] Open
Abstract
Single cell organisms can surprisingly exceed the number of human protein-coding genes, which are thus not at the origin of the complexity of an organism. In contrast, the relative amount of non-protein-coding sequences increases consistently with organismal complexity. Moreover, the mammalian transcriptome predominantly comprises non-(protein)-coding RNAs (ncRNA), of which the long ncRNAs (lncRNAs) constitute the most abundant part. lncRNAs are highly species- and tissue-specific with very versatile modes of action in accordance with their binding to a large spectrum of molecules and their diverse localization. lncRNAs are transcriptional regulators adding an additional regulatory layer in biological processes and pathophysiological conditions. Here, we review lncRNAs affecting metabolic organs with a focus on the liver, pancreas, skeletal muscle, cardiac muscle, brain, and adipose organ. In addition, we will discuss the impact of lncRNAs on metabolic diseases such as obesity and diabetes. In contrast to the substantial number of lncRNA loci in the human genome, the functionally characterized lncRNAs are just the tip of the iceberg. So far, our knowledge concerning lncRNAs in energy homeostasis is still in its infancy, meaning that the rest of the iceberg is a treasure chest yet to be discovered.
Collapse
|
34
|
Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA. TALK-1 channels control β cell endoplasmic reticulum Ca 2+ homeostasis. Sci Signal 2017; 10:eaan2883. [PMID: 28928238 PMCID: PMC5672804 DOI: 10.1126/scisignal.aan2883] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ca2+ handling by the endoplasmic reticulum (ER) serves critical roles in controlling pancreatic β cell function and becomes perturbed during the pathogenesis of diabetes. ER Ca2+ homeostasis is determined by ion movements across the ER membrane, including K+ flux through K+ channels. We demonstrated that K+ flux through ER-localized TALK-1 channels facilitated Ca2+ release from the ER in mouse and human β cells. We found that β cells from mice lacking TALK-1 exhibited reduced basal cytosolic Ca2+ and increased ER Ca2+ concentrations, suggesting reduced ER Ca2+ leak. These changes in Ca2+ homeostasis were presumably due to TALK-1-mediated ER K+ flux, because we recorded K+ currents mediated by functional TALK-1 channels on the nuclear membrane, which is continuous with the ER. Moreover, overexpression of K+-impermeable TALK-1 channels in HEK293 cells did not reduce ER Ca2+ stores. Reduced ER Ca2+ content in β cells is associated with ER stress and islet dysfunction in diabetes, and islets from TALK-1-deficient mice fed a high-fat diet showed reduced signs of ER stress, suggesting that TALK-1 activity exacerbated ER stress. Our data establish TALK-1 channels as key regulators of β cell ER Ca2+ and suggest that TALK-1 may be a therapeutic target to reduce ER Ca2+ handling defects in β cells during the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah C Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels 1200, Belgium
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Lawson R, Maret W, Hogstrand C. Expression of the ZIP/SLC39A transporters in β-cells: a systematic review and integration of multiple datasets. BMC Genomics 2017; 18:719. [PMID: 28893192 PMCID: PMC5594519 DOI: 10.1186/s12864-017-4119-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pancreatic β-cells require a constant supply of zinc to maintain normal insulin secretory function. Following co-exocytosis with insulin, zinc is replenished via the Zrt- and Irt-like (ZIP; SLC39A) family of transporters. However the ZIP paralogues of particular importance for zinc uptake, and associations with β-cell function and Type 2 Diabetes remain largely unexplored. We retrieved and statistically analysed publically available microarray and RNA-seq datasets to perform a systematic review on the expression of β-cell SLC39A paralogues. We complemented results with experimental data on expression profiling of human islets and mouse β-cell derived MIN6 cells, and compared transcriptomic and proteomic sequence conservation between human, mouse and rat. RESULTS The 14 ZIP paralogues have 73-98% amino sequence conservation between human and rodents. We identified 18 datasets for β-cell SLC39A analysis, which compared relative expression to non-β-cells, and expression in response to PDX-1 activity, cytokines, glucose and type 2 diabetic status. Published expression data demonstrate enrichment of transcripts for ZIP7 and ZIP9 transporters within rodent β-cells and of ZIP6, ZIP7 and ZIP14 within human β-cells, with ZIP1 most differentially expressed in response to cytokines and PDX-1 within rodent, and ZIP6 in response to diabetic status in human and glucose in rat. Our qPCR expression profiling data indicate that SLC39A6, -9, -13, and - 14 are the highest expressed paralogues in human β-cells and Slc39a6 and -7 in MIN6 cells. CONCLUSIONS Our systematic review, expression profiling and sequence alignment reveal similarities and potentially important differences in ZIP complements between human and rodent β-cells. We identify ZIP6, ZIP7, ZIP9, ZIP13 and ZIP14 in human and rodent and ZIP1 in rodent as potentially biologically important for β-cell zinc trafficking. We propose ZIP6 and ZIP7 are key functional orthologues in human and rodent β-cells and highlight these zinc importers as important targets for exploring associations between zinc status and normal physiology of β-cells and their decline in Type 2 Diabetes.
Collapse
Affiliation(s)
- Rebecca Lawson
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences, Metal Metabolism Group, 150 Stamford St, London, SE1 9NH, UK
| | - Wolfgang Maret
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences, Metal Metabolism Group, 150 Stamford St, London, SE1 9NH, UK
| | - Christer Hogstrand
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences, Metal Metabolism Group, 150 Stamford St, London, SE1 9NH, UK.
| |
Collapse
|
36
|
Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes. Mol Metab 2017; 6:1407-1418. [PMID: 29107288 PMCID: PMC5681241 DOI: 10.1016/j.molmet.2017.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Objective Non-coding RNAs constitute a major fraction of the β-cell transcriptome. While the involvement of microRNAs is well established, the contribution of long non-coding RNAs (lncRNAs) in the regulation of β-cell functions and in diabetes development remains poorly understood. The aim of this study was to identify novel islet lncRNAs differently expressed in type 2 diabetes models and to investigate their role in β-cell failure and in the development of the disease. Methods Novel transcripts dysregulated in the islets of diet-induced obese mice were identified by high throughput RNA-sequencing coupled with de novo annotation. Changes in the level of the lncRNAs were assessed by real-time PCR. The functional role of the selected lncRNAs was determined by modifying their expression in MIN6 cells and primary islet cells. Results We identified about 1500 novel lncRNAs, a number of which were differentially expressed in obese mice. The expression of two lncRNAs highly enriched in β-cells, βlinc2, and βlinc3, correlated to body weight gain and glycemia levels in obese mice and was also modified in diabetic db/db mice. The expression of both lncRNAs was also modulated in vitro in isolated islet cells by glucolipotoxic conditions. Moreover, the expression of the human orthologue of βlinc3 was altered in the islets of type 2 diabetic patients and was associated to the BMI of the donors. Modulation of the level of βlinc2 and βlinc3 by overexpression or downregulation in MIN6 and mouse islet cells did not affect insulin secretion but increased β-cell apoptosis. Conclusions Taken together, the data show that lncRNAs are modulated in a model of obesity-associated type 2 diabetes and that variations in the expression of some of them may contribute to β-cell failure during the development of the disease. Mouse pancreatic islets express a large number of novel long non-coding RNAs. Many long non-coding RNAs are differentially expressed in the islets of obese mice. The level of two islet long non-coding RNAs correlates to body weight and glycemia. The expression of these islet long non-coding RNAs is altered in Type 2 diabetes. Altered expression of these long non-coding RNAs sensitise β-cells to apoptosis.
Collapse
|
37
|
Xu EE, Sasaki S, Speckmann T, Nian C, Lynn FC. SOX4 Allows Facultative β-Cell Proliferation Through Repression of Cdkn1a. Diabetes 2017; 66:2213-2219. [PMID: 28495880 DOI: 10.2337/db16-1074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022]
Abstract
The high-mobility group box transcription factor SOX4 is the most highly expressed SOX family protein in pancreatic islets, and mutations in Sox4 are associated with an increased risk of developing type 2 diabetes. We used an inducible β-cell knockout mouse model to test the hypothesis that Sox4 is essential for the maintenance of β-cell number during the development of type 2 diabetes. Knockout of Sox4 at 6 weeks of age resulted in time-dependent worsening of glucose tolerance, impairment of insulin secretion, and diabetes by 30 weeks of age. Immunostaining revealed a decrease in β-cell mass in knockout mice that was caused by a 39% reduction in β-cell proliferation. Gene expression studies revealed that induction of the cell cycle inhibitor Cdkn1a was responsible for the decreased proliferation in the knockout animals. Altogether, this study demonstrates that SOX4 is necessary for adult β-cell replication through direct regulation of the β-cell cycle.
Collapse
Affiliation(s)
- Eric E Xu
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Cell and Developmental Biology Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shugo Sasaki
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thilo Speckmann
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Cell and Developmental Biology Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cuilan Nian
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Cell and Developmental Biology Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Mirza AH, Kaur S, Pociot F. Long non-coding RNAs as novel players in β cell function and type 1 diabetes. Hum Genomics 2017; 11:17. [PMID: 28738846 PMCID: PMC5525349 DOI: 10.1186/s40246-017-0113-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a sub-class within non-coding RNA repertoire that have emerged as crucial regulators of the gene expression in various pathophysiological conditions. lncRNAs display remarkable versatility and wield their functions through interactions with RNA, DNA, or proteins. Accumulating body of evidence based on multitude studies has highlighted the role of lncRNAs in many autoimmune and inflammatory diseases, including type 1 diabetes (T1D). Main body of abstract This review highlights emerging roles of lncRNAs in immune and islet β cell function as well as some of the challenges and opportunities in understanding the pathogenesis of T1D and its complications. Conclusion We accentuate that the lncRNAs within T1D-loci regions in consort with regulatory variants and enhancer clusters orchestrate the chromatin remodeling in β cells and thereby act as cis/trans-regulatory determinants of islet cell transcriptional programs.
Collapse
Affiliation(s)
- Aashiq H Mirza
- CPH-DIRECT, Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- CPH-DIRECT, Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Flemming Pociot
- CPH-DIRECT, Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark. .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Pappalardo Z, Gambhir Chopra D, Hennings TG, Richards H, Choe J, Yang K, Baeyens L, Ang K, Chen S, Arkin M, German MS, McManus MT, Ku GM. A Whole-Genome RNA Interference Screen Reveals a Role for Spry2 in Insulin Transcription and the Unfolded Protein Response. Diabetes 2017; 66:1703-1712. [PMID: 28246293 PMCID: PMC5440024 DOI: 10.2337/db16-0962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
Abstract
Insulin production by the pancreatic β-cell is required for normal glucose homeostasis. While key transcription factors that bind to the insulin promoter are known, relatively little is known about the upstream regulators of insulin transcription. Using a whole-genome RNA interference screen, we uncovered 26 novel regulators of insulin transcription that regulate diverse processes including oxidative phosphorylation, vesicle traffic, and the unfolded protein response (UPR). We focused on Spry2-a gene implicated in human type 2 diabetes by genome-wide association studies but without a clear connection to glucose homeostasis. We showed that Spry2 is a novel UPR target and its upregulation is dependent on PERK. Knockdown of Spry2 resulted in reduced expression of Serca2, reduced endoplasmic reticulum calcium levels, and induction of the UPR. Spry2 deletion in the adult mouse β-cell caused hyperglycemia and hypoinsulinemia. Our study greatly expands the compendium of insulin promoter regulators and demonstrates a novel β-cell link between Spry2 and human diabetes.
Collapse
Affiliation(s)
- Zachary Pappalardo
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | | | - Thomas G Hennings
- Diabetes Center, University of California, San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Hunter Richards
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Justin Choe
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Katherine Yang
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Luc Baeyens
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Kenny Ang
- Small Molecule Discovery Center, University of California, San Francisco, San Francisco, CA
| | - Steven Chen
- Small Molecule Discovery Center, University of California, San Francisco, San Francisco, CA
| | - Michelle Arkin
- Small Molecule Discovery Center, University of California, San Francisco, San Francisco, CA
| | - Michael S German
- Diabetes Center, University of California, San Francisco, San Francisco, CA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Michael T McManus
- Diabetes Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Gregory M Ku
- Diabetes Center, University of California, San Francisco, San Francisco, CA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
40
|
Panaro BL, Flock GB, Campbell JE, Beaudry JL, Cao X, Drucker DJ. β-Cell Inactivation of Gpr119 Unmasks Incretin Dependence of GPR119-Mediated Glucoregulation. Diabetes 2017; 66:1626-1635. [PMID: 28254842 PMCID: PMC5860191 DOI: 10.2337/db17-0017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/06/2023]
Abstract
GPR119 was originally identified as an orphan β-cell receptor; however, subsequent studies demonstrated that GPR119 also regulates β-cell function indirectly through incretin hormone secretion. We assessed the importance of GPR119 for β-cell function in Gpr119-/- mice and in newly generated Gpr119βcell-/- mice. Gpr119-/- mice displayed normal body weight and glucose tolerance on a regular chow (RC) diet. After high-fat feeding, Gpr119-/- mice exhibited reduced fat mass, decreased levels of circulating adipokines, improved insulin sensitivity, and better glucose tolerance. Unexpectedly, oral and intraperitoneal glucose tolerance and the insulin response to glycemic challenge were not perturbed in Gpr119βcell-/- mice on RC and high-fat diets. Moreover, islets from Gpr119-/- and Gpr119βcell-/- mice exhibited normal insulin responses to glucose and β-cell secretagogues. Furthermore, the selective GPR119 agonist AR231453 failed to directly enhance insulin secretion from perifused islets. In contrast, AR231453 increased plasma glucagon-like peptide 1 (GLP-1) and insulin levels and improved glucose tolerance in wild-type and Gpr119βcell-/- mice. These findings demonstrate that β-cell GPR119 expression is dispensable for the physiological control of insulin secretion and the pharmacological response to GPR119 agonism, findings that may inform the lack of robust efficacy in clinical programs assessing GPR119 agonists for the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Brandon L Panaro
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Grace B Flock
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Carrano AC, Mulas F, Zeng C, Sander M. Interrogating islets in health and disease with single-cell technologies. Mol Metab 2017; 6:991-1001. [PMID: 28951823 PMCID: PMC5605723 DOI: 10.1016/j.molmet.2017.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Blood glucose levels are tightly controlled by the coordinated actions of hormone-producing endocrine cells that reside in pancreatic islets. Islet cell malfunction underlies diabetes development and progression. Due to the cellular heterogeneity within islets, it has been challenging to uncover how specific islet cells contribute to glucose homeostasis and diabetes pathogenesis. Recent advances in single-cell technologies and computational methods have opened up new avenues to resolve islet heterogeneity and study islet cell states in health and disease. SCOPE OF REVIEW In the past year, a multitude of studies have been published that used single-cell approaches to interrogate the transcriptome and proteome of the different islet cell types. Here, we summarize the conclusions of these studies, as well as discuss the technologies used and the challenges faced with computational analysis of single-cell data from islet studies. MAJOR CONCLUSIONS By analyzing single islet cells from rodents and humans at different ages and disease states, the studies reviewed here have provided new insight into endocrine cell function and facilitated a high resolution molecular characterization of poorly understood processes, including regeneration, maturation, and diabetes pathogenesis. Gene expression programs and pathways identified in these studies pave the way for the discovery of new targets and approaches to prevent, monitor, and treat diabetes.
Collapse
Affiliation(s)
- Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Chun Zeng
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
Carboneau BA, Allan JA, Townsend SE, Kimple ME, Breyer RM, Gannon M. Opposing effects of prostaglandin E 2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation. Mol Metab 2017; 6:548-559. [PMID: 28580285 PMCID: PMC5444094 DOI: 10.1016/j.molmet.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Hyperglycemia and systemic inflammation, hallmarks of Type 2 Diabetes (T2D), can induce the production of the inflammatory signaling molecule Prostaglandin E2 (PGE2) in islets. The effects of PGE2 are mediated by its four receptors, E-Prostanoid Receptors 1-4 (EP1-4). EP3 and EP4 play opposing roles in many cell types due to signaling through different G proteins, Gi and GS, respectively. We previously found that EP3 and EP4 expression are reciprocally regulated by activation of the FoxM1 transcription factor, which promotes β-cell proliferation and survival. Our goal was to determine if EP3 and EP4 regulate β-cell proliferation and survival and, if so, to elucidate the downstream signaling mechanisms. METHODS β-cell proliferation was assessed in mouse and human islets ex vivo treated with selective agonists and antagonists for EP3 (sulprostone and DG-041, respectively) and EP4 (CAY10598 and L-161,982, respectively). β-cell survival was measured in mouse and human islets treated with the EP3- and EP4-selective ligands in conjunction with a cytokine cocktail to induce cell death. Changes in gene expression and protein phosphorylation were analyzed in response to modulation of EP3 and EP4 activity in mouse islets. RESULTS Blockade of EP3 enhanced β-cell proliferation in young, but not old, mouse islets in part through phospholipase C (PLC)-γ1 activity. Blocking EP3 also increased human β-cell proliferation. EP4 modulation had no effect on ex vivo proliferation alone. However, blockade of EP3 in combination with activation of EP4 enhanced human, but not mouse, β-cell proliferation. In both mouse and human islets, EP3 blockade or EP4 activation enhanced β-cell survival in the presence of cytokines. EP4 acts in a protein kinase A (PKA)-dependent manner to increase mouse β-cell survival. In addition, the positive effects of FoxM1 activation on β-cell survival are inhibited by EP3 and dependent on EP4 signaling. CONCLUSIONS Our results identify EP3 and EP4 as novel regulators of β-cell proliferation and survival in mouse and human islets ex vivo.
Collapse
Key Words
- COX-2, cyclooxygenase-2
- Cell death
- DAG, diacylglycerol
- EP1-4, E-Prostanoid Receptors 1-4
- GPCR, G protein-coupled receptor
- IP3, inositol 1,4,5-trisphosphate
- PGE2, prostaglandin E2
- PKA, protein kinase A
- PL, placental lactogen
- PLC, phospholipase C
- PT, pertussis toxin
- Pancreatic β-cell
- Proliferation
- Prostaglandin E2
Collapse
Affiliation(s)
- Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jack A Allan
- School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
43
|
Tarifeño-Saldivia E, Lavergne A, Bernard A, Padamata K, Bergemann D, Voz ML, Manfroid I, Peers B. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol 2017; 15:21. [PMID: 28327131 PMCID: PMC5360028 DOI: 10.1186/s12915-017-0362-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Defining the transcriptome and the genetic pathways of pancreatic cells is of great interest for elucidating the molecular attributes of pancreas disorders such as diabetes and cancer. As the function of the different pancreatic cell types has been maintained during vertebrate evolution, the comparison of their transcriptomes across distant vertebrate species is a means to pinpoint genes under strong evolutionary constraints due to their crucial function, which have therefore preserved their selective expression in these pancreatic cell types. RESULTS In this study, RNA-sequencing was performed on pancreatic alpha, beta, and delta endocrine cells as well as the acinar and ductal exocrine cells isolated from adult zebrafish transgenic lines. Comparison of these transcriptomes identified many novel markers, including transcription factors and signaling pathway components, specific for each cell type. By performing interspecies comparisons, we identified hundreds of genes with conserved enriched expression in endocrine and exocrine cells among human, mouse, and zebrafish. This list includes many genes known as crucial for pancreatic cell formation or function, but also pinpoints many factors whose pancreatic function is still unknown. A large set of endocrine-enriched genes can already be detected at early developmental stages as revealed by the transcriptomic profiling of embryonic endocrine cells, indicating a potential role in cell differentiation. The actual involvement of conserved endocrine genes in pancreatic cell differentiation was demonstrated in zebrafish for myt1b, whose invalidation leads to a reduction of alpha cells, and for cdx4, selectively expressed in endocrine delta cells and crucial for their specification. Intriguingly, comparison of the endocrine alpha and beta cell subtypes from human, mouse, and zebrafish reveals a much lower conservation of the transcriptomic signatures for these two endocrine cell subtypes compared to the signatures of pan-endocrine and exocrine cells. These data suggest that the identity of the alpha and beta cells relies on a few key factors, corroborating numerous examples of inter-conversion between these two endocrine cell subtypes. CONCLUSION This study highlights both evolutionary conserved and species-specific features that will help to unveil universal and fundamental regulatory pathways as well as pathways specific to human and laboratory animal models such as mouse and zebrafish.
Collapse
Affiliation(s)
- Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Alice Bernard
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Keerthana Padamata
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - David Bergemann
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Marianne L Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l'Hôpital 1, B34, 4000 Sart Tilman, Liege, Belgium.
| |
Collapse
|
44
|
Martin D, Grapin-Botton A. The Importance of REST for Development and Function of Beta Cells. Front Cell Dev Biol 2017; 5:12. [PMID: 28286748 PMCID: PMC5323410 DOI: 10.3389/fcell.2017.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
Beta cells are defined by the genes they express, many of which are specific to this cell type, and ensure a specific set of functions. Beta cells are also defined by a set of genes they should not express (in order to function properly), and these genes have been called forbidden genes. Among these, the transcriptional repressor RE-1 Silencing Transcription factor (REST) is expressed in most cells of the body, excluding most populations of neurons, as well as pancreatic beta and alpha cells. In the cell types where it is expressed, REST represses the expression of hundreds of genes that are crucial for both neuronal and pancreatic endocrine function, through the recruitment of multiple transcriptional and epigenetic co-regulators. REST targets include genes encoding transcription factors, proteins involved in exocytosis, synaptic transmission or ion channeling, and non-coding RNAs. REST is expressed in the progenitors of both neurons and beta cells during development, but it is down-regulated as the cells differentiate. Although REST mutations and deregulation have yet to be connected to diabetes in humans, REST activation during both development and in adult beta cells leads to diabetes in mice.
Collapse
Affiliation(s)
- David Martin
- Service of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) Lausanne, Switzerland
| | | |
Collapse
|
45
|
Akerman I, Tu Z, Beucher A, Rolando DMY, Sauty-Colace C, Benazra M, Nakic N, Yang J, Wang H, Pasquali L, Moran I, Garcia-Hurtado J, Castro N, Gonzalez-Franco R, Stewart AF, Bonner C, Piemonti L, Berney T, Groop L, Kerr-Conte J, Pattou F, Argmann C, Schadt E, Ravassard P, Ferrer J. Human Pancreatic β Cell lncRNAs Control Cell-Specific Regulatory Networks. Cell Metab 2017; 25:400-411. [PMID: 28041957 PMCID: PMC5300904 DOI: 10.1016/j.cmet.2016.11.016] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/01/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022]
Abstract
Recent studies have uncovered thousands of long non-coding RNAs (lncRNAs) in human pancreatic β cells. β cell lncRNAs are often cell type specific and exhibit dynamic regulation during differentiation or upon changing glucose concentrations. Although these features hint at a role of lncRNAs in β cell gene regulation and diabetes, the function of β cell lncRNAs remains largely unknown. In this study, we investigated the function of β cell-specific lncRNAs and transcription factors using transcript knockdowns and co-expression network analysis. This revealed lncRNAs that function in concert with transcription factors to regulate β cell-specific transcriptional networks. We further demonstrate that the lncRNA PLUTO affects local 3D chromatin structure and transcription of PDX1, encoding a key β cell transcription factor, and that both PLUTO and PDX1 are downregulated in islets from donors with type 2 diabetes or impaired glucose tolerance. These results implicate lncRNAs in the regulation of β cell-specific transcription factor networks.
Collapse
Affiliation(s)
- Ildem Akerman
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - Zhidong Tu
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anthony Beucher
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Delphine M Y Rolando
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Claire Sauty-Colace
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut du cerveau et de la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris 75013, France
| | - Marion Benazra
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut du cerveau et de la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris 75013, France
| | - Nikolina Nakic
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Jialiang Yang
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huan Wang
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lorenzo Pasquali
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain; Germans Trias i Pujol University Hospital and Research Institute and Josep Carreras Leukaemia Research Institute, Badalona 08916, Spain
| | - Ignasi Moran
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Javier Garcia-Hurtado
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - Natalia Castro
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - Roser Gonzalez-Franco
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caroline Bonner
- European Genomic Institute for Diabetes, INSERM UMR 1190, Lille 59800, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milano 20132, Italy
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva, 1211 Geneva 4, Switzerland
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund 20502, Sweden
| | - Julie Kerr-Conte
- European Genomic Institute for Diabetes, INSERM UMR 1190, Lille 59800, France
| | - Francois Pattou
- European Genomic Institute for Diabetes, INSERM UMR 1190, Lille 59800, France
| | - Carmen Argmann
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Ravassard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut du cerveau et de la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris 75013, France
| | - Jorge Ferrer
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain.
| |
Collapse
|
46
|
Carboneau BA, Breyer RM, Gannon M. Regulation of pancreatic β-cell function and mass dynamics by prostaglandin signaling. J Cell Commun Signal 2017; 11:105-116. [PMID: 28132118 DOI: 10.1007/s12079-017-0377-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
Prostaglandins (PGs) are signaling lipids derived from arachidonic acid (AA), which is metabolized by cyclooxygenase (COX)-1 or 2 and class-specific synthases to generate PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2. PGs signal through G-protein coupled receptors (GPCRs) and are important modulators of an array of physiological functions, including systemic inflammation and insulin secretion from pancreatic islets. The role of PGs in β-cell function has been an active area of interest, beginning in the 1970s. Early studies demonstrated that PGE2 inhibits glucose-stimulated insulin secretion (GSIS), although more recent studies have questioned this inhibitory action of PGE2. The PGE2 receptor EP3 and one of the G-proteins that couples to EP3, GαZ, have been identified as negative regulators of β-cell proliferation and survival. Conversely, PGI2 and its receptor, IP, play a positive role in the β-cell by enhancing GSIS and preserving β-cell mass in response to the β-cell toxin streptozotocin (STZ). In comparison to PGE2 and PGI2, little is known about the function of the remaining PGs within islets. In this review, we discuss the roles of PGs, particularly PGE2 and PGI2, PG receptors, and downstream signaling events that alter β-cell function and regulation of β-cell mass.
Collapse
Affiliation(s)
- Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, USA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA. .,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA. .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA. .,Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
47
|
Alterations of Epigenetic Regulators in Pancreatic Cancer and Their Clinical Implications. Int J Mol Sci 2016; 17:ijms17122138. [PMID: 27999365 PMCID: PMC5187938 DOI: 10.3390/ijms17122138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancer types with a five-year survival less than 7%. Emerging evidence revealed that many genetic alterations in pancreatic cancer target epigenetic regulators. Some of these mutations are driver mutations in cancer development. Several most important mechanisms of epigenetic regulations include DNA methylation, histone modifications (methylation, acetylation, and ubiquitination), chromatin remodeling, and non-coding ribonucleic acids (RNAs). These modifications can alter chromatin structure and promoter accessibility, and thus lead to aberrant gene expression. However, exactly how these alterations affect epigenetic reprogramming in pancreatic cancer cells and in different stages of tumor development is still not clear. This mini-review summarizes the current knowledge of epigenetic alterations in pancreatic cancer development and progression, and discusses the clinical applications of epigenetic regulators as diagnostic biomarkers and therapeutic targets in pancreatic cancer.
Collapse
|
48
|
Feng SD, Yang JH, Yao CH, Yang SS, Zhu ZM, Wu D, Ling HY, Zhang L. Potential regulatory mechanisms of lncRNA in diabetes and its complications. Biochem Cell Biol 2016; 95:361-367. [PMID: 28177764 DOI: 10.1139/bcb-2016-0110] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides without protein-coding potential. Although these molecules were initially considered as "junk products" of transcription without biological relevance, recent advances in research have shown that lncRNA plays an important role, not only in cellular processes such as proliferation, differentiation, and metabolism, but also in the pathological processes of cancers, diabetes, and neurodegenerative diseases. In this review, we focus on the potential regulatory roles of lncRNA in diabetes and the complications associated with diabetes.
Collapse
Affiliation(s)
- Shui-Dong Feng
- a Department of Social Medicine and Health Service Management, School of Public Health, University of South China, Hengyang, China
| | - Ji-Hua Yang
- b Department of Physiology, School of Medicine, University of South China, Hengyang, China
| | - Chao Hua Yao
- c Laboratory of Cell & Molecular Biology, Palmer Center for Chiropractic Research, Port Orange, Florida, USA
| | - Si-Si Yang
- b Department of Physiology, School of Medicine, University of South China, Hengyang, China
| | - Ze-Mei Zhu
- b Department of Physiology, School of Medicine, University of South China, Hengyang, China
| | - Di Wu
- b Department of Physiology, School of Medicine, University of South China, Hengyang, China
| | - Hong-Yan Ling
- b Department of Physiology, School of Medicine, University of South China, Hengyang, China
| | - Liang Zhang
- c Laboratory of Cell & Molecular Biology, Palmer Center for Chiropractic Research, Port Orange, Florida, USA
| |
Collapse
|
49
|
Long Noncoding RNAs in Metabolic Syndrome Related Disorders. Mediators Inflamm 2016; 2016:5365209. [PMID: 27881904 PMCID: PMC5110871 DOI: 10.1155/2016/5365209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Ribonucleic acids (RNAs) are very complex and their all functions have yet to be fully clarified. Noncoding genes (noncoding RNA, sequences, and pseudogenes) comprise 67% of all genes and they are represented by housekeeping noncoding RNAs (transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA)) that are engaged in basic cellular processes and by regulatory noncoding RNA (short and long noncoding RNA (ncRNA)) that are important for gene expression/transcript stability. In this review, we summarize data concerning the significance of long noncoding RNAs (lncRNAs) in metabolic syndrome related disorders, focusing on adipose tissue and pancreatic islands.
Collapse
|
50
|
Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun X, Picelli S, Sabirsh A, Clausen M, Bjursell MK, Smith DM, Kasper M, Ämmälä C, Sandberg R. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell Metab 2016; 24:593-607. [PMID: 27667667 PMCID: PMC5069352 DOI: 10.1016/j.cmet.2016.08.020] [Citation(s) in RCA: 978] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/13/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022]
Abstract
Hormone-secreting cells within pancreatic islets of Langerhans play important roles in metabolic homeostasis and disease. However, their transcriptional characterization is still incomplete. Here, we sequenced the transcriptomes of thousands of human islet cells from healthy and type 2 diabetic donors. We could define specific genetic programs for each individual endocrine and exocrine cell type, even for rare δ, γ, ε, and stellate cells, and revealed subpopulations of α, β, and acinar cells. Intriguingly, δ cells expressed several important receptors, indicating an unrecognized importance of these cells in integrating paracrine and systemic metabolic signals. Genes previously associated with obesity or diabetes were found to correlate with BMI. Finally, comparing healthy and T2D transcriptomes in a cell-type resolved manner uncovered candidates for future functional studies. Altogether, our analyses demonstrate the utility of the generated single-cell gene expression resource.
Collapse
Affiliation(s)
- Åsa Segerstolpe
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, 171 77 Stockholm, Sweden; Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Athanasia Palasantza
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pernilla Eliasson
- Cardiovascular and Metabolic Diseases (CVMD), Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca, 431 83 Mölndal, Sweden
| | - Eva-Marie Andersson
- Cardiovascular and Metabolic Diseases (CVMD), Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca, 431 83 Mölndal, Sweden
| | - Anne-Christine Andréasson
- Cardiovascular and Metabolic Diseases (CVMD), Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca, 431 83 Mölndal, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Simone Picelli
- Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Alan Sabirsh
- Cardiovascular and Metabolic Diseases (CVMD), Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca, 431 83 Mölndal, Sweden
| | - Maryam Clausen
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca, 431 83 Mölndal, Sweden
| | | | - David M Smith
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Carina Ämmälä
- Cardiovascular and Metabolic Diseases (CVMD), Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca, 431 83 Mölndal, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, 171 77 Stockholm, Sweden; Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet, 141 57 Huddinge, Sweden; Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden.
| |
Collapse
|