1
|
Schenck JK, Clarkson-Paredes C, Pushkarsky T, Wang Y, Miller RH, Bukrinsky MI. Nef mediates neuroimmune response, myelin impairment, and neuronal injury in EcoHIV-infected mice. Life Sci Alliance 2025; 8:e202402879. [PMID: 39532531 PMCID: PMC11557684 DOI: 10.26508/lsa.202402879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The introduction of antiretroviral therapy has markedly improved the management of HIV-associated neurocognitive disorders (HAND). However, HAND still affects nearly half of HIV-infected individuals, presenting significant challenges to their well-being. This highlights the critical need for a deeper understanding of HAND mechanisms. Among HIV viral proteins, Nef is notable for its multifaceted role in HIV pathogenesis, though its specific involvement in HAND remains unclear. To investigate this, we used a murine model infected with Nef-expressing (EcoHIV) and Nef-deficient (EcoHIVΔNef) murine HIV. Comparative analyses revealed increased neuroinflammation and reduced myelin and neuronal integrity in EcoHIV-infected brains compared with those with EcoHIVΔNef. Both viruses induced astrogliosis, with stronger GFAP activation in Nef-deficient infections. These findings suggest that Nef contributes to neuroinflammation, primarily through microglial targeting and demyelination, although other factors may regulate astrogliosis. Our results indicate that Nef may significantly contribute to neuronal injury in EcoHIV-infected mice, offering insights into Nef-induced neuropathology in HAND and guiding future research.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Yongsen Wang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Neth BJ, Huynh K, Giles C, Wang T, Mellett NA, Duong T, Blach C, Schimmel L, Register TC, Blennow K, Zetterberg H, Batra R, Schweickart A, Dilmore AH, Martino C, Arnold M, Krumsiek J, Han X, Dorrestein PC, Knight R, Meikle PJ, Craft S, Kaddurah-Daouk R. Consuming a modified Mediterranean ketogenic diet reverses the peripheral lipid signature of Alzheimer's disease in humans. COMMUNICATIONS MEDICINE 2025; 5:11. [PMID: 39779882 PMCID: PMC11711287 DOI: 10.1038/s43856-024-00682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a major neurodegenerative disorder with significant environmental factors, including diet and lifestyle, influencing its onset and progression. Although previous studies have suggested that certain diets may reduce the incidence of AD, the underlying mechanisms remain unclear. METHOD In this post-hoc analysis of a randomized crossover study of 20 elderly adults, we investigated the effects of a modified Mediterranean ketogenic diet (MMKD) on the plasma lipidome in the context of AD biomarkers, analyzing 784 lipid species across 47 classes using a targeted lipidomics platform. RESULTS Here we identified substantial changes in response to MMKD intervention, aside from metabolic changes associated with a ketogenic diet, we identified a a global elevation across all plasmanyl and plasmenyl ether lipid species, with many changes linked to clinical and biochemical markers of AD. We further validated our findings by leveraging our prior clinical studies into lipid related changeswith AD (n = 1912), and found that the lipidomic signature with MMKD was inversely associated with the lipidomic signature of prevalent and incident AD. CONCLUSIONS Intervention with a MMKD was able to alter the plasma lipidome in ways that contrast with AD-associated patterns. Given its low risk and cost, MMKD could be a promising approach for prevention or early symptomatic treatment of AD.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Thy Duong
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Thomas C Register
- Department of Pathology - Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Dalmau J, Dalakas MC, Kolson DL, Pröbstel AK, Paul F, Zamvil SS. Ten Years of Neurology® Neuroimmunology & Neuroinflammation: Decade in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200363. [PMID: 39724529 DOI: 10.1212/nxi.0000000000200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Josep Dalmau
- IDIBAPS-CaixaResearch Institute, University Hospital Clínic of Barcelona, Barcelona, Spain
- University of Pennsylvania, Philadelphia
| | - Marinos C Dalakas
- University of Athens Medical School, Greece
- Jefferson University, Philadelphia, PA
| | | | - Anne-Katrin Pröbstel
- Departments of Neurology, University Hospital of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco
| |
Collapse
|
4
|
Al-Abdulrasul H, Ajalin R, Tuisku J, Zetterberg H, Blennow K, Vahlberg T, Ekblad L, Helin S, Forsback S, Rinne JO, Brück A. Neuroinflammation in Parkinson's disease: A study with [ 11C]PBR28 PET and cerebrospinal fluid markers. Parkinsonism Relat Disord 2024; 130:107177. [PMID: 39531949 DOI: 10.1016/j.parkreldis.2024.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate neuroinflammation in Parkinson's disease (PD) with [11C]PBR28 positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers, and the relationship to dopaminergic functioning measured with 6-[18F]-fluoro-L-dopa ([18F]FDOPA) PET. METHODS The clinical cohort consisted of 20 subjects with PD and 51 healthy controls (HC). All HC and 15 PD participants underwent [11C]PBR28 High Resolution Research Tomograph (HRRT) PET for the quantitative assessment of cerebral binding to the translocator protein (TSPO), a neuroinflammation marker. CSF samples were available from 17 subjects with PD and 21 HC and were examined for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), neurogranin (NG), alpha-synuclein (aSyn) and oligo-alpha-synuclein. All subjects with PD underwent [18F]FDOPA HRRT PET. RESULTS While the subjects with PD and HC did not differ in the total volume of distribution (VT) of [11C]PBR28 in any studied brain regions, higher levels of neuroinflammation and neurodegeneration CSF biomarkers sTREM2 and NG, respectively were associated with more severe motor symptoms evaluated by The Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) (r = 0.52, p = 0.041 and r = 0.59, p = 0.016 respectively). Additionally, in the PD group increased [11C]PBR28 VT in the basal ganglia and substantia nigra (SN) was related to higher levels of neuroinflammation biomarker YKL-40 (p < 0.01). CONCLUSION Associations between CSF biomarkers, motor disability and [11C]PBR28 VT in the striatum and SN may support a role for neuroinflammation in PD.
Collapse
Affiliation(s)
- H Al-Abdulrasul
- Turku PET Centre, University of Turku, Turku, Finland; Department of Neurology, Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland.
| | - R Ajalin
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - J Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - T Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku, Turku, Finland
| | - L Ekblad
- Turku PET Centre, University of Turku, Turku, Finland
| | - S Helin
- Turku PET Centre, University of Turku, Turku, Finland
| | - S Forsback
- Turku PET Centre, University of Turku, Turku, Finland
| | - J O Rinne
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Finland
| | - A Brück
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
7
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph SB, Swanstrom R, Price RW, Gisslén M. Changes in cerebrospinal fluid proteins across the spectrum of untreated and treated chronic HIV-1 infection. PLoS Pathog 2024; 20:e1012470. [PMID: 39316609 PMCID: PMC11469498 DOI: 10.1371/journal.ppat.1012470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/11/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers contributed by uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of CSF proteins in HIV-associated dementia (HAD) and neurosymptomatic CSF escape (NSE). These reveal a complex but coherent picture of CSF protein changes with highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of systemic HIV-1 progression that included two common patterns, designated as lymphoid and myeloid patterns, related to principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will supplement this report to provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, advancing the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
Affiliation(s)
- Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Paola Cinque
- Unit of Neurovirology, San Raffaele Hospital, Milan, Italy
- Unit of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Ameet Dravid
- HIV Medicine and Infectious Diseases, Poona Hospital and Research Centre, Pune, India
- Noble Hospital and Research Centre, Pune, India
- Ruby Hall Clinic, Pune, India
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dietmar Fuchs
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Johanna Gostner
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Kincer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah Beth Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
8
|
Wang Y, Ye M, Ji Q, Liu Q, Xu X, Zhan Y. The longitudinal trajectory of CSF sTREM2: the alzheimer's disease neuroimaging initiative. Alzheimers Res Ther 2024; 16:138. [PMID: 38926894 PMCID: PMC11202383 DOI: 10.1186/s13195-024-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) is considered a biomarker of microglia activity. The objective of this study was to investigate the trajectory of CSF sTREM2 levels over time and examine its association with sex. METHODS A total of 1,017 participants from the Alzheimer's Disease Neuroimaging Initiative Study (ADNI) with at least one CSF sTREM2 record were included. The trajectory of CSF sTREM2 was analyzed using a growth curve model. The association between CSF sTREM2 levels and sex was assessed using linear mixed-effect models. RESULTS CSF sTREM2 levels were increased with age over time (P < 0.0001). No significant sex difference was observed in sTREM2 levels across the entire sample; however, among the APOE ε4 allele carriers, women exhibited significantly higher sTREM2 levels than men (β = 0.146, P = 0.002). CONCLUSION Our findings highlight the association between CSF sTREM2 levels and age-related increments, underscoring the potential influence of aging on sTREM2 dynamics. Furthermore, our observations indicate a noteworthy association between sex and CSF sTREM2 levels, particularly in individuals carrying the APOE ε4 allele.
Collapse
Affiliation(s)
- Yu Wang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaowei Xu
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Lin C, Kong Y, Chen Q, Zeng J, Pan X, Miao J. Decoding sTREM2: its impact on Alzheimer's disease - a comprehensive review of mechanisms and implications. Front Aging Neurosci 2024; 16:1420731. [PMID: 38912524 PMCID: PMC11190086 DOI: 10.3389/fnagi.2024.1420731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). This review comprehensively examines sTREM2's involvement in AD, focusing on its regulatory functions in microglial responses, neuroinflammation, and interactions with key pathological processes. We discuss the dynamic changes in sTREM2 levels in cerebrospinal fluid and plasma throughout AD progression, highlighting its potential as a therapeutic target. Furthermore, we explore the impact of genetic variants on sTREM2 expression and its interplay with other AD risk genes. The evidence presented in this review suggests that modulating sTREM2 activity could influence AD trajectory, making it a promising avenue for future research and drug development. By providing a holistic understanding of sTREM2's multifaceted role in AD, this review aims to guide future studies and inspire novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Lin
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Kong
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Qian Chen
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jixiang Zeng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaojin Pan
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jifei Miao
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Rachmian N, Medina S, Cherqui U, Akiva H, Deitch D, Edilbi D, Croese T, Salame TM, Ramos JMP, Cahalon L, Krizhanovsky V, Schwartz M. Identification of senescent, TREM2-expressing microglia in aging and Alzheimer's disease model mouse brain. Nat Neurosci 2024; 27:1116-1124. [PMID: 38637622 DOI: 10.1038/s41593-024-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's disease (AD) and dementia in general are age-related diseases with multiple contributing factors, including brain inflammation. Microglia, and specifically those expressing the AD risk gene TREM2, are considered important players in AD, but their exact contribution to pathology remains unclear. In this study, using high-throughput mass cytometry in the 5×FAD mouse model of amyloidosis, we identified senescent microglia that express high levels of TREM2 but also exhibit a distinct signature from TREM2-dependent disease-associated microglia (DAM). This senescent microglial protein signature was found in various mouse models that show cognitive decline, including aging, amyloidosis and tauopathy. TREM2-null mice had fewer microglia with a senescent signature. Treating 5×FAD mice with the senolytic BCL2 family inhibitor ABT-737 reduced senescent microglia, but not the DAM population, and this was accompanied by improved cognition and reduced brain inflammation. Our results suggest a dual and opposite involvement of TREM2 in microglial states, which must be considered when contemplating TREM2 as a therapeutic target in AD.
Collapse
Affiliation(s)
- Noa Rachmian
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sedi Medina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ulysse Cherqui
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagay Akiva
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Deitch
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dunya Edilbi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Liora Cahalon
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph S, Swanstrom R, Price RW, Gisslén M. Changes in Cerebrospinal Fluid Proteins across the Spectrum of Untreated and Treated Chronic HIV-1 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592451. [PMID: 38746436 PMCID: PMC11092784 DOI: 10.1101/2024.05.03.592451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers that included uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of the CSF proteins in HIV-associated dementia ( HAD ) and neurosymptomatic CSF escape ( NSE ). These reveal a complex but coherent picture of CSF protein changes that includes highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of neuroasymptomatic systemic HIV-1 progression, including two common patterns, designated as lymphoid and myeloid patterns, related to the principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, and further the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
|
12
|
Catalano AA, Yoon J, Fertuzinhos S, Reisert H, Walsh H, Kosana P, Wilson M, Gisslen M, Zetterberg H, Marra CM, Farhadian SF. Neurosyphilis is characterized by a compartmentalized and robust neuroimmune response but not by neuronal injury. MED 2024; 5:321-334.e3. [PMID: 38513660 PMCID: PMC11216317 DOI: 10.1016/j.medj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Neurosyphilis is increasing in prevalence but its pathophysiology remains incompletely understood. This study assessed for CNS-specific immune responses during neurosyphilis compared to syphilis without neurosyphilis and compared these immune profiles to those observed in other neuroinflammatory diseases. METHODS Participants with syphilis were categorized as having neurosyphilis if their cerebrospinal fluid (CSF)-venereal disease research laboratory (VDRL) test was reactive and as having syphilis without neurosyphilis if they had a non-reactive CSF-VDRL test and a white blood cell count <5/μL. Neurosyphilis and syphilis without neurosyphilis participants were matched by rapid plasma reagin titer and HIV status. CSF and plasma were assayed for markers of neuronal injury and glial and immune cell activation. Bulk RNA sequencing was performed on CSF cells, with results stratified by the presence of neurological symptoms. FINDINGS CSF neopterin and five CSF chemokines had levels significantly higher in individuals with neurosyphilis compared to those with syphilis without neurosyphilis, but no markers of neuronal injury or astrocyte activation were significantly elevated. The CSF transcriptome in neurosyphilis was characterized by genes involved in microglial activation and lipid metabolism and did not differ in asymptomatic versus symptomatic neurosyphilis cases. CONCLUSIONS The CNS immune response observed in neurosyphilis was comparable to other neuroinflammatory diseases and was present in individuals with neurosyphilis regardless of neurological symptoms, yet there was minimal evidence for neuronal or astrocyte injury. These findings support the need for larger studies of the CSF inflammatory response in asymptomatic neurosyphilis. FUNDING This work was funded by the National Institutes of Health, grants K23MH118999 (S.F.F.) and R01NS082120 (C.M.M.).
Collapse
Affiliation(s)
- Allison A Catalano
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT, USA
| | - Jennifer Yoon
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Sofia Fertuzinhos
- Bioinformatics Support Hub, Cushing/Whitney Library, Yale School of Medicine, New Haven, CT, USA
| | - Hailey Reisert
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Hannah Walsh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Priya Kosana
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT, USA
| | - Michael Wilson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina M Marra
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Shelli F Farhadian
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT, USA; Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Matos ADO, Dantas PHDS, Queiroz HAGDB, Silva-Sales M, Sales-Campos H. TREM-2: friend or foe in infectious diseases? Crit Rev Microbiol 2024; 50:1-19. [PMID: 36403150 DOI: 10.1080/1040841x.2022.2146481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM-2) is an immune receptor expressed on immune and non-immune cells, more frequently investigated in neurodegenerative disorders and considered a marker for microglia activation. In infectious diseases, the receptor was initially believed to be an anti-inflammatory molecule, opposing the inflammation triggered by TREM-1. Currently, TREM-2 is associated with different aspects in response to infectious stimuli, including the induction of bacterial phagocytosis and clearance, containment of exacerbated pro-inflammatory responses, induction of M2 differentiation and activation of Th1 lymphocytes, besides of neurological damage after viral infection. Here, we present and discuss results published in the last two decades regarding the expression, activation and functions of TREM-2 during the course of bacterial, viral, fungal and parasitic infections. A surprisingly plasticity was observed regarding the roles of the receptor in the aforementioned contexts, which largely varied according to the cell/organ and pathogen type, besides influencing disease outcome. Therefore, our review aimed to critically overview the role of TREM-2 in infectious diseases, highlighting its potential to be used as a clinical biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
14
|
Ly MT, Tuz-Zahra F, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Peskind ER, Au R, Banks SJ, Barr WB, Wethe JV, Bondi MW, Delano-Wood LM, Cantu RC, Coleman MJ, Dodick DW, McClean MD, Mez JB, Palmisano J, Martin B, Hartlage K, Lin AP, Koerte IK, Cummings JL, Reiman EM, Shenton ME, Stern RA, Bouix S, Alosco ML. Association of Vascular Risk Factors and CSF and Imaging Biomarkers With White Matter Hyperintensities in Former American Football Players. Neurology 2024; 102:e208030. [PMID: 38165330 PMCID: PMC10870736 DOI: 10.1212/wnl.0000000000208030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent data link exposure to repetitive head impacts (RHIs) from American football with increased white matter hyperintensity (WMH) burden. WMH might have unique characteristics in the context of RHI beyond vascular risk and normal aging processes. We evaluated biological correlates of WMH in former American football players, including markers of amyloid, tau, inflammation, axonal injury, neurodegeneration, and vascular health. METHODS Participants underwent clinical interviews, MRI, and lumbar puncture as part of the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy Research Project. Structural equation modeling tested direct and indirect effects between log-transformed total fluid-attenuated inversion recovery (FLAIR) lesion volumes (TLV) and the revised Framingham stroke risk profile (rFSRP), MRI-derived global metrics of cortical thickness and fractional anisotropy (FA), and CSF levels of amyloid β1-42, p-tau181, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and neurofilament light. Covariates included age, race, education, body mass index, APOE ε4 carrier status, and evaluation site. Models were performed separately for former football players and a control group of asymptomatic men unexposed to RHI. RESULTS In 180 former football players (mean age = 57.2, 36% Black), higher log(TLV) had direct associations with the following: higher rFSRP score (B = 0.26, 95% CI 0.07-0.40), higher p-tau181 (B = 0.17, 95% CI 0.01-0.43), lower FA (B = -0.28, 95% CI -0.42 to -0.13), and reduced cortical thickness (B = -0.25, 95% CI -0.45 to -0.08). In 60 asymptomatic unexposed men (mean age = 59.3, 40% Black), there were no direct effects on log(TLV) (rFSRP: B = -0.03, 95% CI -0.48 to 0.57; p-tau181: B = -0.30, 95% CI -1.14 to 0.37; FA: B = -0.07, 95% CI -0.48 to 0.42; or cortical thickness: B = -0.28, 95% CI -0.64 to 0.10). The former football players showed stronger associations between log(TLV) and rFSRP (1,069% difference in estimates), p-tau181 (158%), and FA (287%) than the unexposed men. DISCUSSION Risk factors and biological correlates of WMH differed between former American football players and asymptomatic unexposed men. In addition to vascular health, p-tau181 and diffusion tensor imaging indices of white matter integrity showed stronger associations with WMH in the former football players. FLAIR WMH may have specific risk factors and pathologic underpinnings in RHI-exposed individuals.
Collapse
Affiliation(s)
- Monica T Ly
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Fatima Tuz-Zahra
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Yorghos Tripodis
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Charles H Adler
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Laura J Balcer
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Charles Bernick
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Henrik Zetterberg
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Kaj Blennow
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Elaine R Peskind
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Rhoda Au
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Sarah J Banks
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - William B Barr
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Jennifer V Wethe
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Mark W Bondi
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Lisa M Delano-Wood
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Robert C Cantu
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Michael J Coleman
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - David W Dodick
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Michael D McClean
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Jesse B Mez
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Joseph Palmisano
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Brett Martin
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Kaitlin Hartlage
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Alexander P Lin
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Inga K Koerte
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Jeffrey L Cummings
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Eric M Reiman
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Martha E Shenton
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Robert A Stern
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Sylvain Bouix
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Michael L Alosco
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| |
Collapse
|
15
|
Qin C, Chen M, Dong MH, Yang S, Zhang H, You YF, Zhou LQ, Chu YH, Tang Y, Pang XW, Wu LJ, Tian DS, Wang W. Soluble TREM2 triggers microglial dysfunction in neuromyelitis optica spectrum disorders. Brain 2024; 147:163-176. [PMID: 37740498 DOI: 10.1093/brain/awad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/21/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, NY 14600, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
16
|
Wu Z, Yang S, Fang X, Shu Q, Chen Q. Function and mechanism of TREM2 in bacterial infection. PLoS Pathog 2024; 20:e1011895. [PMID: 38236825 PMCID: PMC10796033 DOI: 10.1371/journal.ppat.1011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2), which is a lipid sensing and phagocytosis receptor, plays a key role in immunity and inflammation in response to pathogens. Here, we review the function and signaling of TREM2 in microbial binding, engulfment and removal, and describe TREM2-mediated inhibition of inflammation by negatively regulating the Toll-like receptor (TLR) response. We further illustrate the role of TREM2 in restoring organ homeostasis in sepsis and soluble TREM2 (sTREM2) as a diagnostic marker for sepsis-associated encephalopathy (SAE). Finally, we discuss the prospect of TREM2 as an interesting therapeutic target for sepsis.
Collapse
Affiliation(s)
- Zehua Wu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shiyue Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiang Shu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Qixing Chen
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
17
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Carlander C, Brännström J, Månsson F, Elvstam O, Albinsson P, Blom S, Mattsson L, Hovmöller S, Norrgren H, Mellgren Å, Svedhem V, Gisslén M, Sönnerborg A. Cohort profile: InfCareHIV, a prospective registry-based cohort study of people with diagnosed HIV in Sweden. BMJ Open 2023; 13:e069688. [PMID: 36931676 PMCID: PMC10030896 DOI: 10.1136/bmjopen-2022-069688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE The Swedish InfCareHIV cohort was established in 2003 to ensure equal and effective care of people living with HIV (PLHIV) and enable long-term follow-up. InfCareHIV functions equally as a decision support system as a quality registry, ensuring up-to-date data reported in real time. PARTICIPANTS InfCareHIV includes data on >99% of all people with diagnosed HIV in Sweden and up to now 13 029 have been included in the cohort. InfCareHIV includes data on HIV-related biomarkers and antiretroviral therapies (ART) and also on demographics, patient-reported outcome measures and patient-reported experience measures. FINDINGS TO DATE Sweden was in 2015 the first country to reach the UNAIDS (United Nations Programme on HIV/AIDS)/WHO's 90-90-90 goals. Late diagnosis of HIV infection was identified as a key problem in the Swedish HIV-epidemic, and low-level HIV viraemia while on ART associated with all-cause mortality. Increased HIV RNA load in the cerebrospinal fluid (CSF) despite suppression of the plasma viral load was found in 5% of PLHIV, a phenomenon referred to as 'CSF viral escape'. Dolutegravir-based treatment in PLHIV with pre-existing nucleoside reverse transcriptase inhibitor-mutations was non-inferior to protease inhibitor-based regimens. An increase of transmitted drug resistance was observed in the InfCareHIV cohort. Lower efficacy for protease inhibitors was not due to lower adherence to treatment. Incidence of type 2 diabetes and insulin resistance was high in the ageing HIV population. Despite ART, the risk of infection-related cancer as well as lung cancer was increased in PLHIV compared with HIV-negative. PLHIV were less likely successfully treated for cervical precancer and more likely to have human papillomavirus types not included in current HPV vaccines. Self-reported sexual satisfaction in PLHIV is improving and is higher in women than men. FUTURE PLANS InfCareHIV provides a unique base to study and further improve long-term treatment outcomes, comorbidity management and health-related quality of life in people with HIV in Sweden.
Collapse
Affiliation(s)
- Christina Carlander
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Johanna Brännström
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm, Sweden
| | - Fredrik Månsson
- Department of Clinical Sciences, Lund University, Infectious Diseases Research Unit, Malmo, Sweden
| | - Olof Elvstam
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Växjö Central Hospital, Växjö, Sweden
| | - Pernilla Albinsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Lena Mattsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sanne Hovmöller
- Department of Infectious Diseases, Sunderby Hospital, Lulea, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences, Lund University Faculty of Science, Lund, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Veronica Svedhem
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenbrug, Sweden
| | - Anders Sönnerborg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
Orhun G, Esen F, Yilmaz V, Ulusoy C, Şanlı E, Yıldırım E, Gürvit H, Ergin Özcan P, Sencer S, Bebek N, Tüzün E. Elevated sTREM2 and NFL levels in patients with sepsis associated encephalopathy. Int J Neurosci 2023; 133:327-333. [PMID: 33851572 DOI: 10.1080/00207454.2021.1916489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis that may lead to cognitive decline. Our aim was to investigate whether the neurofilament light chain (NFL) and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) could be utilized as prognostic biomarkers in SAE. MATERIALS AND METHODS In this prospective observational study, baseline serum levels of sTREM2 and cerebrospinal fluid (CSF) levels of sTREM2 and NFL were measured by ELISA in 11 SAE patients and controls. Patients underwent daily neurological examination. Brain magnetic resonance imaging (MRI) and standard electroencephalography (EEG) were performed. Cognitive dysfunction was longitudinally assessed after discharge in 4 SAE patients using the Mini-Mental State Examination (MMSE) and Addenbrooke's Cognitive Examination-Revised (ACE-R) tests. RESULTS SAE patients showed higher CSF sTREM2 and NFL levels than controls. sTREM2 and NFL levels were not correlated with the severity measures of sepsis. Three months after discharge, 2 SAE patients displayed ACE-R scores congruent with mild cognitive impairment (MCI), persisting in one patient 12 months after discharge. SAE patients with MCI showed higher CSF NFL levels, bacteremia, and abnormal brain MRI. Patients with increased serum/CSF sTREM2 levels showed trends towards displaying poorer attention/orientation and visuo-spatial skills. CONCLUSIONS sTREM2 and NFL levels may serve as a prognostic biomarker for cognitive decline in SAE. These results lend further support for the involvement of glial activation and neuroaxonal degeneration in the physiopathology of SAE.
Collapse
Affiliation(s)
- Günseli Orhun
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Figen Esen
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Yıldırım
- Department of Psychology, Faculty of Arts and Sciences, Isik University, Istanbul, Turkey
| | - Hakan Gürvit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Perihan Ergin Özcan
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Serra Sencer
- Department of Neuroradiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia Proliferation Underlies Synaptic Dysfunction in the Prefrontal Cortex: Implications for the Pathogenesis of HIV-1-Associated Neurocognitive and Affective Alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524942. [PMID: 36711456 PMCID: PMC9882316 DOI: 10.1101/2023.01.20.524942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the predominant cell type expressing HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of a combined RNAscope multiplex fluorescent and immunostaining assay revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV innoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1+ and Ki67+ relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and post synaptic density protein 95 (PSD-95), markers of pre-synaptic and post-synaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounts for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
|
21
|
Shi X, Zhong X, Zhou H, Zhou N, Hu Y, Ning Y. The association between cerebrospinal ferritin and soluble triggering receptor expressed on myeloid cells 2 along Alzheimer's continuum. Front Neurol 2022; 13:961842. [PMID: 36408515 PMCID: PMC9669339 DOI: 10.3389/fneur.2022.961842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2023] Open
Abstract
Brain iron accumulation, which is indicated in the cerebrospinal fluid (CSF) ferritin, is associated with the development of Alzheimer's Disease (AD). Studies have indicated that iron deposition might participate in Alzheimer's pathology through the induction of microglial activation. A soluble triggering receptor expressed on myeloid cells 2 (sTrem2) in CSF is increasingly recognized as a reliable indicator for microglia activity in the brain and participates in the development of neuroinflammation. However, the association between CSF ferritin and sTrem2 under the AD continuum has not been well-established. We enrolled individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Participants were classified into healthy controls (HC, n = 46) and AD continuum (n = 105) in the combined strata of Amyloid/Tau/Neurodegeneration (ATN) mode and Clinical Dementia Rating (CDR) criteria. The associations between CSF ferritin (indicating iron burden) and sTrem2, as well as AD pathology, which is reflected by Aβ42, t-tau, and p-tau in CSF, were explored. CSF ferritin was significantly associated with sTrem2 among all participants (β = 0.517, P < 0.001, FDR < 0.001), HC (β = 0.749, P = 0.006, FDR = 0.010), and AD continuum (β = 0.488, P < 0.001, FDR < 0.001), respectively. However, ferritin predicted the accelerated sTrem2 level in those with high ferritin (β = 0.549, P = 0.036, FDR = 0.045). In conclusion, CSF ferritin serves as a potential biomarker of Trem2-indicated microglia function.
Collapse
Affiliation(s)
- Xiaolei Shi
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaomei Zhong
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Huarong Zhou
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Nan Zhou
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yachun Hu
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
22
|
Joseph J, Daley W, Lawrence D, Lorenzo E, Perrin P, Rao VR, Tsai SY, Varthakavi V. Role of macrophages in HIV pathogenesis and cure: NIH perspectives. J Leukoc Biol 2022; 112:1233-1243. [PMID: 36073341 DOI: 10.1002/jlb.4mr0722-619r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages play a significant role in HIV infection and contribute to pathogenesis of comorbidities as well as establishment of the viral reservoir in people living with HIV. While CD4+ T cells are considered the main targets of HIV infection, infected macrophages resist the cytopathic effects of infection, contributing to the persistent HIV reservoir. Furthermore, activated macrophages drive inflammation and contribute to the development of comorbidities, including HIV-associated CNS dysfunction. Better understanding the role of macrophages in HIV infection, persistence, and comorbidities can lead to development of innovative therapeutic strategies to address HIV-related outcomes in people living with HIV. In October 2021, the National Institute of Mental Health and the Ragon Institute of MGH, MIT, and Harvard conducted a virtual meeting on role of macrophages in HIV infection, pathogenesis, and cure. This review article captures the key highlights from this meeting and provides an overview of interests and activities of various NIH institutes involved in supporting research on macrophages and HIV.
Collapse
Affiliation(s)
- Jeymohan Joseph
- Division of AIDS Research, National Institute of Mental Health, 5601 Fishers Lane, Bethesda, MD, USA
| | - William Daley
- Neuroscience Center, National Institute of Neurological Disorders and Stroke, Room 6001 Executive Blvd., Bethesda, MD, 20892-9521, USA.,Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Diane Lawrence
- National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, Bethesda, MD, 20892, USA
| | - Eric Lorenzo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Peter Perrin
- National Institute of Diabetes and Digestive and Kidney Diseases, 6707 Democracy Boulevard, Bethesda, MD, 20892, USA
| | - Vasudev R Rao
- Division of AIDS Research, National Institute of Mental Health, 5601 Fishers Lane, Bethesda, MD, USA
| | - Shang-Yi Tsai
- National Institute on Drug Abuse, 3WFN, 11601 Landsdown Street, North Bethesda, MD, 20852, USA
| | - Vasundhara Varthakavi
- National Institute on Drug Abuse, 3WFN, 11601 Landsdown Street, North Bethesda, MD, 20852, USA
| |
Collapse
|
23
|
Characterization of Macrophage-Tropic HIV-1 Infection of Central Nervous System Cells and the Influence of Inflammation. J Virol 2022; 96:e0095722. [PMID: 35975998 PMCID: PMC9472603 DOI: 10.1128/jvi.00957-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.
Collapse
|
24
|
Killingsworth L, Spudich S. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 2022; 44:709-724. [PMID: 35882661 PMCID: PMC10126949 DOI: 10.1007/s00281-022-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
This review outlines the neuropathogenesis of HIV, from initial HIV entry into the central nervous system (CNS) to chronic infection, focusing on key advancements in the last 5 years. Discoveries regarding acute HIV infection reveal timing and mechanisms of early HIV entry and replication in the CNS, early inflammatory responses, and establishment of genetically distinct viral reservoirs in the brain. Recent studies additionally explore how chronic HIV infection is maintained in the CNS, examining how the virus remains in a latent "hidden" state in diverse cells in the brain, and how this leads to sustained pathological inflammatory responses. Despite viral suppression with antiretroviral therapy, HIV can persist and even replicate in the CNS, and associate with ongoing neuropathology including CD8 + T-lymphocyte mediated encephalitis. Crucial investigation to advance our understanding of the immune mechanisms that both control viral infection and lead to pathological consequences in the brain is necessary to develop treatments to optimize long-term neurologic health in people living with HIV.
Collapse
Affiliation(s)
- Lauren Killingsworth
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA.
| |
Collapse
|
25
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Fields JA, Swinton M, Sundermann EE, Scrivens N, Vallee KAJ, Moore DJ. Complement component 3 and complement factor H protein levels are altered in brain tissues from people with human immunodeficiency virus: A pilot study. Front Aging Neurosci 2022; 14:981937. [PMID: 36118688 PMCID: PMC9472593 DOI: 10.3389/fnagi.2022.981937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
People with HIV (PWH) continue to suffer from dysfunction of the central nervous system, as evidenced by HIV-associated neurocognitive disorder (HAND), despite antiretroviral therapy and suppressed viral loads. As PWH live longer they may also be at risk of age-related neurodegenerative diseases such Alzheimer’s disease (AD) and its precursor, amnestic mild cognitive impairment (aMCI). The complement system is associated with deposition of AD-related proteins such as beta amyloid (Aβ), neuroinflammation, and neurological dysfunction in PWH. Complement component 3 (C3) is a key protagonist in the complement cascade and complement factor H (CFH) is an antagonist of C3 activity. We investigated the relationship between C3 and CFH levels in the brain and Aβ plaques and neurological dysfunction in 22 PWH. We analyzed by immunoblot C3 and CFH protein levels in frontal cortex (FC) and cerebellum (CB) brain specimens from PWH previously characterized for Aβ plaque deposition. C3 and CFH protein levels were then correlated with specific cognitive domains. C3 protein levels in the FC were significantly increased in brains with Aβ plaques and in brains with HAND compared to controls. In the CB, C3 levels trended higher in brains with Aβ plaques. Overall C3 protein levels were significantly higher in the FC compared to the CB, but the opposite was true for CFH, having significantly higher levels of CFH protein in the CB compared to the FC. However, only CFH in the FC showed significant correlations with specific domains, executive function and motor performance. These findings corroborate previous results showing that complement system proteins are associated with HAND and AD neuropathogenesis.
Collapse
|
27
|
Haure-Mirande JV, Audrain M, Ehrlich ME, Gandy S. Microglial TYROBP/DAP12 in Alzheimer's disease: Transduction of physiological and pathological signals across TREM2. Mol Neurodegener 2022; 17:55. [PMID: 36002854 PMCID: PMC9404585 DOI: 10.1186/s13024-022-00552-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
TYROBP (also known as DAP12 or KARAP) is a transmembrane adaptor protein initially described as a receptor-activating subunit component of natural killer (NK) cells. TYROBP is expressed in numerous cell types, including peripheral blood monocytes, macrophages, dendritic cells, and osteoclasts, but a key point of recent interest is related to the critical role played by TYROBP in the function of many receptors expressed on the plasma membrane of microglia. TYROBP is the downstream adaptor and putative signaling partner for several receptors implicated in Alzheimer's disease (AD), including SIRP1β, CD33, CR3, and TREM2. TYROBP has received much of its current notoriety because of its importance in brain homeostasis by signal transduction across those receptors. In this review, we provide an overview of evidence indicating that the biology of TYROBP extends beyond its interaction with these four ligand-binding ectodomain-intramembranous domain molecules. In addition to reviewing the structure and localization of TYROBP, we discuss our recent progress using mouse models of either cerebral amyloidosis or tauopathy that were engineered to be TYROBP-deficient or TYROBP-overexpressing. Remarkably, constitutively TYROBP-deficient mice provided a model of genetic resilience to either of the defining proteinopathies of AD. Learning behavior and synaptic electrophysiological function were preserved at normal physiological levels even in the face of robust cerebral amyloidosis (in APP/PSEN1;Tyrobp-/- mice) or tauopathy (in MAPTP301S;Tyrobp-/- mice). A fundamental underpinning of the functional synaptic dysfunction associated with each proteotype was an accumulation of complement C1q. TYROBP deficiency prevented C1q accumulation associated with either proteinopathy. Based on these data, we speculate that TYROBP plays a key role in the microglial sensome and the emergence of the disease-associated microglia (DAM) phenotype. TYROBP may also play a key role in the loss of markers of synaptic integrity (e.g., synaptophysin-like immunoreactivity) that has long been held to be the feature of human AD molecular neuropathology that most closely correlates with concurrent clinical cognitive function.
Collapse
Affiliation(s)
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Psychiatry and the NIA-Designated Mount Sinai Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- James J Peters VA Medical Center, New York, Bronx NY 10468 USA
| |
Collapse
|
28
|
Farhadian SF, Lindenbaum O, Zhao J, Corley MJ, Im Y, Walsh H, Vecchio A, Garcia-Milian R, Chiarella J, Chintanaphol M, Calvi R, Wang G, Ndhlovu LC, Yoon J, Trotta D, Ma S, Kluger Y, Spudich S. HIV viral transcription and immune perturbations in the CNS of people with HIV despite ART. JCI Insight 2022; 7:e160267. [PMID: 35801589 PMCID: PMC9310520 DOI: 10.1172/jci.insight.160267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023] Open
Abstract
People with HIV (PWH) on antiretroviral therapy (ART) experience elevated rates of neurological impairment, despite controlling for demographic factors and comorbidities, suggesting viral or neuroimmune etiologies for these deficits. Here, we apply multimodal and cross-compartmental single-cell analyses of paired cerebrospinal fluid (CSF) and peripheral blood in PWH and uninfected controls. We demonstrate that a subset of central memory CD4+ T cells in the CSF produced HIV-1 RNA, despite apparent systemic viral suppression, and that HIV-1-infected cells were more frequently found in the CSF than in the blood. Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we show that the cell surface marker CD204 is a reliable marker for rare microglia-like cells in the CSF, which have been implicated in HIV neuropathogenesis, but which we did not find to contain HIV transcripts. Through a feature selection method for supervised deep learning of single-cell transcriptomes, we find that abnormal CD8+ T cell activation, rather than CD4+ T cell abnormalities, predominated in the CSF of PWH compared with controls. Overall, these findings suggest ongoing CNS viral persistence and compartmentalized CNS neuroimmune effects of HIV infection during ART and demonstrate the power of single-cell studies of CSF to better understand the CNS reservoir during HIV infection.
Collapse
Affiliation(s)
- Shelli F. Farhadian
- Department of Medicine, Section of Infectious Diseases, and
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ofir Lindenbaum
- Program in Applied Mathematics, and
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Jun Zhao
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, and
- Feil Family Brain & Mind Institute, Weill Cornell Medicine, New York, New York, USA
| | - Yunju Im
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hannah Walsh
- Department of Medicine, Section of Infectious Diseases, and
| | - Alyssa Vecchio
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jennifer Chiarella
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachela Calvi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale University, New Haven, Connecticut, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, and
- Feil Family Brain & Mind Institute, Weill Cornell Medicine, New York, New York, USA
| | - Jennifer Yoon
- Department of Medicine, Section of Infectious Diseases, and
| | - Diane Trotta
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yuval Kluger
- Program in Applied Mathematics, and
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Zhao C, Jiang Z, Tian L, Tang L, Zhou A, Dong T. Bioinformatics-Based Approach for Exploring the Immune Cell Infiltration Patterns in Alzheimer's Disease and Determining the Intervention Mechanism of Liuwei Dihuang Pill. Dose Response 2022; 20:15593258221115563. [PMID: 35898725 PMCID: PMC9310246 DOI: 10.1177/15593258221115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Traditional Chinese medicine (TCM) compounds have recently garnered attention for the regulation of immune cell infiltration and the prevention and treatment of Alzheimer's disease (AD). The Liuwei Dihuang Pill (LDP) has potential in this regard; however, its specific molecular mechanism currently remains unclear. Therefore, we adopted a bioinformatics approach to investigate the infiltration patterns of different types of immune cells in AD and explored the molecular mechanism of LDP intervention, with the aim of providing a new basis for improving the clinical immunotherapy of AD patients. We found that M1 macrophages showed significantly different degrees of infiltration between the hippocampal tissue samples of AD patients and healthy individuals. Four immune intersection targets of LDP in the treatment of AD were identified; they were enriched in 206 biological functions and 30 signaling pathways. Quercetin had the best docking effect with the core immune target PRKCB. Our findings suggest that infiltrated immune cells may influence the course of AD and that LDP can regulate immune cell infiltration through multi-component, multi-target, and multi-pathway approaches, providing a new research direction regarding AD immunotherapy.
Collapse
Affiliation(s)
- Chenling Zhao
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zhangsheng Jiang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Liwei Tian
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
30
|
Brinkley TE, Leng I, Register TC, Neth BJ, Zetterberg H, Blennow K, Craft S. Changes in Adiposity and Cerebrospinal Fluid Biomarkers Following a Modified Mediterranean Ketogenic Diet in Older Adults at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:906539. [PMID: 35720727 PMCID: PMC9202553 DOI: 10.3389/fnins.2022.906539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ketogenic diets have been used to treat both obesity and neurological disorders, including epilepsy and more recently Alzheimer’s disease (AD), likely due to favorable effects on both central and peripheral metabolism. Improvements in body composition have also been reported; however, it is unclear if diet-induced changes in adiposity are related to improvements in AD and related neuropathology. Purpose We examined the effects of a Modified Mediterranean Ketogenic (MMK) diet vs. an American Heart Association (AHA) diet on body weight, body composition, and body fat distribution and their association with cerebrospinal fluid (CSF) biomarkers in older adults at risk for AD. Methods Twenty adults (mean age: 64.3 ± 6.3 years, 35% Black, 75% female) were randomly assigned to a crossover trial starting with either the MMK or AHA diet for 6 weeks, followed by a 6-week washout and then the opposite diet for 6 weeks. At baseline and after each diet adiposity was assessed by dual-energy x-ray absorptiometry and CSF biomarkers were measured. Linear mixed effect models were used to examine the effect of diet on adiposity. Spearman correlations were examined to assess associations between adiposity and CSF biomarkers. Results At baseline there was a high prevalence of overweight/obesity and central adiposity, and higher visceral fat and lower peripheral fat were associated with an adverse CSF biomarker profile. The MMK and AHA diets led to similar improvements in body composition and body fat distribution. Significant correlations were found between changes in adiposity and changes in CSF biomarkers (r’s = 0.63–0.92, p’s < 0.05), with notable differences by diet. Decreases in body fat on the MMK diet were related to changes in Aβ biomarkers, whereas decreases in body fat on the AHA diet were related to changes in tau biomarkers and cholinesterase activity. Interestingly, increases in CSF Aβ on the MMK diet occurred in those with less fat loss. Conclusion An MMK diet leads to favorable changes in body composition, body fat distribution, and CSF biomarkers. Our data suggest that modest weight loss that maximizes visceral fat loss and preserves peripheral fat, may have the greatest impact on brain health. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [NCT02984540].
Collapse
Affiliation(s)
- Tina E. Brinkley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Winston-Salem, NC, United States
- *Correspondence: Tina E. Brinkley,
| | - Iris Leng
- Division of Public Health Sciences, Department of Biostatistics and Data Sciences, Winston-Salem, NC, United States
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- United Kingdom Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Winston-Salem, NC, United States
| |
Collapse
|
31
|
Murray J, Meloni G, Cortes EP, KimSilva A, Jacobs M, Ramkissoon A, Crary JF, Morgello S. Frontal lobe microglia, neurodegenerative protein accumulation, and cognitive function in people with HIV. Acta Neuropathol Commun 2022; 10:69. [PMID: 35526056 PMCID: PMC9080134 DOI: 10.1186/s40478-022-01375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Microglia are implicated in Alzheimer's Disease (AD) pathogenesis. In a middle-aged cohort enriched for neuroinflammation, we asked whether microgliosis was related to neocortical amyloid beta (A[Formula: see text]) deposition and neuronal phosphorylated tau (p-tau), and whether microgliosis predicted cognition. Frontal lobe tissue from 191 individuals autopsied with detectable (HIV-D) and undetectable (HIV-U) HIV infection, and 63 age-matched controls were examined. Immunohistochemistry (IHC) was used to evaluate A[Formula: see text] plaques and neuronal p-tau, and quantitate microgliosis with markers Iba1, CD163, and CD68 in large regions of cortex. Glia in the A[Formula: see text] plaque microenvironment were quantitated by immunofluorescence (IF). The relationship of microgliosis to cognition was evaluated. No relationship between A[Formula: see text] or p-tau accumulation and overall severity of microgliosis was discerned. Individuals with uncontrolled HIV had the greatest microgliosis, but fewer A[Formula: see text] plaques; they also had higher prevalence of APOE [Formula: see text]4 alleles, but died earlier than other groups. HIV group status was the only variable predicting microgliosis over large frontal regions. In contrast, in the A[Formula: see text] plaque microenvironment, APOE [Formula: see text]4 status and sex were dominant predictors of glial infiltrates, with smaller contributions of HIV status. Cognition correlated with large-scale microgliosis in HIV-D, but not HIV-U, individuals. In this autopsy cohort, over large regions of cortex, HIV status predicts microgliosis, whereas in the A[Formula: see text] plaque microenvironment, traditional risk factors of AD (APOE [Formula: see text]4 and sex) are stronger determinants. While microgliosis does not predict neurodegenerative protein deposition, it does predict cognition in HIV-D. Increased neuroinflammation does not initiate amyloid deposition in a younger group with enhanced genetic risk. However, once A[Formula: see text] deposits are established, APOE [Formula: see text]4 predicts increased plaque-associated inflammation.
Collapse
Affiliation(s)
- Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Gregory Meloni
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Etty P Cortes
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ariadna KimSilva
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Michelle Jacobs
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Alyssa Ramkissoon
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - John F Crary
- Department of Neuroscience, The Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA.
- Department of Neuroscience, The Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
32
|
Brown GC, St George-Hyslop P. Does Soluble TREM2 Protect Against Alzheimer's Disease? Front Aging Neurosci 2022; 13:834697. [PMID: 35153729 PMCID: PMC8831327 DOI: 10.3389/fnagi.2021.834697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 02/02/2023] Open
Abstract
Triggering Receptor Expressed in Myeloid Cells 2 (TREM2) is a pattern recognition receptor on myeloid cells, and is upregulated on microglia surrounding amyloid plaques in Alzheimer's disease (AD). Rare, heterozygous mutations in TREM2 (e.g., R47H) increase AD risk several fold. TREM2 can be cleaved at the plasma membrane by metalloproteases to release the ectodomain as soluble TREM2 (sTREM2). Wild-type sTREM2 binds oligomeric amyloid beta (Aβ) and acts as an extracellular chaperone, blocking and reversing Aβ oligomerization and fibrillization, and preventing Aβ-induced neuronal loss in vitro. Whereas, R47H sTREM2 increases Aβ fibrillization and neurotoxicity. AD brains expressing R47H TREM2 have more fibrous plaques with more neuritic pathology around these plaques, consistent with R47H sTREM2 promoting Aβ fibrillization relative to WT sTREM2. Brain expression or injection of wild-type sTREM2 reduces pathology in amyloid models of AD in mice, indicating that wild-type sTREM2 is protective against amyloid pathology. Levels of sTREM2 in cerebrospinal fluid (CSF) fall prior to AD, rise in early AD, and fall again in late AD. People with higher sTREM2 levels in CSF progress more slowly into and through AD than do people with lower sTREM2 levels, suggesting that sTREM2 protects against AD. However, some of these experiments can be interpreted as full-length TREM2 protecting rather than sTREM2, and to distinguish between these two possibilities, we need more experiments testing whether sTREM2 itself protects in AD and AD models, and at what stage of disease. If sTREM2 is protective, then treatments could be designed to elevate sTREM2 in AD.
Collapse
Affiliation(s)
- Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Guy C. Brown
| | - Peter St George-Hyslop
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Filipello F, Goldsbury C, Feng YS, Locca A, Karch CM, Piccio L. Soluble TREM2: Innocent bystander or active player in neurological diseases? Neurobiol Dis 2022; 165:105630. [PMID: 35041990 PMCID: PMC10108835 DOI: 10.1016/j.nbd.2022.105630] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed by macrophages and microglia in the central nervous system (CNS). TREM2 has attracted a lot of interest in the past decade for its critical role in modulating microglia functions under homeostatic conditions and in neurodegenerative diseases. Genetic variation in TREM2 is sufficient to cause Nasu-Hakola disease, a rare pre-senile dementia with bone cysts, and to increase risk for Alzheimer's disease, frontotemporal dementia, and other neurodegenerative disorders. Beyond the role played by TREM2 genetic variants in these diseases, TREM2 engagement is a key step in microglia activation in response to different types of tissue injury (e.g. β-Amyloid deposition, demyelination, apoptotic cell death) leading to enhanced microglia metabolism, phagocytosis, proliferation and survival. TREM2 also exists as a soluble form (sTREM2), generated from receptor shedding or alternative splicing, which is detectable in plasma and cerebrospinal fluid (CSF). Genetic variation, physiological conditions and disease status impact CSF sTREM2 levels. Clinical and preclinical studies suggest that targeting and/or monitoring sTREM2 could have clinical and therapeutic implications. Despite the critical role of sTREM2 in neurologic disease, its function remains poorly understood. Here, we review the current literature on sTREM2 regarding its origin, genetic variation, and possible functions as a biomarker in neurological disorders and as a potential active player in CNS diseases and target for therapies.
Collapse
Affiliation(s)
- Fabia Filipello
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Claire Goldsbury
- Brain and Mind Centre and Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - You Shih Feng
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alberto Locca
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Brain and Mind Centre and Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Di Liberto G, Egervari K, Kreutzfeldt M, Schürch CM, Hewer E, Wagner I, Du Pasquier R, Merkler D. OUP accepted manuscript. Brain 2022; 145:2730-2741. [PMID: 35808999 PMCID: PMC9420019 DOI: 10.1093/brain/awac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
Glial cell activation is a hallmark of several neurodegenerative and neuroinflammatory diseases. During HIV infection, neuroinflammation is associated with cognitive impairment, even during sustained long-term suppressive antiretroviral therapy. However, the cellular subsets contributing to neuronal damage in the CNS during HIV infection remain unclear. Using post-mortem brain samples from eight HIV patients and eight non-neurological disease controls, we identify a subset of CNS phagocytes highly enriched in LGALS3, CTSB, GPNMB and HLA-DR, a signature identified in the context of ageing and neurodegeneration. In HIV patients, the presence of this phagocyte phenotype was associated with synaptic stripping, suggesting an involvement in the pathogenesis of HIV-associated neurocognitive disorder. Taken together, our findings elucidate some of the molecular signatures adopted by CNS phagocytes in HIV-positive patients and contribute to the understanding of how HIV might pave the way to other forms of cognitive decline in ageing HIV patient populations.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Doron Merkler
- Correspondence to: Doron Merkler Centre Médical Universitaire (CMU) 1, rue Michel Servet 1211 Geneva, Switzerland E-mail:
| |
Collapse
|
35
|
Wu Y, Wang M, Yin H, Ming S, Li X, Jiang G, Liu Y, Wang P, Zhou G, Liu L, Gong S, Zhou H, Shan H, Huang X. TREM-2 is a sensor and activator of T cell response in SARS-CoV-2 infection. SCIENCE ADVANCES 2021; 7:eabi6802. [PMID: 34878838 PMCID: PMC8654301 DOI: 10.1126/sciadv.abi6802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Limited understanding of T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impeded vaccine development and drug discovery for coronavirus disease 2019 (COVID-19). We found that triggering receptor expressed on myeloid cells 2 (TREM-2) was induced in T cells in the blood and lungs of patients with COVID-19. After binding to SARS-CoV-2 membrane (M) protein through its immunoglobulin domain, TREM-2 then activated the CD3ζ/ZAP70 complex, leading to STAT1 phosphorylation and T-bet transcription. In vitro stimulation with M protein-reconstituted pseudovirus or recombinant M protein, and TREM-2 promoted the T helper cell 1 (TH1) cytokines interferon-γ and tumor necrosis factor. In vivo infection of CD4–TREM-2 conditional knockout mice with murine coronavirus mouse hepatitis virus A-59 showed that intrinsic TREM-2 in T cells enhanced TH1 response and viral clearance, thus aggravating lung destruction. These findings demonstrate a previously unidentified role for TREM-2 in SARS-CoV-2 infection, and suggest potential strategies for drug discovery and clinical management of COVID-19.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
| | - Manni Wang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Huan Yin
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Siqi Ming
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Xingyu Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ye Liu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Peihui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Guangde Zhou
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
| | - Hong Shan
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province 510623, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong Province 511518, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
- Corresponding author.
| |
Collapse
|
36
|
Yu T, Fu H, Sun JJ, Ding DR, Wang H. miR-106b-5p upregulation is associated with microglial activation and inflammation in the mouse hippocampus following status epilepticus. Exp Brain Res 2021; 239:3315-3325. [PMID: 34476536 DOI: 10.1007/s00221-021-06208-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
To investigate the association of miR-106b-5p with neuroinflammation and microglial activation in a status epilepticus (SE) mouse model. We examined changes in the expression of microRNA-106b-5p (miRNA-106b-5p), repulsive guidance molecule A (RGMa), triggering receptor expressed on myeloid cells 2 (TREM2), and the microglia-related markers interleukin (IL)-1β, IL-4, IL-6, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1) in the mouse hippocampus of the lithium-pilocarpine-induced SE mouse model. Eighty-four female C57BL/6 mice were randomly divided into a normal control group (n = 12), and six SE groups (n = 12/group), which were monitored at 6 h and at 1, 3, 7, 14, and 21 days (d) post-SE induction. Unlike in the dentate gyrus, immunohistochemical staining revealed prominent neuronal swelling at 6 h, significant neuronal loss and apoptosis on day 3, and recovery by day 14 in the hippocampal cornu ammonis (CA)1 and CA3 pyramidal cells in SE mice. We noted elevated levels of miRNA-106b-5p and all microglia-related markers, which peaked at 3 days post-SE, except IL-4, which peaked at 7 days post-SE, indicating inflammation and microglial activation. RGMa and TREM2 levels decreased at 6 h post-SE. All markers but miRNA-106b-5p, RGMa, and TREM2 returned to baseline levels at 21 days post-SE. Dual luciferase reporter gene assay showed that microRNA-106b-5p can interact with RGMa. We observed that miR-106b-5p level increased while both RGMa and TREM2 levels decreased post-SE and showed associations with microglial activation and inflammation in the mouse hippocampus, suggesting their potential as SE therapeutic targets.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Hui Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China.,Department of Pediatrics, Tangshan Maternal and Child Health Care Hospital, Tangshan City, 063000, Hebei Province, China
| | - Jing-Jing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Dan-Rui Ding
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China.
| |
Collapse
|
37
|
Ioannides ZA, Csurhes PA, Swayne A, Foubert P, Aftab BT, Pender MP. Correlations between macrophage/microglial activation marker sTREM-2 and measures of T-cell activation, neuroaxonal damage and disease severity in multiple sclerosis. Mult Scler J Exp Transl Clin 2021; 7:20552173211019772. [PMID: 34158970 PMCID: PMC8182190 DOI: 10.1177/20552173211019772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/29/2021] [Indexed: 01/06/2023] Open
Abstract
Background Soluble triggering receptor expressed on myeloid cells-2 (sTREM-2) is a marker of macrophage and microglial activation and is increased in the cerebrospinal fluid (CSF) in multiple sclerosis (MS). Objective To determine the relationships among sTREM-2, T cell activation, neuroaxonal damage and clinical features of MS. Methods Enzyme-linked immunosorbent assays were used to measure the levels of sTREM-2, soluble CD27 (sCD27, a marker of T cell activation), neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH) in the CSF of 42 patients with MS (including nine with clinically isolated syndrome) and 15 patients with other neurological diseases (OND) and in the serum of 164 patients with MS, 87 patients with OND and 62 healthy controls. Results sTREM-2 was significantly elevated in the CSF (p = 0.012), but not in the serum, in MS compared to OND. In MS, CSF sTREM-2 correlated positively with CSF sCD27 (p = 0.005), CSF NfL (p = 0.0001), CSF pNfH (p = 0.0006), Expanded Disability Status Scale (EDSS) score (p = 0.0079) and MS Severity Score (MSSS) (p = 0.0006). Conclusion In MS the level of sTREM-2 in the CSF is related to measures of T cell activation (sCD27), neuroaxonal damage (NfL and pNfH), disability (EDSS) and disease severity (MSSS).
Collapse
Affiliation(s)
- Zara A Ioannides
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Peter A Csurhes
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Swayne
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Michael P Pender
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
38
|
Targa A, Dakterzada F, Benítez I, López R, Pujol M, Dalmases M, Arias A, Sánchez-de-la-Torre M, Zetterberg H, Blennow K, Pamplona R, Jové M, Barbé F, Piñol-Ripoll G. Decrease in sleep depth is associated with higher cerebrospinal fluid neurofilament light levels in patients with Alzheimer's disease. Sleep 2021; 44:5885125. [PMID: 32766837 DOI: 10.1093/sleep/zsaa147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY OBJECTIVES The majority of studies investigating the association between sleep and Alzheimer's disease (AD) biomarkers have been performed in healthy participants. Our objective was to investigate the association between sleep and several biomarkers that reflect distinct aspects of AD physiopathology. METHODS The cohort included 104 individuals with mild-moderate AD. The participants were submitted to one-night polysomnography, and cerebrospinal fluid was collected in the following morning to measure the selected biomarkers associated with amyloid deposition, tau pathology, neurodegeneration, axonal damage, synaptic integrity, neuroinflammation, and oxidative damage. RESULTS There was a positive correlation between neurofilament light (NF-L) and the time spent in stage 1 of non-rapid eyes movement (NREM) (N1) sleep and a negative correlation between this marker and the time spent in stage 3 of NREM (N3) sleep. Accordingly, we observed that deep sleep was associated with lower levels of NF-L, whereas light sleep increased the probability of having higher levels of this marker. Furthermore, chitinase-3-like-1 (YKL-40) was negatively correlated with sleep efficiency, the time spent in stage 2 of NREM (N2) sleep, and the time spent in N3 sleep. Conversely, there was a positive correlation between N3 sleep and the oxidative protein damage markers N-ε-(carboxyethyl)lysine and N-ε-(malondialdehyde)lysine. CONCLUSIONS There were significant correlations between sleep parameters and AD biomarkers related to axonal damage and neuroinflammation, such as NF-L and YKL-40. A lack of deep sleep was associated with higher levels of NF-L. This highlights a potential role for NF-L as a biomarker of sleep disruption in patients with mild-moderate AD in addition to its role in predicting neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Adriano Targa
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Faride Dakterzada
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - Ivan Benítez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ricard López
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - Montserrat Pujol
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain
| | - Mireia Dalmases
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Alfonso Arias
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Reinald Pamplona
- Experimental Medicine Department, IRBLleida, University of Lleida, Lleida, Spain
| | - Mariona Jové
- Experimental Medicine Department, IRBLleida, University of Lleida, Lleida, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain
| |
Collapse
|
39
|
Comparison of [11C]-PBR28 Binding Between Persons Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2021; 85:244-251. [PMID: 32658129 DOI: 10.1097/qai.0000000000002435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Despite combined antiretroviral therapy, neuroinflammation may persist in persons living with HIV (PLWH) and contribute to cognitive impairment in this population. Positron emission tomography (PET) imaging targeting 18 kDa translocator protein (TSPO) has been used to localize neuroinflammation. We aimed to use TSPO-PET imaging to evaluate neuroinflammation in PLWH. DESIGN Twenty-four virologically suppressed PLWH on combined antiretroviral therapy and 13 HIV-negative (HIV-) controls completed TSPO-PET imaging using the radiotracer [C]PBR28. Because of tracer complexity and differing procedures used in previous studies, we employed an expansive methodological approach, using binding potential (BP) and standard uptake value ratio and multiple different reference regions to estimate [C]PBR28 binding. METHODS [C]PBR28 binding was measured in 30 cortical and subcortical regions and compared between PLWH and HIV- controls. Pearson correlation evaluated the association between [C]PBR28 binding and cognition and clinical measures of HIV. RESULTS Analyses conducted using multiple reference regions and measures of tracer uptake revealed no significant differences between [C]PBR28 binding in PLWH compared with HIV- controls. In addition, [C]PBR28 binding in PLWH was not significantly associated with clinical measures of HIV or plasma biomarkers of inflammation. [C]PBR28 binding was not significantly elevated in cognitively impaired PLWH compared with unimpaired PLWH, but there were inverse relationships between cognitive performance (executive and global function) and [C]PBR28 binding in PLWH. CONCLUSIONS Our results suggest that neuroinflammation may play a role in cognitive deficits, but overall neuroinflammatory levels as measured by TSPO-PET imaging in PLWH are not significantly different from those seen in HIV- controls.
Collapse
|
40
|
Toppala S, Ekblad LL, Tuisku J, Helin S, Johansson JJ, Laine H, Löyttyniemi E, Marjamäki P, Blennow K, Zetterberg H, Jula A, Viitanen M, Rinne JO. Association of Early β-Amyloid Accumulation and Neuroinflammation Measured With [ 11C]PBR28 in Elderly Individuals Without Dementia. Neurology 2021; 96:e1608-e1619. [PMID: 33514647 PMCID: PMC8032368 DOI: 10.1212/wnl.0000000000011612] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Objective To examine whether early β–amyloid (Aβ) accumulation and metabolic risk factors are associated with neuroinflammation in elderly individuals without dementia. Methods We examined 54 volunteers (mean age 70.0 years, 56% women, 51% APOE ɛ4 carriers) with the translocator protein (TSPO) tracer [11C]PBR28 to assess neuroinflammation and with [11C] Pittsburgh compound B (PiB) to assess cerebral Aβ accumulation. [11C]PBR28 and [11C]PiB standardized uptake value ratios (SUVRs) were quantified in 6 regions of interests by using the cerebellar cortex as a pseudo-reference and reference region, respectively. Fasting venous glucose, insulin, and high-sensitivity C-reactive protein (hs-CRP) values were determined. Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. A subset of individuals (n = 11) underwent CSF sampling, and Aβ40, Aβ42, total tau, phospho-tau, soluble TREM2, and YKL-40 levels were measured. Results Among the whole study group, no significant association was found between [11C]PiB and [11C]PBR28 SUVR composite scores (slope 0.02, p = 0.30). However, higher [11C]PiB binding was associated with higher [11C]PBR28 binding among amyloid-negative ([11C]PiB composite score ≤1.5) (TSPO genotype–, age- and sex-adjusted slope 0.26, p = 0.008) but not among amyloid-positive (slope −0.004, p = 0.88) participants. Higher CSF soluble TREM2 (rs = 0.72, p = 0.01) and YKL-40 (rs = 0.63, p = 0.04) concentrations were associated with a higher [11C]PBR28 composite score. Higher body mass index, HOMA-IR, and hs-CRP were associated with higher [11C]PBR28 binding in brain regions where Aβ accumulation is first detected in Alzheimer disease. Conclusions While there was no association between amyloid and neuroinflammation in the overall study group, neuroinflammation was associated with amyloid among the subgroup at early stages of amyloid pathology.
Collapse
Affiliation(s)
- Sini Toppala
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland.
| | - Laura L Ekblad
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Jouni Tuisku
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Semi Helin
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Jarkko J Johansson
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Hanna Laine
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Eliisa Löyttyniemi
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Päivi Marjamäki
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Kaj Blennow
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Henrik Zetterberg
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Antti Jula
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Matti Viitanen
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Juha O Rinne
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| |
Collapse
|
41
|
Tiraboschi JM, Rojas J, Zetterberg H, Blennow K, Niubo J, Gostner J, Navarro-Alcaraz A, Piatti C, Fuchs D, Gisslén M, Rigo-Bonnin R, Martinez E, Podzamczer D. No Changes in Human Immunodeficiency Virus (HIV) Suppression and Inflammatory Markers in Cerebrospinal Fluid in Patients Randomly Switched to Dolutegravir Plus Lamivudine (Spanish HIV/AIDS Research Network, PreEC/RIS 62). J Infect Dis 2020; 223:1928-1933. [PMID: 33049035 DOI: 10.1093/infdis/jiaa645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 11/14/2022] Open
Abstract
A major concern of human immunodeficiency virus (HIV) dual therapy is a potentially lower efficacy in viral reservoirs, especially in the central nervous system (CNS). We evaluated HIV RNA, neuronal injury, and inflammatory biomarkers and dolutegravir (DTG) exposure in cerebrospinal fluid (CSF) in patients switching to DTG plus lamivudine (3TC). All participants maintained viral suppression in plasma and CSF at week 48. We observed no increase in CSF markers of inflammation or neuronal injury. Median (interquartile range) total and unbound DTG in CSF were 7.3 (5.9-8.4) and 1.7 (1.2-1.9) ng/mL, respectively. DTG+3TC may maintain viral control without changes in inflammatory/injury markers within the CNS reservoir.
Collapse
Affiliation(s)
- Juan M Tiraboschi
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | - Jhon Rojas
- Infectious Diseases Service, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jordi Niubo
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | | | - Antonio Navarro-Alcaraz
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | - Camila Piatti
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | | | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Raul Rigo-Bonnin
- Pharmacology Service, Bellvitge University Hospital, Barcelona, Spain
| | - Esteban Martinez
- Infectious Diseases Service, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Daniel Podzamczer
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Knight AC, Brill SA, Solis CV, Richardson MR, McCarron ME, Queen SE, Bailey CC, Mankowski JL. Differential regulation of TREM2 and CSF1R in CNS macrophages in an SIV/macaque model of HIV CNS disease. J Neurovirol 2020; 26:511-519. [PMID: 32488843 PMCID: PMC7442592 DOI: 10.1007/s13365-020-00844-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
HIV-associated neuroinflammation is primarily driven by CNS macrophages including microglia. Regulation of these immune responses, however, remains to be characterized in detail. Using the SIV/macaque model of HIV, we evaluated CNS expression of triggering receptor expressed on myeloid cells 2 (TREM2) which is constitutively expressed by microglia and contributes to cell survival, proliferation, and differentiation. Loss-of-function mutations in TREM2 are recognized risk factors for neurodegenerative diseases including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Nasu-Hakola disease (NHD); recent reports have also indicated a role for TREM2 in HIV-associated neuroinflammation. Using in situ hybridization (ISH) and qRT-PCR, TREM2 mRNA levels were found to be significantly elevated in frontal cortex of macaques with SIV encephalitis compared with uninfected controls (P = 0.02). TREM2 protein levels were also elevated as measured by ELISA of frontal cortex tissue homogenates in these animals. Previously, we characterized the expression of CSF1R (colony-stimulating factor 1 receptor) in this model; the TREM2 and CSF1R promoters both contain a PU.1 binding site. While TREM2 and CSF1R mRNA levels in the frontal cortex were highly correlated (Spearman R = 0.79, P < 0.001), protein levels were not well correlated. In SIV-infected macaques released from ART to study viral rebound, neither TREM2 nor CSF1R mRNA increased with rebound viremia. However, CSF1R protein levels remained significantly elevated unlike TREM2 (P = 0.02). This differential expression suggests that TREM2 and CSF1R play unique, distinct roles in the pathogenesis of HIV CNS disease.
Collapse
MESH Headings
- Animals
- Antiretroviral Therapy, Highly Active/methods
- Antiviral Agents/pharmacology
- Drug Administration Schedule
- Encephalitis, Viral/drug therapy
- Encephalitis, Viral/genetics
- Encephalitis, Viral/immunology
- Encephalitis, Viral/virology
- Frontal Lobe/drug effects
- Frontal Lobe/immunology
- Frontal Lobe/virology
- Gene Expression Regulation
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Macaca nemestrina/genetics
- Macaca nemestrina/immunology
- Macaca nemestrina/virology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Microglia/drug effects
- Microglia/immunology
- Microglia/virology
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Simian Acquired Immunodeficiency Syndrome/drug therapy
- Simian Acquired Immunodeficiency Syndrome/genetics
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/drug effects
- Simian Immunodeficiency Virus/growth & development
- Simian Immunodeficiency Virus/immunology
- Trans-Activators/genetics
- Trans-Activators/immunology
Collapse
Affiliation(s)
- Audrey C Knight
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Samuel A Brill
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Clarisse V Solis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Morgan R Richardson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Megan E McCarron
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Charles C Bailey
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Emmune, Inc., 130 Scripps Way, Jupiter, Florida, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Wijeyekoon RS, Kronenberg-Versteeg D, Scott KM, Hayat S, Kuan WL, Evans JR, Breen DP, Cummins G, Jones JL, Clatworthy MR, Floto RA, Barker RA, Williams-Gray CH. Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson's disease. Brain Behav Immun 2020; 87:473-488. [PMID: 32006615 PMCID: PMC7613010 DOI: 10.1016/j.bbi.2020.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 01/09/2023] Open
Abstract
The innate immune system is implicated in Parkinson's disease (PD), but peripheral in-vivo clinical evidence of the components and driving mechanisms involved and their relationship with clinical heterogeneity and progression to dementia remain poorly explored. We examined changes in peripheral innate immune-related markers in PD cases (n = 41) stratified according to risk of developing early dementia. 'Higher Risk'(HR) (n = 23) and 'Lower Risk' (LR) (n = 18) groups were defined according to neuropsychological predictors and MAPT H1/H2 genotype, and compared to age, gender and genotype-matched controls. Monocyte subsets and expression of key surface markers were measured using flow cytometry. Serum markers including alpha-synuclein, inflammasome-related caspase-1 and bacterial translocation-related endotoxin were measured using quantitative immuno-based assays. Specific markers were further investigated using monocyte assays and validated in plasma samples from a larger incident PD cohort (n = 95). We found that classical monocyte frequency was elevated in PD cases compared to controls, driven predominantly by the HR group, in whom Toll-Like Receptor (TLR)4+ monocytes and monocyte Triggering Receptor Expressed on Myeloid cells-2 (TREM2) expression were also increased. Monocyte Human Leukocyte Antigen (HLA)-DR expression correlated with clinical variables, with lower levels associated with worse cognitive/motor performance. Notably, monocyte changes were accompanied by elevated serum bacterial endotoxin, again predominantly in the HR group. Serum alpha-synuclein and inflammasome-related caspase-1 were decreased in PD cases compared to controls regardless of group, with decreased monocyte alpha-synuclein secretion in HR cases. Further, alpha-synuclein and caspase-1 correlated positively in serum and monocyte lysates, and in plasma from the larger cohort, though no associations were seen with baseline or 36-month longitudinal clinical data. Principal Components Analysis of all monocyte and significant serum markers indicated 3 major components. Component 1 (alpha-synuclein, caspase-1, TLR2+ monocytes) differentiated PD cases and controls in both groups, while Component 2 (endotoxin, monocyte TREM2, alpha-synuclein) did so predominantly in the HR group. Component 3 (classical monocytes, alpha-synuclein) also differentiated cases and controls overall in both groups. These findings demonstrate that systemic innate immune changes are present in PD and are greatest in those at higher risk of rapid progression to dementia. Markers associated with PD per-se (alpha-synuclein, caspase-1), differ from those related to cognitive progression and clinical heterogeneity (endotoxin, TREM2, TLR4, classical monocytes, HLA-DR), with mechanistic and therapeutic implications. Alpha-synuclein and caspase-1 are associated, suggesting inflammasome involvement common to all PD, while bacterial translocation associated changes may contribute towards progression to Parkinson's dementia. Additionally, HLA-DR-associated variations in antigen presentation/clearance may modulate existing clinical disease.
Collapse
Affiliation(s)
- Ruwani S. Wijeyekoon
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Corresponding Author;
| | | | - Kirsten M. Scott
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Shaista Hayat
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Jonathan R. Evans
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Nottingham University Hospital NHS Trust, Nottingham, UK
| | - David P. Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49, Little France Crescent, Edinburgh, EH16 4SB, UK,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Chancellor’s Building, 49, Little France Crescent, Edinburgh, EH16 4SB, UK,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, 9, Little France Road, Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK
| | - Gemma Cummins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Joanne L. Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - R. Andres Floto
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Caroline H. Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| |
Collapse
|
44
|
Fields JA, Swinton MK, Soontornniyomkij B, Carson A, Achim CL. Beta amyloid levels in cerebrospinal fluid of HIV-infected people vary by exposure to antiretroviral therapy. AIDS 2020; 34:1001-1007. [PMID: 32073451 PMCID: PMC7210049 DOI: 10.1097/qad.0000000000002506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HAND) persist despite the widespread implementation of combined antiretroviral therapy (ART). As people with HIV (PWH) age on ART regimens, the risk of age-related comorbidities, such as Alzheimer's disease may increase. However, questions remain as to whether HIV or ART will alter such risks. Beta amyloid (Aβ) and phosphorylated-tau (p-tau) proteins are associated with Alzheimer's disease and their levels are altered in the CSF of Alzheimer's disease cases. METHODS To better understand how these Alzheimer's disease-related markers are affected by HIV infection and ART, postmortem CSF collected from 70 well characterized HIV+ decedents was analyzed for Aβ1-42, Aβ1-40, and p-tau levels. RESULTS Aβ1-42 and Aβ1-40 CSF levels were higher in cases that were exposed to ART. Aβ1-42 and Aβ1-40 CSF levels were also higher in cases on protease inhibitors compared with those with no exposure to protease inhibitors. Aβ1-42 and Aβ1-40 levels in CSF were lowest in HIV+ cases with HIV-associated dementia (HAD) and levels were highest in those diagnosed with asymptomatic neurocognitive impairment (ANI) and minor neurocognitive disorder (MND). Aβ1-42 and Aβ1-40 were inversely related with p-tau levels in all cases, as previously reported. CONCLUSION These data suggest that ART exposure is associated with increased levels of Aβ1-42 and Aβ1-40 in the CSF. Also, HAD, but not ANI/MND diagnosis is associated with decreased levels of Aβ1-42 and Aβ1-40 in CSF, potentially suggesting impaired clearance. These data suggest that HIV infection and ART may impact pathogenic mechanisms involving Aβ1-42 and Aβ1-40, but not p-tau.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
| | - Mary K. Swinton
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
| | | | - Aliyah Carson
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
| | - Cristian L. Achim
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
- Department of Pathology, University of California San
Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Zhu Z, Zhang X, Dong W, Wang X, He S, Zhang H, Wang X, Wei R, Chen Y, Liu X, Guo C. TREM2 suppresses the proinflammatory response to facilitate PRRSV infection via PI3K/NF-κB signaling. PLoS Pathog 2020; 16:e1008543. [PMID: 32401783 PMCID: PMC7250469 DOI: 10.1371/journal.ppat.1008543] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/26/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) serves as an anti-inflammatory receptor, negatively regulating the innate immune response. TREM2 is mainly expressed on dendritic cells and macrophages, the target cells of porcine reproductive and respiratory syndrome virus (PRRSV). Thus, we investigated the potential role of TREM2 in PRRSV infection in porcine alveolar macrophages (PAMs). We found that there was an increased expression of TREM2 upon PRRSV infection in vitro. TREM2 silencing restrained the replication of PRRSV, whereas TREM2 overexpression facilitated viral replication. The cytoplasmic tail domain of TREM2 interacted with PRRSV Nsp2 to promote infection. TREM2 downregulation led to early activation of PI3K/NF-κB signaling, thus reinforcing the expression of proinflammatory cytokines and type I interferons. Due to the enhanced cytokine expression, a disintegrin and metalloproteinase 17 was activated to promote the cleavage of membrane CD163, which resulted in suppression of infection. Furthermore, exogenous soluble TREM2 (sTREM2)-mediated inhibition of PRRSV attachment might be attributed to its competitive binding to viral envelope proteins. In pigs, following PRRSV challenge in vivo, the expression of TREM2 in lungs and lymph nodes as well as the production of sTREM2 were significantly increased. These novel findings indicate that TREM2 plays a role in regulating PRRSV replication via the inflammatory response. Therefore, our work describes a novel antiviral mechanism against PRRSV infection and suggests that targeting TREM2 could be a new approach in the control of the PRRSV infection.
Collapse
Affiliation(s)
- Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xun Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
- * E-mail:
| |
Collapse
|
46
|
Wilson EN, Swarovski MS, Linortner P, Shahid M, Zuckerman AJ, Wang Q, Channappa D, Minhas PS, Mhatre SD, Plowey ED, Quinn JF, Zabetian CP, Tian L, Longo FM, Cholerton B, Montine TJ, Poston KL, Andreasson KI. Soluble TREM2 is elevated in Parkinson's disease subgroups with increased CSF tau. Brain 2020; 143:932-943. [PMID: 32065223 PMCID: PMC7089668 DOI: 10.1093/brain/awaa021] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/26/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease and affects 1% of the population above 60 years old. Although Parkinson's disease commonly manifests with motor symptoms, a majority of patients with Parkinson's disease subsequently develop cognitive impairment, which often progresses to dementia, a major cause of morbidity and disability. Parkinson's disease is characterized by α-synuclein accumulation that frequently associates with amyloid-β and tau fibrils, the hallmarks of Alzheimer's disease neuropathological changes; this co-occurrence suggests that onset of cognitive decline in Parkinson's disease may be associated with appearance of pathological amyloid-β and/or tau. Recent studies have highlighted the appearance of the soluble form of the triggering receptor expressed on myeloid cells 2 (sTREM2) receptor in CSF during development of Alzheimer's disease. Given the known association of microglial activation with advancing Parkinson's disease, we investigated whether CSF and/or plasma sTREM2 differed between CSF biomarker-defined Parkinson's disease participant subgroups. In this cross-sectional study, we examined 165 participants consisting of 17 cognitively normal elderly subjects, 45 patients with Parkinson's disease with no cognitive impairment, 86 with mild cognitive impairment, and 17 with dementia. Stratification of subjects by CSF amyloid-β and tau levels revealed that CSF sTREM2 concentrations were elevated in Parkinson's disease subgroups with a positive tau CSF biomarker signature, but not in Parkinson's disease subgroups with a positive CSF amyloid-β biomarker signature. These findings indicate that CSF sTREM2 could serve as a surrogate immune biomarker of neuronal injury in Parkinson's disease.
Collapse
Affiliation(s)
- Edward N Wilson
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Michelle S Swarovski
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Patricia Linortner
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Marian Shahid
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Abigail J Zuckerman
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Qian Wang
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Divya Channappa
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paras S Minhas
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Siddhita D Mhatre
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Edward D Plowey
- Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph F Quinn
- Neurology, Oregon Health and Sciences University, Portland, OR, USA
- Neurology, Portland VA Medical Center, Portland, OR, USA
| | - Cyrus P Zabetian
- VA Puget Sound Health Care System, Seattle, WA, USA
- Neurology, University of Washington, Seattle, WA, USA
| | - Lu Tian
- Biomedical Data Science and Statistics, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Brenna Cholerton
- Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kathleen L Poston
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Neurosurgery, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katrin I Andreasson
- Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Li W, Chang H, Wu W, Xu D, Jiang M, Gao J, Huang Y, Xu Y, Yin L, Zhang X. Increased CSF Soluble TREM2 Concentration in Patients With Neurosyphilis. Front Neurol 2020; 11:62. [PMID: 32117023 PMCID: PMC7013092 DOI: 10.3389/fneur.2020.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: To explore cerebrospinal fluid (CSF) levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and neurofilament light proteins (NFL) in patients with neurosyphilis (NS). Methods: We enrolled 71 NS patients (41 early-NS and 30 late-NS patients) and 20 syphilis but non-NS patients whose CSF samples were collected. The CSF levels of the microglial activation biomarker sTREM2 and neuronal injury biomarker NFL were measured using ELISA. Results: CSF sTREM2 levels were significantly higher in NS patients compared to those in syphilis/non-NS patients (p < 0.001). In a subgroup analysis, the CSF sTREM2 levels elevated significantly in late-NS patients than those in early-NS patients (p < 0.001). The CSF sTREM2 levels in early-NS group were also significantly higher than those in syphilis/non-NS group (p = 0.024). Like CSF sTREM2, similar differences between groups were also found in CSF NFL. There was a moderate correlation between CSF sTREM2 and CSF NFL (r = 0.406, p < 0.001) in NS group. Conclusions: CSF sTREM2 levels elevated in NS and peaked at the late stage, suggesting that CSF sTREM2 may be a useful marker to quantify microglia activation in NS and may play a role in the progression of NS. The positive correlation between CSF sTREM2 and CSF NFL indicates a linkage between microglial activation and neuronal injury in NS.
Collapse
Affiliation(s)
- Wurong Li
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenqing Wu
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Dongmei Xu
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meijuan Jiang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Junhua Gao
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuming Huang
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
48
|
Dalmau J, Dalakas MC, Kolson DL, Paul F, Zamvil SS. N2 year in review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e644. [PMID: 31831570 PMCID: PMC6935839 DOI: 10.1212/nxi.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Josep Dalmau
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco.
| | - Marinos C Dalakas
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Dennis L Kolson
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Friedemann Paul
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott S Zamvil
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| |
Collapse
|
49
|
Milà-Alomà M, Suárez-Calvet M, Molinuevo JL. Latest advances in cerebrospinal fluid and blood biomarkers of Alzheimer's disease. Ther Adv Neurol Disord 2019; 12:1756286419888819. [PMID: 31897088 PMCID: PMC6920596 DOI: 10.1177/1756286419888819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and its diagnosis has classically been based on clinical symptoms. Recently, a biological rather than a syndromic definition of the disease has been proposed that is based on biomarkers that reflect neuropathological changes. In AD, there are two main biomarker categories, namely neuroimaging and fluid biomarkers [cerebrospinal fluid (CSF) and blood]. As a complex and multifactorial disease, AD biomarkers are important for an accurate diagnosis and to stage the disease, assess the prognosis, test target engagement, and measure the response to treatment. In addition, biomarkers provide us with information that, even if it does not have a current clinical use, helps us to understand the mechanisms of the disease. In addition to the pathological hallmarks of AD, which include amyloid-β and tau deposition, there are multiple concomitant pathological events that play a key role in the disease. These include, but are not limited to, neurodegeneration, inflammation, vascular dysregulation or synaptic dysfunction. In addition, AD patients often have an accumulation of other proteins including α-synuclein and TDP-43, which may have a pathogenic effect on AD. In combination, there is a need to have biomarkers that reflect different aspects of AD pathogenesis and this will be important in the future to establish what are the most suitable applications for each of these AD-related biomarkers. It is unclear whether sex, gender, or both have an effect on the causes of AD. There may be differences in fluid biomarkers due to sex but this issue has often been neglected and warrants further research. In this review, we summarize the current state of the principal AD fluid biomarkers and discuss the effect of sex on these biomarkers.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- Department of Neurology, Hospital del Mar,
Barcelona
| | - José Luís Molinuevo
- Scientific Director, Alzheimer’s Prevention
Program, Barcelonaβeta Brain Research Center, Wellington 30, Barcelona,
08005, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- CIBER Fragilidad y Envejecimiento Saludable,
Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
50
|
Circulating levels of ATP is a biomarker of HIV cognitive impairment. EBioMedicine 2019; 51:102503. [PMID: 31806564 PMCID: PMC7000317 DOI: 10.1016/j.ebiom.2019.10.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In developed countries, Human Immunodeficiency Virus type-1 (HIV-1) infection has become a chronic disease despite the positive effects of anti-retroviral therapies (ART), but still at least half of the HIV infected population shown signs of cognitive impairment. Therefore, biomarkers of HIV cognitive decline are urgently needed. METHODS We analyze the opening of one of the larger channels expressed by humans, pannexin-1 (Panx-1) channels, in the uninfected and HIV infected population (n = 175). We determined channel opening and secretion of intracellular second messengers released through the channel such as PGE2 and ATP. Also, we correlated the opening of Panx-1 channels with the circulating levels of PGE2 and ATP as well as cogntive status of the individuals analyzed. FINDINGS Here, we demonstrate that Panx-1 channels on fresh PBMCs obtained from uninfected individuals are closed and no significant amounts of PGE2 and ATP are detected in the circulation. In contrast, in all HIV-infected individuals analyzed, even the ones under effective ART, a spontaneous opening of Panx-1 channels and increased circulating levels of PGE2 and ATP were detected. Circulating levels of ATP were correlated with cognitive decline in the HIV-infected population supporting that ATP is a biomarker of cognitive disease in the HIV-infected population. INTERPRETATION We propose that circulating levels of ATP could predict CNS compromise and lead to the breakthroughs necessary to detect and prevent brain compromise in the HIV-infected population.
Collapse
|