1
|
Pearce D, Manis AD, Nesterov V, Korbmacher C. Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch 2022; 474:869-884. [PMID: 35895103 PMCID: PMC9338908 DOI: 10.1007/s00424-022-02732-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Collapse
Affiliation(s)
- David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Anna D. Manis
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| |
Collapse
|
2
|
Shi S, Montalbetti N, Wang X, Rush BM, Marciszyn AL, Baty CJ, Tan RJ, Carattino MD, Kleyman TR. Paraoxonase 3 functions as a chaperone to decrease functional expression of the epithelial sodium channel. J Biol Chem 2020; 295:4950-4962. [PMID: 32079677 DOI: 10.1074/jbc.ra119.011789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Indexed: 01/11/2023] Open
Abstract
The paraoxonase (PON) family comprises three highly conserved members: PON1, PON2, and PON3. They are orthologs of Caenorhabditis elegans MEC-6, an endoplasmic reticulum-resident chaperone that has a critical role in proper assembly and surface expression of the touch-sensing degenerin channel in nematodes. We have shown recently that MEC-6 and PON2 negatively regulate functional expression of the epithelial Na+ channel (ENaC), suggesting that the chaperone function is conserved within this family. We hypothesized that other PON family members also modulate ion channel expression. Pon3 is specifically expressed in the aldosterone-sensitive distal tubules in the mouse kidney. We found here that knocking down endogenous Pon3 in mouse cortical collecting duct cells enhanced Na+ transport, which was associated with increased γENaC abundance. We further examined Pon3 regulation of ENaC in two heterologous expression systems, Fisher rat thyroid cells and Xenopus oocytes. Pon3 coimmunoprecipitated with each of the three ENaC subunits in Fisher rat thyroid cells. As a result of this interaction, the whole-cell and surface abundance of ENaC α and γ subunits was reduced by Pon3. When expressed in oocytes, Pon3 inhibited ENaC-mediated amiloride-sensitive Na+ currents, in part by reducing the surface expression of ENaC. In contrast, Pon3 did not alter the response of ENaC to chymotrypsin-mediated proteolytic activation or [2-(trimethylammonium)ethyl]methanethiosulfonate-induced activation of αβS518Cγ, suggesting that Pon3 does not affect channel open probability. Together, our results suggest that PON3 regulates ENaC expression by inhibiting its biogenesis and/or trafficking.
Collapse
Affiliation(s)
- Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Allison L Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
3
|
Bazzell BG, Rainey WE, Auchus RJ, Zocco D, Bruttini M, Hummel SL, Byrd JB. Human Urinary mRNA as a Biomarker of Cardiovascular Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002213. [PMID: 30354328 PMCID: PMC6760265 DOI: 10.1161/circgen.118.002213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background mRNA in urine supernatant (US-mRNA) might encode information about renal and cardiorenal pathophysiology, including hypertension. H, whether the US-mRNA transcriptome reflects that of renal tissues and whether changes in renal physiology are detectable using US-mRNA is unknown. Methods We compared transcriptomes of human urinary extracellular vesicles and human renal cortex. To avoid similarities attributable to ubiquitously expressed genes, we separately analyzed ubiquitously expressed and highly kidney-enriched genes. To determine whether US-mRNA reflects changes in renal gene expression, we assayed cell-depleted urine for transcription factor activity of mineralocorticoid receptors (MR) using probe-based quantitative polymerase chain reaction. The urine was collected from prehypertensive individuals (n=18) after 4 days on low-sodium diet to stimulate MR activity and again after suppression of MR activity via sodium infusion. Results In comparing this US-mRNA and human kidney cortex, expression of 55 highly kidney-enriched genes correlated strongly (rs=0.82) while 8457 ubiquitously expressed genes correlated moderately (rs=0.63). Standard renin-angiotensin-aldosterone system phenotyping confirmed the expected response to sodium loading. Cycle threshold values for MR-regulated targets (SCNN1A, SCNN1G, TSC22D3) changed after sodium loading, and MR-regulated targets (SCNN1A, SCNN1G, SGK1, and TSC22D3) correlated significantly with serum aldosterone and inversely with urinary sodium excretion. Conclusions RNA-sequencing of urinary extracellular vesicles shows concordance with human kidney. Perturbation in human endocrine signaling (MR activation) was accompanied by changes in mRNA in urine supernatant. Our findings could be useful for individualizing pharmacological therapy in patients with disorders of mineralocorticoid signaling, such as resistant hypertension. More generally, these insights could be used to noninvasively identify putative biomarkers of disordered renal and cardiorenal physiology.
Collapse
Affiliation(s)
- Brian G Bazzell
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| | - William E Rainey
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Richard J Auchus
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| | | | - Marco Bruttini
- Department of Life Sciences, Università degli Studi di Siena, Italy (M.B.)
| | - Scott L Hummel
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.).,Section of Cardiology, Ann Arbor Veterans Affairs Medical Center, MI (S.L.H.)
| | - James Brian Byrd
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| |
Collapse
|
4
|
Spirli A, Cheval L, Debonneville A, Penton D, Ronzaud C, Maillard M, Doucet A, Loffing J, Staub O. The serine-threonine kinase PIM3 is an aldosterone-regulated protein in the distal nephron. Physiol Rep 2019; 7:e14177. [PMID: 31397090 PMCID: PMC6687858 DOI: 10.14814/phy2.14177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/30/2022] Open
Abstract
The mineralocorticoid hormone aldosterone plays a crucial role in the control of Na+ and K+ balance, blood volume, and arterial blood pressure, by acting in the aldosterone-sensitive distal nephron (ASDN) and stimulating a complex transcriptional, translational, and cellular program. Because the complexity of the aldosterone response is still not fully appreciated, we aimed at identifying new elements in this pathway. Here, we demonstrate that the expression of the proto-oncogene PIM3 (Proviral Integration Site of Moloney Murine Leukemia Virus 3), a serine/threonine kinase belonging to the calcium/calmodulin-regulated group of kinases, is stimulated by aldosterone in vitro (mCCDcl1 cells), ex vivo (mouse kidney slices), and in vivo in mice. Characterizing a germline Pim3-/- mouse model, we found that these mice have an upregulated Renin-Angiotensin-Aldosterone System (RAAS), with high circulating aldosterone and plasma renin activity levels on both standard or Na+ -deficient diet. Surprisingly, we did not observe any obvious salt-losing phenotype in Pim3 KO mice as shown by normal blood pressure, plasma and urinary electrolytes, as well as unchanged expression levels of the major Na+ transport proteins. These observations suggest that the potential effects of the loss of the Pim3 gene are physiologically compensated. Indeed, the 2 other family members of the PIM kinase family, PIM1 and PIM2 are upregulated in the kidney of Pim3-/- mice, and may therefore be involved in such compensation. In conclusion, our data demonstrate that the PIM3 kinase is a novel aldosterone-induced protein, but its precise role in aldosterone-dependent renal homeostasis remains to be determined.
Collapse
Affiliation(s)
- Alessia Spirli
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| | - Lydie Cheval
- Centre de Recherche des CordeliersINSERM, Sorbonne Universités, USPC, Université Paris Descartes, Université Paris Diderot, Physiologie Rénale et TubulopathiesParisFrance
| | - Anne Debonneville
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| | - David Penton
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
- Institute of AnatomyUniversity of ZurichZurichSwitzerland
| | - Caroline Ronzaud
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| | - Marc Maillard
- Service of NephrologyLausanne University Hospital (CHUV)LausanneSwitzerland
| | - Alain Doucet
- Centre de Recherche des CordeliersINSERM, Sorbonne Universités, USPC, Université Paris Descartes, Université Paris Diderot, Physiologie Rénale et TubulopathiesParisFrance
| | - Johannes Loffing
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
- Institute of AnatomyUniversity of ZurichZurichSwitzerland
| | - Olivier Staub
- Department of Pharmacology & ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research “Kidney.ch”LausanneSwitzerland
| |
Collapse
|
5
|
Raikwar NS, Thomas CP. Aldosterone regulates a 5' variant sgk1 transcript via a shared hormone response element in the sgk1 5' regulatory region. Physiol Rep 2017; 5:5/7/e13221. [PMID: 28408636 PMCID: PMC5392512 DOI: 10.14814/phy2.13221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/24/2022] Open
Abstract
We previously identified a 5ʹ variant alternate transcript of Sgk1 (Sgk1_v3) encoding an NH2‐terminal variant Sgk1 isoform, Sgk1_i3 that, like Sgk1, is expressed in the distal convoluted tubule, connecting tubule and collecting duct and can stimulate epithelial Na+ transport (Am J Physiol Renal Physiol 303: F1527–F1533, 2012). We now demonstrate that, similar to Sgk1, aldosterone and glucocorticoids stimulate Sgk1_v3 expression in cell lines from the collecting duct and airway epithelia. In mice, short term aldosterone infusion and maneuvers that increase endogenous aldosterone secretion including dietary Na+ deprivation and K+ loading increases distal nephron Sgk1_v3 expression in vivo. Although Sgk1_v3 has a different 5ʹ proximal regulatory region from Sgk1, the transcription start sites are less than 1000 bp apart. We cloned the 5ʹ regulatory region for Sgk1 and Sgk_v3 upstream of a luciferase gene and by deletion and reporter gene analysis we localized the corticosteroid regulatory region for Sgk1_v3 to a glucocorticoid response element (GRE) that had previously been identified for Sgk1 (Am J Physiol Endo Metab 283: E971–E979, 2002). We tested this element with MR in an MR‐null cell line and demonstrate that aldosterone stimulates Sgk1 and Sgk1_v3 via this GRE. We conclude that corticosteroids stimulate Sgk1 and Sgk1_v3 expression in epithelial cells via activation of a common conserved GRE in the 5ʹ flanking region of Sgk1.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa
| | - Christie P Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa .,The Graduate Program in Molecular Biology, University of Iowa College of Medicine, Iowa City, Iowa.,The Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
6
|
Abstract
The apical membrane epithelial Na(+) channel subunit (ENaC) in series with the basolateral Na(+)/K(+)-adenosine triphosphatase mediates collecting duct Na(+) reabsorption. Aldosterone induces αENaC gene transcription, which appears to be rate limiting for ENaC activity in this segment. Although this response has long been assumed to be solely the result of liganded nuclear hormone receptors trans-activating αENaC, epigenetic controls of basal and aldosterone-induced transcription of αENaC in the collecting duct recently were described. These epigenetic pathways involve dynamic nuclear repressor complexes targeted to specific subregions of the αENaC promoter and consisting of the histone methyltransferase disrupter of telomeric silencing (Dot)1a together with the transcriptional factor Af9 or the nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase Sirt1, key co-regulatory proteins, including serum- and glucocorticoid-induced kinase-1 and the putative transcription factor Af17, and targeted chromatin modifications. The complexes, through the action of Dot1a, maintain chromatin associated with the αENaC promoter in a stable hypermethylated state, constraining αENaC transcription under basal conditions. Aldosterone and serum- and glucocorticoid-induced kinase-1, itself, activate αENaC transcription in large part by disrupting or diminishing the Dot1a-Af9 and Dot1a-Sirt1 complexes and their effects on chromatin. Mouse models indicate potential roles of the Dot1a pathways in renal salt excretion and hypertension.
Collapse
Affiliation(s)
- Bruce C Kone
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, The University of Texas Medical School, Houston, TX.
| |
Collapse
|
7
|
Physical and functional interaction of Rnf2 with Af9 regulates basal and aldosterone-stimulated transcription of the α-ENaC gene in a renal collecting duct cell line. Biosci Rep 2013; 33:BSR20130086. [PMID: 24070375 PMCID: PMC3979232 DOI: 10.1042/bsr20130086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The physical and functional interaction of Rnf2 (RING finger protein 2), a central component of the PRC (Polycomb repressive complex) 1 and Af9 (ALL1-fused gene from chromosome 9 protein), an aldosterone-sensitive transcription factor, in regulating basal and aldosterone-stimulated transcription of the α-ENaC (epithelial Na+ channel α-subunit) gene was explored in mIMCD3 CD (collecting duct) cells. Since Rnf2 lacks DNA-specific binding activity, other factors must mediate its site-specific chromatin recruitment. Rnf2 and Af9 co-localized in the nucleus and co-immunoprecipitated. A GST (glutathione transferase)-Af9 carboxy-terminal fusion protein directly interacted with in vitro translated Rnf2 in GST pull-down assays. Rnf2 knock down enhanced basal and aldosterone-stimulated α-ENaC mRNA levels and α-ENaC promoter activity. ChIP/QPCR (chromatin immunoprecipitation/quantitative PCR) assays demonstrated enrichment of Rnf2, H2AK119 (mono-ubiquitinated histone H2A lysine 119), and H3K27me3 (histone H3 lysine 27 trimethylated), a PRC2 chromatin mark, at multiple α-ENaC promoter subregions corresponding to regions of known Af9 enrichment, under basal conditions. Sequential ChIP confirmed Rnf2-Af9 co-occupancy of the α-ENaC promoter. Aldosterone provoked early and sustained depletion of Rnf2, ubiquitinated H2AK119, and trimethylated H3K27 associated with the subregions of the α-ENaC promoter. Thus, Af9 mediates site-selective physical and functional recruitment of Rnf2 to the α-ENaC promoter to constrain basal α-ENaC transcription in collecting duct cells, and aldosterone reverses this process.
Collapse
|
8
|
Yu Z, Kong Q, Kone BC. Aldosterone reprograms promoter methylation to regulate αENaC transcription in the collecting duct. Am J Physiol Renal Physiol 2013; 305:F1006-13. [PMID: 23926181 PMCID: PMC3798741 DOI: 10.1152/ajprenal.00407.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023] Open
Abstract
Aldosterone increases tubular Na(+) absorption largely by increasing α-epithelial Na(+) channel (αENaC) transcription in collecting duct principal cells. How aldosterone reprograms basal αENaC transcription to high-level activity in the collecting duct is incompletely understood. Promoter methylation, a covalent but reversible epigenetic process, has been implicated in the control of gene expression in health and disease. We investigated the role of promoter methylation/demethylation in the epigenetic control of basal and aldosterone-stimulated αENaC transcription in mIMCD3 collecting duct cells. Bisulfite treatment and sequencing analysis after treatment of the cells with the DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) identified clusters of methylated cytosines in a CpG island near the transcription start site of the αENaC promoter. 5-Aza-CdR treatment or small interfering RNA-mediated knockdown of DNMT3b or methyl-CpG-binding domain protein (MBD)-4 derepressed basal αENaC transcription, indicating that promoter methylation suppresses basal αENaC transcription. Aldosterone triggered a time-dependent decrease in 5mC and DNMT3b and a concurrent enrichment in 5-hydroxymethylcytosine (5hmC) and ten-eleven translocation (Tet)2 at the αENaC promoter, consistent with active demethylation. 5-Aza-CdR mimicked aldosterone by enhancing Sp1 binding to the αENaC promoter. We conclude that DNMT3b- and MBD4-dependent methylation of the αENaC promoter limits basal αENaC transcription, in part by limiting Sp1 binding and trans-activation. Aldosterone stimulates the dispersal of DNMT3b and recruitment of Tet2 to demethylate the αENaC promoter to induce αENaC transcription. These results disclose a novel epigenetic mechanism for the control of basal and aldosterone-induced αENaC transcription that adds to previously described epigenetic controls exerted by histone modifications.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Div. of Renal Diseases and Hypertension, The Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 5.124, Houston, TX 77030.
| | | | | |
Collapse
|
9
|
Richards J, Jeffers LA, All SC, Cheng KY, Gumz ML. Role of Per1 and the mineralocorticoid receptor in the coordinate regulation of αENaC in renal cortical collecting duct cells. Front Physiol 2013; 4:253. [PMID: 24062694 PMCID: PMC3775537 DOI: 10.3389/fphys.2013.00253] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/28/2013] [Indexed: 11/22/2022] Open
Abstract
Renal function and blood pressure (BP) exhibit a circadian pattern of variation, but the molecular mechanism underlying this circadian regulation is not fully understood. We have previously shown that the circadian clock protein Per1 positively regulates the basal and aldosterone-mediated expression of the alpha subunit of the renal epithelial sodium channel (αENaC). The mechanism of this regulation has not been determined however. To further elucidate the mechanism of mineralocorticoid receptor (MR) and Per1 action, site-directed mutagenesis, DNA pull-down assays and chromatin immunoprecipitation (ChIP) methods were used to investigate the coordinate regulation of αENaC by Per1 and MR. Mutation of two circadian response E-boxes in the human αENaC promoter abolished both basal and aldosterone-mediated promoter activity. DNA pull down assays demonstrated the interaction of both MR and Per1 with the E-boxes from the αENaC promoter. These observations were corroborated by ChIP experiments showing increased occupancy of MR and Per1 on an E-box of the αENaC promoter in the presence of aldosterone. This is the first report of an aldosterone-mediated increase in Per1 on a target gene promoter. Taken together, these results demonstrate the novel finding that Per1 and MR mediate the aldosterone response of αENaC through DNA/protein interaction in renal collecting duct cells.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine, University of Florida Gainesville, FL, USA ; Department of Biochemistry and Molecular Biology, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
10
|
Zhang X, Zhou Q, Chen L, Berger S, Wu H, Xiao Z, Pearce D, Zhou X, Zhang W. Mineralocorticoid receptor antagonizes Dot1a-Af9 complex to increase αENaC transcription. Am J Physiol Renal Physiol 2013; 305:F1436-44. [PMID: 24026182 DOI: 10.1152/ajprenal.00202.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldosterone is a major regulator of Na(+) absorption and acts by activating the mineralocorticoid receptor (MR) to stimulate the epithelial Na(+) channel (ENaC). MR(-/-) mice exhibited pseudohypoaldosteronism type 1 (hyponatremia, hyperkalemia, salt wasting, and high levels of aldosterone) and died around postnatal day 10. However, if and how MR regulates ENaC transcription remain incompletely understood. Our earlier work demonstrated that aldosterone activates αENaC transcription by reducing expression of Dot1a and Af9 and by impairing Dot1a-Af9 interaction. Most recently, we reported identification of a major Af9 binding site in the αENaC promoter and upregulation of αENaC mRNA expression in mouse kidneys lacking Dot1a. Despite these findings, the putative antagonism between the MR/aldosterone and Dot1a-Af9 complexes has never been addressed. The molecular defects leading to PHA-1 in MR(-/-) mice remain elusive. Here, we report that MR competes with Dot1a to bind Af9. MR/aldosterone and Dot1a-Af9 complexes mutually counterbalance ENaC mRNA expression in inner medullary collecting duct 3 (IMCD3) cells. Real-time RT-quantitative PCR revealed that 5-day-old MR(-/-) vs. MR(+/+) mice had significantly lower αENaC mRNA levels. This change was associated with an increased Af9 binding and H3 K79 hypermethylation in the αENaC promoter. Therefore, this study identified MR as a novel binding partner and regulator of Af9 and a novel mechanism coupling MR-mediated activation with relief of Dot1a-Af9-mediated repression via MR-Af9 interaction. Impaired ENaC expression due to failure to inhibit Dot1a-Af9 may play an important role in the early stages of PHA-1 (before postnatal day 8) in MR(-/-) mice.
Collapse
Affiliation(s)
- Xi Zhang
- Dept. of Internal Medicine, Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 5.135, Houston, TX 77030.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang S, He G, Yang Y, Liu Y, Diao R, Sheng K, Liu X, Xu W. Reduced expression of Enac in Placenta tissues of patients with severe preeclampsia is related to compromised trophoblastic cell migration and invasion during pregnancy. PLoS One 2013; 8:e72153. [PMID: 23977235 PMCID: PMC3747050 DOI: 10.1371/journal.pone.0072153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/07/2013] [Indexed: 11/19/2022] Open
Abstract
The purpose of the study is to investigate the expression of epithelial sodium channel (ENaC) in normal pregnancy and severe preeclampsia placenta and to explore the underlying mechanism of the relationship between the altered ENaC expression and onset of preeclampsia. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot were used to check epithelial sodium channel subunits expression in mRNA and protein level in first term and full term placental tissue. ENaCα specific RNAi were used to knockdown ENaC expression and cell invasion and migration assay were used to check whether reduced expression of ENaC can compromise trophoblast cell function. The result showed that ENaCα was highly expressed in first term placental trophoblast cells; while EnaCβ was highly expressed in full term placenta. Knockdown ENaCα expression by using small interfering RNA reduced the invasive and migration abilities of HTR-8/SVneo cell. Real time-PCR and Western blot analysis showed that the expression levels of ENaCβ were also significantly lower in severe preeclampsia compared with normal pregnancy. It is concluded that the ENaC played an important role in trophoblast cell invasion and migration. Reduced expression and activity of epithelial sodium channel in trophoblast cells may be involved in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Shan Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Liu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ruiying Diao
- Shenzhen Key Lab of Male Reproduction and Genetics, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Kai Sheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (XL); (WX)
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (XL); (WX)
| |
Collapse
|
12
|
Yu Z, Kong Q, Kone BC. Sp1 trans-activates and is required for maximal aldosterone induction of the αENaC gene in collecting duct cells. Am J Physiol Renal Physiol 2013; 305:F653-62. [PMID: 23804453 DOI: 10.1152/ajprenal.00177.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The epithelial Na+ channel (ENaC) in the distal nephron constitutes the rate-limiting step for renal sodium reabsorption. Aldosterone increases tubular sodium absorption in large part by increasing αENaC transcription in collecting duct principal cells. We previously reported that Af9 binds to +78/+92 of αENaC and recruits Dot1a to repress basal and aldosterone-sensitive αENaC transcription in mouse inner medullary collecting duct (mIMCD)3 cells. Despite this epigenetic repression, basal αENaC transcription is still evident and physiologically necessary, indicating basal operation of positive regulators. In the present study, we identified Sp1 as one such regulator. Gel shift and antibody competition assays using a +208/+240 probe revealed DNA-Sp1-containing complexes in mIMCD3 cells. Mutation of the +222/+229 element abrogated Sp1 binding in vitro and in promoter-reporter constructs stably expressed in mIMCD3 cells. Compared with the wild-type promoter, an αENaC promoter-luciferase construct with +222/+229 mutations exhibited much lower activity and impaired trans-activation in Sp1 overexpression experiments. Conversely, Sp1 knockdown inhibited endogenous αENaC mRNA and the activity of the wild-type αENaC promoter but not the mutated construct. Aldosterone triggered Sp1 recruitment to the αENaC promoter, which was required for maximal induction of αENaC promoter activity and was blocked by spironolactone. Sequential chromatin immunoprecipitation assays and functional tests of +78/+92 and +222/+229 αENaC promoter mutants indicated that while Sp1, Dot1a, and Af9 co-occupy the αENaC promoter, the Sp1 effects are functionally independent from Dot1a and Af9. In summary, Sp1 binding to a cis-element at +222/+229 represents the first identified constitutive driver of αENaC transcription, and it contributes to maximal aldosterone trans-activation of αENaC.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Div. of Renal Diseases and Hypertension, The Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 5.124, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Zhang W, Yu Z, Wu H, Chen L, Kong Q, Kone BC. An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the αENaC gene. Am J Physiol Renal Physiol 2013; 304:F367-75. [PMID: 23152297 PMCID: PMC3566494 DOI: 10.1152/ajprenal.00537.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/11/2012] [Indexed: 01/17/2023] Open
Abstract
The epithelial Na(+) channel subunit-α (αENaC) of the distal nephron is essential for salt balance. We previously demonstrated that the histone methyltransferase Dot1a and its protein partner Af9 basally repress αENaC transcription in mouse inner medullary collecting duct type 3 (mIMCD3) cells and link aldosterone-elicited chromatin modifications to αENaC transcriptional activation. Af9 DNA-binding activity has never been demonstrated, and whether and where Af9 binds to the αENaC promoter to target Dot1a are unknown. The present study sought to identify functional Af9 cis-element(s) in the -57/+439 "R3" subregion of αENaC, the principal site for Dot1a-Af9 interaction, in mIMCD3 cells. We also exploited connecting tubule/collecting duct-specific Dot1l-deficient mice (Dot1l(AC)) to determine the impact of Dot1l inactivation on renal αENaC expression in vivo. mIMCD3 cell lines expressing αENaC promoter-reporter constructs harboring deletion of +74/+107 demonstrated greatly reduced association of Af9 and Dot1a by ChIP/qPCR. Aldosterone treatment resulted in further decrements in Af9 and Dot1a association with the αENaC promoter. Gel shift and antibody competition assays using wild-type and mutant oligomers revealed Af9-containing +78/+92 αENaC DNA-protein complexes in nuclear extracts of mIMCD3 cells. Mutation of the +78/+92 element resulted in higher basal αENaC promoter activity and impaired Dot1a-mediated inhibition in trans-repression assays. In agreement, mice with connecting tubule/collecting duct-specific knockout of Dot1l exhibited greater αENaC mRNA levels in kidney compared with control. Thus, we conclude that +78/+92 of αENaC represents the primary Af9 binding site involved in recruiting Dot1a to repress basal and aldosterone-sensitive αENaC transcription and that Dot1l inactivation promotes αENaC mRNA expression by eliminating Dot1a-mediated repression.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Division of Renal Diseases and Hypertension, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Stow LR, Voren GE, Gumz ML, Wingo CS, Cain BD. Dexamethasone stimulates endothelin-1 gene expression in renal collecting duct cells. Steroids 2012; 77:360-6. [PMID: 22209709 PMCID: PMC3303981 DOI: 10.1016/j.steroids.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 01/28/2023]
Abstract
Aldosterone stimulates the endothelin-1 gene (Edn1) in renal collecting duct (CD) cells by a mechanism involving the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The goal of the present study was to determine if the synthetic glucocorticoid dexamethasone affected Edn1 gene expression and to characterize GR binding patterns to an element in the Edn1 promoter. Dexamethasone (1μM) induced a 4-fold increase in Edn1 mRNA in mIMCD-3 inner medullary CD cells. Similar results were obtained from cortical collecting duct-derived mpkCCD(c14) cells. RU486 inhibition of GR completely blocked dexamethasone action on Edn1. Similarly, 24h transfection of siRNA against GR reduced Edn1 expression by approximately 50%. However, blockade of MR with either spironolactone or siRNA had little effect on dexamethasone induction of Edn1. Cotransfection of MR and GR siRNAs together had no additive effect compared to GR-siRNA alone. The results indicate that dexamethasone acts on Edn1 exclusively through GR and not MR. DNA affinity purification studies revealed that either dexamethasone or aldosterone resulted in GR binding to the same hormone response element in the Edn1Edn1 promoter. The Edn1 hormone response element contains three important sequence segments. Mutational analysis revealed that one of these segments is particularly important for modulating MR and GR binding to the Edn1 hormone response element.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Gene Expression/drug effects
- Glucocorticoids/pharmacology
- Hormone Antagonists/pharmacology
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Mifepristone/pharmacology
- Mineralocorticoid Receptor Antagonists
- Mutation
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spironolactone/pharmacology
Collapse
Affiliation(s)
- Lisa R. Stow
- Department of Medicine, University of Florida Gainesville, Florida 32610
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - George E. Voren
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - Michelle L. Gumz
- Department of Medicine, University of Florida Gainesville, Florida 32610
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - Charles S. Wingo
- Department of Medicine, University of Florida Gainesville, Florida 32610
- North Florida/South Georgia VA Medical Center, Gainesville Florida 32608
| | - Brian D. Cain
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
- CORRESPONDENCE addressed to Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610,
| |
Collapse
|
15
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
16
|
Frindt G, Palmer LG. Regulation of epithelial Na+ channels by adrenal steroids: mineralocorticoid and glucocorticoid effects. Am J Physiol Renal Physiol 2011; 302:F20-6. [PMID: 22012806 DOI: 10.1152/ajprenal.00480.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na+ channels (ENaC) can be regulated by both mineralocorticoid and glucocorticoid hormones. In the mammalian kidney, effects of mineralocorticoids have been extensively studied, but those of glucocorticoids are complicated by metabolism of the hormones and cross-occupancy of mineralocorticoid receptors. Here, we report effects of dexamethasone, a synthetic glucocorticoid, on ENaC in the rat kidney. Infusion of dexamethasone (24 μg/day) for 1 wk increased the abundance of αENaC 2.26 ± 0.04-fold. This was not accompanied by an induction of Na+ currents (I(Na)) measured in isolated split-open collecting ducts. In addition, hormone treatment did not increase the abundance of the cleaved forms of either αENaC or γENaC or the expression of βENaC or γENaC protein at the cell surface. The absence of hypokalemia also indicated the lack of ENaC activation in vivo. Dexamethasone increased the abundance of the Na+ transporters Na+/H+ exchanger 3 (NHE3; 1.36 ± 0.07-fold), Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2; 1.49 ± 0.07-fold), and Na-Cl cotransporter (NCC; 1.72 ± 0.08-fold). Surface expression of NHE3 and NCC also increased with dexamethasone treatment. To examine whether glucocorticoids could either augment or inhibit the effects of mineralocorticoids, we infused dexamethasone (60 μg/day) together with aldosterone (12 μg/day). Dexamethasone further increased the abundance of αENaC in the presence of aldosterone, suggesting independent effects of the two hormones on this subunit. However, I(Na) was similar in animals treated with dexamethasone+aldosterone and with aldosterone alone. We conclude that dexamethasone can occupy glucocorticoid receptors in cortical collecting duct and induce the synthesis of αENaC. However, this induction is not sufficient to produce an increase in functional Na+ channels in the apical membrane, implying that the abundance of αENaC is not rate limiting for channel formation in the kidney.
Collapse
Affiliation(s)
- Gustavo Frindt
- Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10065, USA
| | | |
Collapse
|
17
|
Martinerie L, Viengchareun S, Meduri G, Kim HS, Luther JM, Lombès M. Aldosterone postnatally, but not at birth, is required for optimal induction of renal mineralocorticoid receptor expression and sodium reabsorption. Endocrinology 2011; 152:2483-91. [PMID: 21467193 PMCID: PMC3100620 DOI: 10.1210/en.2010-1460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sodium wasting during the neonatal period is the consequence of a physiological aldosterone resistance, related to a low renal mineralocorticoid receptor (MR) expression at birth, both in humans and mice. To investigate whether aldosterone is involved in the neonatal regulation of MR expression, we compared aldosterone and corticosterone levels and renal MR expression by quantitative real-time PCR, between aldosterone synthase (AS) knockout, heterozygous, and wild type (WT) mice, at birth and postnatal d 8. Analysis of MR transcripts showed a similar expression profile in all genotypes, demonstrating that the lack of aldosterone does not modify either the low renal MR expression at birth or its postnatal induction. However, mRNA levels of the α-subunit of the epithelial sodium channel, a MR target gene, were significantly higher in WT compared with AS knockout mice, both at birth and postnatal d 8, despite high corticosterone levels in AS knockout mice, indicating that aldosterone is required for optimal renal induction of the epithelial sodium channel. Using organotypic cultures of newborn WT kidneys, we confirmed that aldosterone does not regulate MR expression at birth, but is instead capable of increasing MR expression in mature kidneys, unlike dexamethasone. In sum, we demonstrate both in vivo and in vitro, that, whereas aldosterone has no significant impact on renal MR expression at birth, it is crucial for optimal MR regulation in postnatal kidneys and for appropriate hydroelectrolytic balance. Understanding of MR-regulatory mechanisms could therefore lead to new therapeutic strategies for the management of sodium loss in preterms and neonates.
Collapse
Affiliation(s)
- Laetitia Martinerie
- Institut National de la Santé et de la Recherche Médicale U693, Faculté de Médecine Paris-Sud, 63, rue Gabriel Péri, 94276 Le Kremlin Bicêtre Cedex France
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The role of SGK1 (serum- and glucocorticoid-induced protein kinase 1) in the glucocorticoid induction of α-ENaC (epithelial Na+ channel α subunit) gene transcription was explored by monitoring the transcriptional activity of a luciferase-linked, α-ENaC reporter gene construct (pGL3-KR1) expressed in H441 airway epithelial cells. Dexamethasone evoked a concentration-dependent (EC50∼4 μM) increase in transcriptional activity dependent upon a glucocorticoid response element in the α-ENaC sequence. Although dexamethasone also activated endogenous SGK1, artificially increasing cellular SGK1 activity by expressing a constitutively active SGK1 mutant (SGK1-S422D) in hormone-deprived cells did not activate pGL3-KR1. Moreover, expression of catalytically inactive SGK1 (SGK1-K127A) suppressed the activation of endogenous SGK1 without affecting the transcriptional response to dexamethasone. Increasing cellular PI3K (phosphoinositide 3-kinase) activity by expressing a membrane-anchored form of the catalytic PI3K-P110α subunit [CD2 (cluster of differentiation 2)-P110α] also activated endogenous SGK1 without affecting pGL3-KR1activity. A catalytically inactive form of CD2-P110α (R1130P), on the other hand, prevented the dexamethasone-induced activation of SGK1, but did not inhibit the activation of pGL3-KR1. However, expression of SGK1-S422D or CD2-P110α enhanced the transcriptional responses to maximally effective concentrations of dexamethasone and this effect occurred with no change in EC50. Dexamethasone-induced (0.3–300 nM) activation of pGL3-KR1 was unaffected by inhibitors of PI3K (PI-103 and wortmanin) and by rapamycin, a selective inhibitor of the TORC1 (target of rapamycin complex 1) signalling complex. Dexamethasone-induced activation of the α-ENaC gene promoter can thus occur independently of SGK1/PI3K, although this pathway does provide a mechanism that allows this transcriptional response to dexamethasone to be enhanced.
Collapse
|
19
|
Martinerie L, Viengchareun S, Delezoïde AL, Jaubert F, Sinico M, Prevot S, Boileau P, Meduri G, Lombès M. Low renal mineralocorticoid receptor expression at birth contributes to partial aldosterone resistance in neonates. Endocrinology 2009; 150:4414-24. [PMID: 19477942 PMCID: PMC3201843 DOI: 10.1210/en.2008-1498] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human neonatal period is characterized by renal immaturity with impaired capacity to regulate water and sodium homeostasis, resembling partial aldosterone resistance. Because aldosterone effects are mediated by the mineralocorticoid receptor (MR), we postulated that this hormonal unresponsiveness could be related to low MR expression in the distal nephron. We measured aldosterone and renin levels in umbilical cord blood of healthy newborns. We used quantitative real-time PCR and immunohistochemistry to analyze the expression of MR and key players of the mineralocorticoid signaling pathway during human and mouse renal development. High aldosterone and renin levels were found at birth. MR mRNA was detected in mouse kidney at d 16 postcoitum, peaking at d 18 postcoitum, but its expression was surprisingly very low at birth, rising progressively afterward. Similar biphasic temporal expression was observed during human renal embryogenesis, with a transient expression between 15 and 24 wk of gestation but an undetectable immunoreactive MR in late gestational and neonatal kidneys. This cyclic MR expression was tightly correlated with the evolution of the 11beta-hydroxysteroid dehydrogenase type 2 and the epithelial sodium channel alpha-subunit. In contrast, glucocorticoid and vasopressin receptors and aquaporin 2 followed a progressive and sustained evolution during renal maturation. Our study provides the first evidence for a low renal MR expression level at birth, despite high aldosterone levels, which could account for compromised postnatal sodium handling. Elucidation of regulatory mechanisms governing MR expression should lead to new strategies for the management of sodium waste in preterms and neonates.
Collapse
Affiliation(s)
- Laetitia Martinerie
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris Sud - Paris XIFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
| | - Say Viengchareun
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris Sud - Paris XIFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
| | - Anne-Lise Delezoïde
- Service de Biologie du Développement
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Robert DebréUniversité Paris Diderot - Paris 775019 Paris,FR
| | - Francis Jaubert
- Service d'AnatomoPathologie
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Necker - Enfants MaladesUniversité Paris DescartesParis 75015,FR
| | - Martine Sinico
- Service d'AnatomoPathologie
CHIC CréteilCréteil 94010,FR
| | - Sophie Prevot
- Service d'AnatomoPathologie
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Antoine BéclèreUniversité Paris Sud - Paris XIClamart 92141,FR
| | - Pascal Boileau
- Service de Pédiatrie et Réanimations néonatales
Université Paris Sud - Paris XIAssistance publique - Hôpitaux de Paris (AP-HP)Hôpital Antoine Béclère92141 Clamart,FR
| | - Géri Meduri
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris Sud - Paris XIFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
- Service de génétique moléculaire, pharmacogénétique et hormonologie
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital BicêtreUniversité Paris Sud - Paris XI78, rue du Général Leclerc 94275 Le Kremlin Bicêtre,FR
| | - Marc Lombès
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris Sud - Paris XIFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
- Service d'Endocrinologie et Maladies de la reproduction
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Bicêtre78 rue du général Leclerc, Le Kremlin Bicêtre 94275,FR
- Correspondence should be adressed to: Marc Lombès
| |
Collapse
|
20
|
Martinerie L, Pussard E, Foix-L'hélias L, Petit F, Cosson C, Boileau P, Lombès M. Physiological partial aldosterone resistance in human newborns. Pediatr Res 2009; 66:323-8. [PMID: 19542911 PMCID: PMC2919537 DOI: 10.1203/pdr.0b013e3181b1bbec] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the neonatal period, the human kidney is characterized by an impaired ability to regulate water and sodium homeostasis, resembling partial aldosterone resistance. The aim of our study was to assess this hormonal insensitivity in newborn infants and to determine its relationship with neonatal sodium handling. We conducted a prospective study in 48 healthy newborns and their mothers. Aldosterone, renin, and electrolyte concentrations were measured in umbilical cords and in maternal plasma. Urinary aldosterone concentrations and sodium excretion were determined at urination within 24 h after birth. A significant difference was observed between aldosterone and renin levels in newborn infants compared with their mothers (817 +/- 73 versus 575 +/- 55 pg/mL and 79 +/- 10 versus 15 +/- 2 pg/mL, respectively, p < 0.001). This hyperactivation of the renin-angiotensin-aldosterone system was associated with hyponatremia and hyperkalemia in the newborn infants, and high urinary sodium loss, consistent with a partial aldosterone resistance at birth. Unlike plasma aldosterone, urinary aldosterone concentration was found highly correlated with plasma potassium concentrations, thus representing the best index for accurate evaluation of mineralocorticoid sensitivity. Our study represents a comprehensive characterization of the renin-aldosterone axis in newborn infants and provides evidence for physiologic partial aldosterone resistance in the neonatal period.
Collapse
Affiliation(s)
- Laetitia Martinerie
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris Sud - Paris XIFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
| | - Eric Pussard
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris Sud - Paris XIFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR,Service de génétique moléculaire, pharmacogénétique et hormonologie
AP-HPHôpital BicêtreUniversité Paris Sud - Paris XI78, rue du Général Leclerc 94275 Le Kremlin Bicêtre,FR
| | - Laurence Foix-L'hélias
- Service de Pédiatrie et Réanimations néonatales
Université Paris Sud - Paris XIAP-HPHôpital Antoine Béclère92141 Clamart,FR
| | | | | | - Pascal Boileau
- Service de Pédiatrie et Réanimations néonatales
Université Paris Sud - Paris XIAP-HPHôpital Antoine Béclère92141 Clamart,FR
| | - Marc Lombès
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris Sud - Paris XIFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR,Service d'Endocrinologie et Maladies de la reproduction
AP-HPHôpital BicêtreLe Kremlin Bicêtre 94275,FR,* Correspondence should be adressed to: Marc Lombès
| |
Collapse
|
21
|
Stow LR, Gumz ML, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Wingo CS. Aldosterone modulates steroid receptor binding to the endothelin-1 gene (edn1). J Biol Chem 2009; 284:30087-96. [PMID: 19638349 DOI: 10.1074/jbc.m109.030718] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldosterone and endothelin-1 (ET-1) act on collecting duct cells of the kidney and are important regulators of renal sodium transport and cardiovascular physiology. We recently identified the ET-1 gene (edn1) as a novel aldosterone-induced transcript. However, aldosterone action on edn1 has not been characterized at the present time. In this report, we show that aldosterone stimulated edn1 mRNA in acutely isolated rat inner medullary collecting duct cells ex vivo and ET-1 peptide in rat inner medulla in vivo. Aldosterone induction of edn1 mRNA occurred in cortical, outer medullary, and inner medullary collecting duct cells in vitro. Inspection of the edn1 promoter revealed two putative hormone response elements. Levels of heterogeneous nuclear RNA synthesis demonstrated that edn1 mRNA stimulation occurred at the level of transcription. RNA knockdowns corroborated pharmacological studies and demonstrated both mineralocorticoid receptor and glucocorticoid receptor participated in this response. Aldosterone resulted in dose-dependent nuclear translocation and binding of mineralocorticoid receptor and glucocorticoid receptor to the edn1 hormone response elements. Hormone receptors mediated the association of chromatin remodeling complexes, histone modification, and RNA polymerase II at the edn1 promoter. Direct interaction between aldosterone and ET-1 has important implications for renal and cardiovascular function.
Collapse
Affiliation(s)
- Lisa R Stow
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Jesse NM, McCartney J, Feng X, Richards EM, Wood CE, Keller-Wood M. Expression of ENaC subunits, chloride channels, and aquaporins in ovine fetal lung: ontogeny of expression and effects of altered fetal cortisol concentrations. Am J Physiol Regul Integr Comp Physiol 2009; 297:R453-61. [PMID: 19515987 DOI: 10.1152/ajpregu.00127.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transition of the epithelium of the fetal lung from fluid secretion to fluid reabsorption requires changes in the expression of ion channels. Corticosteroids regulate expression of several of these channels, including the epithelium sodium channel (ENaC) subunits and aquaporins (AQP). We investigated the ontogenetic changes in these ion channels in the ovine fetal lung during the last half of gestation, a time of increasing adrenal maturation. Expression of the mRNAs for the chloride channels, cystic fibrosis transmembrane conductance regulator (CFTR), and chloride channel 2 (CLCN2) decreased with age. Expression of mRNAs for AQP1, AQP5, and for subunits of ENaC (alpha, beta, gamma) increased with age. In the fetal sheep the expression of ENaCbeta mRNA was dramatically higher than the expression of ENaCalpha or ENaCgamma, but expression of ENaCbeta protein decreased with maturation, although the ratio of the mature (112 kDa) to immature (102 kDa) ENaCbeta protein increased with age, particularly in the membrane fraction. In contrast, ENaCalpha mRNA and protein both increase with maturation, and the mature form of ENaCalpha (68 kDa) predominates at all ages. A modest increase in fetal cortisol, within the range expected to occur naturally in late gestation but prior to active labor, increased ENaCalpha mRNA but not ENaCbeta, ENaCgamma, or AQP mRNAs. We conclude that in the ovine fetal lung, appearance of functional sodium channels is associated with induction of ENACalpha and ENaCgamma, and that ENaCalpha expression may be induced by even small, preterm increases in fetal cortisol.
Collapse
Affiliation(s)
- Nathan M Jesse
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zhang D, Li S, Cruz P, Kone BC. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J Biol Chem 2009; 284:20917-26. [PMID: 19491102 DOI: 10.1074/jbc.m109.020073] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldosterone increases renal tubular Na+ absorption in large part by increasing transcription of the epithelial Na(+) channel alpha-subunit (alpha-ENaC) expressed in the apical membrane of collecting duct principal cells. We recently reported that a complex containing the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) associates with and represses the alpha-ENaC promoter in mouse inner medullary collecting duct mIMCD3 cells, and that aldosterone acts to disrupt this complex and its inhibitory effects (Zhang, W., Xia, X., Reisenauer, M. R., Rieg, T., Lang, F., Kuhl, D., Vallon, V., and Kone, B. C. (2007) J. Clin. Invest. 117, 773-783). Here we demonstrate that the NAD(+)-dependent deacetylase sirtuin 1 (Sirt1) functionally and physically interacts with Dot1 to enhance the distributive activity of Dot1 on H3K79 methylation and thereby represses alpha-ENaC transcription in mIMCD3 cells. Sirt1 overexpression inhibited basal alpha-ENaC mRNA expression and alpha-ENaC promoter activity, surprisingly in a deacetylase-independent manner. The ability of Sirt1 to inhibit alpha-ENaC transcription was retained in a truncated Sirt1 construct expressing only its N-terminal domain. Conversely, Sirt1 knockdown enhanced alpha-ENaC mRNA levels and alpha-ENaC promoter activity, and inhibited global H3K79 methylation, particularly H3K79 trimethylation, in chromatin associated with the alpha-ENaC promoter. Sirt1 and Dot1 co-immunoprecipitated from mIMCD3 cells and colocalized in the nucleus. Sirt1 immunoprecipitated from chromatin associated with regions of the alpha-ENaC promoter known to associate with Dot1. Aldosterone inhibited Sirt1 association at two of these regions, as well as Sirt1 mRNA expression, in a coordinate manner with induction of alpha-ENaC transcription. Overexpressed Sirt1 inhibited aldosterone induction of alpha-ENaC transcription independent of effects on mineralocorticoid receptor trans-activation. These data identify Sirt1 as a novel modulator of alpha-ENaC, Dot1, and the aldosterone signaling pathway.
Collapse
Affiliation(s)
- Dongyu Zhang
- Departments of Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
24
|
Discovery of selective glucocorticoid receptor modulators by multiplexed reporter screening. Proc Natl Acad Sci U S A 2009; 106:4929-34. [PMID: 19255438 DOI: 10.1073/pnas.0812308106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoids are widely used to suppress inflammation and treat various immune-mediated diseases. Some glucocorticoid receptor (GR)-regulated genes mediate the therapeutic response, whereas others cause debilitating side effects. To discover selective modulators of the GR response, we developed a high-throughput, multiplexed system to monitor regulation of 4 promoters simultaneously. An initial screen of 1,040 natural products and Food and Drug Administration-approved drugs identified modulators that caused GR to regulate only a subset of its target promoters. Some compounds selectively inhibited GR-mediated gene activation without altering the repression of cytokine expression by GR. This approach will facilitate identification of genes and small molecules that augment beneficial effects of GR and diminish deleterious ones. Our results have important implications for the development of GR modulators and the identification of cross-talk pathways that control selective GR gene regulation.
Collapse
|
25
|
Hu G, Oboukhova EA, Kumar S, Sturek M, Obukhov AG. Canonical transient receptor potential channels expression is elevated in a porcine model of metabolic syndrome. Mol Endocrinol 2009; 23:689-99. [PMID: 19221052 DOI: 10.1210/me.2008-0350] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasma epinephrine and heart rate are elevated in metabolic syndrome, suggesting enhanced catecholamine secretion from the adrenal medulla. Canonical transient receptor potential (TRPC) channels are implicated in mediating hormone-induced Ca(2+) influx and catecholamine secretion in adrenomedullary chromaffin cells. We studied the pattern of TRPC expression in the pig adrenal medulla and investigated whether adrenal TRPC expression is altered in prediabetic metabolic syndrome Ossabaw miniature pigs. We used a combination of molecular biological, biochemical, and fluorescence imaging techniques. We determined the sequence of pig TRPC1 and TRPC3-7 channels. We found that the pig adrenal medulla expressed predominantly TRPC1, TRPC5, and TRPC6 transcripts. The expression level of these TRPCs was significantly elevated in the adrenal medulla from pigs with metabolic syndrome. Interestingly, aldosterone, which is endogenously secreted in the adjacent adrenal cortex, increased TRPC1, TRPC5, and TRPC6 expression in adrenal chromaffin cells isolated from metabolic syndrome but not control pigs. Spironolactone, a blocker of mineralocorticoid receptors, inhibited the aldosterone effect. Dexamethasone also increased TRPC5 expression in metabolic syndrome chromaffin cells. The amplitude of hormone-induced divalent cation influx correlated with the level of TRPC expression in adrenal chromaffin cells. Orai1/Stim1 protein expression was not significantly altered in the metabolic syndrome adrenal medulla when compared with the control. We propose that in metabolic syndrome, abnormally elevated adrenal TRPC expression may underlie increased plasma epinephrine and heart rate. The excess of plasma catecholamines and increased heart rate are risk factors for cardiovascular disease. Thus, TRPCs are potential therapeutic targets in the fight against cardiovascular disease.
Collapse
Affiliation(s)
- Guoqing Hu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
26
|
Keller-Wood M, von Reitzenstein M, McCartney J. Is the fetal lung a mineralocorticoid receptor target organ? Induction of cortisol-regulated genes in the ovine fetal lung, kidney and small intestine. Neonatology 2009; 95:47-60. [PMID: 18787337 PMCID: PMC2654587 DOI: 10.1159/000151755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/28/2008] [Indexed: 01/29/2023]
Abstract
BACKGROUND Lung, kidney and small intestine are involved in fetal volume regulation and amniotic fluid secretion and play a pivotal role in the transition from intrauterine to extrauterine life. OBJECTIVE This study was performed to determine the ontogeny of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), and of MR- and GR-regulated genes and proteins, serum and glucocorticoid-induced kinase (Sgk-1), epithelial sodium channel (ENaC alpha), and Na,K-ATPase alpha1. METHODS Lung, renal cortex and medulla, and small intestine were collected from fetuses at 80, 100, 120, 130 and 145 days' gestation and from day 1 and 7 neonatal lambs. Real-time PCR was performed to determine mRNA concentration for MR, GR, the 11 beta-hydroxysteroid dehydrogenases (11 beta-HSD1 and 2), Sgk-1, ENaC alpha, and Na,K-ATPase alpha1. Protein expression of ENaC alpha and Na,K-ATPase alpha1 in whole cell and membrane fractions was determined by immunoblotting. RESULTS Expression of corticosteroid-induced genes in renal cortex increases at term; in small intestine the induction occurs postnatally. In contrast, in lung expression of MR and GR mRNAs were greater at 100 days to term than postnatally and 11 beta-HSD1 peaked at 145 days; the corticosteroid-induced genes also increased prenatally: Sgk-1 and ENaC alpha increased by 120 days, peaking at 145 days, and Na,K-ATPase alpha1 was greatest at 130 days. CONCLUSIONS The expression of high levels of MR and 11 beta-HSD1 in preterm fetal lung suggest low endogenous fetal cortisol may exert actions at the high affinity MR in vivo, leading to increases in expression of sodium channels important in the regulation of lung liquid secretion and reabsorption.
Collapse
Affiliation(s)
- Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
27
|
Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney Int 2008; 75:260-7. [PMID: 18818687 DOI: 10.1038/ki.2008.475] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In eukaryotic nuclei, genomic DNA is compacted with histone and nonhistone proteins into a dynamic polymer termed chromatin. Reorganization of chromatin structure through histone modifications, the action of chromatin factors, or DNA methylation, can profoundly change gene expression. These epigenetic modifications allow heritable and potentially reversible changes in gene functioning to occur without altering the DNA sequence, thus extending the information potential of the genetic code. This review provides an introduction to epigenetic concepts for renal investigators and an overview of our work detailing an epigenetic pathway for aldosterone signaling and the control of epithelial Na(+) channel-alpha (ENaCalpha) subunit gene expression in the collecting duct. This new pathway involves a nuclear repressor complex, consisting of histone H3 Lys-79 methyltransferase disruptor of telomeric silencing-1a (Dot1a), ALL1 fused gene from chromosome 9 (Af9), a sequence-specific DNA-binding protein that binds the ENaCalpha promoter, and potentially other nuclear proteins. This complex regulates targeted histone H3 Lys-79 methylation of chromatin associated with the ENaCalpha promoter, thereby suppressing its transcriptional activity. Aldosterone disrupts the Dot1a-Af9 interaction by serum- and glucocorticoid-induced kinase-1 phosphorylation of Af9, and inhibits Dot1a and Af9 expression, resulting in histone H3 Lys-79 hypomethylation at specific subregions, and derepression of the ENaCalpha promoter. The Dot1a-Af9 pathway may also be involved in the control of genes implicated in renal fibrosis and hypertension.
Collapse
|
28
|
Abrams JM, Osborn JW. A role for benzamil-sensitive proteins of the central nervous system in the pathogenesis of salt-dependent hypertension. Clin Exp Pharmacol Physiol 2008; 35:687-94. [PMID: 18387084 DOI: 10.1111/j.1440-1681.2008.04929.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Although increasing evidence suggests that salt-sensitive hypertension is a disorder of the central nervous system (CNS), little is known about the critical proteins (e.g. ion channels or exchangers) that play a role in the pathogenesis of the disease. 2. Central pathways involved in the regulation of arterial pressure have been investigated. In addition, systems such as the renin-angiotensin-aldosterone axis, initially characterized in the periphery, are present in the CNS and seem to play a role in the regulation of arterial pressure. 3. Central administration of amiloride, or its analogue benzamil hydrochloride, has been shown to attenuate several forms of salt-sensitive hypertension. In addition, intracerebroventricular (i.c.v.) benzamil effectively blocks pressor responses to acute osmotic stimuli, such as i.c.v. hypertonic saline. Amiloride or its analogues have been shown to interact with the brain renin-angiotensin-aldosterone system (RAAS) and to effect the expression of endogenous ouabain-like compounds. Alterations of brain RAAS function and/or endobain expression could play a role in the interaction between amiloride compounds and arterial pressure. Peripheral treatments with benzamil, even at higher doses than those given centrally, have little or no effect on arterial pressure. These data provide strong evidence that benzamil-sensitive proteins (BSPs) of the CNS play a role in cardiovascular responsiveness to sodium. 4. Mineralocorticoids have been linked to human hypertension; many patients with essential hypertension respond well to pharmacological agents antagonizing the mineralocorticoid receptor and certain genetic forms of hypertension are caused by chronically elevated levels of aldosterone. The deoxycorticosterone acetate (DOCA)-salt model of hypertension is a benzamil-sensitive model that incorporates several factors implicated in the aetiology of human disease, including mineralocorticoid action and increased dietary sodium. The DOCA-salt model is ideal for investigating the role of BSPs in the pathogenesis of hypertension, because mineralocorticoid action has been shown to modulate the activity of at least one benzamil-sensitive protein, namely the epithelial sodium channel. 5. Characterizing the BSPs involved in the pathogenesis of hypertension may provide a novel clinical target. Further studies are necessary to determine which BSPs are involved and where, in the nervous system, they are located.
Collapse
Affiliation(s)
- Joanna M Abrams
- Graduate Program in Neuroscience, Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
29
|
Zhou J, Oakley RH, Cidlowski JA. DAX-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X-chromosome, gene 1) selectively inhibits transactivation but not transrepression mediated by the glucocorticoid receptor in a LXXLL-dependent manner. Mol Endocrinol 2008; 22:1521-34. [PMID: 18417736 DOI: 10.1210/me.2007-0273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The glucocorticoid receptor (GR) mediates virtually all actions of glucocorticoids, and the nature and magnitude of a cell's response to these steroids are determined primarily by hormone concentration and GR signaling capacity. DAX-1 (dosagesensitive sex reversal-adrenal hypoplasia congenita critical region on the X-chromosome, gene 1) is an orphan nuclear receptor that functions as a corepressor, and deletion or mutation of DAX-1 causes a decrease in glucocorticoid production. However it is unclear whether DAX-1 also alters GR function as a transcription factor. Here, we demonstrate that DAX-1 acts as a novel selective GR modulator. It specifically inhibits ligand-dependent GR transactivation with little effect on GR-mediated transrepression. As demonstrated by coimmunoprecipitation and glutathione- S-transferase pull-down assays, DAX-1 physically interacts with GR, but this interaction does not influence either ligand-induced GR nuclear translocation or subsequent GR association with glucocorticoid-responsive elements. Instead, DAX-1 competes with coactivators such as GR-interacting protein 1 for binding to the receptor. Specifically, suppression of GR transactivation is mediated by the N-terminal half of DAX-1, and in particular the LXXLL motifs. Thus we demonstrate that DAX-1 directly modulates GR signaling in addition to affecting glucocorticoid hormone levels.
Collapse
Affiliation(s)
- Junguo Zhou
- Laboratory of Signal Transduction, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
30
|
Abstract
The hormone aldosterone increases extracellular fluid volume and blood pressure by activating epithelial Na+ channels (ENaCs). Serum- and glucocorticoid-induced kinase 1 (SGK1) is an aldosterone-stimulated signaling molecule that enhances distal nephron Na+ transport, in part by preventing the internalization of ENaCs from the plasma membrane. In this issue of the JCI, Zhang et al. demonstrate that SGK1 enhances transcription of the alpha subunit of ENaC by preventing histone methylation, providing an additional mechanism by which SGK1 increases ENaC-mediated Na+ transport in the distal nephron (see the related article beginning on page 773).
Collapse
Affiliation(s)
- David Pearce
- Division of Nephrology, Department of Medicine, UCSF, San Francisco, California, USA.
Renal-Electrolyte Division, Department of Medicine, and Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas R. Kleyman
- Division of Nephrology, Department of Medicine, UCSF, San Francisco, California, USA.
Renal-Electrolyte Division, Department of Medicine, and Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, Vallon V, Kone BC. Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest 2007; 117:773-83. [PMID: 17332896 PMCID: PMC1804379 DOI: 10.1172/jci29850] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 01/02/2007] [Indexed: 01/17/2023] Open
Abstract
Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Xuefeng Xia
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Mary Rose Reisenauer
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Timo Rieg
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Florian Lang
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Dietmar Kuhl
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Volker Vallon
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Bruce C. Kone
- Departments of Internal Medicine and Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA.
Departments of Medicine and Pharmacology, University of California, San Diego, and VA Medical Center, San Diego, California, USA.
Department of Physiology, University of Tübingen, Tübingen, Germany.
Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany.
Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| |
Collapse
|
32
|
Smith CL, He Q, Huang L, Foster E, Puschett JB. Marinobufagenin interferes with the function of the mineralocorticoid receptor. Biochem Biophys Res Commun 2007; 356:930-4. [PMID: 17399682 PMCID: PMC1865579 DOI: 10.1016/j.bbrc.2007.03.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/12/2007] [Indexed: 02/07/2023]
Abstract
Marinobufagenin (MBG) is a cardiotonic steroid of the bufadienolide class of compounds which has the ability to inhibit the ubiquitous enzyme, Na+/K+-ATPase, resulting in natriuresis. The involvement of MBG in the pathogenesis of volume expansion-mediated forms of hypertension has been suggested for some time, and we have proposed that MBG participates in the hypertension noted in preeclampsia. We examined the hypothesis that MBG might contribute to these forms of hypertension by promoting the activity of the mineralocorticoid receptor (MR). However, our data demonstrate that instead, MBG interferes with the functioning of the MR by inhibiting the transcriptional activity of the receptor, and this is reflected in a reduced interaction between the SRC-3 coactivator and the MR. Thus, the ability of MBG to cause a natriuresis may be due, not only to inhibition of Na+/K+-ATPase activity, but also to its ability to interfere with MR-dependent expression of the Na/K/H exchanger in the late distal nephron.
Collapse
Affiliation(s)
- Carolyn L Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
33
|
Saxena SK, Singh M, Kaur S, George C. Distinct domain-dependent effect of syntaxin1A on amiloride-sensitive sodium channel (ENaC) currents in HT-29 colonic epithelial cells. Int J Biol Sci 2006; 3:47-56. [PMID: 17200691 PMCID: PMC1657084 DOI: 10.7150/ijbs.3.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 10/30/2006] [Indexed: 11/06/2022] Open
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC), a plasma membrane protein mediates sodium reabsorption in epithelial tissues, including the distal nephron and colon. Syntaxin1A, a trafficking protein of the t-SNARE family has been reported to inhibit ENaC in the Xenopus oocyte expression and artificial lipid bilayer systems. The present report describes the regulation of the epithelial sodium channel by syntaxin1A in a human cell line that is physiologically relevant as it expresses both components and also responds to aldosterone stimulation. In order to evaluate the physiological significance of syntaxin1A interaction with natively expressed ENaC, we over-expressed HT-29 with syntaxin1A constructs comprising various motifs. Unexpectedly, we observed the augmentation of amiloride-sensitive currents with wild-type syntaxin1A full-length construct (1-288) in this cell line. Both γENaC and neutralizing syntaxin1A antibodies blocked native expression as amiloride-sensitive sodium currents were inhibited while munc18-1 antibody reversed this effect. The coiled-coiled domain H3 (194-266) of syntaxin1A inhibited, however the inclusion of the transmembrane domain to this motif (194-288) augmented amiloride sensitive currents. More so, data suggest that ENaC interacts with multiple syntaxin1A domains, which differentially regulate channel function. This functional modulation is the consequence of the physical enhancement of ENaC at the cell surface in cells over-expressed with syntaxin(s). Our data further suggest that syntaxin1A up-regulates ENaC function by multiple mechanisms that include PKA, PLC, PI3 and MAP Kinase (p42/44) signaling systems. We propose that syntaxin1A possesses distinct inhibitory and stimulatory domains that interact with ENaC subunits, which critically determines the overall ENaC functionality/regulation under distinct physiological conditions.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | |
Collapse
|
34
|
Zhang W, Xia X, Reisenauer MR, Hemenway CS, Kone BC. Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem 2006; 281:18059-68. [PMID: 16636056 PMCID: PMC3015183 DOI: 10.1074/jbc.m601903200] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aldosterone is a major regulator of epithelial Na(+) absorption and acts in large part through induction of the epithelial Na(+) channel (ENaC) gene in the renal collecting duct. We previously identified Dot1a as an aldosterone early repressed gene and a repressor of ENaCalpha transcription through mediating histone H3 Lys-79 methylation associated with the ENaCalpha promoter. Here, we report a novel aldosterone-signaling network involving AF9, Dot1a, and ENaCalpha. AF9 and Dot1a interact in vitro and in vivo as evidenced in multiple assays and colocalize in the nuclei of mIMCD3 renal collecting duct cells. Overexpression of AF9 results in hypermethylation of histone H3 Lys-79 at the endogenous ENaCalpha promoter at most, but not all subregions examined, repression of endogenous ENaCalpha mRNA expression and acts synergistically with Dot1a to inhibit ENaCalpha promoter-luciferase constructs. In contrast, RNA interference-mediated knockdown of AF9 causes the opposite effects. Chromatin immunoprecipitation assays reveal that overexpressed FLAG-AF9, endogenous AF9, and Dot1a are each associated with the ENaCalpha promoter. Aldosterone negatively regulates AF9 expression at both mRNA and protein levels. Thus, Dot1a-AF9 modulates histone H3 Lys-79 methylation at the ENaCalpha promoter and represses ENaCalpha transcription in an aldosterone-sensitive manner. This mechanism appears to be more broadly applicable to other aldosterone-regulated genes because overexpression of AF9 alone or in combination with Dot1a inhibited mRNA levels of three other known aldosterone-inducible genes in mIMCD3 cells.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Xuefeng Xia
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Mary Rose Reisenauer
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Charles S. Hemenway
- Department of Pediatrics and the Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Bruce C. Kone
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Department of The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
35
|
Zhang W, Xia X, Jalal DI, Kuncewicz T, Xu W, Lesage GD, Kone BC. Aldosterone-sensitive repression of ENaCalpha transcription by a histone H3 lysine-79 methyltransferase. Am J Physiol Cell Physiol 2005; 290:C936-46. [PMID: 16236820 PMCID: PMC3009459 DOI: 10.1152/ajpcell.00431.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldosterone is a major regulator of epithelial Na(+) absorption. One of its principal targets is the epithelial Na(+) channel alpha-subunit (ENaCalpha), principally expressed in the kidney collecting duct, lung, and colon. Models of aldosterone-mediated trans-activation of the ENaCalpha gene have focused primarily on interactions of liganded nuclear receptors with the ENaCalpha gene promoter. Herein, we demonstrate that the murine histone H3 lysine-79 methyltransferase, murine disruptor of telomeric silencing alternative splice variant "a" (mDot1a), is a novel component in the aldosterone signaling network controlling transcription of the ENaCalpha gene. Aldosterone downregulated mDot1a mRNA levels in murine inner medullary collecting ducts cells, which was associated with histone H3 K79 hypomethylation in bulk histones and at specific sites in the ENaCalpha 5'-flanking region, and trans-activation of ENaCalpha. Knockdown of mDot1a by RNA interference increased activity of a stably integrated ENaCalpha promoter-luciferase construct and expression of endogenous ENaCalpha mRNA. Conversely, overexpression of EGFP-tagged mDot1a resulted in hypermethylation of histone H3 K79 at the endogenous ENaCalpha promoter, repression of endogenous ENaCalpha mRNA expression, and decreased activity of the ENaCalpha promoter-luciferase construct. mDot1a-mediated histone H3 K79 hypermethylation and repression of ENaCalpha promoter activity was abolished by mDot1a mutations that eliminate its methyltransferase activity. Collectively, our data identify mDot1a as a novel aldosterone-regulated histone modification enzyme, and, through binding the ENaCalpha promoter and hypermethylating histone H3 K79 associated with the ENaCalpha promoter, a negative regulator of ENaCalpha transcription.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Department of Internal Medicine, The University of Texas Medical School at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Hubler TR, Scammell JG. Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 2005; 9:243-52. [PMID: 15544162 PMCID: PMC1065283 DOI: 10.1379/csc-32r.1] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expression of FKBP51, a large molecular weight immunophilin, is strongly enhanced by glucocorticoids, progestins, and androgens. However, the activity of a 3.4-kb fragment of the FKBP51 gene (FKBP5) promoter was only weakly increased by progestin and we show here that it is unresponsive to glucocorticoids and androgens. The entire FKBP5 was scanned for consensus hormone response elements (HREs) using MatInspector. We found that 2 regions of intron E, which are conserved in rat and mouse FKBP5, contain HRE-like sequences with high match scores. Deoxyribonucleic acid fragments (approximately 1 kb in length) containing these regions were amplified and tested in reporter gene assays for steroid responsiveness. One region of intron E of FKBP5 (pIE2) conferred both glucocorticoid and progestin responsiveness to 2 heterologous reporter genes, whereas the other, less-conserved region of intron E (pIE1) was responsive only to progestins. The inclusion of pIE1 upstream of pIE2 (pIE1IE2) enhanced progestin but not glucocorticoid responsiveness. None of the constructs containing intronic sequences was responsive to androgens. Mutation of the putative HREs within pIE1 and pIE2 eliminated hormone responsiveness. Electrophoretic mobility shift assays demonstrated that progesterone receptors (PR) bound to the HRE in pIE1, whereas both PR and glucocorticoid receptors interacted with the HRE in pIE2. These data suggest that distal intronic elements significantly contribute to transcriptional regulation of FKBP5 by glucocorticoids and progestins.
Collapse
Affiliation(s)
- Tina R Hubler
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | |
Collapse
|
37
|
Ryan A, Fisher K, Thomas C, Mallampalli R. Transcriptional repression of the CTP:phosphocholine cytidylyltransferase gene by sphingosine. Biochem J 2005; 382:741-50. [PMID: 15139854 PMCID: PMC1133833 DOI: 10.1042/bj20040105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/19/2004] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
We examined the effects of the bioactive lipid, sphingosine, on the expression of the rate-limiting enzyme involved in surfactant phosphatidylcholine synthesis, CCTalpha (CTP:phosphocholine cytidylyltransferase alpha). Sphingosine decreased phosphatidylcholine synthesis by inhibiting CCT activity in primary alveolar type II epithelia. Sphingosine decreased CCTalpha protein and mRNA levels by approx. 50% compared with control. The bioactive lipid did not alter CCTalpha mRNA stability, but significantly inhibited its transcriptional rate. In murine lung epithelia, sphingosine selectively reduced CCTalpha promoter-reporter activity when transfected with a 2 kb CCTalpha promoter/luciferase gene construct. Sphingosine also decreased transgene expression in murine type II epithelia isolated from CCTalpha promoter-reporter transgenic mice harbouring this 2 kb proximal 5'-flanking sequence. Deletional analysis revealed that sphingosine responsiveness was mapped to a negative regulatory element contained within 814 bp upstream of the coding region. The results indicate that bioactive sphingolipid metabolites suppress surfactant lipid synthesis by inhibiting gene transcription of a key surfactant biosynthetic enzyme.
Collapse
Affiliation(s)
- Alan J. Ryan
- *Department of Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Kurt Fisher
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Christie P. Thomas
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
| | - Rama K. Mallampalli
- *Department of Veterans Affairs Medical Center, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
- †Departments of Internal Medicine and Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, U.S.A
- To whom correspondence should be addressed, at Pulmonary and Critical Care Division, C-33K, GH, Departments of Internal Medicine and Biochemistry (email )
| |
Collapse
|
38
|
Kitagawa H, Yanagisawa J, Fuse H, Ogawa S, Yogiashi Y, Okuno A, Nagasawa H, Nakajima T, Matsumoto T, Kato S. Ligand-selective potentiation of rat mineralocorticoid receptor activation function 1 by a CBP-containing histone acetyltransferase complex. Mol Cell Biol 2002; 22:3698-706. [PMID: 11997506 PMCID: PMC133828 DOI: 10.1128/mcb.22.11.3698-3706.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2001] [Revised: 01/31/2002] [Accepted: 02/21/2002] [Indexed: 11/20/2022] Open
Abstract
The rat mineralocorticoid receptor (MR) has two activation functions in distinct regions of the A/B domain, designated activation function 1a (AF-1a; amino acids 1 to 169) and AF-1b (amino acids 451 to 600). Since the p160 family protein TIF2, a known component of the AF-2 coactivator complex, potentiates the transactivation function of AF-1b but not that of AF-1a, it is likely that some other, novel protein complex interacts with the AF-1a region. Therefore, we attempted to identify such coactivator complexes from HeLa nuclear extracts by biochemical purification using a glutathione S-transferase-MR AF-1a fusion protein. Purified AF-1a region-interacting proteins were found to contain RNA helicase A (RHA) and CBP. Further analysis showed that RHA interacted with the AF-1a region directly and then recruited a complex with histone acetyltransferase (HAT) activity that contained CBP. For full-length MR, aldosterone, but not hydrocortisone, was found to induce the binding of RHA/CBP complexes to the AF-1a region, as well as to allow the cooperative potentiation of MR transcriptional activity by RHA and CBP. In addition, a chromatin immunoprecipitation assay showed that aldosterone-bound MR, but not hydrocortisone-bound MR, recruited RHA/CBP complexes to native MR target gene promoters. Our results suggested that an altered conformation of the A/B region induced by aldosterone, but not hydrocortisone, might determine the accessibility of MR AF-1a to RHA/CBP complexes.
Collapse
Affiliation(s)
- Hirochika Kitagawa
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mallampalli RK, Ryan AJ, Carroll JL, Osborne TF, Thomas CP. Lipid deprivation increases surfactant phosphatidylcholine synthesis via a sterol-sensitive regulatory element within the CTP:phosphocholine cytidylyltransferase promoter. Biochem J 2002; 362:81-8. [PMID: 11829742 PMCID: PMC1222362 DOI: 10.1042/0264-6021:3620081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid-deprived mice increase alveolar surfactant disaturated phosphatidylcholine (DSPtdCho) synthesis compared with mice fed a standard diet by increasing expression of CTP:phosphocholine cytidylyltransferase (CCT), the rate-limiting enzyme for DSPtdCho synthesis. We previously observed that lipid deprivation increases mRNA synthesis for CCT [Ryan, McCoy, Mathur, Field and Mallampalli (2000) J. Lipid Res. 41, 1268-1277]. To evaluate regulatory mechanisms for this gene, we cloned the proximal approximately 1900 bp of the 5' flanking sequence of the murine CCT gene, coupled this to a luciferase reporter, and examined transcriptional regulation in a murine alveolar epithelial type II cell line (MLE-12). The core promoter was localized to a region between -169 and +71 bp, which exhibited strong basal activity comparable with the simian virus 40 promoter. The full-length construct, from -1867 to +71, was induced 2-3-fold when cells were cultured in lipoprotein-deficient serum (LPDS), similar to the level of induction of the endogenous CCT gene. By deletional analysis the sterol regulatory element (SRE) was localized within a 240 bp region. LPDS activation of the CCT promoter was abolished by mutation of this SRE, and gel mobility-shift assays demonstrated specific binding of recombinant SRE-binding protein to this element within the CCT promoter. These observations indicate that sterol-regulated expression of CCT is mediated by an SRE within its 5' flanking region.
Collapse
|