1
|
Al-Abri R, Gürsoy G. ScatTR: Estimating the Size of Long Tandem Repeat Expansions from Short-Reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638440. [PMID: 40027646 PMCID: PMC11870476 DOI: 10.1101/2025.02.15.638440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Tandem repeats (TRs) are sequences of DNA where two or more base pairs are repeated back-to-back at specific locations in the genome. The expansions of TRs are implicated in over 50 conditions, including Friedreich's ataxia, autism, and cancer. However, accurately measuring the copy number of TRs is challenging, especially when their expansions are larger than the fragment sizes used in standard short-read genome sequencing. Here we introduce ScatTR, a novel computational method that leverages a maximum likelihood framework to estimate the copy number of large TR expansions from short-read sequencing data. ScatTR calculates the likelihood of different alignments between sequencing reads and reference sequences that represent various TR lengths and employs a Monte Carlo technique to find the best match. In simulated data, ScatTR outperforms state-of-the-art methods, particularly for TRs with longer motifs and those with lengths that greatly exceed typical sequencing fragment sizes. When applied to data from the 1000 Genomes Project, ScatTR detected potential large TR expansions that other methods missed, highlighting its ability to better identify genome-wide characterization of TR variation. ScatTR can be accessed via: https://github.com/g2lab/scattr .
Collapse
|
2
|
Protic D, Polli R, Bettella E, Usdin K, Murgia A, Tassone F. Somatic Instability Leading to Mosaicism in Fragile X Syndrome and Associated Disorders: Complex Mechanisms, Diagnostics, and Clinical Relevance. Int J Mol Sci 2024; 25:13681. [PMID: 39769443 PMCID: PMC11728179 DOI: 10.3390/ijms252413681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM. Mosaicism has also been reported in carriers of premutation (PM) alleles, which have 55-200 CGG repeats. PM alleles confer risk for the fragile X premutation-associated conditions (FXPAC), including FXTAS, FXPOI, and FXAND, conditions thought to be due to the toxic consequences of transcripts containing large CGG-tracts. Unmethylated FM (UFM) alleles are transcriptionally and translationally active. Thus, they produce transcripts with toxic effects. These transcripts do produce some FMRP, the encoded product of the FMR1 gene, albeit with reduced translational efficiency. As a result, mosaicism can result in a complex clinical presentation. Here, we review the concept of mosaicism in both FXS and in PM carriers, including its potential clinical significance.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| | - Roberta Polli
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Elisa Bettella
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Alessandra Murgia
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Maltman N, Sterling A, Santos E, Hagerman R. Language use predicts symptoms of fragile X-associated tremor/ataxia syndrome in men and women with the FMR1 premutation. Sci Rep 2024; 14:20707. [PMID: 39237554 PMCID: PMC11377817 DOI: 10.1038/s41598-024-70810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by a premutation of the FMR1 gene on the X chromosome. Despite the pervasive physical and cognitive effects of FXTAS, no studies have examined language in symptomatic males and females, limiting utility as an outcome measure in clinical trials of FXTAS. The goal of this work is to determine (a) the extent to which male and female FMR1 premutation carriers with FXTAS symptoms differ in their language use and (b) whether language production predicts FXTAS symptoms. Thirty-one individuals with the FMR1 premutation (21M, 10F), ages 58-85 years with some symptoms of FXTAS, were recruited from a larger cross-sectional study. Participants completed a five-minute monologic language sample. Language transcripts were assessed for rate of dysfluencies, lexical-semantics, syntax, and speech rate. Multivariable linear and ordinal regressions were used to predict FXTAS-associated symptoms, cognitive functioning, and executive functioning. Males and females did not differ in their language use. Language production predicted FXTAS symptom severity, cognitive functioning, and executive functioning. Language production difficulties may co-occur with FXTAS-associated symptoms and may be a viable outcome measure in future clinical trials, with future research needed.
Collapse
Affiliation(s)
- Nell Maltman
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.
- Department of Speech, Language, and Hearing Sciences, University of Arizona, 1131 2nd St , Tucson, AZ, 85721, USA.
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Dr, Madison, WI, 53706, USA
| | - Ellery Santos
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| | - Randi Hagerman
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| |
Collapse
|
4
|
Winarni TI, Hwang YH, Rivera SM, Hessl D, Durbin-Johnson BP, Utari A, Hagerman R, Tassone F. Apolipoproteine and KLOTHO Gene Variants Do Not Affect the Penetrance of Fragile X-Associated Tremor/Ataxia Syndrome. Int J Mol Sci 2024; 25:8103. [PMID: 39125677 PMCID: PMC11312271 DOI: 10.3390/ijms25158103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, the potential role and interaction of the APOε and KLOTHO genes on the penetrance of fragile X-associated tremor/ataxia syndrome (FXTAS) and on the IQ trajectory were investigated. FXTAS was diagnosed based on molecular, clinical and radiological criteria. Males with the premutation (PM) over 50 years, 165 with and 34 without an FXTAS diagnosis, were included in this study and were compared based on their APO (ε2-ε3-ε4) and KLOTHO variant (KL-VS) genotypes. The effect of APOε4 on FXTAS stage and on diagnosis did not differ significantly by KL-VS genotype with interaction effect p = 0.662 and p = 0.91, respectively. In the FXTAS individuals with an APOε2 allele, a marginal significance was observed towards a larger decline in verbal IQ (VIQ) in individuals with an APOε4 allele compared to those without an APOε4 allele (p = 0.071). In conclusion, our findings suggest that the APOε4 and KL-VS genotypes alone or through their interaction effect do not appear to predispose to either FXTAS diagnosis or stage in male carriers of the PM allele. A further study is needed to establish the trend of IQ decline in the FXTAS individuals who carry APOε4 with APOε2 compared to those without APOε4.
Collapse
Affiliation(s)
- Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia; (T.I.W.); (A.U.)
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Susan M. Rivera
- Department of Psychology, University of Marlyand, College Park, MD 20742, USA;
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Blythe P. Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Agustini Utari
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia; (T.I.W.); (A.U.)
- Department of Pediatrics, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
| |
Collapse
|
5
|
Elias-Mas A, Wang JY, Rodríguez-Revenga L, Kim K, Tassone F, Hessl D, Rivera SM, Hagerman R. Enlarged perivascular spaces and their association with motor, cognition, MRI markers and cerebrovascular risk factors in male fragile X premutation carriers. J Neurol Sci 2024; 461:123056. [PMID: 38772058 PMCID: PMC12005344 DOI: 10.1016/j.jns.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
FMR1 premutation carriers (55-200 CGG repeats) are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder associated with motor and cognitive impairment. Bilateral hyperintensities of the middle cerebellar peduncles (MCP sign) are the major radiological hallmarks of FXTAS. In the general population, enlarged perivascular spaces (PVS) are biomarkers of small vessel disease and glymphatic dysfunction and are associated with cognitive decline. Our aim was to determine if premutation carriers show higher ratings of PVS than controls and whether enlarged PVS are associated with motor and cognitive impairment, MRI features of neurodegeneration, cerebrovascular risk factors and CGG repeat length. We evaluated 655 MRIs (1-10 visits/participant) from 229 carriers (164 with FXTAS and 65 without FXTAS) and 133 controls. PVS in the basal ganglia (BG-EPVS), centrum semiovale, and midbrain were evaluated with a semiquantitative scale. Mixed-effects models were used for statistical analysis adjusting for age. In carriers with FXTAS, we revealed that (1) BG-PVS ratings were higher than those of controls and carriers without FXTAS; (2) BG-PVS severity was associated with brain atrophy, white matter hyperintensities, enlarged ventricles, FXTAS stage and abnormal gait; (3) age-related increase in BG-PVS was associated with cognitive dysfunction; and (4) PVS ratings of all three regions showed robust associations with CGG repeat length and were higher in carriers with the MCP sign than carriers without the sign. This study demonstrates clinical relevance of PVS in FXTAS especially in the basal ganglia region and suggests microangiopathy and dysfunctional cerebrospinal fluid circulation in FXTAS physiopathology.
Collapse
Affiliation(s)
- Andrea Elias-Mas
- Radiology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain; Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain; Genetics Doctorate Program, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, CA, United States.
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - David Hessl
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Susan M Rivera
- Center for Mind and Brain, University of California Davis, CA, United States; MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychology, University of Maryland, College Park, MD, United States.
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States.
| |
Collapse
|
6
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Timm EC, Purcell NL, Ouyang B, Berry-Kravis E, Hall DA, O’Keefe JA. Potential Prodromal Digital Postural Sway Markers for Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Detected via Dual-Tasking and Sensory Manipulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:2586. [PMID: 38676203 PMCID: PMC11054629 DOI: 10.3390/s24082586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
FXTAS is a neurodegenerative disorder occurring in some Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene premutation carriers (PMCs) and is characterized by cerebellar ataxia, tremor, and cognitive deficits that negatively impact balance and gait and increase fall risk. Dual-tasking (DT) cognitive-motor paradigms and challenging balance conditions may have the capacity to reveal markers of FXTAS onset. Our objectives were to determine the impact of dual-tasking and sensory and stance manipulation on balance in FXTAS and potentially detect subtle postural sway deficits in FMR1 PMCs who are asymptomatic for signs of FXTAS on clinical exam. Participants with FXTAS, PMCs without FXTAS, and controls underwent balance testing using an inertial sensor system. Stance, vision, surface stability, and cognitive demand were manipulated in 30 s trials. FXTAS participants had significantly greater total sway area, jerk, and RMS sway than controls under almost all balance conditions but were most impaired in those requiring vestibular control. PMCs without FXTAS had significantly greater RMS sway compared with controls in the feet apart, firm, single task conditions both with eyes open and closed (EC) and the feet together, firm, EC, DT condition. Postural sway deficits in the RMS postural sway variability domain in asymptomatic PMCs might represent prodromal signs of FXTAS. This information may be useful in providing sensitive biomarkers of FXTAS onset and as quantitative balance measures in future interventional trials and longitudinal natural history studies.
Collapse
Affiliation(s)
- Emily C. Timm
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA; (E.C.T.); (E.B.-K.)
| | - Nicollette L. Purcell
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA; (E.C.T.); (E.B.-K.)
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (B.O.); (D.A.H.)
| | - Elizabeth Berry-Kravis
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA; (E.C.T.); (E.B.-K.)
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (B.O.); (D.A.H.)
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (B.O.); (D.A.H.)
| | - Joan Ann O’Keefe
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA; (E.C.T.); (E.B.-K.)
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (B.O.); (D.A.H.)
| |
Collapse
|
8
|
Robertson-Dick EE, Timm EC, Pal G, Ouyang B, Liu Y, Berry-Kravis E, Hall DA, O’Keefe JA. Digital gait markers to potentially distinguish fragile X-associated tremor/ataxia syndrome, Parkinson's disease, and essential tremor. Front Neurol 2023; 14:1308698. [PMID: 38162443 PMCID: PMC10755476 DOI: 10.3389/fneur.2023.1308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Background Fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disease that affects carriers of a 55-200 CGG repeat expansion in the fragile X messenger ribonucleoprotein 1 (FMR1) gene, may be given an incorrect initial diagnosis of Parkinson's disease (PD) or essential tremor (ET) due to overlapping motor symptoms. It is critical to characterize distinct phenotypes in FXTAS compared to PD and ET to improve diagnostic accuracy. Fast as possible (FP) speed and dual-task (DT) paradigms have the potential to distinguish differences in gait performance between the three movement disorders. Therefore, we sought to compare FXTAS, PD, and ET patients using quantitative measures of functional mobility and gait under self-selected (SS) speed, FP, and DT conditions. Methods Participants with FXTAS (n = 22), PD (n = 23), ET (n = 20), and controls (n = 20) underwent gait testing with an inertial sensor system (APDM™). An instrumented Timed Up and Go test (i-TUG) was used to measure movement transitions, and a 2-min walk test (2MWT) was used to measure gait and turn variables under SS, FP, and DT conditions, and dual-task costs (DTC) were calculated. ANOVA and multinomial logistic regression analyses were performed. Results PD participants had reduced stride lengths compared to FXTAS and ET participants under SS and DT conditions, longer turn duration than ET participants during the FP task, and less arm symmetry than ET participants in SS gait. They also had greater DTC for stride length and velocity compared to FXTAS participants. On the i-TUG, PD participants had reduced sit-to-stand peak velocity compared to FXTAS and ET participants. Stride length and arm symmetry index during the DT 2MWT was able to distinguish FXTAS and ET from PD, such that participants with shorter stride lengths were more likely to have a diagnosis of PD and those with greater arm asymmetry were more likely to be diagnosed with PD. No gait or i-TUG parameters distinguished FXTAS from ET participants in the regression model. Conclusion This is the first quantitative study demonstrating distinct gait and functional mobility profiles in FXTAS, PD, and ET which may assist in more accurate and timely diagnosis.
Collapse
Affiliation(s)
- Erin E. Robertson-Dick
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Emily C. Timm
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Gian Pal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, United States
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Joan A. O’Keefe
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
9
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Johansson J, Lidéus S, Höijer I, Ameur A, Gudmundsson S, Annerén G, Bondeson ML, Wilbe M. A novel quantitative targeted analysis of X-chromosome inactivation (XCI) using nanopore sequencing. Sci Rep 2023; 13:12856. [PMID: 37553382 PMCID: PMC10409790 DOI: 10.1038/s41598-023-34413-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2023] [Indexed: 08/10/2023] Open
Abstract
X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden.
| |
Collapse
|
11
|
Friedman L, Lauber M, Behroozmand R, Fogerty D, Kunecki D, Berry-Kravis E, Klusek J. Atypical vocal quality in women with the FMR1 premutation: an indicator of impaired sensorimotor control. Exp Brain Res 2023; 241:1975-1987. [PMID: 37347418 PMCID: PMC10863608 DOI: 10.1007/s00221-023-06653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Women with the FMR1 premutation are susceptible to motor involvement related to atypical cerebellar function, including risk for developing fragile X tremor ataxia syndrome. Vocal quality analyses are sensitive to subtle differences in motor skills but have not yet been applied to the FMR1 premutation. This study examined whether women with the FMR1 premutation demonstrate differences in vocal quality, and whether such differences relate to FMR1 genetic, executive, motor, or health features of the FMR1 premutation. Participants included 35 women with the FMR1 premutation and 45 age-matched women without the FMR1 premutation who served as a comparison group. Three sustained /a/ vowels were analyzed for pitch (mean F0), variability of pitch (standard deviation of F0), and overall vocal quality (jitter, shimmer, and harmonics-to-noise ratio). Executive, motor, and health indices were obtained from direct and self-report measures and genetic samples were analyzed for FMR1 CGG repeat length and activation ratio. Women with the FMR1 premutation had a lower pitch, larger pitch variability, and poorer vocal quality than the comparison group. Working memory was related to harmonics-to-noise ratio and shimmer in women with the FMR1 premutation. Vocal quality abnormalities differentiated women with the FMR1 premutation from the comparison group and were evident even in the absence of other clinically evident motor deficits. This study supports vocal quality analyses as a tool that may prove useful in the detection of early signs of motor involvement in this population.
Collapse
Affiliation(s)
- Laura Friedman
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Meagan Lauber
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Daniel Fogerty
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, USA
| | - Dariusz Kunecki
- Department of Pediatrics, Rush University Medical Center, Chicago, USA
| | | | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA.
| |
Collapse
|
12
|
Copley KE, Shorter J. Repetitive elements in aging and neurodegeneration. Trends Genet 2023; 39:381-400. [PMID: 36935218 PMCID: PMC10121923 DOI: 10.1016/j.tig.2023.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
Repetitive elements (REs), such as transposable elements (TEs) and satellites, comprise much of the genome. Here, we review how TEs and (peri)centromeric satellite DNA may contribute to aging and neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Alterations in RE expression, retrotransposition, and chromatin microenvironment may shorten lifespan, elicit neurodegeneration, and impair memory and movement. REs may cause these phenotypes via DNA damage, protein sequestration, insertional mutagenesis, and inflammation. We discuss several TE families, including gypsy, HERV-K, and HERV-W, and how TEs interact with various factors, including transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) and the siRNA and piwi-interacting (pi)RNA systems. Studies of TEs in neurodegeneration have focused on Drosophila and, thus, further examination in mammals is needed. We suggest that therapeutic silencing of REs could help mitigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Singh M, Agarwal V, Jindal D, Pancham P, Agarwal S, Mani S, Tiwari RK, Das K, Alghamdi BS, Abujamel TS, Ashraf GM, Jha SK. Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics (Basel) 2023; 13:diagnostics13030337. [PMID: 36766442 PMCID: PMC9914305 DOI: 10.3390/diagnostics13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/19/2023] Open
Abstract
The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
- Correspondence: (M.S.); (S.K.J.)
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Koushik Das
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tukri S. Abujamel
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Correspondence: (M.S.); (S.K.J.)
| |
Collapse
|
14
|
Hocking DR, Loesch DZ, Stimpson P, Tassone F, Atkinson A, Storey E. Relationships of Motor Changes with Cognitive and Neuropsychiatric Features in FMR1 Male Carriers Affected with Fragile X-Associated Tremor/Ataxia Syndrome. Brain Sci 2022; 12:brainsci12111549. [PMID: 36421873 PMCID: PMC9688438 DOI: 10.3390/brainsci12111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The premutation expansion of the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene on the X chromosome has been linked to a range of clinical and subclinical features. Nearly half of men with FMR1 premutation develop a neurodegenerative disorder; Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). In this syndrome, cognitive executive decline and psychiatric changes may co-occur with major motor features, and in this study, we explored the interrelationships between these three domains in a sample of adult males affected with FXTAS. A sample of 23 adult males aged between 48 and 80 years (mean = 62.3; SD = 8.8), carrying premutation expansions between 45 and 118 CGG repeats, and affected with FXTAS, were included in this study. We employed a battery of cognitive assessments, two standard motor rating scales, and two self-reported measures of psychiatric symptoms. When controlling for age and/or educational level, where appropriate, there were highly significant correlations between motor rating score for ICARS gait domain, and the scores representing global cognitive decline (ACE-III), processing speed (SDMT), immediate memory (Digit Span), and depression and anxiety scores derived from both SCL90 and DASS instruments. Remarkably, close relationships of UPDRS scores, representing the contribution of Parkinsonism to FXTAS phenotypes, were exclusive to psychiatric scores. Highly significant relationships between CGG repeat size and most scores for three phenotypic domains suggest a close tracking with genetic liability. These findings of relationships between a constellation of phenotypic domains in male PM carriers with FXTAS are reminiscent of other conditions associated with disruption to cerebro-cerebellar circuits.
Collapse
Affiliation(s)
- Darren R. Hocking
- Developmental Neuromotor & Cognition Lab, School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence:
| | - Danuta Z. Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
| | - Paige Stimpson
- Psychology Department, Monash Health, Clayton, VIC 3068, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, M.I.N.D. Institute, School of Medicine, University of California Davis Medical Center, University of California, Davis, Davis, CA 95616, USA
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Alfred Hospital Campus, Monash University, Melbourne, VIC 3068, Australia
| |
Collapse
|
15
|
Klusek J, Newman-Norlund R, Fairchild AJ, Newman-Norlund S, Sayers S, Stewart JC, Berry-Kravis E, Fridriksson J. Low normal FMR1 genotype in older adult women: Psychological well-being and motor function. Arch Gerontol Geriatr 2022; 103:104789. [PMID: 35981426 PMCID: PMC9464716 DOI: 10.1016/j.archger.2022.104789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
The FMR1 gene plays a key role in adult neurogenesis and neuroplasticity, and thus may contribute to age-related health in the population. The current study focused on the "low normal" FMR1 genotype, defined by lower-than-typical numbers of FMR1 CGG repeats (<26), as a potential genetic determinant of age-related health. We characterized the effect of the low normal FMR1 genotype on psychological well-being and motor function in a racially diverse non-clinical sample of older adult women. Women with low CGG repeats were distinguished from those with CGGs falling within the mid-high end of the normal range by reduced performance on multimodal assessments of motor function and psychological well-being, with large effect sizes. Robust continuous associations were also detected between lower CGG repeat length and reduced psychological well-being, balance, and dexterity. Findings suggest that FMR1 may represent an important mediator of individual differences in age-related health; larger epidemiological studies are needed. Given that approximately 23-35% of females carry the low normal genotype, efforts to understand its clinical effects have relevance a broad swath of the aging population.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA.
| | - Roger Newman-Norlund
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA; Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208, USA
| | - Amanda J Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208, USA
| | - Sarah Newman-Norlund
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA
| | - Sara Sayers
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA
| | - Jill C Stewart
- Physical Therapy Program, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC 29208, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, 1725 West Harrison Street, Suite 718, Chicago, IL 60612, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA
| |
Collapse
|
16
|
Hong J, Dembo RS, DaWalt LS, Brilliant M, Berry-Kravis EM, Mailick M. The effect of college degree attainment on neurodegenerative symptoms in genetically at-risk women. SSM Popul Health 2022; 19:101262. [PMID: 36238818 PMCID: PMC9550653 DOI: 10.1016/j.ssmph.2022.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Using longitudinal data, the present study examined the association between college degree attainment and the manifestation of neurodegenerative symptoms among women (n = 93) at elevated genetic risk. The neurodegenerative symptoms investigated in this study are due to FXTAS (Fragile X-associated Tremor/Ataxia Syndrome), a condition with onset after age 50. Those at risk for FXTAS have a mutation of a single gene found on the X chromosome. FXTAS is characterized by intention tremor, gait ataxia, executive function deficits, memory issues, and neuropathy. College degree attainment has been shown to provide neuroprotective effects in the general population, delaying the development of neurodegenerative conditions such as Alzheimer's disease. For this reason, college degree attainment is a potentially salient resource for those at risk of FXTAS. The results of the present research indicated significantly more severe FXTAS symptoms in women who did not attain a college degree as compared with those who were college graduates, although the two groups were similar in age, genetic risk, household income, health behaviors, and general health problems. Furthermore, symptoms in those who did not attain a college degree worsened over the 9-year study period at a significantly faster rate than the college graduates. The association between college degree attainment and FXTAS symptoms was significantly mediated by depression, which was lower among the graduates than those who did not attain a college degree. Thus, the present research is an example of how a sociodemographic factor can mitigate neurodegenerative conditions in genetically at-risk adults.
Collapse
Affiliation(s)
- Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hwang YH, Hayward BE, Zafarullah M, Kumar J, Durbin Johnson B, Holmans P, Usdin K, Tassone F. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci Rep 2022; 12:10419. [PMID: 35729184 PMCID: PMC9213438 DOI: 10.1038/s41598-022-14183-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.
Collapse
Affiliation(s)
- Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Eliot Hayward
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Blythe Durbin Johnson
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA. .,MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
18
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
19
|
Frequency of FMR1 Premutation Alleles in Patients with Undiagnosed Cerebellar Ataxia and Multiple System Atrophy in the Japanese Population. CEREBELLUM (LONDON, ENGLAND) 2021; 21:954-962. [PMID: 34845661 DOI: 10.1007/s12311-021-01329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 10/19/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder caused by FMR1 premutation expansion of CGG repeats. FXTAS can be misdiagnosed with many neurodegenerative disorders manifesting with cerebellar ataxias owing to their overlapping clinical and radiological features. The frequency of the FMR1 premutation allele in Japan has not been fully determined. Herein, we aimed to determine the frequency of FMR1 premutation alleles in Japanese patients with undiagnosed cerebellar ataxia and multiple system atrophy, using repeat-primed PCR in 186 patients with adult onset of undiagnosed cerebellar ataxia and 668 patients with multiple system atrophy, to identify expanded CGG repeats as well as to detect AGG interruptions within the expanded alleles. The size of expansions was estimated using fragment length analysis of PCR products obtained by conventional PCR employing a pair of unique primers flanking the repeat sequence. We identified FMR1 premutation alleles in three male patients. One patient revealed 84 repeat units with one AGG interruption and another patient showed 103 repeat units. Both had presented with sporadic cerebellar ataxia, giving an estimated frequency of 3.7% among Japanese male patients with sporadic cerebellar ataxia with age at onset above 50 years. One patient with the clinical diagnosis of multiple system atrophy harbored 60 repeat units with four AGG interruptions. FMR1 intermediate alleles were observed in two males and one female among the multiple system atrophy patients. We found that genetic tests for FMR1 premutation should be considered in Japanese male patients with cerebellar ataxia with the age at onset above 50 years.
Collapse
|
20
|
Bermperidis T, Rai R, Ryu J, Zanotto D, Agrawal SK, Lalwani AK, Torres EB. Optimal time lags from causal prediction model help stratify and forecast nervous system pathology. Sci Rep 2021; 11:20904. [PMID: 34686679 PMCID: PMC8536772 DOI: 10.1038/s41598-021-00156-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Traditional clinical approaches diagnose disorders of the nervous system using standardized observational criteria. Although aiming for homogeneity of symptoms, this method often results in highly heterogeneous disorders. A standing question thus is how to automatically stratify a given random cohort of the population, such that treatment can be better tailored to each cluster's symptoms, and severity of any given group forecasted to provide neuroprotective therapies. In this work we introduce new methods to automatically stratify a random cohort of the population composed of healthy controls of different ages and patients with different disorders of the nervous systems. Using a simple walking task and measuring micro-fluctuations in their biorhythmic motions, we combine non-linear causal network connectivity analyses in the temporal and frequency domains with stochastic mapping. The methods define a new type of internal motor timings. These are amenable to create personalized clinical interventions tailored to self-emerging clusters signaling fundamentally different types of gait pathologies. We frame our results using the principle of reafference and operationalize them using causal prediction, thus renovating the theory of internal models for the study of neuromotor control.
Collapse
Affiliation(s)
| | - Richa Rai
- Psychology Department, Rutgers University, Piscataway, USA
| | - Jihye Ryu
- Neurosurgery Department, University of California Los Angeles, Los Angeles, USA
| | - Damiano Zanotto
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, USA
| | - Sunil K Agrawal
- Department of Mechanical Engineering, School of Engineering, Columbia University, New York, USA.,Department of Rehabilitative and Regenerative Medicine, Columbia University Medical Center, New York, USA
| | - Anil K Lalwani
- New York Presbyterian-Columbia University Irving Medical Center, New York, USA.,Division of Otology, Neurotology, and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth B Torres
- Psychology Department, Rutgers University, Piscataway, USA. .,Rutgers University Center for Cognitive Science (RUCCS), Piscataway, USA. .,Computational Biomedicine Imaging and Modelling, Piscataway, USA.
| |
Collapse
|
21
|
Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021; 157:105427. [PMID: 34153466 PMCID: PMC8475276 DOI: 10.1016/j.nbd.2021.105427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023] Open
Abstract
CGG expansions between 55 and 200 in the 5'-untranslated region of the fragile-X mental retardation gene (FMR1) increase the risk of developing the late-onset debilitating neuromuscular disease Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). While the science behind this mutation, as a paradigm for RNA-mediated nucleotide triplet repeat expansion diseases, has progressed rapidly, no treatment has proven effective at delaying the onset or decreasing morbidity, especially at later stages of the disease. Here, we demonstrated the beneficial effect of the phytochemical sulforaphane (SFN), exerted through NRF2-dependent and independent manner, on pathways relevant to brain function, bioenergetics, unfolded protein response, proteosome, antioxidant defenses, and iron metabolism in fibroblasts from FXTAS-affected subjects at all disease stages. This study paves the way for future clinical studies with SFN in the treatment of FXTAS, substantiated by the established use of this agent in clinical trials of diseases with NRF2 dysregulation and in which age is the leading risk factor.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616;,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yasmeen Mansuri
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA;,Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America; Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817, USA.
| |
Collapse
|
22
|
Maltman N, Guilfoyle J, Nayar K, Martin GE, Winston M, Lau JCY, Bush L, Patel S, Lee M, Sideris J, Hall DA, Zhou L, Sharp K, Berry-Kravis E, Losh M. The Phenotypic Profile Associated With the FMR1 Premutation in Women: An Investigation of Clinical-Behavioral, Social-Cognitive, and Executive Abilities. Front Psychiatry 2021; 12:718485. [PMID: 34421690 PMCID: PMC8377357 DOI: 10.3389/fpsyt.2021.718485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
The FMR1 gene in its premutation (PM) state has been linked to a range of clinical and subclinical phenotypes among FMR1 PM carriers, including some subclinical traits associated with autism spectrum disorder (ASD). This study attempted to further characterize the phenotypic profile associated with the FMR1 PM by studying a battery of assessments examining clinical-behavioral traits, social-cognitive, and executive abilities in women carrying the FMR1 PM, and associations with FMR1-related variability. Participants included 152 female FMR1 PM carriers and 75 female controls who were similar in age and IQ, and screened for neuromotor impairments or signs of fragile X-associated tremor/ataxia syndrome. The phenotypic battery included assessments of ASD-related personality and language (i.e., pragmatic) traits, symptoms of anxiety and depression, four different social-cognitive tasks that tapped the ability to read internal states and emotions based on different cues (e.g., facial expressions, biological motion, and complex social scenes), and a measure of executive function. Results revealed a complex phenotypic profile among the PM carrier group, where subtle differences were observed in pragmatic language, executive function, and social-cognitive tasks that involved evaluating basic emotions and trustworthiness. The PM carrier group also showed elevated rates of ASD-related personality traits. In contrast, PM carriers performed similarly to controls on social-cognitive tasks that involved reliance on faces and biological motion. The PM group did not differ from controls on self-reported depression or anxiety symptoms. Using latent profile analysis, we observed three distinct subgroups of PM carriers who varied considerably in their performance across tasks. Among PM carriers, CGG repeat length was a significant predictor of pragmatic language violations. Results suggest a nuanced phenotypic profile characterized by subtle differences in select clinical-behavioral, social-cognitive, and executive abilities associated with the FMR1 PM in women.
Collapse
Affiliation(s)
- Nell Maltman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Janna Guilfoyle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Gary E. Martin
- Department of Communication Sciences and Disorders, St. John's University, Staten Island, NY, United States
| | - Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Joseph C. Y. Lau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Lauren Bush
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Shivani Patel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Michelle Lee
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - John Sideris
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Lili Zhou
- Rush University Medical Center, Chicago, IL, United States
| | - Kevin Sharp
- Rush University Medical Center, Chicago, IL, United States
| | | | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
23
|
Martin EM, Zhu Y, Kraan CM, Kumar KR, Godler DE, Field M. Men with FMR1 premutation alleles of less than 71 CGG repeats have low risk of being affected with fragile X-associated tremor/ataxia syndrome (FXTAS). J Med Genet 2021; 59:706-709. [PMID: 34321326 DOI: 10.1136/jmedgenet-2021-107758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 11/04/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset condition characterised by cerebellar ataxia and intention tremor, usually found in individuals with FMR1 premutation alleles (PM-CGG expansion of 55-199 repeats). Population studies estimate that between 1 in 250 and 1 in 1600 men have a PM, with up to 45% of these men suggested to develop FXTAS by age 80. We used a Bayesian approach to compare the probability of finding a specific PM genotype in an ataxia population to a population control group and found an estimated penetrance of <1% (0.031%; CI 0.007% to 0.141%) for men with ≤70 CGGs. These findings suggest that men with a PM of ≤70 CGGs, who comprise the vast majority of those with a PM, have a much lower risk of being affected with FXTAS than previously suggested. This is an issue of growing importance for accurate genetic counselling, as those with a PM of ≤70 CGGs are increasingly detected through community carrier screening or neurodevelopmental assessment programmes.
Collapse
Affiliation(s)
- Ellenore M Martin
- Genetics of Learning Disability (GOLD) Service, Hunter Genetics, Newcastle, New South Wales, Australia
| | - Ying Zhu
- Genetics of Learning Disability (GOLD) Service, Hunter Genetics, Newcastle, New South Wales, Australia.,Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Claudine M Kraan
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Parkville, Victoria, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Parkville, Victoria, Australia
| | - Michael Field
- Genetics of Learning Disability (GOLD) Service, Hunter Genetics, Newcastle, New South Wales, Australia
| |
Collapse
|
24
|
Kosillo P, Bateup HS. Dopaminergic Dysregulation in Syndromic Autism Spectrum Disorders: Insights From Genetic Mouse Models. Front Neural Circuits 2021; 15:700968. [PMID: 34366796 PMCID: PMC8343025 DOI: 10.3389/fncir.2021.700968] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by altered social interaction and communication, and repetitive, restricted, inflexible behaviors. Approximately 1.5-2% of the general population meet the diagnostic criteria for ASD and several brain regions including the cortex, amygdala, cerebellum and basal ganglia have been implicated in ASD pathophysiology. The midbrain dopamine system is an important modulator of cellular and synaptic function in multiple ASD-implicated brain regions via anatomically and functionally distinct dopaminergic projections. The dopamine hypothesis of ASD postulates that dysregulation of dopaminergic projection pathways could contribute to the behavioral manifestations of ASD, including altered reward value of social stimuli, changes in sensorimotor processing, and motor stereotypies. In this review, we examine the support for the idea that cell-autonomous changes in dopaminergic function are a core component of ASD pathophysiology. We discuss the human literature supporting the involvement of altered dopamine signaling in ASD including genetic, brain imaging and pharmacologic studies. We then focus on genetic mouse models of syndromic neurodevelopmental disorders in which single gene mutations lead to increased risk for ASD. We highlight studies that have directly examined dopamine neuron number, morphology, physiology, or output in these models. Overall, we find considerable support for the idea that the dopamine system may be dysregulated in syndromic ASDs; however, there does not appear to be a consistent signature and some models show increased dopaminergic function, while others have deficient dopamine signaling. We conclude that dopamine dysregulation is common in syndromic forms of ASD but that the specific changes may be unique to each genetic disorder and may not account for the full spectrum of ASD-related manifestations.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
25
|
Hong J, Kapoor A, DaWalt LS, Maltman N, Kim B, Berry- Kravis EM, Almeida D, Coe C, Mailick M. Stress and genetics influence hair cortisol in FMR1 premutation carrier mothers of children with fragile X syndrome. Psychoneuroendocrinology 2021; 129:105266. [PMID: 34020265 PMCID: PMC8217368 DOI: 10.1016/j.psyneuen.2021.105266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
To investigate genetic and environmental influences on cortisol levels, mothers of children with fragile X syndrome (FXS) were studied four times over a 7.5-year period. All participants (n = 84) were carriers of the FMR1 "premutation", a genetic condition associated with impaired HPA axis functioning. Genetic variation was indicated by expansions in the number of CGG (cytosine-guanine-guanine) repeats in the FMR1 gene (67-138 repeats in the present sample). The environmental factor was cumulative exposure to adverse life events during the study period. Cortisol was measured at the beginning of the study via saliva samples and at the end of the study via hair samples; hormone values from these two specimen types were significantly correlated. The interactions between CGG repeat number and adverse life events significantly predicted hair cortisol concentration, including after accounting for the initial salivary cortisol level. For those with fewer CGG repeats, stress exposure was associated with elevated cortisol, the expected response to stress, although women with a higher number of CGGs had a reduced cortisol response to adverse events, which might be related to HPA dysfunction. These results indicate that both exogenous and endogenous factors affect HPA functioning in this population of women.
Collapse
Affiliation(s)
- Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, United States.
| | - Amita Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | | | | | - Bryan Kim
- Waisman Center, University of Wisconsin-Madison
| | | | - David Almeida
- Department of Human Development and Family Studies, Pennsylvania State University
| | | | | |
Collapse
|
26
|
Mailick MR, Hong J, Movaghar A, DaWalt L, Berry-Kravis EM, Brilliant MH, Boero J, Todd PK, Hall D. Mild Neurological Signs in FMR1 Premutation Women in an Unselected Community-Based Cohort. Mov Disord 2021; 36:2378-2386. [PMID: 34117786 DOI: 10.1002/mds.28683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Premutation-sized (55-200) CGG repeat expansions in the FMR1 gene cause fragile X-associated tremor/ataxia syndrome (FXTAS). Most studies of premutation carriers utilized reverse ascertainment to identify patients, leading to a selection bias for larger repeats. As shorter CGG premutation repeats are common in the population, understanding their impact on health outcomes has a potentially large public health footprint. OBJECTIVE The study's objective was to compare an unselected group of premutation carriers (n = 35, 55-101 CGG repeats) with matched controls (n = 61, 29-39 CGG repeats) with respect to FXTAS-type signs using structured neurological assessments. METHODS Three neurologists independently rated signs, using an adapted version of the FXTAS Rating Scale (Leehey MA, Berry-Kravis E, Goetz CG, et al. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology. 2008). This was a double-blind study, as genetic status (premutation vs. control) was known neither by the participants nor by any of the neurologists. Analyses controlled potentially confounding comorbid conditions in the electronic health record (eg, osteoarthritis and stroke) and probed the association of age with signs. RESULTS Although there was no overall difference between carriers and controls, among individuals without any potentially confounding comorbid diagnoses, there was a statistically significant age-associated elevation in FXTAS-type signs in premutation carriers compared to controls. CONCLUSIONS Among those who do not have other comorbid diagnoses, women who have CGG repeats at the lower end of the premutation range may be at greater risk for ataxia and parkinsonism than their age peers, although their overall risk of developing such clinical features is low. This study should provide reassurance to those who share characteristics with the present cohort. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arezoo Movaghar
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Leann DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Murray H Brilliant
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Jaime Boero
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Administration Healthcare Center, Ann Arbor, Michigan, USA
| | - Deborah Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The purpose of this paper is to review the prevalence, pathophysiology, and management of fragile X-associated tremor/ataxia syndrome (FXTAS). RECENT FINDINGS The pathophysiology of FXTAS involves ribonucleic acid (RNA) toxicity due to elevated levels of the premutation-expanded CGG (eoxycytidylate-deoxyguanylate-deoxyguanylate)-repeat FMR1 mRNA, which can sequester a variety of proteins important for neuronal function. A recent analysis of the inclusions in FXTAS demonstrates elevated levels of several proteins, including small ubiquitin-related modifiers 1/2 (SUMO1/2), that target molecules for the proteasome, suggesting that some aspect(s) of proteasomal function may be altered in FXTAS. Recent neuropathological studies show that Parkinson disease and Alzheimer disease can sometimes co-occur with FXTAS. Lewy bodies can be found in 10% of the brains of patients with FXTAS. Microbleeds and iron deposition are also common in the neuropathology, in addition to white matter disease (WMD) and atrophy. SUMMARY The premutation occurs in 1:200 females and 1:400 males. Penetrance for FXTAS increases with age, though lower in females (16%) compared to over 60% of males by age 70. To diagnose FXTAS, an MRI is essential to document the presence of WMD, a primary component of the diagnostic criteria. Pain can be a significant feature of FXTAS and is seen in approximately 50% of patients.
Collapse
|
28
|
Laboratory testing for fragile X, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:799-812. [PMID: 33795824 DOI: 10.1038/s41436-021-01115-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Molecular genetic testing of the FMR1 gene is commonly performed in clinical laboratories. Pathogenic variants in the FMR1 gene are associated with fragile X syndrome, fragile X-associated tremor ataxia syndrome (FXTAS), and fragile X-associated primary ovarian insufficiency (FXPOI). This document provides updated information regarding FMR1 pathogenic variants, including prevalence, genotype-phenotype correlations, and variant nomenclature. Methodological considerations are provided for Southern blot analysis and polymerase chain reaction (PCR) amplification of FMR1, including triplet repeat-primed and methylation-specific PCR.The American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has the mission of maintaining high technical standards for the performance and interpretation of genetic tests. In part, this is accomplished by the publication of the document ACMG Technical Standards for Clinical Genetics Laboratories, which is now maintained online ( http://www.acmg.net ). This subcommittee also reviews the outcome of national proficiency testing in the genetics area and may choose to focus on specific diseases or methodologies in response to those results. Accordingly, the subcommittee selected fragile X syndrome to be the first topic in a series of supplemental sections, recognizing that it is one of the most frequently ordered genetic tests and that it has many alternative methods with different strengths and weaknesses. This document is the fourth update to the original standards and guidelines for fragile X testing that were published in 2001, with revisions in 2005 and 2013, respectively.This versionClarifies the clinical features associated with different FMRI variants (Section 2.3)Discusses important reporting considerations (Section 3.3.1.3)Provides updates on technology (Section 4.1).
Collapse
|
29
|
Loesch DZ, Tassone F, Atkinson A, Stimpson P, Trost N, Pountney DL, Storey E. Differential Progression of Motor Dysfunction Between Male and Female Fragile X Premutation Carriers Reveals Novel Aspects of Sex-Specific Neural Involvement. Front Mol Biosci 2021; 7:577246. [PMID: 33511153 PMCID: PMC7835843 DOI: 10.3389/fmolb.2020.577246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Expansions of the CGG repeat in the non-coding segment of the FMR1 X-linked gene are associated with a variety of phenotypic changes. Large expansions (>200 repeats), which cause a severe neurodevelopmental disorder, the fragile x syndrome (FXS), are transmitted from the mothers carrying smaller, unstable expansions ranging from 55 to 200 repeats, termed the fragile X premutation. Female carriers of this premutation may themselves experience a wide range of clinical problems throughout their lifespan, the most severe being the late onset neurodegenerative condition called "Fragile X-Associated Tremor Ataxia Syndrome" (FXTAS), occurring between 8 and 16% of these carriers. Male premutation carriers, although they do not transmit expanded alleles to their daughters, have a much higher risk (40-50%) of developing FXTAS. Although this disorder is more prevalent and severe in male than female carriers, specific sex differences in clinical manifestations and progress of the FXTAS spectrum have been poorly documented. Here we compare the pattern and rate of progression (per year) in three motor scales including tremor/ataxia (ICARS), tremor (Clinical Tremor Rating scale, CRST), and parkinsonism (UPDRS), and in several cognitive and psychiatric tests scores, between 13 female and 9 male carriers initially having at least one of the motor scores ≥10. Moreover, we document the differences in each of the clinical and cognitive measures between the cross-sectional samples of 21 female and 24 male premutation carriers of comparable ages with FXTAS spectrum disorder (FSD), that is, who manifest one or more features of FXTAS. The results of progression assessment showed that it was more than twice the rate in male than in female carriers for the ICARS-both gait ataxia and kinetic tremor domains and twice as high in males on the CRST scale. In contrast, sex difference was negligible for the rate of progress in UPDRS, and all the cognitive measures. The overall psychiatric pathology score (SCL-90), as well as Anxiety and Obsessive/Compulsive domain scores, showed a significant increase only in the female sample. The pattern of sex differences for progression in motor scores was consistent with the results of comparison between larger, cross-sectional samples of male and female carriers affected with the FSD. These results were in concert with sex-specific distribution of MRI T2 white matter hyperintensities: all males, but no females, showed the middle cerebellar peduncle white matter hyperintensities (MCP sign), although the distribution and severity of these hyperintensities in the other brain regions were not dissimilar between the two sexes. In conclusion, the magnitude and specific pattern of sex differences in manifestations and progression of clinically recorded changes in motor performance and MRI lesion distribution support, on clinical grounds, the possibility of certain sex-limited factor(s) which, beyond the predictable effect of the second, normal FMR1 alleles in female premutation carriers, may have neuroprotective effects, specifically concerning the cerebellar circuitry.
Collapse
Affiliation(s)
- Danuta Z. Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California Davis Medical Center, Davis, CA, United States
| | - Anna Atkinson
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Paige Stimpson
- Wellness and Recovery Centre, Monash Medical Centre, Clayton, VIC, Australia
| | - Nicholas Trost
- Medical Imaging Department, St Vincent's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Dean L. Pountney
- Neurodegeneration Research Group, School of Medical Science, Griffith University, Gold Coast Campus, Southport, NC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Hong J, DaWalt L, Baker MW, Berry-Kravis EM, Mailick MR. Is FMR1 CGG Repeat Number Polymorphism Associated With Phenotypic Variation in the General Population? Report From a Cohort of 5,499 Adults. Front Psychiatry 2021; 12:727085. [PMID: 34456771 PMCID: PMC8385267 DOI: 10.3389/fpsyt.2021.727085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
FMR1 CGG repeat length was assayed in 5499 research participants (2637 men and 2862 women) in the Wisconsin Longitudinal Study (WLS), a population-based cohort. Most past research has focused on clinically-ascertained individuals with expansions in CGG repeats, either those with fragile X syndrome (> 200 CGG repeats), the FMR1 premutation (55-200 repeats), or in the gray zone (variously defined as 45-54 or 41-54 repeats). In contrast, the WLS is a unique source of data that was obtained from an unselected cohort of individuals from the general population for whom FMR1 CGG repeat length was assayed. The WLS is a random sample of one-third of all high school seniors in the state of Wisconsin in 1957. The most recent round of data collection was in 2011; thus, the study spanned over 50 years. Saliva samples were obtained from 69% of surviving members of the cohort in 2008 and 2011, from which CGG repeats were assayed. With one exception, the CGG repeat length of all members of this cohort was below 100 (ranging from 7 to 84). The present study evaluated the genotype-phenotype associations of CGG repeat number and IQ, college graduation, age at menopause, number of biological children, having a child with intellectual or developmental disabilities, and the likelihood of experiencing an episode of depression during adulthood. Linear and curvilinear effects were probed. Although effect sizes were small, significant associations were found between CGG repeat length and high school IQ score, college graduation, number of biological children, age at menopause, and the likelihood of having an episode of depression. However, there was no significant association between repeat length and having a child diagnosed with an IDD condition. This study demonstrates a continuum of phenotype effects with FMR1 repeat lengths and illustrates how research inspired by a rare genetic condition (such as fragile X syndrome) can be used to probe genotype-phenotype associations in the general population.
Collapse
Affiliation(s)
- Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Leann DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Mei Wang Baker
- Wisconsin State Laboratory of Hygiene, Madison, WI, United States
| | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL, United States
| | - Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
31
|
Wang Z, Lane C, Terza M, Khemani P, Lui S, McKinney WS, Mosconi MW. Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers. Brain Sci 2020; 11:E13. [PMID: 33374331 PMCID: PMC7823457 DOI: 10.3390/brainsci11010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation cytosine-guanine-guanine (CGG) trinucleotide repeat expansion of the FMR1 gene. FXTAS is estimated to be the most common single-gene form of ataxia in the aging population. Gait ataxia and intention tremor are the primary behavioral symptoms of FXTAS, though clinical evaluation of these symptoms often is subjective, contributing to difficulties in reliably differentiating individuals with FXTAS and asymptomatic premutation carriers. This study aimed to clarify the extent to which quantitative measures of gait and upper limb kinematics may serve as biobehavioral markers of FXTAS degeneration. Nineteen premutation carriers (aged 46-77 years), including 9 with possible, probable, or definite FXTAS and 16 sex- and IQ-matched healthy controls, completed tests of non-constrained walking and reaching while both standing (static reaching) and walking (dynamic reaching) to quantify gait and upper limb control, respectively. For the non-constrained walking task, participants wore reflective markers and walked at their preferred speed on a walkway. During the static reaching task, participants reached and lifted boxes of different sizes while standing. During the dynamic reaching task, participants walked to reach and lift the boxes. Movement kinematics were examined in relation to clinical ratings of neuromotor impairments and CGG repeat length. During non-constrained walking, individuals with FXTAS showed decreased stride lengths and stride velocities, increased percentages of double support time, and increased variabilities of cadence and center of mass relative to both asymptomatic premutation carriers and controls. While individuals with FXTAS did not show any static reaching differences relative to the other two groups, they showed multiple differences during dynamic reaching trials, including reduced maximum reaching velocity, prolonged acceleration time, and jerkier movement of the shoulder, elbow, and hand. Gait differences during non-constrained walking were associated with more severe clinically rated posture and gait symptoms. Reduced maximum reaching velocity and increased jerkiness during dynamic reaching were each related to more severe clinically rated kinetic dysfunction and overall neuromotor symptoms in FMR1 premutation carriers. Our findings suggest kinematic alterations consistent with gait ataxia and upper limb bradykinesia are each selectively present in individuals with FXTAS, but not asymptomatic aging premutation carriers. Consistent with neuropathological and magnetic resonance imaging (MRI) studies of FXTAS, these findings implicate cerebellar and basal ganglia degeneration associated with neuromotor decline. Our results showing associations between quantitative kinematic differences in FXTAS and clinical ratings suggest that objective assessments of gait and reaching behaviors may serve as critical and reliable targets for detecting FXTAS risk and monitoring progression.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL 32611-0164, USA;
- Kansas Center for Autism Research and Training (K−CART) and Life Span Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Callie Lane
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Matthew Terza
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, USA;
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, Seattle, WA 98121, USA;
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China;
| | - Walker S. McKinney
- Kansas Center for Autism Research and Training (K−CART) and Life Span Institute, University of Kansas, Lawrence, KS 66045, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
| | - Matthew W. Mosconi
- Kansas Center for Autism Research and Training (K−CART) and Life Span Institute, University of Kansas, Lawrence, KS 66045, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
32
|
Schneider A, Summers S, Tassone F, Seritan A, Hessl D, Hagerman P, Hagerman R. Women with Fragile X-associated Tremor/Ataxia Syndrome. Mov Disord Clin Pract 2020; 7:910-919. [PMID: 33163562 PMCID: PMC7604678 DOI: 10.1002/mdc3.13084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor and ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder linked to the FMR1 premutation. OBJECTIVES FXTAS in women is far less common than in men, and this study represents the largest sample reported to date. METHODS A total of 53 female premutation carriers with FXTAS (meanage, 66.83 years; FXTAS stages 2-5) and 55 age-matched and demographic background-matched control participants (meanage, 61.94 years) underwent a comprehensive molecular, physiological, neuropsychological, and psychiatric assessment. RESULTS The large sample of female premutation carriers showed a wide range of variability of clinical signs and symptom progression. The imaging results showed a middle cerebellar peduncles sign in only 6 patients; another symptom included high-signal intensity in the splenium of the corpus callosum, and diffuse cerebral deep white matter changes (e.g., in the pons) are more common. The rate of psychiatric disorders, especially depression, is higher than in the general population. There is a clear impairment in executive functioning and fine motor skills in connection with a higher FXTAS stage. CONCLUSIONS The manifestation of FXTAS symptoms in female carriers can be diverse with a milder phenotype and a lower penetrance than those observed in male premutation carriers. The middle cerebellar peduncles sign is present in only a small percentage of the sample, and we propose that the imaging criteria for FXTAS in women need to be expanded.
Collapse
Affiliation(s)
- Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Pediatrics, School of MedicineUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Scott Summers
- Department of Psychiatry and Behavioral SciencesUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Flora Tassone
- Department of BiochemistryUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Andreea Seritan
- Department of Psychiatry, UCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Paul Hagerman
- Department of BiochemistryUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Pediatrics, School of MedicineUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| |
Collapse
|
33
|
O'Keefe JA, Guan J, Robertson E, Biskis A, Joyce J, Ouyang B, Liu Y, Carnes D, Purcell N, Berry-Kravis E, Hall DA. The Effects of Dual Task Cognitive Interference and Fast-Paced Walking on Gait, Turns, and Falls in Men and Women with FXTAS. THE CEREBELLUM 2020; 20:212-221. [PMID: 33118140 DOI: 10.1007/s12311-020-01199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a genetic neurodegenerative disorder characterized by cerebellar ataxia, tremor, and cognitive dysfunction. We examined the impact of dual-task (DT) cognitive-motor interference and fast-paced (FP) gait on gait and turning in FXTAS. Thirty participants with FXTAS and 35 age-matched controls underwent gait analysis using an inertial sensor-based 2-min walk test under three conditions: (1) self-selected pace (ST), (2) FP, and (3) DT with a concurrent verbal fluency task. Linear regression analyses were performed to assess the association between FXTAS diagnosis and gait and turn outcomes. Correlations between gait variables and fall frequency were also calculated. FXTAS participants had reduced stride length and velocity, swing time, and peak turn velocity and greater double limb support time and number of steps to turn compared to controls under all three conditions. There was greater dual task cost of the verbal fluency task on peak turn velocity in men with FXTAS compared to controls. Additionally, stride length variability was increased and cadence was reduced in FXTAS participants in the FP condition. Stride velocity variability under FP gait was significantly associated with the number of self-reported falls in the last year. Greater motor control requirements for turning likely made men with FXTAS more susceptible to the negative effects of DT cognitive interference. FP gait exacerbated gait deficits in the domains of rhythm and variability, and increased gait variability with FP was associated with increased falls. These data may inform the design of rehabilitation strategies in FXTAS.
Collapse
Affiliation(s)
- Joan A O'Keefe
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Joseph Guan
- Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Alexandras Biskis
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jessica Joyce
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Danielle Carnes
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Nicollette Purcell
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Pediatrics and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
34
|
Perez-Lloret S, van de Warrenburg B, Rossi M, Rodríguez-Blázquez C, Zesiewicz T, Saute JAM, Durr A, Nishizawa M, Martinez-Martin P, Stebbins GT, Schrag A, Skorvanek M. Assessment of Ataxia Rating Scales and Cerebellar Functional Tests: Critique and Recommendations. Mov Disord 2020; 36:283-297. [PMID: 33022077 DOI: 10.1002/mds.28313] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We assessed the clinimetric properties of ataxia rating scales and functional tests, and made recommendations regarding their use. METHODS A systematic literature search was conducted to identify the instruments used to rate ataxia symptoms. The identified rating scales and functional ability tests were reviewed and ranked by the panel as "recommended," "suggested," or "listed" for the assessment of patients with discrete cerebellar disorders, using previously established criteria. RESULTS We reviewed 14 instruments (9 rating scales and 5 functional tests). "Recommended" rating scales for the assessment of symptoms severity were: for Friedreich's ataxia, the Friedreich's Ataxia Rating Scale, the International Cooperative Ataxia Rating Scale (ICARS), and the Scale for the Assessment and Rating of Ataxia (SARA); for spinocerebellar ataxias, ICARS and SARA; for ataxia telangiectasia: ICARS and SARA; for brain tumors, SARA; for congenital disorder of glycosylation-phosphomannomutase-2 deficiency, ICARS; for cerebellar symptoms in multiple sclerosis, ICARS; for cerebellar symptoms in multiple system atrophy: Unified Multiple System Atrophy Rating Scale and ICARS; and for fragile X-associated tremor ataxia syndrome, ICARS. "Recommended" functional tests were: for Friedreich's ataxia, Ataxia Functional Composite Score and Composite Cerebellar Functional Severity Score; and for spinocerebellar ataxias, Ataxia Functional Composite Score, Composite Cerebellar Functional Severity Score, and SCA Functional Index. CONCLUSIONS We identified some "recommended" scales and functional tests for the assessment of patients with major hereditary ataxias and other cerebellar disorders. The main limitations of these instruments include the limited assessment of patients in the more severe end of the spectrum and children. Further research in these populations is warranted. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- National Research Council (CAECIHS-UAI, CONICET), Buenos Aires, Argentina.,Faculty of Medicine, Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Department of Physiology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Bart van de Warrenburg
- Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Malco Rossi
- Movement Disorders Section, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | | | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Jonas A M Saute
- Medical Genetics Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Neurology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | | | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - Glenn T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Anette Schrag
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, United Kingdom
| | - Matej Skorvanek
- Department of Neurology, Faculty of Medicine, P. J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital L. Pasteur, Kosice, Slovak Republic
| | | |
Collapse
|
35
|
O'Keefe JA, Bang D, Robertson EE, Biskis A, Ouyang B, Liu Y, Pal G, Berry‐Kravis E, Hall DA. Prodromal Markers of Upper Limb Deficits in FMR1 Premutation Carriers and Quantitative Outcome Measures for Future Clinical Trials in Fragile X-associated Tremor/Ataxia Syndrome. Mov Disord Clin Pract 2020; 7:810-819. [PMID: 33043077 PMCID: PMC7533995 DOI: 10.1002/mdc3.13045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a rare, late-onset neurodegenerative disorder characterized by tremor and cerebellar gait ataxia, affecting premutation carriers (PMC) of CGG expansions (range, 55-200) in the fragile X mental retardation 1 (FMR1) gene. Discovery of early predictors for FXTAS and quantitative characterization of motor deficits are critical for identifying disease onset, monitoring disease progression, and determining efficacy of interventions. METHODS A total of 39 PMC with FXTAS, 20 PMC without FXTAS, and 27 healthy controls performed a series of upper extremity (UE) motor tasks assessing tremor, bradykinesia, and rapid alternating movements that were quantified using an inertial-based sensor system (Kinesia One; Great Lakes NeuroTechnologies, Cleveland, OH, USA). Sub-scores from the clinician-rated FXTAS Rating Scale were correlated with the severity scores generated by the sensor system to determine its validity in FXTAS. RESULTS PMC with FXTAS had significantly worse postural and kinetic tremor compared with PMC without FXTAS (P = 0.02, 0.03) and controls (P = 0.001, 0.0001), respectively, and slower finger tap (P = 0.001), hand movement (P = 0.0001), and rapid alternating movement speed (P = 0.003) and amplitude (P = 0.04) than controls. PMC without FXTAS had significantly worse right finger tap (P = 0.004), hand movement (P = 0.01), and rapid alternating movement speed (P = 0.003) and amplitude (P = 0.02) than controls. FXTAS Rating Scale subscores significantly correlated with all tremorography scores except for finger taps and left rapid alternating movement. CONCLUSIONS These findings support the use of inertial sensor quantification systems as promising measures for preclinical FXTAS symptom detection in PMC, characterization of the natural history of FXTAS, assessment of medication responses, and outcome assessment in clinical trials.
Collapse
Affiliation(s)
- Joan A. O'Keefe
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Deborah Bang
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Erin E. Robertson
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Alexandras Biskis
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
- Department of PediatricsRush University Medical CenterChicagoIllinoisUSA
| | - Bichun Ouyang
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Yuanqing Liu
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Gian Pal
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Elizabeth Berry‐Kravis
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of BiochemistryRush University Medical CenterChicagoIllinoisUSA
| | - Deborah A. Hall
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
36
|
McKinney WS, Bartolotti J, Khemani P, Wang JY, Hagerman RJ, Mosconi MW. Cerebellar-cortical function and connectivity during sensorimotor behavior in aging FMR1 gene premutation carriers. NEUROIMAGE-CLINICAL 2020; 27:102332. [PMID: 32711390 PMCID: PMC7381687 DOI: 10.1016/j.nicl.2020.102332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
FMR1 premutation carriers show increased variability in motor control. Premutation carriers show reduced extrastriate activation during motor behavior. Premutation carriers show reduced extrastriate-cerebellar functional connectivity. Reduced extrastriate-cerebellar functional connectivity is related to motor issues.
Introduction Premutation carriers of the FMR1 gene are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disease characterized by motor, cognitive, and psychiatric decline as well as cerebellar and cerebral white matter pathology. Several studies have documented preclinical sensorimotor issues in aging premutation carriers, but the extent to which sensorimotor brain systems are affected and may represent early indicators of atypical neurodegeneration has not been determined. Materials and methods Eighteen healthy controls and 16 FMR1 premutation carriers (including five with possible, probable, or definite FXTAS) group-matched on age, sex, and handedness completed a visually guided precision gripping task with their right hand during fMRI. During the test, they used a modified pinch grip to press at 60% of their maximum force against a custom fiber-optic transducer. Participants viewed a horizontal white force bar that moved upward with increased force and downward with decreased force and a static target bar that was red during rest and turned green to cue the participant to begin pressing at the beginning of each trial. Participants were instructed to press so that the white force bar stayed as steady as possible at the level of the green target bar. Trials were 2-sec in duration and alternated with 2-sec rest periods. Five 24-sec blocks consisting of six trials were presented. Participants’ reaction time, the accuracy of their force relative to the target force, and the variability of their force accuracy across trials were examined. BOLD signal change and task-based functional connectivity (FC) were examined during force vs. rest. Results Relative to healthy controls, premutation carriers showed increased trial-to-trial variability of force output, though this was specific to younger premutation carriers in our sample. Relative to healthy controls, premutation carriers also showed reduced extrastriate activation during force relative to rest. FC between ipsilateral cerebellar Crus I and extrastriate cortex was reduced in premutation carriers compared to controls. Reduced Crus I-extrastriate FC was related to increased force accuracy variability in premutation carriers. Increased reaction time was associated with more severe clinically rated neurological abnormalities. Conclusions Findings of reduced activation in extrastriate cortex and reduced Crus I-extrastriate FC implicate deficient visual feedback processing and reduced cerebellar modulation of corrective motor commands. Our results are consistent with documented cerebellar pathology and visual-spatial processing in FXTAS and pre-symptomatic premutation carriers, and suggest FC alterations of cerebellar-cortical networks during sensorimotor behavior may represent a “prodromal” feature associated with FXTAS degeneration.
Collapse
Affiliation(s)
- Walker S McKinney
- Life Span Institute and Kansas Center for Autism Research and Training (K-CART), Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA.
| | - James Bartolotti
- Life Span Institute and Kansas Center for Autism Research and Training (K-CART), Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA.
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, 550 17th Avenue, Suite 400, Seattle, WA 98122, USA.
| | - Jun Yi Wang
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | - Randi J Hagerman
- MIND Institute and Department of Pediatrics, University of California, Davis School of Medicine, 2825 50th St., Sacramento, CA 95817, USA.
| | - Matthew W Mosconi
- Life Span Institute and Kansas Center for Autism Research and Training (K-CART), Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA.
| |
Collapse
|
37
|
Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications. Int J Mol Sci 2020; 21:ijms21124391. [PMID: 32575683 PMCID: PMC7352421 DOI: 10.3390/ijms21124391] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in older premutation (55-200 CGG repeats) carriers of FMR1. The premutation has excessive levels of FMR1 mRNA that lead to toxicity and mitochondrial dysfunction. The clinical features usually begin in the 60 s with an action or intention tremor followed by cerebellar ataxia, although 20% have only ataxia. MRI features include brain atrophy and white matter disease, especially in the middle cerebellar peduncles, periventricular areas, and splenium of the corpus callosum. Neurocognitive problems include memory and executive function deficits, although 50% of males can develop dementia. Females can be less affected by FXTAS because of a second X chromosome that does not carry the premutation. Approximately 40% of males and 16% of female carriers develop FXTAS. Since the premutation can occur in less than 1 in 200 women and 1 in 400 men, the FXTAS diagnosis should be considered in patients that present with tremor, ataxia, parkinsonian symptoms, neuropathy, and psychiatric problems. If a family history of a fragile X mutation is known, then FMR1 DNA testing is essential in patients with these symptoms.
Collapse
|
38
|
Study of telomere length in men who carry a fragile X premutation or full mutation allele. Hum Genet 2020; 139:1531-1539. [PMID: 32533363 DOI: 10.1007/s00439-020-02194-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
The fragile X premutation is defined by the expansion of the CGG trinucleotide repeat at the 5' UTR of the FMR1 gene to between 55 and 200 repeats, while repeat tracks longer than 200 are defined as full mutations. Men carrying a premutation are at increased risk for fragile X-associated tremor/ataxia syndrome (FXTAS); those with > 200 repeats have fragile X syndrome, a common genetic form of intellectual disabilities. In our study, we tested the hypothesis that men carrying a fragile X premutation or full mutation are "biologically older", as suggested by the associated age-related disorder in the presence of the fragile X premutation or the altered cellular pathology that affects both the fragile X premutation and full mutation carriers. Thus, we predicted that both groups would have shorter telomeres than men carrying the normal size repeat allele. Using linear regression models, we found that, on average, premutation carriers had shorter telomeres compared with non-carriers (n = 69 vs n = 36; p = 0.02) and that there was no difference in telomere length between full mutation carriers and non-carriers (n = 37 vs n = 29; p > 0.10). Among premutation carriers only, we also asked whether telomere length was shorter among men with vs without symptoms of FXTAS (n = 28 vs n = 38 and n = 27 vs n = 41, depending on criteria) and found no evidence for a difference (p > 0.10). Previous studies have shown that the premutation is transcribed whereas the full mutation is not, and the expanded repeat track in FMR1 transcript is thought to lead to the risk for premutation-associated disorders. Thus, our data suggest that the observed premutation-only telomere shortening may be a consequence of the toxic effect of the premutation transcript and suggest that premutation carriers are "biologically older" than men carrying the normal size allele in the same age group.
Collapse
|
39
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Tassanakijpanich N, McLennan YA, Hagerman RJ. Ataxia as the Major Manifestation of Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Case Series. Biomedicines 2020; 8:E136. [PMID: 32466255 PMCID: PMC7277845 DOI: 10.3390/biomedicines8050136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Fragile X-associated tremor and ataxia syndrome (FXTAS) is a neurodegenerative disease developed by carriers of a premutation in the fragile X mental retardation 1 (FMR1) gene. The core clinical symptoms usually manifest in the early 60s, typically beginning with intention tremor followed by cerebellar ataxia. Ataxia can be the only symptom in approximately 20% of the patients. FXTAS has a slow progression, and patients usually experience advanced deterioration 15 to 25 years after the initial diagnosis. Common findings in brain imaging include substantial brain atrophy and white matter disease (WMD). We report three cases with an atypical clinical presentation, all presenting with gait problems as their initial manifestation and with ataxia as the dominant symptom without significant tremor, as well as a faster than usual clinical progression. Magnetic resonance imaging (MRI) was remarkable for severe brain atrophy, ventriculomegaly, thinning of the corpus callosum, and periventricular WMD. Two cases were diagnosed with definite FXTAS on the basis of clinical and radiological findings, with one individual also developing moderate dementia. Factors such as environmental exposure and general anesthesia could have contributed to their clinical deterioration. FXTAS should be considered in the differential diagnosis of patients presenting with ataxia, even in the absence of tremor, and FMR1 DNA testing should be sought in those with a family history of fragile X syndrome or premutation disorders.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (Y.A.M.)
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
| | - Ana Maria Cabal-Herrera
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
- Group on Congenital Malformations and Dysmorphology (MACOS), Faculty of Health, Universidad del Valle, Cali, Valle del Cauca 760041, Colombia
| | - Nattaporn Tassanakijpanich
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yingratana A. McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (Y.A.M.)
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (Y.A.M.)
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
| |
Collapse
|
40
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
41
|
Hall DA, Robertson EE, Leehey M, McAsey A, Ouyang B, Berry-Kravis E, O’Keefe JA. Open-label pilot clinical trial of citicoline for fragile X-associated tremor/ataxia syndrome (FXTAS). PLoS One 2020; 15:e0225191. [PMID: 32053612 PMCID: PMC7018079 DOI: 10.1371/journal.pone.0225191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder that is characterized by tremor, cerebellar ataxia, frequent falls, cognitive decline, and progressive loss of motor function. There are currently no approved treatments for this disorder. The purpose of this study was to determine if citicoline was safe for the treatment of tremor and balance abnormalities and to stabilize cognitive decline in patients with FXTAS. Ten participants with diagnosed FXTAS were administered 1000 mg of citicoline once daily for 12 months. Outcome measures and neurological examination were performed at baseline, 3 months, 6 months, and 12 months. The primary outcome was the FXTAS Rating Scale score. Secondary outcomes included change in a battery of neuropsychological tests, an instrumented Timed up and go test, computerized dynamic posturography, 9-hole pegboard test, and balance confidence and psychiatric symptom questionnaires. Safety was also evaluated. Citicoline treatment resulted in minimal adverse events in all but one subject over the course of the study. There was a significant improvement in the Beck Anxiety Inventory (p = 0.03) and the Stroop Color-Word test (p = 0.03), with all other measures remaining stable over the course of 12 months. This open-label pilot trial of citicoline for individuals with FXTAS showed that it is safe and well tolerated in this population. Registration: This trial was registered at ClinicalTrials.gov. Identifier: NCT0219710.
Collapse
Affiliation(s)
- Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
- * E-mail:
| | - Erin E. Robertson
- Department of Communication Sciences and Disorders, Northwestern, Chicago, IL, United States of America
| | - Maureen Leehey
- University of Colorado Denver, Aurora, CO, United States of America
| | - Andrew McAsey
- Department of Cell and Molecular Medicine, Rush University, Chicago, IL United States of America
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
- Department of Biochemistry, Rush University, Chicago, IL, United States of America
- Department of Pediatrics, Rush University, Chicago, IL, United States of America
| | - Joan A. O’Keefe
- Department of Neurological Sciences, Rush University, Chicago, IL, United States of America
- Department of Cell and Molecular Medicine, Rush University, Chicago, IL United States of America
| |
Collapse
|
42
|
Robertson EE, Hall DA, Pal G, Ouyang B, Liu Y, Joyce JM, Berry-Kravis E, O'Keefe JA. Tremorography in fragile X-associated tremor/ataxia syndrome, Parkinson's disease and essential tremor. Clin Park Relat Disord 2020; 3:100040. [PMID: 34316626 PMCID: PMC8298795 DOI: 10.1016/j.prdoa.2020.100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022] Open
Abstract
Background Fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disease affecting carriers of a 55-200 CGG repeat in the fragile X mental retardation 1 gene, may receive an initial diagnosis of Parkinson's disease (PD) or essential tremor (ET) due to overlapping motor symptoms. Therefore, tremor and bradykinesia were compared in these disorders using quantitative tremorography. Methods The inertial sensor based Kinesia ™ system was used to quantify upper extremity tremor and bradykinesia in participants with FXTAS (n = 25), PD (n = 23), ET (n = 18) and controls (n = 20) and regression analysis was performed to determine whether tremorography measures distinguished between the groups. The FXTAS Rating scale (FXTAS-RS) was administered to determine whether sub-score items on the clinician rated scale correlated with tremorography variables. Results FXTAS participants had reduced finger tap speed compared to those with ET, and ET had increased kinetic tremor compared to PD. Higher kinetic tremor distinguished FXTAS from PD (p = .02), and lower finger tap speed distinguished FXTAS from ET (p = .004). FXTAS-RS tremor and bradykinesia items correlated with tremorography measures (p = .005 to <0.0001). Conclusions This is the first quantitative study to compare tremor and bradykinesia in FXTAS, PD and ET. Kinetic tremor and bradykinesia measures using a quantitative inertial sensor system distinguished FXTAS from PD and ET, respectively. Such technologies may be useful for detecting precise tremor and bradykinesia abnormalities and distinguishing the tremor and bradykinesia profiles in each of these disorders.
Collapse
Affiliation(s)
- Erin E Robertson
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States of America
| | - Gian Pal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States of America
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States of America
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States of America
| | - Jessica M Joyce
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States of America.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States of America.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, United States of America
| | - Joan A O'Keefe
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States of America.,Rush Medical College, Rush University Medical Center, Chicago, IL, United States of America
| |
Collapse
|
43
|
Park SH, Wang Z, McKinney W, Khemani P, Lui S, Christou EA, Mosconi MW. Functional motor control deficits in older FMR1 premutation carriers. Exp Brain Res 2019; 237:2269-2278. [PMID: 31161414 PMCID: PMC6679741 DOI: 10.1007/s00221-019-05566-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
Individuals with fragile X mental retardation 1 (FMR1) gene premutations are at increased risk for fragile X-associated tremor/ataxia syndrome (FXTAS) during aging. However, it is unknown whether older FMR1 premutation carriers, with or without FXTAS, exhibit functional motor control deficits compared with healthy individuals. The purpose of this study, therefore, was to determine whether older FMR1 premutation carriers exhibit impaired ability to perform functional motor tasks. Eight FMR1 premutation carriers (age: 58.88 ± 8.36 years) and eight age- and sex-matched healthy individuals (60.13 ± 9.25 years) performed (1) a steady isometric force control task with the index finger at 20% of their maximum voluntary contraction (MVC) and; (2) a single-step task. During the finger abduction task, firing rate of multiple motor units of the first dorsal interosseous (FDI) muscle was recorded. Compared with healthy controls, FMR1 premutation carriers exhibited (1) greater force variability (coefficient of variation of force) during isometric force (1.48 ± 1.02 vs. 0.63 ± 0.37%; P = 0.04); (2) reduced firing rate of multiple motor units during steady force, and; (3) reduced velocity of their weight transfer during stepping (156.62 ± 26.24 vs. 191.86 ± 18.83 cm/s; P = 0.01). These findings suggest that older FMR1 premutation carriers exhibit functional motor control deficits that reflect either subclinical issues associated with premutations independent of FXTAS, or prodromal markers of the development of FXTAS.
Collapse
Affiliation(s)
- Seoung Hoon Park
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, USA
| | - Walker McKinney
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Su Lui
- Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA.
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
44
|
Fay-Karmon T, Hassin-Baer S. The spectrum of tremor among carriers of the FMR1 premutation with or without the fragile X-associated tremor/ataxia syndrome (FXTAS). Parkinsonism Relat Disord 2019; 65:32-38. [DOI: 10.1016/j.parkreldis.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
45
|
Nayar K, McKinney W, Hogan AL, Martin GE, La Valle C, Sharp K, Berry-Kravis E, Norton ES, Gordon PC, Losh M. Language processing skills linked to FMR1 variation: A study of gaze-language coordination during rapid automatized naming among women with the FMR1 premutation. PLoS One 2019; 14:e0219924. [PMID: 31348790 PMCID: PMC6660192 DOI: 10.1371/journal.pone.0219924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023] Open
Abstract
The FMR1 premutation (PM) is relatively common in the general population. Evidence suggests that PM carriers may exhibit subtle differences in specific cognitive and language abilities. This study examined potential mechanisms underlying such differences through the study of gaze and language coordination during a language processing task (rapid automatized naming; RAN) among female carriers of the FMR1 PM. RAN taps a complex set of underlying neuropsychological mechanisms, with breakdowns implicating processing disruptions in fundamental skills that support higher order language and executive functions, making RAN (and analysis of gaze/language coordination during RAN) a potentially powerful paradigm for revealing the phenotypic expression of the FMR1 PM. Forty-eight PM carriers and 56 controls completed RAN on an eye tracker, where they serially named arrays of numbers, letters, colors, and objects. Findings revealed a pattern of inefficient language processing in the PM group, including a greater number of eye fixations (namely, visual regressions) and reduced eye-voice span (i.e., the eyes' lead over the voice) relative to controls. Differences were driven by performance in the latter half of the RAN arrays, when working memory and processing load are the greatest, implicating executive skills. RAN deficits were associated with broader social-communicative difficulties among PM carriers, and with FMR1-related molecular genetic variation (higher CGG repeat length, lower activation ratio, and increased levels of the fragile X mental retardation protein; FMRP). Findings contribute to an understanding of the neurocognitive profile of PM carriers and indicate specific gene-behavior associations that implicate the role of the FMR1 gene in language-related processes.
Collapse
Affiliation(s)
- Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Walker McKinney
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas, United States of America
| | - Abigail L. Hogan
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Gary E. Martin
- St. John’s University, Communication Sciences and Disorders, Queens, New York, United States of America
| | - Chelsea La Valle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, Boston University, Boston, Massachusetts, United States of America
| | - Kevin Sharp
- Pediatrics, Rush University Medical Center, Chicago, Illinois, United States of America
| | | | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Peter C. Gordon
- Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
46
|
O'Keeffe C, Taboada LP, Feerick N, Gallagher L, Lynch T, Reilly RB. Complexity based measures of postural stability provide novel evidence of functional decline in fragile X premutation carriers. J Neuroeng Rehabil 2019; 16:87. [PMID: 31299981 PMCID: PMC6624948 DOI: 10.1186/s12984-019-0560-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative movement disorder characterized by tremor, ataxic gait, and balance issues resulting from a premutation of the Fragile X Mental Retardation 1 (FMR1) gene. No biomarkers have yet been identified to allow early diagnosis of FXTAS, however, recent studies have reported subtle issues in the stability of younger premutation carriers, before disease onset. This study investigates the efficacy of multiscale entropy analysis (MSE) in detecting early changes in the motor system of premutation carriers without FXTAS. METHODS Sway complexity of 12 female Premutation carriers and 15 healthy Controls were measured under four conditions: eyes open, closed, and two dual-task conditions. A Sustained Attention Response Task (SART) and a working memory based N-Back task were employed to increase cognitive load while standing on the forceplate. A Complexity Index (Ci) was calculated for anterior-posterior (AP) and mediolateral (ML) sway. Independent t-tests were used to assess between-group differences and Oneway repeated measures ANOVA were used to assess within group differences with Bonferroni corrections to adjust for multiple comparisons. RESULTS Group performances were comparable with eyes open and closed conditions. The Carrier group's Ci was consistent across tasks and conditions while the Control group's AP Ci increased significantly during the cognitive dual-task (p = 0.001). There was also a strong correlation between CGG repeat length and complexity for the Carrier group (p = 0.004). SIGNIFICANCE Increased sway complexity is believed to stem from reallocation of attention to facilitate the increased cognitive demands of dual-tasks. Carriers' complexity did not change during dual-tasks, possibly indicating capacity interference and inefficient division of attention. Lower sway complexity in carriers suggests diminished adaptive capacity under stress as well as degradation of motor functioning. Therefore, sway complexity may be a useful tool in identifying early functional decline in FMR1 premutation carriers as well as monitoring progression towards disease onset.
Collapse
Affiliation(s)
- Clodagh O'Keeffe
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, 152 - 160 Pearse St, Dublin 2, Ireland. .,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.
| | - Laura P Taboada
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, 152 - 160 Pearse St, Dublin 2, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Niamh Feerick
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, 152 - 160 Pearse St, Dublin 2, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Louise Gallagher
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Timothy Lynch
- The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland.,Centre for Neuroscience, Conway Institute, University College Dublin, Dublin, Ireland.,Mater Misericordiae University Hospital, Dublin, Ireland
| | - Richard B Reilly
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, 152 - 160 Pearse St, Dublin 2, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Salcedo-Arellano MJ, Hagerman RJ, Martínez-Cerdeño V. [Fragile X associated tremor/ataxia syndrome: its clinical presentation, pathology, and treatment]. Rev Neurol 2019; 68:199-206. [PMID: 30805918 PMCID: PMC7001878 DOI: 10.33588/rn.6805.2018457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease associated with the repetition of CGG triplets (55-200 CGG repetitions) in the FMR1 gene. The premutation of the FMR1 gene, contrasting with the full mutation (more than 200 CGG repetitions), presents an increased production of messenger and a similar or slightly decreased production of FMRP protein. FXTAS affects 40% of men and 16% of women carriers of the premutation. It presents with a wide constellation of neurological signs such as intention tremor, cerebellar ataxia, parkinsonism, executive function deficits, peripheral neuropathy and cognitive decline leading to dementia among others. In this review, we present what is currently known about the molecular mechanism, the radiological findings and the pathology, as well as the complexity of the diagnosis and management of FXTAS.
Collapse
Affiliation(s)
- María Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine and Shriners
Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis
School of Medicine, Sacramento, CA, USA
| |
Collapse
|
48
|
Hall DA, Stebbins GT, Jacquemont S, Berry-Kravis E, Goetz CG, Hagerman R, Zhang L, Leehey MA. Clinimetric Properties of the Fragile X-associated Tremor Ataxia Syndrome Rating Scale. Mov Disord Clin Pract 2019; 6:120-124. [PMID: 30838310 DOI: 10.1002/mdc3.12708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/27/2018] [Accepted: 09/15/2018] [Indexed: 11/07/2022] Open
Abstract
Background There are currently no proven treatments for fragile X-associated tremor and ataxia syndrome (FXTAS). Validated outcome measures are needed in order to plan and conduct clinical trials to aid in the development of therapy. Methods This study examined the reliability and construct validity of the FXTAS Rating Scale. The study was conducted by using ratings from movement disorder specialists, who were blinded to gene status, on the FXTAS Rating Scale. Results In 295 premutation carriers with and without FXTAS, 33 scale items showed a high level of overall reliability, adequate item-to-total correlations and construct validity. Factor analysis revealed four components. Conclusions The result demonstrates that many items in the scale meet standard clinimetric criteria, but modification of the scale improved the overall utility.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences and Pediatrics Rush University Chicago Illinois United States
| | - Glenn T Stebbins
- Department of Neurological Sciences and Pediatrics Rush University Chicago Illinois United States
| | | | - Elizabeth Berry-Kravis
- Department of Neurological Sciences and Pediatrics Rush University Chicago Illinois United States
- Department of Pediatrics Rush University Chicago Illinois United States
| | - Christopher G Goetz
- Department of Neurological Sciences and Pediatrics Rush University Chicago Illinois United States
| | - Randi Hagerman
- MIND Institute and Department of Pediatrics University of California Davis School of Medicine Sacramento CA United States
| | - Lin Zhang
- Department of Neurology University of California Davis School of Medicine Sacramento CA United States
| | - Maureen A Leehey
- Department of Neurology University of Colorado School of Medicine Aurora Colorado United States
| |
Collapse
|
49
|
Wang Z, Khemani P, Schmitt LM, Lui S, Mosconi MW. Static and dynamic postural control deficits in aging fragile X mental retardation 1 (FMR1) gene premutation carriers. J Neurodev Disord 2019; 11:2. [PMID: 30665341 PMCID: PMC6341725 DOI: 10.1186/s11689-018-9261-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Individuals with premutation alleles of the fragile X mental retardation 1 (FMR1) gene are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) during aging. Characterization of motor issues associated with aging in FMR1 premutation carriers is needed to determine neurodegenerative processes and establish new biobehavioral indicators to help identify individuals at greatest risk of developing FXTAS. METHODS We examined postural stability in 18 premutation carriers ages 46-77 years and 14 age-matched healthy controls. Participants completed a test of static stance and two tests of dynamic postural sway on a force platform to quantify postural variability and complexity. CGG repeat length was measured for each premutation carrier, and MRI and neurological evaluations were conducted to identify carriers who currently met criteria for FXTAS. Of the 18 premutation carriers, seven met criteria for definite/probable FXTAS (FXTAS+), seven showed no MRI or neurological signs of FXTAS (FXTAS-), and four were inconclusive due to insufficient data. RESULTS Compared to controls, premutation carriers showed increased center of pressure (COP) variability in the mediolateral (COPML) direction during static stance and reduced COP variability in the anterior-posterior (COPAP) direction during dynamic AP sway. They also showed reductions in COPML complexity during each postural condition. FXTAS+ individuals showed reduced COPAP variability compared to FXTAS- carriers and healthy controls during dynamic AP sway. Across all carriers, increased sway variability during static stance and decreased sway variability in target directions during dynamic sways were associated with greater CGG repeat length and more severe neurologically rated posture and gait abnormalities. CONCLUSION Our findings indicate that aging FMR1 premutation carriers show static and dynamic postural control deficits relative to healthy controls implicating degenerative processes of spinocerebellar and cerebellar-brainstem circuits that may be independent of or precede the onset of FXTAS. Our finding that FXTAS+ and FXTAS- premutation carriers differed on their level of intentional AP sway suggests that neural mechanisms of dynamic postural control may be differentially impacted in patients with FXTAS, and its measurement may be useful for rapidly and precisely identifying disease presence and onset.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, 32611, USA. .,University of Florida, 1225 Center Drive, PO Box 100164, Gainesville, FL, 326100164, USA.
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, Seattle, WA, 98121, USA
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, 66045, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, 66045, USA.,Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
50
|
Okoniewski KC, Wheeler AC, Lee S, Boyea B, Raspa M, Taylor JL, Bailey DB. Early Identification of Fragile X Syndrome through Expanded Newborn Screening. Brain Sci 2019; 9:brainsci9010004. [PMID: 30609779 PMCID: PMC6356907 DOI: 10.3390/brainsci9010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/07/2022] Open
Abstract
Over the past 20 years, research on fragile X syndrome (FXS) has provided foundational understanding of the complex experiences of affected individuals and their families. Despite this intensive focus, there has been little progress on earlier identification, with the average age of diagnosis being 3 years. For intervention and treatment approaches to have the greatest impact, they need to begin shortly after birth. To access this critical timespan, differential methods of earlier identification need to be considered, with an emerging focus on newborn screening practices. Currently, barriers exist that prevent the inclusion of FXS on standard newborn screening panels. To address these barriers, an innovative program is being implemented in North Carolina to offer voluntary screening for FXS under a research protocol, called Early Check. This program addresses the difficulties observed in prior pilot studies, such as recruitment, enrollment, lab testing, and follow-up. Early Check provides an opportunity for stakeholders and the research community to continue to gain valuable information about the feasibility and greater impact of newborn screening on the FXS population.
Collapse
Affiliation(s)
| | - Anne C Wheeler
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | - Stacey Lee
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | - Beth Boyea
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | | | - Donald B Bailey
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| |
Collapse
|