1
|
Ebert A, Dahley C. Can membrane permeability of zwitterionic compounds be predicted by the solubility-diffusion model? Eur J Pharm Sci 2024; 199:106819. [PMID: 38815700 DOI: 10.1016/j.ejps.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Zwitterions contain both positively and negatively charged functional groups, resulting in an overall net neutral charge. Nevertheless, the membrane permeability of the zwitterionic form of a compound is assumed to be much lower than the permeability of the uncharged neutral form. Although a significant proportion of pharmaceuticals are zwitterionic, it has not been clear so far whether their permeability is dominated by the permeation of the zwitterionic or the neutral form, since neutral fractions are often quite low as compared to the zwitterionic fraction. This complicates the in silico prediction of the permeability of zwitterionic compounds. In this work, we re-evaluated existing in vitro permeability data from literature measured with Caco-2/MDCK cell assays, using more strict exclusion criteria for effects like diffusion limitation by the aqueous boundary layers, paracellular transport, active transport and retention. Using this re-evaluated data set, we show that extracted intrinsic permeabilities of the neutral fraction are well predicted by the solubility-diffusion model (RMSE = 1.21; n = 18) if the permeability of the zwitterionic species is assumed negligible. Our work thus suggests that only the neutral species is relevant for the membrane permeability of zwitterionic compounds, and that membrane permeability of zwitterionic compounds is indeed predictable by the solubility-diffusion model.
Collapse
Affiliation(s)
- Andrea Ebert
- Department of Computational Biology & Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany.
| | - Carolin Dahley
- Department of Computational Biology & Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
2
|
Ebert A, Dahley C, Goss KU. Pitfalls in evaluating permeability experiments with Caco-2/MDCK cell monolayers. Eur J Pharm Sci 2024; 194:106699. [PMID: 38232636 DOI: 10.1016/j.ejps.2024.106699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
When studying the transport of molecules across biological membranes, intrinsic membrane permeability (P0) is more informative than apparent permeability (Papp), because it eliminates external (setup-specific) factors, provides consistency across experiments and mechanistic insight. It is thus an important building block for modeling the total permeability in any given scenario. However, extracting P0 is often difficult, if not impossible, when the membrane is not the dominant transport resistance. In this work, we set out to analyze Papp values measured with Caco-2/MDCK cell monolayers of 69 literature references. We checked the Papp values for a total of 318 different compounds for the extractability of P0, considering possible limitations by aqueous boundary layers, paracellular transport, recovery issues, active transport, a possible proton flux limitation, and sink conditions. Overall, we were able to extract 77 reliable P0 values, which corresponds to about one quarter of the total compounds analyzed, while about half were limited by the diffusion through the aqueous layers. Compared to an existing data set of P0 values published by Avdeef, our approach resulted in a much higher exclusion of compounds. This is a consequence of stricter compound- and reference-specific exclusion criteria, but also because we considered possible concentration-shift effects due to different pH values in the aqueous layers, an effect only recently described in literature. We thus provide a consistent and reliable set of P0, e.g. as a basis for future modeling.
Collapse
Affiliation(s)
- Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Federal Republic of Germany.
| | - Carolin Dahley
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Federal Republic of Germany
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Federal Republic of Germany; Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Straße 2, Halle 06120, Federal Republic of Germany
| |
Collapse
|
3
|
Plöger GF, Quizon PM, Abrahamsson B, Cristofoletti R, Groot DW, Parr A, Langguth P, Polli JE, Shah VP, Tajiri T, Mehta MU, Dressman J. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Cephalexin Monohydrate. J Pharm Sci 2020; 109:1846-1862. [PMID: 32240696 DOI: 10.1016/j.xphs.2020.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Literature data and results of experimental studies relevant to the decision to allow waiver of bioequivalence studies in humans for the approval of immediate release solid oral dosage forms containing cephalexin monohydrate are presented. Solubility studies were performed in accordance with the current biowaiver guidelines of the Food and Drug Administration, World Health Organization and European Medicines Agency, taking the degradation at some pH values into consideration. Together with solubility and permeability data for cephalexin monohydrate from the literature, it was demonstrated to be a Biopharmaceutics Classification System Class 1 drug. The pharmacokinetic behavior, results of bioequivalence studies published in the literature, as well as the therapeutic uses, potential toxicity and potential excipient effects on bioavailability were also assessed. Cephalexin has a wide therapeutic index and no bioequivalence problems have been reported. Dissolution studies were run under Biopharmaceutics Classification System-biowaiver conditions for the pure drug and 2 generic formulations available on the German market. Considering all relevant aspects, it was concluded that a biowaiver-based approval for products containing cephalexin monohydrate as the single active pharmaceutical ingredient is scientifically justified, provided that well-established excipients are used in usual amounts and that both test and reference dosage forms meet the guideline criteria of either "rapidly dissolving" or "very rapidly dissolving."
Collapse
Affiliation(s)
- Gerlinde F Plöger
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Paul M Quizon
- College of Pharmacy, University of the Philippines Manila, Manila, Philippines
| | | | - Rodrigo Cristofoletti
- Brazilian Health Surveillance Agency (ANVISA), Division of Bioequivalence, Brasilia, Brazil
| | - Dirk W Groot
- RIVM-National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Alan Parr
- BioCeutics LLC, Emerald Isle, North Carolina 28594
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University, Mainz, Germany
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Vinod P Shah
- International Pharmaceutical Federation (FIP), The Hague, the Netherlands
| | - Tomokazu Tajiri
- Astellas Pharma Inc., Analytical Research Laboratories, Yaizu, Japan
| | - Mehul U Mehta
- United States Food and Drug Administration (FDA), Center for Drug Evaluation and Research, Silver Spring, Maryland 20903
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany; Fraunhofer IME, Frankfurt, Germany.
| |
Collapse
|
4
|
Rohm F, Daniel H, Spanier B. Transport Versus Hydrolysis: Reassessing Intestinal Assimilation of Di- and Tripeptides by LC-MS/MS Analysis. Mol Nutr Food Res 2019; 63:e1900263. [PMID: 31394017 DOI: 10.1002/mnfr.201900263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Indexed: 11/06/2022]
Abstract
SCOPE The role of PEPT1 in the uptake of intact peptides as compared to hydrolysis prior to uptake of their constituents is unknown. Here, dipeptides, tripeptides, and amino acids are quantified to study the fate of selected peptides in different intestinal models. METHODS AND RESULTS An LC-MS/MS-based method is applied for the simultaneous assessment of rates of hydrolysis and transport of a peptide panel in Caco-2 transwell cell culture, in vitro and in vivo in mice expressing or lacking PEPT1, and in hydrolysis studies in vitro using human intestinal samples. It is shown that susceptibility to hydrolysis of peptides at the brush border membrane or within epithelial cells is practically identical in all tested models and strictly structure-dependent. Peptides with high luminal disappearance show substantial hydrolysis and low basolateral appearance, while peptides with low disappearance show strong PEPT1 dependency and high basolateral appearance in intact form in Caco-2 transwell culture. CONCLUSION Hydrolysis and transport of intact peptides are highly variable and structure-dependent. For peptides possessing less polar N-terminal residues, hydrolysis usually dominates over transport via PEPT1. For other peptides with high intrinsic hydrolysis resistance, including anserine, carnosine, ɣ-glutamyl-dipeptides, and aminocephalosporins, PEPT1 is the main determinant for appearance in peripheral blood.
Collapse
Affiliation(s)
- Florian Rohm
- Chair of Nutritional Physiology, Technical University of Munich, 85354, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technical University of Munich, 85354, Freising, Germany
| | - Britta Spanier
- Chair of Nutritional Physiology, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
5
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
6
|
Bittermann K, Goss KU. Predicting apparent passive permeability of Caco-2 and MDCK cell-monolayers: A mechanistic model. PLoS One 2017; 12:e0190319. [PMID: 29281711 PMCID: PMC5744993 DOI: 10.1371/journal.pone.0190319] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/12/2017] [Indexed: 01/16/2023] Open
Abstract
Experimentally derived apparent permeabilities, Papp, through cell monolayers such as Caco-2 and MDCK are considered to be an in-vitro gold standard for assessing the uptake efficiency of drugs. Here, we present a mechanistic model that describes 'passive' Papp values (i.e., neglecting active transport) by accounting for the different resistances solutes encounter when permeating a cell monolayer. We described three parallel permeation pathways, namely a cytosolic-, paracellular-, and lateral route, each of which consists of a number of serial resistances. These resistances were accounted for via a mechanistic depiction of the underlying processes that are largely based on literature work. For the present Papp dataset, about as much chemicals are dominated by the cytosolic route as were dominated by the paracellular route, while the lateral route was negligible. For the cytosolic route by far the most chemicals found their main resistance in the various water layers and not in the membrane. Although correlations within the subclasses of chemicals dominated by a specific permeation route were rather poor, we could overall satisfyingly predict Papp for 151 chemicals at a pH of 7.4 (R2 = 0.77, RMSE = 0.48). For a specific evaluation of the intrinsic membrane permeability, Pm, a second experimental dataset based on experiments with black lipid membranes, BLM, was evaluated. Pm could be predicted for 37 chemicals with R2 = 0.91 and RMSE = 0.64 log units.
Collapse
Affiliation(s)
- Kai Bittermann
- Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Kai-Uwe Goss
- Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Chemistry, University of Halle-Wittenberg, Halle, Germany
- * E-mail:
| |
Collapse
|
7
|
Yusof SR, Abbott NJ, Avdeef A. Impact of capillary flow hydrodynamics on carrier-mediated transport of opioid derivatives at the blood-brain barrier, based on pH-dependent Michaelis-Menten and Crone-Renkin analyses. Eur J Pharm Sci 2017; 106:274-286. [PMID: 28614733 DOI: 10.1016/j.ejps.2017.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/01/2022]
Abstract
Most studies of blood-brain barrier (BBB) permeability and transport are conducted at a single pH, but more detailed information can be revealed by using multiple pH values. A pH-dependent biophysical model was applied to the mechanistic analysis of published pH-dependent BBB luminal uptake data from three opioid derivatives in rat: pentazocine (Suzuki et al., 2002a, 2002b), naloxone (Suzuki et al., 2010a), and oxycodone (Okura et al., 2008). Two types of data were processed: in situ brain perfusion (ISBP) and brain uptake index (BUI). The published perfusion data were converted to apparent luminal permeability values, Papp, and analyzed by the pCEL-X program (Yusof et al., 2014), using the pH-dependent Crone-Renkin equation (pH-CRE) to determine the impact of cerebrovascular flow on the Michaelis-Menten transport parameters (Avdeef and Sun, 2011). For oxycodone, the ISBP data had been measured at pH7.4 and 8.4. The present analysis indicates a 7-fold lower value of the cerebrovascular flow velocity, Fpf, than that expected in the original study. From the pyrilamine-inhibited data, the flow-corrected passive intrinsic permeability value was determined to be P0=398×10-6cm·s-1. The uptake data indicate that the neutral form of oxycodone is affected by a transporter at pH8.4. The extent of the cation uptake was less certain from the available data. For pentazocine, the brain uptake by the BUI method had been measured at pH5.5, 6.5, and 7.4, in a concentration range 0.1-40mM. Under similar conditions, ISBP data were also available. The pH-CRE determined values of Fpf from both methods were nearly the same, and were smaller than the expected value in the original publication. The transport of the cationic pentazocine was not fully saturated at pH5.5 at 40mM. The transport of the neutral species at pH7.4 appeared to reach saturation at 40mM pentazocine concentration, but not at 12mM. In the case of naloxone, a pH-dependent Michaelis-Menten equation (pH-MME) analysis of the data indicated a smooth sigmoidal transition from a higher capacity uptake process affecting cationic naloxone (pH5.0-7.0) to a lower capacity uptake process affecting the neutral drug (pH8.0-8.5), with cross-over point near pH7.4. Evidently, measurements at multiple pH values can reveal important information about both cerebrovascular flow and BBB transport kinetics.
Collapse
Affiliation(s)
- Siti R Yusof
- HICoE Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - N Joan Abbott
- King's College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, 150 Stamford St., London SE1 9NH, UK
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue, #102, New York, NY 10128, USA.
| |
Collapse
|
8
|
Ajazuddin, Alexander A, Qureshi A, Kumari L, Vaishnav P, Sharma M, Saraf S, Saraf S. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia 2014; 97:1-14. [PMID: 24862064 DOI: 10.1016/j.fitote.2014.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/21/2023]
Abstract
The current review emphasizes on the herbal bioenhancers which themselves do not possess inherent pharmacological activity of their own but when co-administered with Active Pharmaceutical Ingredients (API), enhances their bioavailability and efficacy. Herbal bioenhancers play a crucial role in enhancing the bioavailability and bioefficacy of different classes of drugs, such as antihypertensives, anticancer, antiviral, antitubercular and antifungal drugs at low doses. This paper highlights various natural compounds that can be utilized as an efficient bioenhancer. Several herbal compounds including piperine, quercetin, genistein, naringin, sinomenine, curcumin, and glycyrrhizin have demonstrated capability to improve the pharmacokinetic parameters of several potent API. This article also focuses on various United States patents on herbal bioenhancers, which has proved to be beneficial in improving oral absorption of nutraceuticals like vitamins, minerals, amino acids and certain herbal compounds. The present paper also describes proposed mechanism of action, which mainly includes absorption process, drug metabolism, and action on drug target. The herbal bioenhancers are easily available, safe, free from side effects, minimizes drug toxicity, shortens the duration of treatment, lowers the drug resistance problems and minimizes the cost of treatment. Inspite of the fact that herbal bioenhancers provide an innovative concept for enhancing the bioavailability of several potent drugs, there are numerous bioenhancers of herbal origin that are yet to be explored in several vital areas. These bioenhancers must also be implied to enhance the bioavailability and bioefficacy through routes other than the oral route of drug delivery. There is a vast array of unexploited plants which can be investigated for their drug bioenhancing potency. The toxicity profiles of these herbal bioenhancers must not be overlooked. Researches must be carried out to solve these issues and to deliver a safe and effective dose of drugs to attain desired pharmacological response.
Collapse
Affiliation(s)
- Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Azra Qureshi
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Leena Kumari
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Pramudita Vaishnav
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Mukesh Sharma
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
9
|
Yacovino LL, Aleksunes LM. Endocrine and metabolic regulation of renal drug transporters. J Biochem Mol Toxicol 2012; 26:407-21. [PMID: 22933250 DOI: 10.1002/jbt.21435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/22/2012] [Accepted: 07/21/2012] [Indexed: 12/15/2022]
Abstract
Renal xenobiotic transporters are important determinants of urinary secretion and reabsorption of chemicals. In addition to glomerular filtration, these processes are key to the overall renal clearance of a diverse array of drugs and toxins. Alterations in kidney transporter levels and function can influence the efficacy and toxicity of chemicals. Studies in experimental animals have revealed distinct patterns of renal transporter expression in response to sex hormones, pregnancy, and growth hormone. Likewise, a number of disease states including diabetes, obesity, and cholestasis alter the expression of kidney transporters. The goal of this review is to provide an overview of the major xenobiotic transporters expressed in the kidneys and an understanding of metabolic conditions and hormonal factors that regulate their expression and function.
Collapse
Affiliation(s)
- Lindsay L Yacovino
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
10
|
Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 2010; 9:597-614. [PMID: 20671764 DOI: 10.1038/nrd3187] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.
Collapse
Affiliation(s)
- Kiyohiko Sugano
- Pfizer, Research Formulation, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Avdeef A, Tam KY. How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability? J Med Chem 2010; 53:3566-84. [PMID: 20373811 DOI: 10.1021/jm901846t] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The study aimed to predict effective human jejunal permeability (P(eff)) using a biophysical model based on parametrized paracellular, aqueous boundary layer, and transcellular permeabilities, and the villus-fold surface area expansion factor (k(VF)). Published human jejunal data (119 P(eff), 53 compounds) were analyzed by a regression procedure incorporating a dual-pore size paracellular model. Transcellular permeability, scaled by k(VF), was equated to that of Caco-2 at pH 6.5. The biophysical model predicted human jejunal permeability data within the experimental uncertainty. This investigation revealed several surprising predictions: (i) many molecules permeate predominantly (but not exclusively) by the paracellular route, (ii) the aqueous boundary layer thickness in the intestinal perfusion experiments is larger than expected, (iii) the mucosal surface area in awake humans is apparently nearly entirely accessible to drug absorption, and (iv) the relative "leakiness" of the human jejunum is not so different from that observed in a number of published Caco-2 studies.
Collapse
Affiliation(s)
- Alex Avdeef
- pION Inc., 5 Constitution Way, Woburn, Massachusetts 01801, USA.
| | | |
Collapse
|
12
|
Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2010; 60:543-85. [DOI: 10.1211/jpp.60.5.0002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPeptide transport is currently a prominent topic in membrane research. The transport proteins involved are under intense investigation because of their physiological importance in protein absorption and also because peptide transporters are possible vehicles for drug delivery. Moreover, in many tissues peptide carriers transduce peptidic signals across membranes that are relevant in information processing. The focus of this review is on the pharmaceutical relevance of the human peptide transporters PEPT1 and PEPT2. In addition to their physiological substrates, both carriers transport many β-lactam antibiotics, valaciclovir and other drugs and prodrugs because of their sterical resemblance to di- and tripeptides. The primary structure, tissue distribution and substrate specificity of PEPT1 and PEPT2 have been well characterized. However, there is a dearth of knowledge on the substrate binding sites and the three-dimensional structure of these proteins. Until this pivotal information becomes available by X-ray crystallography, the development of new drug substrates relies on classical transport studies combined with molecular modelling. In more than thirty years of research, data on the interaction of well over 700 di- and tripeptides, amino acid and peptide derivatives, drugs and prodrugs with peptide transporters have been gathered. The aim of this review is to put the reports on peptide transporter-mediated drug uptake into perspective. We also review the current knowledge on pharmacogenomics and clinical relevance of human peptide transporters. Finally, the reader's attention is drawn to other known or proposed human peptide-transporting proteins.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Ilka Knütter
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Eva Bosse-Doenecke
- Institute of Biochemistry/Biotechnology, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
13
|
Brandsch M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 2009; 5:887-905. [DOI: 10.1517/17425250903042292] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Saitoh R, Ohtomo T, Ito Y, Nezu JI, Kimura N, Funahashi SI, Aso Y, Ohizumi I, Kodama T, Hamakubo T, Tsuchiya M. Recovery of functional peptide transporter PepT1 in budded baculovirus fraction. Protein Expr Purif 2006; 46:130-5. [PMID: 16198124 DOI: 10.1016/j.pep.2005.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/10/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Transporters play a critical role in many physiological and pathological states and expression of the functional transporter protein is essential in exploring its kinetics and developing effective drugs. We describe here the recovery of functional transporter protein in the baculovirus fraction. We introduced a gene encoding human peptide transporter PepT1, important for the absorption of protein hydrolytic products or peptide-mimetic drugs, into a baculovirus vector. After infection, a large amount of PepT1 appeared in the budded virus fraction compared with Sf9 cells. Uptake of [14C]glycylsarcosine was markedly increased in an acidic condition and showed a clear overshoot in PepT1-expressing virus fraction. The apparent Michaelis constant for [14C]glycylsarcosine was 0.55 +/- 0.06 mM. [14C]Glycylsarcosine uptake was inhibited by di- and tripeptides and orally active beta-lactam antibiotics. These results suggest that functional PepT1 recovers efficiently in a budded virus fraction, and, thus, this expression system will be a useful tool for characterization and screening of peptide-mimetic drugs in drug discovery.
Collapse
Affiliation(s)
- Ryoichi Saitoh
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharma P, Varma MVS, Chawla HPS, Panchagnula R. In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. ACTA ACUST UNITED AC 2005; 60:874-83. [PMID: 16243320 DOI: 10.1016/j.farmac.2005.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 11/16/2022]
Abstract
The present investigation attempts to increase intestinal permeability and hence absorption of biopharmaceutic classification system (BCS) Class III (cefotaxime sodium (CX)) and Class IV (cyclosporin A (CSA)) drugs by employing certain absorption enhancers. Drugs were co-perfused with sodium caprate (SC, 0.25% w/v), piperine (P, 0.004% w/v) and sodium deoxycholate (SD, 1.0% w/v) separately in rat in situ single pass intestinal perfusion model. These additives increased intestinal permeability (P(app)) and absorption rate constant (K(a)) up to two and fourfold, respectively. SC exhibited substantial absorption enhancement of both CX and CSA, while SD and P enhanced absorption of CX and CSA, respectively. Co-administration of SC significantly enhanced peroral bioavailability of CX (from 29.4 +/- 1.7 to 69.6 +/- 3.2) and CSA (from 18.4 +/- 15.6 to 49.6 +/- 25.1) in rats, while P increased bioavailability of CSA (from 18.4 +/- 15.6 to 33.1 +/- 17.7). Transmission electron microscopy of intestinal mucosa revealed that SC and SD act on lipid and protein domains of absorptive membrane. P showed no effect on intestinal P(app) and oral bioavailability of CX but has a profound effect on CSA, a known P-glycoprotein (P-gp) substrate. These results indicated that P enhances intestinal absorption of CSA by modulating P-gp mediated efflux transport. Release of lactate dehydrogenase in situ from intestinal mucosa in the presence of absorption enhancer was taken as index of its local toxicity. All the absorption enhancers showed significantly less release of LDH compared to positive control, sodium dodecyl sulfate (60% w/v). Overall, the data indicate that the features of these commonly used food ingredients or endogenous bile salts can effectively improve bioavailability of various BCS Class III and Class IV drugs.
Collapse
Affiliation(s)
- Pradeep Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector N 67, SAS Nagar 160062, Punjab, India
| | | | | | | |
Collapse
|
16
|
Chanteux H, Van Bambeke F, Mingeot-Leclercq MP, Tulkens PM. Accumulation and oriented transport of ampicillin in Caco-2 cells from its pivaloyloxymethylester prodrug, pivampicillin. Antimicrob Agents Chemother 2005; 49:1279-88. [PMID: 15793098 PMCID: PMC1068589 DOI: 10.1128/aac.49.4.1279-1288.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pivampicillin (PIVA), an acyloxymethylester of ampicillin, is thought to enhance the oral bioavailability of ampicillin because of its greater lipophilicity compared to that of ampicillin. The fate of PIVA in intestinal cells and the exact location of its conversion into ampicillin have, however, never been unambiguously established. Polarized Caco-2 cells have been used to examine the handling of PIVA and the release of ampicillin from PIVA by the intestinal epithelium. Experiments were limited to 3 h. Cells incubated with PIVA (apical pole) showed a fast accumulation of ampicillin and transport toward the basolateral medium, whereas PIVA itself was only poorly accumulated and transported. Cells incubated with free ampicillin accumulated and transported only minimal amounts of this drug. Release of ampicillin from cells incubated with PIVA was unaffected by PEPT1 and OCTN2 inhibitors but was sharply decreased after ATP depletion or addition of bis(4-nitrophenyl)-phosphate (BNPP; an esterase inhibitor). PIVA incubated with Caco-2 lysates released free ampicillin, and this release was inhibited by BNPP. Efflux studies showed that the ampicillin that accumulated in cells after incubation with PIVA was preferentially transported out of the cells through the basolateral pole. This efflux was decreased by multidrug resistance-associated protein (MRP) inhibitors (probenecid, MK-571) and by ATP depletion. A phthalimidomethylester of ampicillin that resists cellular esterases failed to cause any significant release (cell lysate) or transport (polarized Caco-2 cells) of ampicillin. These results show that when PIVA is given to Caco-2 cells from their apical pole, ampicillin is released intracellularly and that ampicillin is thereafter preferentially effluxed into the basolateral medium through an MRP-like transporter.
Collapse
Affiliation(s)
- Hugues Chanteux
- Unité de pharmacologie cellulaire et moléculaire, Université catholique de Louvain 73-70, Avenue E. Mounier, 73, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
17
|
Abstract
Efforts to improve oral drug bioavailability have grown in parallel with the pharmaceutical industry. As the number and chemical diversity of drugs has increased, new strategies have been required to develop orally active therapeutics. The past two decades have been characterised by an increased understanding of the causes of low bioavailability and a great deal of innovation in oral drug delivery technologies, marked by an unprecedented growth of the drug delivery industry. The advent of biotechnology and consequent proliferation of biopharmaceuticals have brought new challenges to the drug delivery field. In spite of the difficulties associated with developing oral forms of this type of therapeutics, significant progress has been made in the past few years, with some oral proteins, peptides and other macromolecules currently advancing through clinical trials. This article reviews the approaches that have been successfully applied to improve oral drug bioavailability, primarily, prodrug strategies, lead optimisation through medicinal chemistry and formulation design. Specific strategies to improve the oral bioavailability of biopharmaceuticals are also discussed.
Collapse
|
18
|
Bai JPF, Utis A, Crippen G, He HD, Fischer V, Tullman R, Yin HQ, Hsu CP, Jiang L, Hwang KK. Use of Classification Regression Tree in Predicting Oral Absorption in Humans. ACTA ACUST UNITED AC 2004; 44:2061-9. [PMID: 15554676 DOI: 10.1021/ci040023n] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study is to explore the use of classification regression trees (CART) in predicting, in the dose-independent range, the fraction dose absorbed in humans. Since the results from clinical formulations in humans were used for training the model, a hypothetical state of drug molecules already dissolved in the intestinal fluid was adopted. Therefore, the molecular attributes affecting dissolution were not considered in the model. As a result, the model projects the highest achievable fraction dose absorbed, providing a reference point for manipulating the formulations or solid states to optimize oral clinical efficacy. A set of approximately 1260 structures and their human oral pharmacokinetic data, including bioavailability and/or absorption and/or radio-labeled studies, were used, with 899 compounds as the training set and 362 the test set. The numerical range of the fraction dose absorbed, 0 to 1, was divided into 6 classes with each class having a size of approximately 0.16. A set of 28 structural descriptors was used for modeling oral absorption without considering active transport. Then, a separate branch was created for modeling oral absorption involving active transport. The AAE of the training set was 0.12 and those of five test sets ranged from 0.17 to 0.2. In terms of classification, two test sets of unpublished, proprietary compounds showed 79% to 86% prediction when the predicted values fallen within +/- one class of real values were considered predicted. Overall, the computational errors from all the test sets of diverse structures were similar and reasonably acceptable. As compared to artificial membranes for ranking drug absorption potential, prediction by the CART model is considered fast and reasonably accurate for accelerating drug discovery. One can not only improve continuously the accuracy of CART computations by expanding the chemical space of the training set but also calculate the statistical errors associated with individual decision paths resulting from the training set to determine whether to accept individual computations of any test sets.
Collapse
Affiliation(s)
- Jane P F Bai
- ZyxBio, LLC, PO Box 2255, Hudson, Ohio 44236, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Menon RM, Barr WH. Comparison of ceftibuten transport across Caco-2 cells and rat jejunum mounted on modified Ussing chambers. Biopharm Drug Dispos 2004; 24:299-308. [PMID: 14520683 DOI: 10.1002/bdd.366] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ceftibuten uptake into Caco-2 cells and intestinal brush border membrane vesicles is mediated by the dipeptide transport system (PEPT1). The apical to basolateral transport characteristics of ceftibuten across Caco-2 cells and rat jejunum mounted on a modified Ussing chamber was examined. Mannitol was used as a paracellular marker along with trans-epithelial electrical resistance (TEER) for monitoring tight junction permeability. Transport across Caco-2 cells and rat jejunum mounted on a modified Ussing chamber was linear across the concentration range 0.25-10 mM. The net flux of mannitol and ceftibuten was higher across rat jejunum compared with Caco-2 cells. At a donor concentration of 0.25 mM, ceftibuten transport across Caco-2 cells was found to be pH dependent. Glycyl proline, a dipeptide, and 2,4- dinitrophenol, an energy poison, caused a reduction in the permeability of 0.25 mM ceftibuten across Caco-2 cells. Benzoic acid and adipic acid also inhibited transcellular transport of ceftibuten. At a donor concentration of 0.25 mM, passive paracellular transport accounts for about 60% and the active carrier mediated mechanism accounts for about 40% of ceftibuten transport across Caco-2 cells. None of the inhibitors however, had a significant effect on ceftibuten transport across rat jejunum mounted on a modified Ussing chamber at a donor concentration of 0.25 mM. In the concentration range 0.25-10 mM, ceftibuten is predominantly transported by paracellular mechanisms across rat jejunum and a mixture of active and passive transport across Caco-2 cells.
Collapse
Affiliation(s)
- R M Menon
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
20
|
Brandsch M, Knütter I, Leibach FH. The intestinal H+/peptide symporter PEPT1: structure–affinity relationships. Eur J Pharm Sci 2004; 21:53-60. [PMID: 14706811 DOI: 10.1016/s0928-0987(03)00142-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peptide transporter 1, PEPT1, of the mammalian enterocyte is presently under intense investigation in many laboratories because of its nutritional importance in the absorption of protein hydrolysis products and because more recent studies have shown that many drugs and prodrugs gain entry into the systemic circulation via PEPT1. Until the exact structural features of the substrate binding site of PEPT1 become available, for example by X-ray crystallography, determination of affinities followed by proof of actual membrane translocation will have to suffice when testing for possible new substrates for PEPT1. Affinity constants reflect the strength of their interaction with the binding site of the transporter. A review of the literature shows a wide range of affinity constants between 2 microM and 30 mM. We consider affinity constants for substrates or inhibitors of PEPT1 lower than 0.5 mM as high affinity, between 0.5 and 5.0 mM as medium affinity and above 5 mM as low affinity. Values above 15 mM we consider with great caution. In this mini-review we discuss affinities and structural determinants which affect affinities of a variety of substrates for PEPT1.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle, Germany.
| | | | | |
Collapse
|
21
|
Menon RM, Barr WH. Transporters involved in apical and basolateral uptake of ceftibuten into Caco-2 cells. Biopharm Drug Dispos 2002; 23:317-26. [PMID: 12415572 DOI: 10.1002/bdd.324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ceftibuten uptake from the apical and basolateral side of Caco-2 cells grown on transwells was studied. Uptake into the cells showed concentration dependent saturation. The apical transporter(s) showed a higher capacity and lower affinity for ceftibuten than the basolateral transporter(s). Uptake was inhibited in the presence of higher pH and in the presence of 2,4-dinitro phenol (DNP). A proton gradient had a greater effect on the apical than on the basolateral transporter. Glycyl proline, a dipeptide transport system (PEPT1) substrate, inhibited ceftibuten uptake into Caco-2 cells. Benzoic acid, a monocarboxylic acid (MCT) transporter substrate also exhibited a strong inhibition of ceftibuten uptake, but acetic acid had no effect. Adipic acid inhibited apical uptake of ceftibuten but had no effect on the basolateral uptake. None of the inhibitors had a significant effect on ceftibuten uptake in absence of a pH gradient. Addition of inhibitors in presence of DNP led to a greater decrease in ceftibuten uptake, when compared to the effect of DNP alone, indicating a facilitated diffusion process. These results indicate that ceftibuten uptake in Caco-2 cells involve multiple transport pathways. Apical uptake is mediated by an energy dependent carrier-mediated process and an energy independent facilitated diffusion process. The apical transport system is different from the basolateral transporter.
Collapse
Affiliation(s)
- Rajeev M Menon
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
22
|
Stenberg P, Bergström CAS, Luthman K, Artursson P. Theoretical predictions of drug absorption in drug discovery and development. Clin Pharmacokinet 2002; 41:877-99. [PMID: 12190333 DOI: 10.2165/00003088-200241110-00005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The clinical development of new drugs is often terminated because of unfavourable pharmacokinetic properties such as poor intestinal absorption after oral administration. Intestinal permeability and solubility are two of the most important factors that determine the absorption properties of a compound. Efficient and reliable computational models that predict these properties as early as possible in drug discovery and development are therefore desirable. In this review, we first discuss the implementation of predictive models of intestinal drug permeability and solubility in drug discovery and development. Secondly, we discuss the mechanisms of intestinal drug permeability and computational methods that can be used to predict it. We then discuss factors influencing drug solubility and models for predicting it. We finally speculate that once these and other predictive computational models are implemented in drug discovery and development, these processes will become much more effective. Further, an increased fraction of drug candidates that are less likely to fail during clinical development will be selected.
Collapse
Affiliation(s)
- Patric Stenberg
- Department of Pharmaceutics, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
23
|
Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, Fleisher D, Lee KD, Amidon GL. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 2002; 19:1400-16. [PMID: 12425456 DOI: 10.1023/a:1020483911355] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To compare gene expression profiles and drug permeability differences in Caco-2 cell culture and human duodenum. METHODS Gene expression profiles in Caco-2 cells and human duodenum were determined by GeneChip analysis. In vivo drug permeability measurements were obtained through single-pass intestinal perfusion in human subjects, and correlated with in vitro Caco-2 transport permeability. RESULTS GeneChip analysis determined that 37, 47, and 44 percent of the 12,559 gene sequences were expressed in 4-day andl6-day Caco-2 cells and human duodenum, respectively. Comparing human duodenum with Caco-2 cells, more than 1,000 sequences were determined to have at least a 5-fold difference in expression. There were 26, 38, and 44 percent of the 443 transporters, channels, and metabolizing enzymes detected in 4-day, 16-day Caco-2 cells, and human duodenum, respectively. More than 70 transporters and metabolizing enzymes exhibited at least a 3-fold difference. The overall coefficient of variability of the 10 human duodenal samples for all expressed sequences was 31% (range 3% to 294%) while that of the expressed transporters and metabolizing enzymes was 33% (range 3% to 87%). The in vivo / in vitro drug permeability measurements correlated well for passively absorbed drugs (R2 = 85%). The permeability correlation for carrier-mediated drugs showed 3- 35-fold higher in human above the correlation of passively absorbed drugs. The 2- 595-fold differences in gene expression levels between the Caco-2 cells and human duodenum correlated with the observed 3- 35-fold difference in permeability correlation between carrier-mediated drugs and passively absorbed drugs. CONCLUSIONS; Significant differences in gene expression levels in Caco-2 cells and human duodenum were observed. The observed differences of gene expression levels were consistent with observed differences in carrier mediated drug permeabilities. Gene expression profiling is a valuable new tool for investigating in vitro and in vivo permeability correlation.
Collapse
Affiliation(s)
- Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sharma P, Chawla HPS, Panchagnula R. LC determination of cephalosporins in in vitro rat intestinal sac absorption model. J Pharm Biomed Anal 2002; 27:39-50. [PMID: 11682209 DOI: 10.1016/s0731-7085(01)00506-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cefotaxime sodium (CX) and Ceftazidime pentahydrate (CZ) are peptidomimetic cephalosporins (CPS) which exist as zwitterionic compounds at physiological pH and because of this reason they are not absorbed appreciably on peroral administration. The permeability of these compounds can be increased transiently by altering membrane characteristics of absorptive epithelium by use of sorption promoters (SPs). In present work a simple validated HPLC method utilizing isocratic mobile phase and having short retention times for CX and CZ is developed which can be used to monitor their concentrations in Kreb's Ringer Bicarbonate (KRB) solution in in vitro intestinal sac absorption model. The same was utilized to determine apparent permeability coefficients and absorption profiles of CPS by modified Wilson-Wiseman method. The CPS were analysed by the reverse phase HPLC method using Shim-pack C18 column. The mobile phase used was of isocratic composition with phosphate buffer (pH 7.0, 3.5 g/l of KH(2)PO(4) dissolved in 0.03 M Na(2)HPO(4).2H(2)O) and methanol in proportion 85:15 for CZ and 70:30 for CX. The flow rate was 1 ml/min and quantitative determinations were carried out at 254 nm at 25 degrees C. The method was found specific because none of the proposed SPs, components of KRB and intestinal sac artefacts interfered with the drug peaks. The drug concentration versus area under peak relationship was found to be linear in concentration range of 0.25-20.0 microg/ml. The recovery studies, intraday variation, interday variation and interanalyst variation were within statistical limits. The limit of detection (LOD) was 95.0 and 100.0 ng/ml for CZ and CX, respectively. The limit of Quantitation (LOQ) was 240.0 and 250.0 ng/ml for CZ and CX, respectively. The proposed method was found to be rapid and selective and hence applied for continuous monitoring of CPS in in vitro intestinal sac absorption studies.
Collapse
Affiliation(s)
- P Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar 160 062, Punjab, India
| | | | | |
Collapse
|
25
|
Abstract
The purpose of this study was to delineate the ocular pharmacokinetics of cephalosporins and investigate the presence of peptide transporters in the retina. New Zealand albino rabbits were kept under anesthesia. A concentric microdialysis probe was implanted in the vitreous chamber and linear probe across the cornea in the aqueous humor. Isotonic phosphate buffer saline was perfused through the probes, and samples were collected every 20 min over a period of 10 hr. A 500 microg dose of cephalexin, cephazolin, and cephalothin was administered intravitreally. Inhibition experiments were carried out in vivo, using gly-pro and gly-sar. The vitreal half-lives of cephalexin, cefazolin, and cephalothin were 185.38 +/- 27.25 min, 111.40 +/- 17.17 min, and 146.68 +/- 47.52 min, respectively. Cephalexin generated higher aqueous humor concentrations compared to cefazolin. The pharmacokinetic parameters of cephalexin in the presence of gly-pro, i.e., AUC (44452.06 +/- 3326.55 microg x min/ml), clearance (0.0013 +/- 0.0004 ml/min) and vitreal half-life (825.12 +/- 499.95 min) were different from that of the control (14612.83 +/- 4036.47 microg x min/ml, 0.0036 +/- 0.0011 ml/min, and 187.96 +/- 65.12 min, respectively). Gly-pro did not inhibit cefazolin, and gly-sar showed no effect on the pharmacokinetics of both drugs. These studies indicate the involvement of a peptide carrier in the transport of cephalosporins across the retina. Although gly-pro inhibited the elimination of cephalexin from the vitreous, the effect of an alpha-amino group on peptide carriers was not clearly evident.
Collapse
Affiliation(s)
- S Macha
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 64110-2499, USA
| | | |
Collapse
|
26
|
Moore VA, Irwin WJ, Timmins P, Lambert PA, Chong S, Dando SA, Morrison RA. A rapid screening system to determine drug affinities for the intestinal dipeptide transporter 2: affinities of ACE inhibitors. Int J Pharm 2000; 210:29-44. [PMID: 11163985 DOI: 10.1016/s0378-5173(00)00564-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To assess the affinities of a series of ACE inhibitors for the di/tri/oligopeptide transport system (DTS) using a rapid in vitro system. METHODS Monolayers of Caco-2 cells were cultured in plastic wells for 7-9 days and the uptake of Gly-[3H]L-Pro was used as an affinity probe. Gly-[3H]L-Pro (50 nM), together with excess L-Pro (10 mM), to suppress uptake of any [3H]L-Pro produced by degradation of the probe, was incubated with the test compound (usually 1 mM) at pH 6 for 3-mins. The uptake of radiolabel was determined by liquid scintillation counting. RESULTS A 2-dimensional six-domain model of the transporter based on the structure of a phosphinate ACE inhibitor (SQ-29852) was constructed to facilitate interpretation of the competitor affinities. The SQ-29852 molecule was divided into six binding domains (A-F) based on functional groups within these regions and the effects of structural variation in four of these domains (A, C-E) were explored. A series of dipeptide-like compounds varying within specific domains were selected from a large number of commercially available ACE inhibitors and SQ-29852 analogues. Domain A had a preference for an uncharged group, with bulky hydrophobic groups reducing affinity. Domain C exhibited a preference for a positive charge over a neutral function, with the space this functional group occupies contributing to affinity. Domain D favoured lipophilic residues and domain E retained activity when the carboxylic acid was esterified. CONCLUSION The test system is able to reveal structure-activity relationships of peptidomimetic agents and may well serve as a design tool to optimise affinity for the DTS.
Collapse
Affiliation(s)
- V A Moore
- Pharmaceutical Scienices Research Institute, Aston Pharmacy School, Aston University, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. PHARMACEUTICAL SCIENCE & TECHNOLOGY TODAY 2000; 3:346-358. [PMID: 11050459 DOI: 10.1016/s1461-5347(00)00302-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intestinal epithelium is a major barrier to the absorption of hydrophilic drugs. The presence of intercellular junctional complexes, particularly the tight junctions (zona occludens), renders the epithelium impervious to hydrophilic drugs, which cannot diffuse across the cells through the lipid bilayer of the cell membranes. There have been significant advances in understanding the structure and cellular regulation of tight junctions over the past decade. This article reviews current knowledge regarding the physiological regulation of tight junctions and paracellular permeability, and recent progress towards the rational design of agents that can effectively and safely increase paracellular permeability via modulation of tight junctions.
Collapse
Affiliation(s)
- PD Ward
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 27599, Chapel Hill NC, USA
| | | | | |
Collapse
|
28
|
Abstract
Carrier-mediated drug transport is relatively unexplored in comparison with passive transcellular and paracellular drug transport. Yet, there is a host of transporter proteins that can be targeted for improving epithelial drug absorption. Generally, these are transport mechanisms for amino acids, dipeptides, monosaccharides, monocarboxylic acids, organic cations, phosphates, nucleosides, and water-soluble vitamins. Among them, the dipeptide transporter mechanism has received the most attention. Dipeptide transporters are H(+)-coupled, energy-dependent transporters that are known to play an essential role in the oral absorption of beta-lactam antibiotics, angiotensin-converting enzyme (ACE) inhibitors, renin inhibitors, and an anti-tumor drug, bestatin. Moreover, several investigators have demonstrated the utility of the dipeptide transporter as a platform for improving the oral bioavailability of drugs such as zidovudine and acyclovir through dipeptide prodrug derivatization. Thus far, at least four proton-coupled peptide transporters have been cloned. The first one cloned was PepT1 from the rabbit small intestine. The focus of this presentation will be structure-function, intracellular trafficking, and regulation of PepT1. Disease, dietary, and possible excipient influences on PepT1 function will also be discussed.
Collapse
Affiliation(s)
- V H Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 708, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|