1
|
Papini N, Giussani P, Tringali C. Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases? Int J Mol Sci 2024; 25:8884. [PMID: 39201569 PMCID: PMC11354325 DOI: 10.3390/ijms25168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, metformin is generally well tolerated. However, despite the enthusiastic drive to aliment these novel studies, many contradictory results suggest the importance of better elucidating the complexity of metformin action in different tissues/cells to establish its possible employment in neurodegenerative diseases. This review summarises recent data identifying lysosomal-dependent processes and lysosomal targets, such as endosomal Na+/H+ exchangers, presenilin enhancer 2 (PEN2), the lysosomal pathway leading to AMP-activated protein kinase (AMPK) activation, and the transcription factor EB (TFEB), modulated by metformin. Lysosomal dysfunctions resulting in autophagic and lysosomal acidification and biogenesis impairment appear to be hallmarks of many inherited and acquired neurodegenerative diseases. Lysosomes are not yet seen as a sort of cellular dump but are crucial in determining key signalling paths and processes involved in the clearance of aggregated proteins. Thus, the possibility of pharmacologically modulating them deserves great interest. Despite the potentiality of metformin in this context, many additional important issues, such as dosing, should be addressed in the future.
Collapse
Affiliation(s)
| | | | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, 20054 Segrate, MI, Italy; (N.P.); (P.G.)
| |
Collapse
|
2
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Roushdy MMS, Ali M, Diab GI, Elnagar MF, Elmansy RA, TAhmed HH, Ahmed EME, Elzoghby DMA, M.Kamel HF, Farag MF, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Fikry H, Saleh LA, Aboughaleb IH. Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats. Front Endocrinol (Lausanne) 2024; 15:1384984. [PMID: 38854687 PMCID: PMC11157016 DOI: 10.3389/fendo.2024.1384984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have shown promise as viable targets for therapy. Machine learning (ML) techniques have emerged as powerful tools for predicting drug responses. Method In this study, we developed an ML-based model to identify the most influential features for drug response in the treatment of type 2 diabetes using three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly assigned to ten groups, including a normal group, a streptozotocin-induced diabetic group, and eight treated groups. Serum samples were collected for biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent histopathological examination and molecular biomarker extraction using quantitative PCR. Utilizing five machine learning algorithms, we integrated 32 molecular features and 12 biochemical features to select the most predictive targets for each model and the combined model. Results and discussion Our results indicated that high doses of the selected drugs effectively mitigated liver inflammation, reduced insulin resistance, and improved lipid profiles and renal function biomarkers. The machine learning model identified 13 molecular features, 10 biochemical features, and 20 combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896), respectively. This study presents an ML model that accurately identifies effective therapeutic targets implicated in the molecular pathways associated with T2DM pathogenesis.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
- Medicinal Biochemistry and Molecular Biology Department, Modern University for Technology and Information, Cairo, Egypt
| | - Marian M. S. Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Rasha A. Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hagir H. TAhmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University, Khartoum, Sudan
| | - Enshrah M. E. Ahmed
- Pathology Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University, Buraydah, Saudi Arabia
| | | | - Hala F. M.Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed F. Farag
- Medical Physiology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Laila M. Farid
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Attaka, Suez Governorate, Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
4
|
Mubarak HA, Kamal MM, Mahmoud Y, Abd-Elsamea FS, Abdelbary E, Gamea MG, El-Mahdy RI. The ameliorating effects of mesenchymal stem cells compared to α-tocopherol on apoptosis and autophagy in streptozotocin-induced diabetic rats: Implication of PI3K/Akt signaling pathway and entero-insular axis. J Cell Biochem 2023; 124:1705-1719. [PMID: 37796145 DOI: 10.1002/jcb.30482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are considered a novel regenerative therapy that holds much potential. This study aimed to examine and compare the ameliorative effects of BM-MSCs compared to α-tocopherol (α-Toc) on apoptosis, autophagy, and β-cell function in a rat model of streptozotocin (STZ)-induced diabetes and further analyzed the implications and interrelations of the entero-insular axis, and type I phosphoinositide 3-kinase (PI3K)/Akt signaling. Forty adult male albino rats were categorized into four groups (n = 10, in each): control group, STZ-induced diabetic group (single i.p. injection of STZ 45 mg/kg), diabetic and treated with BM-MSCs injection, diabetic and treatment with α-Toc p.o. The serum glucose, insulin, nitric oxide (NO), and catalase (CAT) were measured. Histopathological examination of the pancreas, the expression levels of insulin, CD44, caspase-3, autophagy markers, P13K/Akt, and pancreas/duodenum homeobox protein 1, in pancreatic tissue, and glucose-dependent insulinotropic polypeptide (GIP) in the duodenum were detected by hematoxylin and eosin staining, immunofluorescence labeling, and by quantitative real-time polymerase chain reaction. The diabetic rats showed reduced insulin, hyperglycemia, nitrosative stress (NO, CAT), augmented apoptosis (caspase 3), impaired autophagy (p62/SQSTM1, LC3), downregulated PI3K/Akt pathway and increased GIP expression, and degeneration of pancreatic islets. Treatment with either BM-MSCs or α-Toc suppressed the nitrosative stress, reduced apoptosis, recovered autophagy, upregulated PI3K/Akt pathway, and subsequently increased insulin levels, decreased blood glucose, and downregulated GIP expression with partial restoration of pancreatic islets. Based on our findings, the cytoprotective effects of BM-MSCs and α-Toc in type 1-induced diabetes appeared to be related to repaired autophagy and recovered PI3K/Akt signaling. Moreover, we reported their novel effects on reversing intestinal GIP expression level. The effect of BM-MSCs was notably superior to that of α-Toc.
Collapse
Affiliation(s)
- Heba A Mubarak
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yossra Mahmoud
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma S Abd-Elsamea
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Abdelbary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Marwa G Gamea
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham I El-Mahdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Biochemistry and Physiology, West of Assiut, New Naser City, Badr University, Assiut, Egypt
| |
Collapse
|
5
|
Kanai A, Nishida Y, Iwamoto T, Yokota M, Aoyama S, Ueki K, Ito M, Uzawa H, Iida H, Koike M, Watada H. Genome-wide screening for regulators of degradation of insulin secretory granules with a fluorescent reporter. Biochem Biophys Res Commun 2023; 676:132-140. [PMID: 37516030 DOI: 10.1016/j.bbrc.2023.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Insulin is essential in controlling blood glucose levels, and its synthesis and secretion have been well investigated. In contrast, how insulin secretory granules (ISGs) are degraded in pancreatic beta cells remains largely unknown. To clarify the mechanism, we constructed a fluorescent reporter detecting ISG degradation, where EGFP and mCherry are tandemly conjugated to a cytoplasmic region of ZnT8, an ISG membrane-localized protein. Depletion of serum and amino acid stimulated lysosomal ISG degradation detected with the reporter. Next, with MIN6 cells expressing Cas9 and the reporter, we investigated the involvement of conventional Atg5/7-dependent autophagy to show that it is dispensable for the ISG degradation process. Finally, we performed genome-wide screening by enriching the cells lacking the ISG degradation and showed that pathways regulating autophagy are not identified. These results suggest that alternative degradation in lysosomes, instead of conventional autophagy, may be involved in ISG degradation.
Collapse
Affiliation(s)
- Akiko Kanai
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Yuya Nishida
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan.
| | - Tatsuya Iwamoto
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shuhei Aoyama
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Kyosei Ueki
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Minami Ito
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Hirotsugu Uzawa
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Hitoshi Iida
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| |
Collapse
|
6
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
7
|
García-Pérez R, Ramirez JM, Ripoll-Cladellas A, Chazarra-Gil R, Oliveros W, Soldatkina O, Bosio M, Rognon PJ, Capella-Gutierrez S, Calvo M, Reverter F, Guigó R, Aguet F, Ferreira PG, Ardlie KG, Melé M. The landscape of expression and alternative splicing variation across human traits. CELL GENOMICS 2023; 3:100244. [PMID: 36777183 PMCID: PMC9903719 DOI: 10.1016/j.xgen.2022.100244] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.
Collapse
Affiliation(s)
- Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Jose Miguel Ramirez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Aida Ripoll-Cladellas
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Ruben Chazarra-Gil
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Winona Oliveros
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Oleksandra Soldatkina
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Mattia Bosio
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Paul Joris Rognon
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
- Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Catalonia 08005, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia 08034, Spain
| | - Salvador Capella-Gutierrez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Miquel Calvo
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Ferran Reverter
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalonia 08003, Spain
| | | | - Pedro G. Ferreira
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | | | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
8
|
Cheng Y, Yang X, Tang W, Fu Q, Li H, Liang B. Alpha-lipoic acid inhibits sodium arsenite-mediated autophagic death of rat insulinoma cells. Hum Exp Toxicol 2023; 42:9603271221149196. [PMID: 36595328 DOI: 10.1177/09603271221149196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM To investigate the protective effect of α-lipoic acid on sodium arsenite (NaAsO2) induced INS-1 cells injury and its mechanism. METHODS The cell viability was measured by CCK-8 assay. The autophagosomes was observed under transmission electron microscopy. The autophagosomes in cells transfected with green fluorescent protein microtubule-associated protein light chain 3 (GFP-LC3) plasmids were observed under a laser scanning con-focal microscope. The expression of LC3-II, P62, PI3K, and mTOR proteins in INS-1 cells treated with a combination of chloroquine (CQ, autophagy inhibitor) and NaAsO2 were detected by Western blot assay. The expression of LC3-II, P62, PI3K, and mTOR proteins were detected in INS-1 cells treated with a combination of rapamycin (autophagy inducer, mTOR inhibitor) and α-LA. RESULTS The cytotoxicity induced by NaAsO2 was reversed by α-LA, and the viability of NaAsO2-treated INS-1 cells increased. α-LA pretreatment decreased the autophagosome accumulation induced by NaAsO2. α-LA also reduced the fluorescence spot aggregation of GFP-LC3 in INS-1 cells exposed to NaAsO2 as observed under a laser scanning con-focal microscope. α-LA inhibited NaAsO2 induced autophagy by up-regulating PI3K and mTOR and down-regulating LC3-II and P62. CQ inhibited NaAsO2 induced autophagy by up-regulating PI3K, mTOR, P62 and down-regulating LC3-II. α-LA inhibited rapamycin-induced autophagy by up-regulating PI3K, mTOR and P62 and down-regulating LC3-II. The results showed that NaAsO2 could induce autophagy activation in INS-1 cells. The α-LA may inhibit autophagy activation by regulating the PI3K/mTOR pathway. CONCLUSION The data indicated that α-LA might inhibit the NaAsO2-induced autophagic death of INS-1 cells by regulating the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Yong Cheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiuli Yang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Wenjuan Tang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Qiong Fu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Hong Li
- 74720The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Liang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Elsaeed EM, Hamad AGA, Erfan OS, El-Shahat MA, Ebrahim FAE. Exenatide promotes the autophagic function in the diabetic hippocampus: a review. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 9:229-238. [DOI: 10.1080/2314808x.2022.2067388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 09/02/2023]
Affiliation(s)
| | | | - Omnia S. Erfan
- Human Anatomy and Embryology, Mansoura University, Al Mansurah, Egypt
| | - Mona A. El-Shahat
- Human Anatomy and Embryology, Mansoura University, Al Mansurah, Egypt
| | | |
Collapse
|
10
|
Luo J, Jin W, Jin M, Pan W, Gao S, Zhao X, Lai X, Sun L, Piao C. Jiedutongluotiaogan formula restores pancreatic function by suppressing excessive autophagy and endoplasmic reticulum stress. PHARMACEUTICAL BIOLOGY 2022; 60:1542-1555. [PMID: 35944284 PMCID: PMC9367665 DOI: 10.1080/13880209.2022.2107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Jiedutongluotiaogan formula (JTTF), a traditional Chinese medicine (TCM), could promote islet function. However, the potential effect of JTTF on endoplasmic reticulum stress (ERS) and autophagy have not been reported. OBJECTIVE This study explores the potential effect of JTTF on ERS and autophagy in the pancreas. MATERIALS AND METHODS The Zucker diabetic fatty (ZDF) rats were randomised into five groups, control, model, JTTF (1, 3, 5 g/kg/day for 12 weeks). LPS induced pancreatic β-cells were treated with JTTF (50, 100, 200 μg/mL). LPS was used to induce pancreatic β-cell injury, with cell viability and insulin secretion evaluated using MTT, glucose-stimulated insulin secretion (GSIS) assays, and PCR. Intracellular Ca2+ concentration was measured using flow cytometry, while ERS and autophagy levels were monitored via Western blotting and/or immunostaining. RESULTS Compared with the model group, body weight, FGB, HbA1c, IPGTT, FINs, and HOMA-IR in JTTF treatment groups were significantly reduced. In islets cells treated with JTTF, the pancreatic islet cells in the JTTF group were increased, lipid droplets were reduced, and there was a decrease in Ca2+ (16.67%). After JTTF intervention, PERK, p-PERK, IRE1α, p- IRE1α, ATF6, eIF2α, GRP78, p-ULK1, LC3 and p62 expression decreased, whereas Beclin1and p-mTOR expression increased. In addition, the expression of proteins related to apoptosis in the JTTF groups were lower than those in the control group. DISCUSSION AND CONCLUSIONS JTTF may alleviate pancreatic β-cell injury by inhibiting ER stress and excessive autophagy in diabetic rats. This provides a new direction for treating diabetes and restoring pancreatic dysfunction by TCM.
Collapse
Affiliation(s)
- Jinli Luo
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Meiying Jin
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Weiwei Pan
- School of Clinical Medicine, Changchun Medical College, Changchun, China
| | - Shengnan Gao
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Xiaohua Zhao
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Xingrong Lai
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chunli Piao
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| |
Collapse
|
11
|
Cheng X, Chen Q, Sun P. Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front Pharmacol 2022; 13:970596. [PMID: 36091810 PMCID: PMC9461701 DOI: 10.3389/fphar.2022.970596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a critical factor in eukaryotic evolution. Cells provide nutrition and energy during autophagy by destroying non-essential components, thereby allowing intracellular material conversion and managing temporary survival stress. Autophagy is linked to a variety of oral disorders, including the type and extent of oral malignancies. Furthermore, autophagy is important in lymphocyte formation, innate immunity, and the regulation of acquired immune responses. It is also required for immunological responses in the oral cavity. Knowledge of autophagy has aided in the identification and treatment of common oral disorders, most notably cancers. The involvement of autophagy in the oral immune system may offer a new understanding of the immune mechanism and provide a novel approach to eliminating harmful bacteria in the body. This review focuses on autophagy creation, innate and acquired immunological responses to autophagy, and the status of autophagy in microbial infection research. Recent developments in the regulatory mechanisms of autophagy and therapeutic applications in oral illnesses, particularly oral cancers, are also discussed. Finally, the relationship between various natural substances that may be used as medications and autophagy is investigated.
Collapse
Affiliation(s)
| | | | - Ping Sun
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
12
|
Erfidan S, Dede S, Usta A, Yüksek V, Çetin S. The effect of quinoa (Chenopodium quinoa) on apoptotic, autophagic, antioxidant and inflammation markers in glucocorticoid-induced insulin resistance in rats. Mol Biol Rep 2022; 49:6509-6516. [PMID: 35618936 DOI: 10.1007/s11033-022-07479-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Insulin resistance plays an important role in predicting type 2 diabetes that may develops. This study was planned in order to investigate the beneficial effects of quinoa (Chenopodium quinoa) use in glucocorticoid induced-insulin resistance. METHODS AND RESULTS Forty-two rats were used as the material (experimental) groups: the control group (C), the quinoa-administered group (Q), the insulin resistance-created group (IR), the IR + metformin group (IM), the IR + quinoa for treatment group (IQ) and the quinoa + IR for prophylaxis group (QI). Blood glucose, insulin levels and HOMA-IR were found to be highest (p < 0.05) in the IR group (p < 0.05). Glucose levels decreased significantly with the administration of quinoa and approached the levels of the control, but the insulin levels and the HOMA-IR did not significantly change. It was also observed that other biochemical parameters (ALT, AST, ALP, total cholesterol, total protein, urea and creatinine) changed significantly in the IR group and approached the levels of the control group with the administration of quinoa. Apoptotic (BCL2 5, BAX 9, CAS 3), autophagic (SQSTM1 7, ATG5) and inflammation (IL-1β, TNF-α) genes were upregulated by 5-11-fold in the IR group. In the groups in which quinoa was administered for treatment and protection, all these genes were found to be upregulated to a lower extent than the IR group. Antioxidant genes (GPX1, SOD1) increased by nine to tenfold in the quinoa groups. CONCLUSION As a result, after administration of quinoa, it was determined that the glucose level increased due to experimental insulin resistance and the liver and kidney damage indicators decreased. It was determined that quinoa (Chenopodium quinoa) had significant beneficial effects on biochemical parameters and apoptotic, autophagic, antioxidant and inflammatory markers in experimental glucocorticoid-induced insulin resistance.
Collapse
Affiliation(s)
- Siber Erfidan
- Health Sciences Institute, Van Yuzuncu Yil University, Van, Turkey
| | - Semiha Dede
- Biochemistry Department, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Ayşe Usta
- Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Veysel Yüksek
- Ozalp Regional High School, Van Yuzuncu Yil University, Van, Turkey
| | - Sedat Çetin
- Biochemistry Department, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
13
|
Fukae T, Miyatsuka T, Himuro M, Wakabayashi Y, Iida H, Aoyama S, Mita T, Ikeda F, Haruna H, Takubo N, Nishida Y, Shimizu T, Watada H. Genetic ablation of p62/SQSTM1 demonstrates little effect on pancreatic β-cell function under autophagy deficiency. Biochem Biophys Res Commun 2022; 612:99-104. [PMID: 35512463 DOI: 10.1016/j.bbrc.2022.04.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Autophagy is known to play an essential role in intracellular quality control through the degradation of damaged organelles and components. We previously demonstrated that β-cell-specific autophagy deficient mice, which lack Atg7, exhibited impaired glucose tolerance, accompanied by the accumulation of sequestosome 1/p62 (hereafter referred to as p62). Whereas p62 has been reported to play essential roles in regulating cellular homeostasis in the liver and adipose tissue, we previously showed that β-cell-specific p62 deficiency does not cause any apparent impairment in glucose metabolism. In the present study, we investigated the roles of p62 in β cells under autophagy-deficient conditions, by simultaneously inactivating both Atg7 and p62 in a β-cell specific manner. Whereas p62 accumulation was substantially reduced in the islets of Atg7 and p62 double-deficient mice, glucose tolerance and insulin secretion were comparable to Atg7 single-deficient mice. Taken together, these findings suggest that the p62 accumulation appears to have little effect on β-cell function under conditions of autophagy inhibition.
Collapse
Affiliation(s)
- Toshinaru Fukae
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa, Japan.
| | - Miwa Himuro
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Wakabayashi
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Iida
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shuhei Aoyama
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoya Mita
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fuki Ikeda
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidenori Haruna
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Noriyuki Takubo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Endocrinology and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan; Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Suzuki L, Miyatsuka T, Himuro M, Wakabayashi Y, Osonoi S, Miura M, Katahira T, Fujitani Y, Iida H, Mizukami H, Nishida Y, Watada H. Cumulative autophagy insufficiency in mice leads to progression of β-cell failure. Biochem Biophys Res Commun 2022; 611:38-45. [PMID: 35477091 DOI: 10.1016/j.bbrc.2022.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is known to play a pivotal role in β-cell function. While the lifelong inhibition of autophagy through Atg7 deletion in β cells has been demonstrated to lead to impaired glucose tolerance together with β-cell dysfunction, the temporal association between autophagy inhibition and β-cell dysfunction remains unclear. To address such questions, inducible β-cell-specific Atg7-knockout (iβAtg7KO) mice were generated, and autophagy inhibition was induced for two different time durations. Whereas 2 weeks of Atg7 ablation was sufficient to induce autophagy deficiency, confirmed by the accumulation of p62, iβAtg7KO mice exhibited normal glucose tolerance. In contrast, prolonged autophagy deficiency for 6 weeks resulted in glucose intolerance together with impaired insulin secretion. Direct mRNA sequencing and pathway analysis revealed that the gene set associated with insulin secretion was downregulated only after the 6-week prolonged autophagy inhibition. Furthermore, we identified a novel gene, Sprr1a, which was expressed at more than 50-fold higher levels during both the 2-week and 6-week autophagy inhibition. These findings suggest that autophagy insufficiency cumulatively leads to β-cell failure after a certain interval, accompanied by stepwise alterations of gene expression patterns.
Collapse
Affiliation(s)
- Luka Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Miwa Himuro
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Wakabayashi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sho Osonoi
- Departments of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaki Miura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Katahira
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hitoshi Iida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Mizukami
- Departments of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Tatsumi Y, Kato A, Niimi N, Yako H, Himeno T, Kondo M, Tsunekawa S, Kato Y, Kamiya H, Nakamura J, Higai K, Sango K, Kato K. Docosahexaenoic Acid Suppresses Oxidative Stress-Induced Autophagy and Cell Death via the AMPK-Dependent Signaling Pathway in Immortalized Fischer Rat Schwann Cells 1. Int J Mol Sci 2022; 23:ijms23084405. [PMID: 35457223 PMCID: PMC9027959 DOI: 10.3390/ijms23084405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy is the process by which intracellular components are degraded by lysosomes. It is also activated by oxidative stress; hence, autophagy is thought to be closely related to oxidative stress, one of the major causes of diabetic neuropathy. We previously reported that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) induced antioxidant enzymes and protected Schwann cells from oxidative stress. However, the relationship between autophagy and oxidative stress-induced cell death in diabetic neuropathy has not been elucidated. Treatment with tert-butyl hydroperoxide (tBHP) decreased the cell survival rate, as measured by an MTT assay in immortalized Fischer rat Schwann cells 1 (IFRS1). A DHA pretreatment significantly prevented tBHP-induced cytotoxicity. tBHP increased autophagy, which was revealed by the ratio of the initiation markers, AMP-activated protein kinase, and UNC51-like kinase phosphorylation. Conversely, the DHA pretreatment suppressed excessive tBHP-induced autophagy signaling. Autophagosomes induced by tBHP in IFRS1 cells were decreased to control levels by the DHA pretreatment whereas autolysosomes were only partially decreased. These results suggest that DHA attenuated excessive autophagy induced by oxidative stress in Schwann cells and may be useful to prevent or reduce cell death in vitro. However, its potentiality to treat diabetic neuropathy must be validated in in vivo studies.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan;
| | - Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Koji Higai
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan;
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
- Correspondence: ; Tel.: +81-52-757-6778
| |
Collapse
|
16
|
Oudbor L, Mokhtari Z, Dastghaib S, Mokarram P, Rajani HF, Barazesh M, Salami S. Aqueous extract of Stevia rebaudiana (Bertoni) Bertoni abrogates death-related signaling pathways via boosting the expression profile of oxidative defense systems. J Food Biochem 2022; 46:e14151. [PMID: 35365911 DOI: 10.1111/jfbc.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
Indigenous inhabitants of South America and other areas have been using stevia as a traditional medicine for years, but its impact on cell signaling pathways has not been well studied yet. We evaluated the impacts of aqueous extract of Stevia rebaudiana (Bertoni) Bertoni on the expression of the selected genes involved in significant cell death modalities, including p53-DNA damage and the cellular antioxidative defense in pancreatic tissues in STZ-induced diabetic rats and murine pancreatic cell lines. The in vivo study revealed that aqueous extract of Stevia significantly upregulated the expression of GSTM1 and P1 and GPX (4.67, 12.08, and 2.81 fold, respectively; all p < .05) along with significant downregulation of the genes which were upregulated by STZ, including apoptotic genes caspase-3 and -9 (-9.80 and -4.16 fold, p < .05, respectively) and necroptotic genes, RIP1K, 2 K, and 3 K (-9.48, -2.70, and -12.9 fold, respectively, all p < .05). In vitro studies also revealed comparable results. In conclusion, the observed clinical improvements in diabetic rats are the result of overexpression of major genes of antioxidative defense systems in the course of a significant downregulation of major cell death modalities. PRACTICAL APPLICATIONS: The popularity of noncaloric sweeteners, including stevia, has rocketed in recent years, but the consumption of stevia as traditional medicine has a long history. The findings of the current study provide strong mechanistic lines of evidence supporting the beneficial biological effects of stevia as a noncaloric sweetener in diabetes.
Collapse
Affiliation(s)
- Leila Oudbor
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mokhtari
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huda Fatima Rajani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash Faculty of Medical Sciences, Gerash, Iran
| | - Siamak Salami
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol 2022; 18:111-128. [PMID: 34789923 PMCID: PMC8889587 DOI: 10.1038/s41574-021-00583-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic β-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
18
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
19
|
Wang N, Wei L, Liu D, Zhang Q, Xia X, Ding L, Xiong S. Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:867600. [PMID: 35574010 PMCID: PMC9098829 DOI: 10.3389/fendo.2022.867600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes, which is associated with damage of blood-retinal barrier and ischemia of retinal vasculature. It devastates visual acuity due to leakage of retinal vessels and aberrant pathological angiogenesis in diabetic patients. The etiology of DR is complex, accumulated studies have shown that autophagy plays an important role in the pathogenesis of DR, but its specific mechanism needs to be further studied. METHODS This study chose the online Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE146615 to carry on the research. Autophagy-related genes that were potentially differentially expressed in DR were screened by R software. Then, the differentially expressed autophagy-related genes were analyzed by correlation analysis, tissue-specific gene expression, gene-ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction (PPI) network analysis. Finally, retinal pigment epithelial cell line (ARPE-19) incubated with high glucose (HG) was used to mimic the DR model, and the mRNA level of key genes was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in vitro. RESULTS A total of 23 differentially expressed autophagy-related genes (9 up-regulated genes and 14 down-regulated genes) were identified by differential expression analysis. The analysis of tissue-specific gene expression showed that these differentially expressed autophagy-related genes were enriched in the retina. GO and KEGG enrichment analysis showed that differentially expressed autophagy-related genes were significantly enriched in autophagy-related pathways such as regulation of autophagy and macroautophagy. Then 10 hub genes were identified by PPI network analysis and construction of key modules. Finally, qRT-PCR confirmed that the expression of MAPK3 in the DR model was consistent with the results of bioinformatics analysis of mRNA chip. CONCLUSION Through bioinformatics analysis, we identified 23 potential DR autophagy-related genes, among which the down-regulated expression of MAPK3 may affect the occurrence and development of DR by regulating autophagy. It provides a novel insight into the pathogenesis of DR.
Collapse
Affiliation(s)
- Nan Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Linfeng Wei
- Department of General Surgery, Zhongshan Hospital of Dalian University, Dalian, China
| | - Die Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Quyan Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
- *Correspondence: Siqi Xiong, ; Lexi Ding,
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
- *Correspondence: Siqi Xiong, ; Lexi Ding,
| |
Collapse
|
20
|
Hashemitabar M, Rezaei-Tazangi F, Khorsandi L, Mard SA. Autophagy Involves in Differentiation of Insulin-Secreting Cells from Adipose Derived Stem Cells. CELL JOURNAL 2021; 23:619-625. [PMID: 34939754 PMCID: PMC8665986 DOI: 10.22074/cellj.2021.7408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Destruction of pancreatic beta-cells induces an insulin deficiency and causes type 1 diabetes. The role of autophagy in inducing insulin-secreting cells (ISCs) from adipose-derived mesenchymal stem cells (AMSCs) was investigated in the current study. MATERIALS AND METHODS In this experimental study, the isolated AMSCs were characterization and exposed to a cocktail differentiation medium (CDM) in the absence or presence of 3-methyladenine (3MA), an autophagy inhibitor. The differentiation of ISCs was confirmed by the evaluation of the expression of beta-cell-specific genes including pancreatic and duodenal homeobox 1 (PDX1), musculoaponeurotic fibrosarcoma oncogene homolog A (MAF-A), Nk class of homeodomain-encoding genes 6.1 and 2.2 (NKX6-1 and NKX2.2), Glucose transporter 2 (GLUT-2) and INSLIN. Using Newport Green (NG), insulin-positive cells were identified. Insulin secretion in response to various glucose concentrations was measured. Autophagy was evaluated by Acridine orange (AO) staining. Also, expression of autophagy-associated genes, including autophagy-related gene 5 (ATG-5), autophagy-related gene 7 (ATG-7), BECLIN-1, and mammalian target of rapamycin (mTOR), was evaluated by Real-time polymerase chain reaction (PCR) method. RESULTS We observed a significant increase of beta-cell specific genes expression in the CDM-treated cells (P<0.01 or P<0.001), whereas the expression of these genes was down-regulated in 3MA-exposed cells. Expression of INSULIN and GLUT-2 genes (P<0.01 and P<0.05, respectively), insulin secretion in response to glucose (P<0.01), and percentage of NG-positive cells (P<0.05) in the 3MA-exposed cells were considerably lower than the cells treated with CDM. The percentage of AO-positive cells (P<0.01) and the expression of autophagy-related genes (P<0.001) was significantly enhanced in the CDM group. These events were significantly prevented by the 3MA. CONCLUSION Our data showed that autophagy is necessary for beta-cell differentiation, and preventing autophagy by 3MA causes the reduction of beta-cell differentiation and insulin secretion.
Collapse
Affiliation(s)
- Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ,P.O.Box: 61335Department of Anatomical SciencesFaculty of MedicineAhvaz Jundishapur University of Medical
SciencesAhvazIran
| | - Seyed Ali Mard
- Alimentary Tract Research Center, Physiology Research Center, Medical Basic Sciences Research Institute, The School of Medicine,
Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Khodakarimi S, Zarebkohan A, Kahroba H, Omrani M, Sepasi T, Mohaddes G, Beyrampour-Basmenj H, Ebrahimi A, Ebrahimi-Kalan A. The role of miRNAs in the regulation of autophagy in autoimmune diseases. Life Sci 2021; 287:119726. [PMID: 34144058 DOI: 10.1016/j.lfs.2021.119726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Autoimmune diseases (AD), which are classified as chronic injuries, are caused by a specific auto-reactive reaction. The etiology of most ADs is not well understood. Meanwhile, Autophagy is a protective response defining as a catabolic method by lysosomes tending to maintain homeostasis acts by recycling and discrediting cell compartments. Autophagy plays a crucial role in controlling immune homeostasis by eliminating intracellular pathogens and presenting antigens to immune cognition. MicroRNAs are commonly known as endogenous non-coding small RNAs, which span 18-25 nt and take part in the gene expression at the post-transcriptional level regulation. miRNAs play important roles in different processes like, cell differentiation, duplicating, and apoptosis. Moreover, miRNAs are the critical molecules for the regular function of the immune system by modulating immune tolerance mechanisms and autoimmunity. Recent findings support the role of dysregulated miRNAs in the pathogenesis of ADs and in the regulation of autophagy. In this review, we will focus on the role of the miRNAs in the regulation of autophagy and then will explain the role of dysregulated miRNAs in the initiation of the ADs by modulating autophagy.
Collapse
Affiliation(s)
- Sina Khodakarimi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Houman Kahroba
- Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadhassan Omrani
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Multifaceted Mechanisms of Action of Metformin Which Have Been Unraveled One after Another in the Long History. Int J Mol Sci 2021; 22:ijms22052596. [PMID: 33807522 PMCID: PMC7962041 DOI: 10.3390/ijms22052596] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.
Collapse
|
23
|
Deregulation of Lipid Homeostasis: A Fa(c)t in the Development of Metabolic Diseases. Cells 2020; 9:cells9122605. [PMID: 33291746 PMCID: PMC7761975 DOI: 10.3390/cells9122605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Lipids are important molecules for human health. The quantity and quality of fats consumed in the diet have important effects on the modulation of both the natural biosynthesis and degradation of lipids. There is an important number of lipid-failed associated metabolic diseases and an increasing number of studies suggesting that certain types of lipids might be beneficial to the treatment of many metabolic diseases. The aim of the present work is to expose an overview of de novo biosynthesis, storage, and degradation of lipids in mammalian cells, as well as, to review the published data describing the beneficial effects of these processes and the potential of some dietary lipids to improve metabolic diseases.
Collapse
|
24
|
Deng W, Li Y, Ren Z, He Q, Jia Y, Liu Y, Zhang W, Gan X, Liu D. Thioredoxin-interacting protein: a critical link between autophagy disorders and pancreatic β-cell dysfunction. Endocrine 2020; 70:526-537. [PMID: 32892310 DOI: 10.1007/s12020-020-02471-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is a known important regulatory protein of islet β-cell biology and function, but the detailed mechanism is not clear. Autophagy plays a pivotal role in maintaining cellular homoeostasis. This study aimed to elucidate the influence of TXNIP on the autophagy of β-cell. In this study, C57BL/6 mice and TXNIP-/- mice were fed with a standard diet (SD) or a high-fat and high-sugar diet (HFSD), and then we analysed biochemical and autophagy related indexes in the mice. We infected MIN6 cells with LV-TXNIP and siRNA TXNIP, then the cells were treated with free fatty acid (FFA), autophagic activator rapamycin (RAP), inhibitors of autophagy chloroquine (CQ) and bafilomycin A1(BAF), finally, we examined the changes of autophagy in MIN6 cells. The results showed that HFSD led to β-cell dysfunction and autophagy dysregulation, which was improved by TXNIP knockout in mice. In vitro experiments, TXNIP gene silencing enhanced LC3B-I conversion to LC3B-II, reduced the protein level of P62, decreased autophagosome accumulation induced by FFA treatment, increased the glucose-stimulated insulin secretion (GSIS) and autophagic flux inhibited by treatment with CQ. TXNIP overexpression induced upregulation of LC3B-I, LC3B-II and P62, accentuating the increase in autophagy and organelle destruction induced by FFA, and exacerbated the effect of BAF on the accumulation of autophagy proteins. Increasing TXNIP levels reduced GSIS, which was reversed by treatment with RAP. In summary, our study suggested that TXNIP is a critical link between autophagy disorders and pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Wenzhen Deng
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
- Department of Endocrinology, Qianjiang Central Hospital of Chongqing, 409000, Chongqing, China
| | - Yang Li
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Ziyu Ren
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Qirui He
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Yanjun Jia
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Yongjian Liu
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Weiwei Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xianfeng Gan
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, China.
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China.
| |
Collapse
|
25
|
Wernersson A, Sarmiento L, Cowan E, Fex M, Cilio CM. Human enteroviral infection impairs autophagy in clonal INS(832/13) cells and human pancreatic islet cells. Diabetologia 2020; 63:2372-2384. [PMID: 32676816 PMCID: PMC7527364 DOI: 10.1007/s00125-020-05219-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
AIM/HYPOTHESIS Human enteroviral infections are suggested to be associated with type 1 diabetes. However, the mechanism by which enteroviruses can trigger disease remains unknown. The present study aims to investigate the impact of enterovirus on autophagy, a cellular process that regulates beta cell homeostasis, using the clonal beta cell line INS(832/13) and human islet cells as in vitro models. METHODS INS(832/13) cells and human islet cells were infected with a strain of echovirus 16 (E16), originally isolated from the stool of a child who developed type 1 diabetes-associated autoantibodies. Virus production and release was determined by 50% cell culture infectious dose (CCID50) assay and FACS analysis. The occurrence of autophagy, autophagosomes, lysosomes and autolysosomes was detected by western blot, baculoviral-mediated expression of microtubule-associated protein light chain 3 (LC3)II-GFP and LysoTracker Red, and quantified by Cellomics ArrayScan. Autophagy was also monitored with a Cyto-ID detection kit. Nutrient deprivation (low glucose [2.8 mmol/l]), amino acid starvation (Earle's Balanced Salt Solution [EBSS]) and autophagy-modifying agents (rapamycin and chloroquine) were used in control experiments. Insulin secretion and the expression of autophagy-related (Atg) genes and genes involved in autophagosome-lysosome fusion were determined. RESULTS E16-infected INS(832/13) cells displayed an accumulation of autophagosomes, compared with non-treated (NT) cells (grown in complete RPMI1640 containing 11.1 mmol/l glucose) (32.1 ± 1.7 vs 21.0 ± 1.2 μm2/cell; p = 0.05). This was accompanied by increased LC3II ratio both in E16-infected cells grown in low glucose (LG) (2.8 mmol/l) (0.42 ± 0.03 vs 0.11 ± 0.04 (arbitrary units [a.u.]); p < 0.0001) and grown in media containing 11.1 mmol/l glucose (0.37 ± 0.016 vs 0.05 ± 0.02 (a.u.); p < 0.0001). Additionally, p62 accumulated in cells after E16 infection when grown in LG (1.23 ± 0.31 vs 0.36 ± 0.12 (a.u.); p = 0.012) and grown in media containing 11.1 mmol/l glucose (1.79 ± 0.39 vs 0.66 ± 0.15 (a.u.); p = 0.0078). mRNA levels of genes involved in autophagosome formation and autophagosome-lysosome fusion remained unchanged in E16-infected cells, except Atg7, which was significantly increased when autophagy was induced by E16 infection, in combination with LG (1.48 ± 0.08-fold; p = 0.02) and at 11.1 mmol/l glucose (1.26 ± 0.2-fold; p = 0.001), compared with NT controls. Moreover, autophagosomes accumulated in E16-infected cells to the same extent as when cells were treated with the lysosomal inhibitor, chloroquine, clearly indicating that autophagosome turnover was blocked. Upon infection, there was an increased viral titre in the cell culture supernatant and a marked reduction in glucose-stimulated insulin secretion (112.9 ± 24.4 vs 209.8 ± 24.4 ng [mg protein]-1 h-1; p = 0.006), compared with uninfected controls, but cellular viability remained unaffected. Importantly, and in agreement with the observations for INS(832/13) cells, E16 infection impaired autophagic flux in primary human islet cells (46.5 ± 1.6 vs 34.4 ± 2.1 μm2/cell; p = 0.01). CONCLUSIONS/INTERPRETATION Enteroviruses disrupt beta cell autophagy by impairing the later stages of the autophagic pathway, without influencing expression of key genes involved in core autophagy machinery. This results in increased viral replication, non-lytic viral spread and accumulation of autophagic structures, all of which may contribute to beta cell demise and type 1 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Anya Wernersson
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Center 91:10, Jan Waldenströmsgata 35, SE-21428, Malmö, Sweden
| | - Luis Sarmiento
- Immunovirology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Elaine Cowan
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Center 91:10, Jan Waldenströmsgata 35, SE-21428, Malmö, Sweden
| | - Malin Fex
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Center 91:10, Jan Waldenströmsgata 35, SE-21428, Malmö, Sweden.
| | - Corrado M Cilio
- Immunovirology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
26
|
Rocha M, Apostolova N, Diaz-Rua R, Muntane J, Victor VM. Mitochondria and T2D: Role of Autophagy, ER Stress, and Inflammasome. Trends Endocrinol Metab 2020; 31:725-741. [PMID: 32265079 DOI: 10.1016/j.tem.2020.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) is one of the main current threats to human health. Both T2D and its numerous clinical complications are related to mitochondrial dysfunction and oxidative stress. Over the past decade, great progress has been made in extending our knowledge about the signaling events regulated by mitochondria. However, the links among mitochondrial impairment, oxidative stress, autophagy, endoplasmic reticulum (ER) stress, and activation of the inflammasome still need to be clarified. In light of this deficit, we aim to provide a review of the existing literature concerning the complicated crosstalk between mitochondrial impairment, autophagy, ER stress, and the inflammasome in the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | | | - Ruben Diaz-Rua
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntane
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Seville, Spain; Department of General Surgery, University Hospital 'Virgen del Rocío'/CSIC/University of Seville/IBiS/CSIC/University of Seville, Spain
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
27
|
Belosludtsev KN, Belosludtseva NV, Dubinin MV. Diabetes Mellitus, Mitochondrial Dysfunction and Ca 2+-Dependent Permeability Transition Pore. Int J Mol Sci 2020; 21:ijms21186559. [PMID: 32911736 PMCID: PMC7555889 DOI: 10.3390/ijms21186559] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases in the developed world, and is associated either with the impaired secretion of insulin or with the resistance of cells to the actions of this hormone (type I and type II diabetes, respectively). In both cases, a common pathological change is an increase in blood glucose—hyperglycemia, which eventually can lead to serious damage to the organs and tissues of the organism. Mitochondria are one of the main targets of diabetes at the intracellular level. This review is dedicated to the analysis of recent data regarding the role of mitochondrial dysfunction in the development of diabetes mellitus. Specific areas of focus include the involvement of mitochondrial calcium transport systems and a pathophysiological phenomenon called the permeability transition pore in the pathogenesis of diabetes mellitus. The important contribution of these systems and their potential relevance as therapeutic targets in the pathology are discussed.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
- Correspondence: ; Tel.: +7-929-913-8910
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
| |
Collapse
|
28
|
King BC, Kulak K, Colineau L, Blom AM. Outside in: Roles of complement in autophagy. Br J Pharmacol 2020; 178:2786-2801. [PMID: 32621514 DOI: 10.1111/bph.15192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a well-characterized cascade of extracellular serum proteins that is activated by pathogens and unwanted waste material. Products of activated complement signal to the host cells via cell surface receptors, eliciting responses such as removal of the stimulus by phagocytosis. The complement system therefore functions as a warning system, resulting in removal of unwanted material. This review describes how extracellular activation of the complement system can also trigger autophagic responses within cells, up-regulating protective homeostatic autophagy in response to perceived stress, but also initiating targeted anti-microbial autophagy in order to kill intracellular cytoinvasive pathogens. In particular, we will focus on recent discoveries that indicate that complement may also have roles in detection and autophagy-mediated disposal of unwanted materials within the intracellular environment. We therefore summarize the current evidence for complement involvement in autophagy, both by transducing signals across the cell membrane, as well as roles within the cellular environment. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Shrestha N, Reinert RB, Qi L. Endoplasmic Reticulum Protein Quality Control in β Cells. Semin Cell Dev Biol 2020; 103:59-67. [PMID: 32402517 PMCID: PMC7321887 DOI: 10.1016/j.semcdb.2020.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Type 1 and type 2 diabetes are associated with loss of β cell function. Optimal β cell function is linked to protein homeostasis in the endoplasmic reticulum (ER). Here, we review the roles of ER protein quality-control mechanisms, including the unfolded protein response (UPR), autophagy (specifically ER-phagy) and ER-associated degradation (ERAD), in β cells. We propose that different quality control mechanisms may control different aspects of β cell biology (i.e. function, survival, and identity), thereby contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Neha Shrestha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rachel B Reinert
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
30
|
Chu KY, Mellet N, Thai LM, Meikle PJ, Biden TJ. Short-term inhibition of autophagy benefits pancreatic β-cells by augmenting ether lipids and peroxisomal function, and by countering depletion of n-3 polyunsaturated fatty acids after fat-feeding. Mol Metab 2020; 40:101023. [PMID: 32504884 PMCID: PMC7322075 DOI: 10.1016/j.molmet.2020.101023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Investigations of autophagy in β-cells have usually focused on its homeostatic function. More dynamic roles in inhibiting glucose-stimulated insulin secretion (GSIS), potentially involving remodelling of cellular lipids, have been suggested from in vitro studies but not evaluated in vivo. METHODS We employed temporally-regulated deletion of the essential autophagy gene, Atg7, in β-cells. Mice were fed chow or high-fat diets (HFD), in conjunction with deletion of Atg7 for the last 3 weeks (short-term model) or 9 weeks (long-term model). Standard in vivo metabolic phenotyping was undertaken, and 450 lipid species in islets quantified ex vivo using mass spectroscopy (MS). MIN6 cells were also employed for lipidomics and secretory interventions. RESULTS β-cell function was impaired by inhibiting autophagy in the longer-term, but conversely improved by 3-week deletion of Atg7, specifically under HFD conditions. This was accompanied by augmented GSIS ex vivo. Surprisingly, the HFD had minimal effect on sphingolipid and neutral lipid species, but modulated >100 phospholipids and ether lipids, and markedly shifted the profile of polyunsaturated fatty acid (PUFA) sidechains from n3 to n6 forms. These changes were partially countered by Atg7 deletion, consistent with an accompanying upregulation of the PUFA elongase enzyme, Elovl5. Loss of Atg7 separately augmented plasmalogens and alkyl lipids, in association with increased expression of Lonp2, a peroxisomal chaperone/protease that facilitates maturation of ether lipid synthetic enzymes. Depletion of PUFAs and ether lipids was also observed in MIN6 cells chronically exposed to oleate (more so than palmitate). GSIS was inhibited by knocking down Dhrs7b, which encodes an enzyme of peroxisomal ether lipid synthesis. Conversely, impaired GSIS due to oleate pre-treatment was selectively reverted by Dhrs7b overexpression. CONCLUSIONS A detrimental increase in n6:n3 PUFA ratios in ether lipids and phospholipids is revealed as a major response of β-cells to high-fat feeding. This is partially reversed by short-term inhibition of autophagy, which results in compensatory changes in peroxisomal lipid metabolism. The short-term phenotype is linked to improved GSIS, in contrast to the impairment seen with the longer-term inhibition of autophagy. The balance between these positive and negative inputs could help determine whether β-cells adapt or fail in response to obesity.
Collapse
Affiliation(s)
- Kwan Yi Chu
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Natalie Mellet
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Vic, 3004, Australia
| | - Le May Thai
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Vic, 3004, Australia.
| | - Trevor J Biden
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
31
|
XING QC, LIU X, LI W, CHEN YZ, CHEN J. Sangguayin preparation prevents palmitate-induced apoptosis by suppressing endoplasmic reticulum stress and autophagy in db/db mice and MIN6 pancreatic β-cells. Chin J Nat Med 2020; 18:472-480. [PMID: 32503738 DOI: 10.1016/s1875-5364(20)30054-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 12/24/2022]
|
32
|
Yao D, GangYi Y, QiNan W. Autophagic dysfunction of β cell dysfunction in type 2 diabetes, a double-edged sword. Genes Dis 2020; 8:438-447. [PMID: 34179308 PMCID: PMC8209341 DOI: 10.1016/j.gendis.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is an age-related disease, most of which is type 2 diabetes, and islet β cell dysfunction and insulin resistance are the main mechanisms of type 2 diabetes. Recent studies have revealed that autophagy plays an important role in maintaining the structure and function of islet beta cells and inhibiting insulin resistance and apoptosis induced by oxidative stress. In this review, we discussed the positive and negative effects of autophagy and its dysfunction on type 2 diabetes mellitus, which is the so-called double-edged sword, analysed its possible mechanism, and identified possible research hot spots.
Collapse
Affiliation(s)
- Ding Yao
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030, PR China
| | - Yang GangYi
- Endocrinology Department, The Second Affiliated Hospital of the Chongqing Medical University, Chongqing, 400010, PR China
| | - Wu QiNan
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030, PR China
| |
Collapse
|
33
|
Babbar M, Basu S, Yang B, Croteau DL, Bohr VA. Mitophagy and DNA damage signaling in human aging. Mech Ageing Dev 2020; 186:111207. [PMID: 31923475 PMCID: PMC7047626 DOI: 10.1016/j.mad.2020.111207] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
Aging is associated with multiple human pathologies. In the past few years mitochondrial homeostasis has been well correlated with age-related disorders and longevity. Mitochondrial homeostasis involves generation, biogenesis and removal of dysfunctional mitochondria via mitophagy. Mitophagy is regulated by various mitochondrial and extra-mitochondrial factors including morphology, oxidative stress and DNA damage. For decades, DNA damage and inefficient DNA repair have been considered as major determinants for age-related disorders. Although defects in DNA damage recognition and repair and mitophagy are well documented to be major factors in age-associated diseases, interactivity between these is poorly understood. Mitophagy efficiency decreases with age leading to accumulation of dysfunctional mitochondria enhancing the severity of age-related disorders including neurodegenerative diseases, inflammatory diseases, cancer, diabetes and many more. Therefore, mitophagy is being targeted for intervention in age-associated disorders. NAD+ supplementation has emerged as one intervention to target both defective DNA repair and mitophagy. In this review, we discuss the molecular signaling pathways involved in regulation of DNA damage and repair and of mitophagy, and we highlight the opportunities for clinical interventions targeting these processes to improve the quality of life during aging.
Collapse
Affiliation(s)
- Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sambuddha Basu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beimeng Yang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Zhang P, Zhang H, Lin J, Xiao T, Xu R, Fu Y, Zhang Y, Du Y, Cheng J, Jiang H. Insulin impedes osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence via the TGF-β1 pathway. Aging (Albany NY) 2020; 12:2084-2100. [PMID: 32017705 PMCID: PMC7041775 DOI: 10.18632/aging.102723] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
The dysfunction of bone marrow stromal cells (BMSCs) may be a core factor in Type 2 diabetes mellitus (T2DM) associated osteoporosis. However, the underlying mechanism is not well understood. Here, we delineated the critical role of insulin impeding osteogenesis of BMSCs in T2DM. Compared with BMSCs from healthy people (H-BMSCs), BMSCs from T2DM patient (DM-BMSCs) showed decreased osteogenic differentiation and autophagy level, and increased senescent phenotype. H-BMSCs incubated in hyperglycemic and hyperinsulinemic conditions similarly showed these phenotypes of DM-BMSCs. Notably, enhanced TGF-β1 expression was detected not only in DM-BMSCs and high-glucose and insulin-treated H-BMSCs, but also in bone callus of streptozocin-induced diabetic rats. Moreover, inhibiting TGF-β1 signaling not only enhanced osteogenic differentiation and autophagy level of DM-BMSCs, but also delayed senescence of DM-BMSCs, as well as promoted mandible defect healing of diabetic rats. Finally, we further verified that it was TGF-β receptor II (TβRII), not TβRI, markedly increased in both DM-BMSCs and insulin-treated H-BMSCs. Our data revealed that insulin impeded osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence, which it should be responsible for T2DM-induced bone loss, at least in part. These findings suggest that inhibiting TGF-β1 pathway may be a potential therapeutic target for T2DM associated bone disorders.
Collapse
Affiliation(s)
- Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hengguo Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jialin Lin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tao Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yuchao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
35
|
Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019; 176:11-42. [PMID: 30633901 DOI: 10.1016/j.cell.2018.09.048] [Citation(s) in RCA: 1760] [Impact Index Per Article: 352.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
The lysosomal degradation pathway of autophagy plays a fundamental role in cellular, tissue, and organismal homeostasis and is mediated by evolutionarily conserved autophagy-related (ATG) genes. Definitive etiological links exist between mutations in genes that control autophagy and human disease, especially neurodegenerative, inflammatory disorders and cancer. Autophagy selectively targets dysfunctional organelles, intracellular microbes, and pathogenic proteins, and deficiencies in these processes may lead to disease. Moreover, ATG genes have diverse physiologically important roles in other membrane-trafficking and signaling pathways. This Review discusses the biological functions of autophagy genes from the perspective of understanding-and potentially reversing-the pathophysiology of human disease and aging.
Collapse
|
36
|
Identification of Circular RNAs Regulating Islet β-Cell Autophagy in Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4128315. [PMID: 31815137 PMCID: PMC6878796 DOI: 10.1155/2019/4128315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
Abstract
This study is to identify the circular RNA (circRNA) expression profile that is functionally related to pancreatic islet β-cell autophagy and their potential regulation mechanisms in type 2 diabetes mellitus (T2DM). T2DM rat model was constructed by administration of high-fat and high-sugar diet. β-cells were isolated from islets by flow cytometry. CircRNA expression profile in β-cells was detected by circRNA microarrays, and the differentially expressed circRNAs were identified and validated by qRT-PCR. MicroRNA (miRNA) target prediction software and multiple bioinformatic approaches were used to construct a map of circRNA-miRNA interactions for the differentially expressed circRNAs. A total of 825 differentially expressed circular transcripts were identified in T2DM rats compared with control rats, among which 388 were upregulated and 437 were downregulated. Ten circRNAs were identified to have significant differences by qRT-PCR. GO analysis enriched terms such as organelle membrane and protein binding and the top enriched pathways for the circRNAs included MAPK signaling pathway. The differentially expressed circRNAs might involve in MAPK signaling pathway, apoptosis, and Ras signaling pathway. We speculate that these circRNAs, especially rno_circRNA_008565, can regulate the autophagy of islet β-cells via interactions with miRNA. Dysregulation of several circRNAs may play a role in T2DM development, and rno_circRNA_008565 may be a potential regulator of β-cell autophagy.
Collapse
|
37
|
Ježek P, Dlasková A. Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion 2019; 49:245-258. [DOI: 10.1016/j.mito.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
|
38
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
39
|
Himuro M, Miyatsuka T, Suzuki L, Miura M, Katahira T, Goto H, Nishida Y, Sasaki S, Koike M, Shiota C, Gittes GK, Fujitani Y, Watada H. Cellular Autophagy in α Cells Plays a Role in the Maintenance of Islet Architecture. J Endocr Soc 2019; 3:1979-1992. [PMID: 31620668 PMCID: PMC6786006 DOI: 10.1210/js.2019-00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 01/31/2023] Open
Abstract
Autophagy is known to play a pivotal role in intracellular quality control through the degradation of subcellular damaged organelles and components. Whereas autophagy is essential for maintaining β-cell function in pancreatic islets, it remains unclear as to how the cellular autophagy affects the homeostasis and function of glucagon-secreting α cells. To investigate the role of autophagy in α cells, we generated a mutant mouse model lacking Atg7, a key molecule for autophagosome formation, specifically in α cells. Histological analysis demonstrated more glucagon-positive cells, with a multilayered structure, in the islets under Atg7 deficiency, although metabolic profiles, such as body weight, blood glucose, and plasma glucagon levels were comparable between Atg7-deficient mice and control littermates. Consistent with our previous findings that Atg7 deficiency suppressed β-cell proliferation, cellular proliferation was suppressed in Atg7-deficient α cells. These findings suggest that α-cell autophagy plays a role in maintaining α-cell area and normal islet architecture but appears to be dispensable for metabolic homeostasis.
Collapse
Affiliation(s)
- Miwa Himuro
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Luka Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaki Miura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Katahira
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromasa Goto
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shugo Sasaki
- Department of Surgery, The University of British Columbia, Vancouver BC, Canada
| | - Masato Koike
- Departments of Cell Biology and Neurosciences, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun 2019; 10:3312. [PMID: 31346174 PMCID: PMC6658524 DOI: 10.1038/s41467-019-11170-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Compromised function of insulin-secreting pancreatic β cells is central to the development and progression of Type 2 Diabetes (T2D). However, the mechanisms underlying β cell failure remain incompletely understood. Here, we report that metabolic stress markedly enhances macroautophagy-independent lysosomal degradation of nascent insulin granules. In different model systems of diabetes including of human origin, stress-induced nascent granule degradation (SINGD) contributes to loss of insulin along with mammalian/mechanistic Target of Rapamycin (mTOR)-dependent suppression of macroautophagy. Expression of Protein Kinase D (PKD), a negative regulator of SINGD, is reduced in diabetic β cells. Pharmacological activation of PKD counters SINGD and delays the onset of T2D. Conversely, inhibition of PKD exacerbates SINGD, mitigates insulin secretion and accelerates diabetes. Finally, reduced levels of lysosomal tetraspanin CD63 prevent SINGD, leading to increased insulin secretion. Overall, our findings implicate aberrant SINGD in the pathogenesis of diabetes and suggest new therapeutic strategies to prevent β cell failure. Impaired beta-cell insulin secretion is a key pathological feature of type 2 diabetes. Here, the authors describe metabolic stress induced lysosomal degradation of newly formed insulin granules, independent of macroautophagy, as a potential mechanism for beta-cell dysfunction.
Collapse
|
41
|
Zeng J, Shirihai OS, Grinstaff MW. Degradable Nanoparticles Restore Lysosomal pH and Autophagic Flux in Lipotoxic Pancreatic Beta Cells. Adv Healthc Mater 2019; 8:e1801511. [PMID: 30698920 DOI: 10.1002/adhm.201801511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Indexed: 01/07/2023]
Abstract
Chronic exposure to high levels of fatty acids (lipotoxicity) in pancreatic beta cells (β-cells) decreases lysosomal acidity and inhibits autophagic flux. Today, there are a lack of approaches to modify lysosomal acidity to determine whether impaired lysosomal acidification is causally inhibiting autophagic flux and cellular functions. Biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with diameters of ≈100 nm localize to lysosomes and serve as an ideal method to deliver lactic and glycolic acid to lysosomes upon NP polymer degradation. In this study, the ability of PLGA NPs to lower lysosomal pH and restore autophagic flux is investigated in pancreatic insulin secreting (INS1) β-cells. PLGA NPs display a concentration dependent performance with higher concentrations of PLGA NPs, lowering lysosomal pH, as well as restoring autophagic flux and insulin secretion in pancreatic β-cells. These results document that acidifying the lysosome, via an external perturbation, in lipotoxic pancreatic β-cells affords a specific biological outcome of improved cellular degradative activity.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical EngineeringBoston University Boston MA 02215 USA
| | - Orian S. Shirihai
- Division of EndocrinologyDepartment of MedicineDavid Geffen School of MedicineUniversity of California, Los Angeles Los Angeles CA 90045 USA
- Department of MedicineBoston University School of Medicine Boston MA 02118 USA
| | - Mark W. Grinstaff
- Department of Biomedical EngineeringBoston University Boston MA 02215 USA
- Department of MedicineBoston University School of Medicine Boston MA 02118 USA
- Department of ChemistryBoston University Boston MA 02215 USA
| |
Collapse
|
42
|
Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1826303. [PMID: 31249641 PMCID: PMC6556329 DOI: 10.1155/2019/1826303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic β-cells are vulnerable to oxidative stress due to their low content of redox buffers, such as glutathione, but possess a rich content of thioredoxin, peroxiredoxin, and other proteins capable of redox relay, transferring redox signaling. Consequently, it may be predicted that cytosolic antioxidants could interfere with the cytosolic redox signaling and should not be recommended for any potential therapy. In contrast, mitochondrial matrix-targeted antioxidants could prevent the primary oxidative stress arising from the primary superoxide sources within the mitochondrial matrix, such as at the flavin (IF) and ubiquinone (IQ) sites of superoxide formation within respiratory chain complex I and the outer ubiquinone site (IIIQ) of complex III. Therefore, using time-resolved confocal fluorescence monitoring with MitoSOX Red, we investigated various effects of mitochondria-targeted antioxidants in model pancreatic β-cells (insulinoma INS-1E cells) and pancreatic islets. Both SkQ1 (a mitochondria-targeted plastoquinone) and a suppressor of complex III site Q electron leak (S3QEL) prevented superoxide production released to the mitochondrial matrix in INS-1E cells with stimulatory glucose, where SkQ1 also exhibited an antioxidant role for UCP2-silenced cells. SkQ1 acted similarly at nonstimulatory glucose but not in UCP2-silenced cells. Thus, UCP2 can facilitate the antioxidant mechanism based on SkQ1+ fatty acid anion− pairing. The elevated superoxide formation induced by antimycin A was largely prevented by S3QEL, and that induced by rotenone was decreased by SkQ1 and S3QEL and slightly by S1QEL, acting at complex I site Q. Similar results were obtained with the MitoB probe, for the LC-MS-based assessment of the 4 hr accumulation of reactive oxygen species within the mitochondrial matrix but for isolated pancreatic islets. For 2 hr INS-1E incubations, some samples were influenced by the cell death during the experiment. Due to the frequent dependency of antioxidant effects on metabolic modes, we suggest a potential use of mitochondria-targeted antioxidants for the treatment of prediabetic states after cautious nutrition-controlled tests. Their targeted delivery might eventually attenuate the vicious spiral leading to type 2 diabetes.
Collapse
|
43
|
Elksnis A, Martinell M, Eriksson O, Espes D. Heterogeneity of Metabolic Defects in Type 2 Diabetes and Its Relation to Reactive Oxygen Species and Alterations in Beta-Cell Mass. Front Physiol 2019; 10:107. [PMID: 30837889 PMCID: PMC6383038 DOI: 10.3389/fphys.2019.00107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex and heterogeneous disease which affects millions of people worldwide. The classification of diabetes is at an interesting turning point and there have been several recent reports on sub-classification of T2D based on phenotypical and metabolic characteristics. An important, and perhaps so far underestimated, factor in the pathophysiology of T2D is the role of oxidative stress and reactive oxygen species (ROS). There are multiple pathways for excessive ROS formation in T2D and in addition, beta-cells have an inherent deficit in the capacity to cope with oxidative stress. ROS formation could be causal, but also contribute to a large number of the metabolic defects in T2D, including beta-cell dysfunction and loss. Currently, our knowledge on beta-cell mass is limited to autopsy studies and based on comparisons with healthy controls. The combined evidence suggests that beta-cell mass is unaltered at onset of T2D but that it declines progressively. In order to better understand the pathophysiology of T2D, to identify and evaluate novel treatments, there is a need for in vivo techniques able to quantify beta-cell mass. Positron emission tomography holds great potential for this purpose and can in addition map metabolic defects, including ROS activity, in specific tissue compartments. In this review, we highlight the different phenotypical features of T2D and how metabolic defects impact oxidative stress and ROS formation. In addition, we review the literature on alterations of beta-cell mass in T2D and discuss potential techniques to assess beta-cell mass and metabolic defects in vivo.
Collapse
Affiliation(s)
- Andris Elksnis
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
King BC, Kulak K, Krus U, Rosberg R, Golec E, Wozniak K, Gomez MF, Zhang E, O'Connell DJ, Renström E, Blom AM. Complement Component C3 Is Highly Expressed in Human Pancreatic Islets and Prevents β Cell Death via ATG16L1 Interaction and Autophagy Regulation. Cell Metab 2019; 29:202-210.e6. [PMID: 30293775 DOI: 10.1016/j.cmet.2018.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 01/25/2023]
Abstract
We show here that human pancreatic islets highly express C3, which is both secreted and present in the cytosol. Within isolated human islets, C3 expression correlates with type 2 diabetes (T2D) donor status, HbA1c, and inflammation. Islet C3 expression is also upregulated in several rodent diabetes models. C3 interacts with ATG16L1, which is essential for autophagy. Autophagy relieves cellular stresses faced by β cells during T2D and maintains cellular homeostasis. C3 knockout in clonal β cells impaired autophagy and led to increased apoptosis after exposure of cells to palmitic acid and IAPP. In the absence of C3, autophagosomes do not undergo fusion with lysosomes. Thus, C3 may be upregulated in islets during T2D as a cytoprotective factor against β cell dysfunction caused by impaired autophagy. Therefore, we revealed a previously undescribed intracellular function for C3, connecting the complement system directly to autophagy, with a broad potential importance in other diseases and cell types.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Rebecca Rosberg
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Katarzyna Wozniak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Maria F Gomez
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Enming Zhang
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - David J O'Connell
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Erik Renström
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden.
| |
Collapse
|
45
|
Wang QQ, Zhai C, Wahafu A, Zhu YT, Liu YH, Sun LQ. Salvianolic acid B inhibits the development of diabetic peripheral neuropathy by suppressing autophagy and apoptosis. J Pharm Pharmacol 2018; 71:417-428. [PMID: 30537209 DOI: 10.1111/jphp.13044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the neuroprotective effects of SalB on high glucose (HG)-induced excessive autophagy and apoptosis in vitro. METHODS The proliferation and apoptosis of RSC96 cells were determined using the MTT assay and flow cytometry, respectively. Western blot analysis was performed to examine the expression of autophagy and apoptosis-related proteins. RT-PCR and flow cytometry were manipulated to examine the level of Bcl-2. The signals of autophagy markers were detected using immunofluorescence methods. KEY FINDINGS We found that HG significantly reduced RSC96 cell's proliferation and induced apoptosis. What's more, HG increased the level of autophagy and apoptosis-related proteins. However, these effects were reversed by SalB. In addition, we also found that 3-MA decreased the expression of LC3A/B and Beclin1, while the JNK inhibitor SP600125 reduced the levels of phosphorylated JNK, LC3A/B and Beclin1. CONCLUSIONS High glucose not only induced apoptosis but also caused autophagic cell death by activating the JNK pathway. These effects prevented by SalB in an opposite manner.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui Zhai
- Department of Respiration, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Alafate Wahafu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan-Ting Zhu
- Department of Respiration, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong-Hui Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lian-Qing Sun
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
46
|
Lee YM, Kim MK, Choo H, Chong Y. Conjugation with Phenylalanine Enhances Autophagy-Inducing Activity of (-)-Epigallocatechin Gallate in Hepatic Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12741-12747. [PMID: 30418776 DOI: 10.1021/acs.jafc.8b05361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Given the importance of (-)-epigallocatechin gallate (EGCG) as an autophagy-enhancing and thereby lipid-lowering agent, optimization of its activity warrants its therapeutic potential in the treatment of hepatic diseases as well as metabolic disorders. On the basis of our previous observations that structural modifications provided substantial improvements in the bioactivity of EGCG, we investigated the autophagy-enhancing activity of EGCG derivatives. Among 14 EGCG derivatives, E10 with a phenylalanine attached to the D ring of EGCG exhibited the most promising effects in stimulating autophagy in Huh7 cells, which was supported by several lines of evidence: (1) stimulation of autophagy revealed by an increased amount of LC3B-II (4.1 ± 0.8-fold compared to the control) as well as the 2.0 ± 0.1-fold activation of adenosine monophosphate-activated protein kinase in the presence of E10 and (2) E10-stimulated autophagic flux demonstrated by a 1.6 ± 0.4-fold increase in LC3B-II upon co-treatment with chloroquine, 38.1 ± 5.6% reduction of p62/SQSTM1, and an increase in the formation of autophagic compartments visualized by both CYTO-ID staining (3.0 ± 0.1-fold) and tandem RFP-GFP-LC3 fluorescence (2.7 ± 0.4- and 3.2 ± 0.3-fold for green and red fluorescence, respectively). Finally, the autophagy-inducing activity of E10 culminated in a 5.3-fold reduction of hepatic lipid accumulation caused by fatty acids. In all of the assay settings, E10 was consistently 1.3-3.5-fold more potent than EGCG. Taken together, we demonstrated a significant increase in autophagy-stimulating activity of EGCG through structural modifications.
Collapse
Affiliation(s)
- Yong Min Lee
- Department of Bioscience and Biotechnology, Reverse Metabolomics Research Center , Konkuk University , 1 Hwayang-dong , Gwangjin-gu, Seoul 143-701 , Korea
| | - Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Reverse Metabolomics Research Center , Konkuk University , 1 Hwayang-dong , Gwangjin-gu, Seoul 143-701 , Korea
| | - Hyunah Choo
- Neuro-Medicine Center, Life/Health Division , Korea Institute of Science and Technology , 39-1 Hawolgok-dong , Seongbuk-gu, Seoul 136-791 , Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Reverse Metabolomics Research Center , Konkuk University , 1 Hwayang-dong , Gwangjin-gu, Seoul 143-701 , Korea
| |
Collapse
|
47
|
Chu KY, O'Reilly L, Mellet N, Meikle PJ, Bartley C, Biden TJ. Oleate disrupts cAMP signaling, contributing to potent stimulation of pancreatic β-cell autophagy. J Biol Chem 2018; 294:1218-1229. [PMID: 30518550 DOI: 10.1074/jbc.ra118.004833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is critical for maintaining cellular function via clearance of excess nutrients and damaged organelles. In pancreatic β-cells, it helps counter the endoplasmic reticulum (ER) stress that impairs insulin secretory capacity during Type 2 diabetes. Chronic exposure of β-cells to saturated fatty acids (FAs) such as palmitate stimulates ER stress and modulates autophagy, but the effects of unsaturated FAs such as oleate, which are also elevated during obesity, are less well understood. We therefore treated MIN6 cells and mouse islets for 8-48 h with either palmitate or oleate, and then monitored autophagic flux, signaling pathways, lysosomal biology, and phospholipid profiles. Compared with palmitate, oleate more effectively stimulated both autophagic flux and clearance of autophagosomes. The flux stimulation occurred independently of ER stress, nutrient-sensing (mTOR) and signaling pathways (protein kinases A, C, and D). Instead the mechanism involved the exchange factor directly activated by cAMP 2 (EPAC2). Oleate reduced cellular cAMP, and its effects on autophagic flux were reproduced or inhibited, respectively, by Epac2 knockdown or activation. Oleate also increased lysosomal acidity and increased phospholipid saturation, consistent with improved autophagosomal fusion with lysosomes. We conclude that a potent stimulation of autophagy might help explain the known benefits of unsaturated FAs in countering the toxicity of saturated FAs in β-cells during obesity and lipid loading.
Collapse
Affiliation(s)
- Kwan Yi Chu
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2052
| | - Liam O'Reilly
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010
| | - Natalie Mellet
- Baker IDI Heart and Diabetes Institute, Prahran, Victoria 3004, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Prahran, Victoria 3004, Australia
| | - Clarissa Bartley
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010
| | - Trevor J Biden
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2052.
| |
Collapse
|
48
|
Hidayat AFA, Chan CK, Mohamad J, Kadir HA. Leptospermum flavescens Sm. protect pancreatic β cell function from streptozotocin involving apoptosis and autophagy signaling pathway in in vitro and in vivo case study. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:120-131. [PMID: 30118836 DOI: 10.1016/j.jep.2018.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Leptospermum flavescens has been used traditionally in Malaysia to treat various ailments such as constipation, hypertension, diabetes and cancer. AIM OF STUDY To investigate the potential protective effects of L. flavescens in pancreatic β cells through inhibition of apoptosis and autophagy cell death mechanisms in in vitro and in vivo models. MATERIALS AND METHODS L. flavescens leaves were extracted using solvent in increasing polarities: hexane, ethyl acetate, methanol and water. All extracts were tested for INS-1 β cells viability stimulated by streptozotocin (STZ). The extract which promotes the highest cell protective activity was further evaluated for insulin secretion, apoptosis and autophagy signaling pathways. Then, the acute toxicity of extract was carried out in SD rats according to OECD 423 guideline. The active extract was tested in diabetic rats where the pancreatic β islets were evaluated for insulin, apoptosis and autophagy protein. RESULTS The methanolic extract of L. flavescens (MELF) was found to increase INS-1 β cells viability and insulin secretion against STZ. In addition, MELF has been shown to inhibit INS-1 β cells apoptosis and autophagy activity. Notably, there was no toxicity observed in SD rats when administered with MELF. Furthermore, MELF exhibited anti-hyperglycemic activity in diabetic rats where apoptosis and autophagy protein expression was found to be suppressed in pancreatic β islets. CONCLUSION MELF was found to protect pancreatic β cells function from STZ-induced apoptosis and autophagy in in vitro and in vivo.
Collapse
Affiliation(s)
- Ahmad Fadhlurrahman Ahmad Hidayat
- Biomolecular Research Group, Biochemistry program, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chim Kei Chan
- Biomolecular Research Group, Biochemistry program, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jamaludin Mohamad
- Biohealth Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry program, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Aoyagi K, Itakura M, Fukutomi T, Nishiwaki C, Nakamichi Y, Torii S, Makiyama T, Harada A, Ohara-Imaizumi M. VAMP7 Regulates Autophagosome Formation by Supporting Atg9a Functions in Pancreatic β-Cells From Male Mice. Endocrinology 2018; 159:3674-3688. [PMID: 30215699 DOI: 10.1210/en.2018-00447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022]
Abstract
Dysfunctional mitochondria are observed in β-cells of diabetic patients, which are eventually removed by autophagy. Vesicle-associated membrane protein (VAMP)7, a vesicular SNARE protein, regulates autophagosome formation to maintain mitochondrial homeostasis and control insulin secretion in pancreatic β-cells. However, its molecular mechanism is largely unknown. In this study, we investigated the molecular mechanism of VAMP7-dependent autophagosome formation using VAMP7-deficient β-cells and β-cell-derived Min6 cells. VAMP7 localized in autophagy-related (Atg)9a-resident vesicles of recycling endosomes (REs), which contributed to autophagosome formation, and it interacted with Hrb, Syntaxin16, and SNAP-47. Hrb recruited VAMP7 and Atg9a from the plasma membrane to REs. Syntaxin16 and SNAP-47 mediated autophagosome formation at a step later than the proper localization of VAMP7 to Atg9a-resident vesicles. Knockdown of Hrb, Syntaxin16, and SNAP-47 resulted in defective autophagosome formation, accumulation of dysfunctional mitochondria, and impairment of glucose-stimulated insulin secretion. Our data indicate that VAMP7 and Atg9a are initially recruited to REs to organize VAMP7 and Atg9a-resident vesicles in an Hrb-dependent manner. Additionally, VAMP7 forms a SNARE complex with Syntaxin16 and SNAP-47, which may cause fusions of Atg9a-resident vesicles during autophagosome formation. Thus, VAMP7 participates in autophagosome formation by supporting Atg9a functions that contribute to maintenance of mitochondrial quality.
Collapse
Affiliation(s)
- Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology, Kyorin University School of Medicine, Tokyo, Japan
| | - Chiyono Nishiwaki
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoko Nakamichi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Seiji Torii
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Tomohiko Makiyama
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Autophagy in Metabolic Age-Related Human Diseases. Cells 2018; 7:cells7100149. [PMID: 30249977 PMCID: PMC6210409 DOI: 10.3390/cells7100149] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a highly conserved homeostatic cellular mechanism that mediates the degradation of damaged organelles, protein aggregates, and invading pathogens through a lysosome-dependent pathway. Over the last few years, specific functions of autophagy have been discovered in many tissues and organs; however, abnormal upregulation or downregulation of autophagy has been depicted as an attribute of a variety of pathologic conditions. In this review, we will describe the current knowledge on the role of autophagy, from its regulation to its physiological influence, in metabolic age-related disorders. Finally, we propose to discuss the therapeutic potential of pharmacological and nutritional modulators of autophagy to treat metabolic diseases.
Collapse
|