1
|
Oliveira DM, Rashid A, Brassard P, Silva BM. Exercise-induced potentiation of the acute hypoxic ventilatory response: Neural mechanisms and implications for cerebral blood flow. Exp Physiol 2024; 109:1844-1855. [PMID: 38441858 DOI: 10.1113/ep091330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 11/01/2024]
Abstract
A given dose of hypoxia causes a greater increase in pulmonary ventilation during physical exercise than during rest, representing an exercise-induced potentiation of the acute hypoxic ventilatory response (HVR). This phenomenon occurs independently from hypoxic blood entering the contracting skeletal muscle circulation or metabolic byproducts leaving skeletal muscles, supporting the contention that neural mechanisms per se can mediate the HVR when humoral mechanisms are not at play. However, multiple neural mechanisms might be interacting intricately. First, we discuss the neural mechanisms involved in the ventilatory response to hypoxic exercise and their potential interactions. Current evidence does not support an interaction between the carotid chemoreflex and central command. In contrast, findings from some studies support synergistic interactions between the carotid chemoreflex and the muscle mechano- and metaboreflexes. Second, we propose hypotheses about potential mechanisms underlying neural interactions, including spatial and temporal summation of afferent signals into the medulla, short-term potentiation and sympathetically induced activation of the carotid chemoreceptors. Lastly, we ponder how exercise-induced potentiation of the HVR results in hyperventilation-induced hypocapnia, which influences cerebral blood flow regulation, with multifaceted potential consequences, including deleterious (increased central fatigue and impaired cognitive performance), inert (unchanged exercise) and beneficial effects (protection against excessive cerebral perfusion).
Collapse
Affiliation(s)
- Diogo M Oliveira
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Anas Rashid
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Research Centre of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Bruno M Silva
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Physiology, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. Cell Rep 2024; 43:114740. [PMID: 39325616 DOI: 10.1016/j.celrep.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here, we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity among intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Liu Y, Xu T, Yu Z, Xu B. Neurophysiological Basis of Electroacupuncture Stimulation in the Treatment of Cardiovascular-Related Diseases: Vagal Interoceptive Loops. Brain Behav 2024; 14:e70076. [PMID: 39344397 PMCID: PMC11440030 DOI: 10.1002/brb3.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE The vagal sensory nerve (VSN) is an essential interoceptive pathway that is connected to every level of the body. Its intricate genetic coding provides sustenance for physiological processes, including controlling blood pressure and respiration. Electroacupuncture (EA) is a proven surface stimulation therapy that can regulate vagal nerve activity, which can effectively prevent cardiovascular diseases. A growing number of studies have concentrated on the mapping of VSN codes, but little is known, and the physiological background of how EA influences interoceptive has not been fully explored. METHOD Here, we incorporate the hypothesized interaction among EA targets, VSNs, and the heart. This offers suggestions for using a versatile and focused EA strategy to modify vagal interoceptive awareness to enhance cardiovascular conditions. We first clarified the major role of vagal nerve in the control of cardiac activity. Additionally, we clarified the multidimensional coding pattern in the VSNs, revealing that the targeted control of multimodal interoceptive is the functional basis of the synchronization of cardiovascular system. FINDING We propose a strategy in which EA of the VSNs is employed to activate the interoceptive loop and reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
4
|
Hao WY, Wang JX, Xu XY, Chen JL, Chen Q, Li YH, Zhu GQ, Chen AD. Chemerin in caudal division of nucleus tractus solitarius increases sympathetic activity and blood pressure. Eur J Neurosci 2024; 60:4830-4842. [PMID: 39044301 DOI: 10.1111/ejn.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.
Collapse
Affiliation(s)
- Wen-Yuan Hao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Maestri R, Pinna GD, Robbi E, Cogliati C, Bartoli A, Gambino G, Rengo G, Montano N, La Rovere MT. Impact of optimized transcutaneous auricular vagus nerve stimulation on cardiac autonomic profile in healthy subjects and heart failure patients. Physiol Meas 2024; 45:075007. [PMID: 39016202 DOI: 10.1088/1361-6579/ad5ef6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Objective.To determine the optimal frequency and site of stimulation for transcutaneous vagus nerve stimulation (tVNS) to induce acute changes in the autonomic profile (heart rate (HR), heart rate variability (HRV)) in healthy subjects (HS) and patients with heart failure (HF).Approach.We designed three single-blind, randomized, cross-over studies: (1) to compare the acute effect of left tVNS at 25 Hz and 10 Hz (n= 29, age 60 ± 7 years), (2) to compare the acute effect of left and right tVNS at the best frequency identified in study 1 (n= 28 age 61 ± 7 years), and (3) to compare the acute effect of the identified optimal stimulation protocol with sham stimulation in HS and HF patients (n= 30, age 59 ± 5 years, andn= 32, age 63 ± 7 years, respectively).Main results.In study 1, left tragus stimulation at 25 Hz was more effective than stimulation at 10 Hz in decreasing HR (-1.0 ± 1.2 bpm,p< 0.001 and -0.5 ± 1.6 bpm, respectively) and inducing vagal effects (significant increase in RMSSD, and HF power). In study 2, the HR reduction was greater with left than right tragus stimulation (-0.9 ± 1.5 bpm,p< 0.01 and -0.3 ± 1.4 bpm, respectively). In study 3 in HS, left tVNS at 25 Hz significantly reduced HR, whereas sham stimulation did not (-1.1 ± 1.2 bpm,p< 0.01 and -0.2 ± 2.9 bpm, respectively). In HF patients, both active and sham stimulation produced negligible effects.Significance.Left tVNS at 25 Hz is effective in acute modulation of cardiovascular autonomic control (HR, HRV) in HS but not in HF patients (NCT05789147).
Collapse
Affiliation(s)
- Roberto Maestri
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Gian Domenico Pinna
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Elena Robbi
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Arianna Bartoli
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
- Istituti Clinici Scientifici ICS Maugeri, Telese Terme Institute, -IRCCS, Telese, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Maria Teresa La Rovere
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| |
Collapse
|
6
|
Abstract
Objective: Interest in the symptoms pertaining to Costen's syndrome has revived in recent years. The aim of this work is to address the symptoms of Costen's syndrome from the basic science perspectiveMethods: A minireview of the literature related to Costen's syndrome symptoms was performed by retrieving relevant articles from the PubMed database from 1980 until 2021.Results: The validity of Costen's syndrome symptoms has been confirmed by a multitude of articles. Conclusion: Maladaptive plasticity in the central nervous system pathways probably accounts for the incidence and severity of Costen's syndrome symptoms.
Collapse
Affiliation(s)
- Kamal G Effat
- Department of Otolaryngology, El-Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
7
|
Haberbusch M, Kronsteiner B, Aigner P, Kiss A, Podesser BK, Moscato F. Importance of cardiac-synchronized vagus nerve stimulation parameters on the provoked chronotropic response for different levels of cardiac innervation. Front Physiol 2024; 15:1379936. [PMID: 38835728 PMCID: PMC11148559 DOI: 10.3389/fphys.2024.1379936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction The influence of vagus nerve stimulation (VNS) parameters on provoked cardiac effects in different levels of cardiac innervation is not well understood yet. This study examines the effects of VNS on heart rate (HR) modulation across a spectrum of cardiac innervation states, providing data for the potential optimization of VNS in cardiac therapies. Materials and Methods Utilizing previously published data from VNS experiments on six sheep with intact innervation, and data of additional experiments in five rabbits post bilateral rostral vagotomy, and four isolated rabbit hearts with additionally removed sympathetic influences, the study explored the impact of diverse VNS parameters on HR. Results Significant differences in physiological threshold charges were identified across groups: 0.09 ± 0.06 μC for intact, 0.20 ± 0.04 μC for vagotomized, and 9.00 ± 0.75 μC for isolated hearts. Charge was a key determinant of HR reduction across all innervation states, with diminishing correlations from intact (r = 0.7) to isolated hearts (r = 0.44). An inverse relationship was observed for the number of pulses, with its influence growing in conditions of reduced innervation (intact r = 0.11, isolated r = 0.37). Frequency and stimulation delay showed minimal correlations (r < 0.17) in all conditions. Conclusion Our study highlights for the first time that VNS parameters, including stimulation intensity, pulse width, and pulse number, crucially modulate heart rate across different cardiac innervation states. Intensity and pulse width significantly influence heart rate in innervated states, while pulse number is key in denervated states. Frequency and delay have less impact impact across all innervation states. These findings suggest the importance of customizing VNS therapy based on innervation status, offering insights for optimizing cardiac neuromodulation.
Collapse
Affiliation(s)
- Max Haberbusch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Bruno Karl Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
8
|
Cardani S, Janes TA, Betzner W, Pagliardini S. Knockdown of PHOX2B in the retrotrapezoid nucleus reduces the central CO 2 chemoreflex in rats. eLife 2024; 13:RP94653. [PMID: 38727716 PMCID: PMC11087052 DOI: 10.7554/elife.94653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.
Collapse
Affiliation(s)
- Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - William Betzner
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| |
Collapse
|
9
|
Mustika D, Nishimura Y, Ueno S, Tominaga S, Shimizu T, Tajiri N, Jung CG, Hida H. Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat. Front Nutr 2024; 11:1356189. [PMID: 38765817 PMCID: PMC11099272 DOI: 10.3389/fnut.2024.1356189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model. Methods Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG. Results The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA. Conclusion MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.
Collapse
Affiliation(s)
- Dewi Mustika
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yu Nishimura
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ueno
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shiori Tominaga
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Food and Nutrition, Shokei University Junior College, Kumamoto, Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
10
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557289. [PMID: 37745606 PMCID: PMC10515832 DOI: 10.1101/2023.09.11.557289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Lead contact
| |
Collapse
|
11
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh+ Neurons Control Chronic Allergen-Induced Airway Hyperreactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.04.527145. [PMID: 36778350 PMCID: PMC9915738 DOI: 10.1101/2023.02.04.527145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1-4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)-and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.
Collapse
|
12
|
Wang RL, Chang RB. The Coding Logic of Interoception. Annu Rev Physiol 2024; 86:301-327. [PMID: 38061018 PMCID: PMC11103614 DOI: 10.1146/annurev-physiol-042222-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.
Collapse
Affiliation(s)
- Ruiqi L Wang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Rui B Chang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
13
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
15
|
Wang F, Darby J. Case report: Central alveolar hypoventilation in a survivor of cardiopulmonary arrest. Front Neurol 2023; 14:1195008. [PMID: 37602250 PMCID: PMC10435288 DOI: 10.3389/fneur.2023.1195008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Ondine's curse is a rare respiratory disorder that is characterized by central alveolar hypoventilation (CAH) during sleep. It is most commonly congenital. However, it can also be acquired very rarely. Herein, we report a young survivor who developed CAH following cardiopulmonary arrest. Case presentation A 35-year-old man was admitted to the Intensive Care Unit following unwitnessed cardiopulmonary arrest. Following resuscitative interventions, he remained comatose. Early diagnostic testing showed elevated neuronal specific enolase (28.7 ng/ml), absent cortical responses on evoked potential testing and MRI evidence of restricted diffusion in the cerebellum, hippocampi, juxtacortical white matter, superior cerebellar peduncles, dorsal pons, dorsolateral medulla, and upper cervical spinal cord. Ten days following admission, the patient remained comatose and underwent tracheostomy. He subsequently began to emerge from coma but had persistent unexplained hypotension and bradypnea necessitating ongoing vasopressor and respiratory support. Repeat MRI on hospital day 40 revealed residual FLAIR hyperintensities in the medulla within the nucleus tractus solitarius (NTS). After being discharged to long-term acute care facility, he was successfully liberated from mechanical ventilation 70 days post arrest. Conclusion We report the first survivor of cardiopulmonary arrest who was complicated by CAH and hypotension with MRI verified ischemic injury to the bilateral NTS regions. Despite this injury, ventilator and vasopressor dependency resolved over a period of 10 weeks. Our case highlighted the essential functions of NTS in regulating the respiratory and cardiovascular systems.
Collapse
Affiliation(s)
- Fajun Wang
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - Joseph Darby
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Chomanskis Ž, Jonkus V, Danielius T, Paulauskas T, Orvydaitė M, Melaika K, Rukšėnas O, Hendrixson V, Ročka S. Hypotensive Effect of Electric Stimulation of Caudal Ventrolateral Medulla in Freely Moving Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1046. [PMID: 37374250 DOI: 10.3390/medicina59061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: An altered sympathetic function is established in primary arterial hypertension (PAH) development. Therefore, PAH could be targeted by applying an electric current to the medulla where reflex centers for blood pressure control reside. This study aims to evaluate the electric caudal ventrolateral medulla (CVLM) stimulation effect on blood pressure and animal survivability in a freely moving rat model. Materials and Methods: A total of 20 Wistar rats aged 12-16 weeks were randomly assigned to either: the experimental group (n = 10; electrode tip implanted in CVLM region) or the control group (n = 10; tip implanted 4 mm above the CVLM in the cerebellum). After a period of recovery (4 days), an experimental phase ensued, divided into an "OFF stimulation" period (5-7 days post-surgery) and an "ON stimulation" period (8-14 days post-surgery). Results: Three animals (15%, one in the control, two in the experimental group) dropped out due to postoperative complications. Arterial pressure in the experimental group rats during the "OFF stimulation" period decreased by 8.23 mm Hg (p = 0.001) and heart rate by 26.93 beats/min (p = 0.008). Conclusions: From a physiological perspective, CVLM could be an effective deep brain stimulation (DBS) target for drug-resistant hypertension: able to influence the baroreflex arc directly, having no known direct integrative or neuroendocrine function. Targeting the baroreflex regulatory center, but not its sensory or effector parts, could lead to a more predictable effect and stability of the control system. Although targeting neural centers in the medullary region is considered dangerous and prone to complications, it could open a new vista for deep brain stimulation therapy. A possible change in electrode design would be required to apply CVLM DBS in clinical trials in the future.
Collapse
Affiliation(s)
- Žilvinas Chomanskis
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Vytautas Jonkus
- Faculty of Physics, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Tadas Danielius
- Institute of Applied Mathematics, Faculty of Mathematics and Informatics, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Tomas Paulauskas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Monika Orvydaitė
- Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | | | - Osvaldas Rukšėnas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Vaiva Hendrixson
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Saulius Ročka
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| |
Collapse
|
17
|
Haynes RL, Trachtenberg F, Darnall R, Haas EA, Goldstein RD, Mena OJ, Krous HF, Kinney HC. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part I. Tissue-based evidence for serotonin receptor signaling abnormalities in cardiorespiratory- and arousal-related circuits. J Neuropathol Exp Neurol 2023; 82:467-482. [PMID: 37226597 PMCID: PMC10209647 DOI: 10.1093/jnen/nlad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The sudden infant death syndrome (SIDS), the leading cause of postneonatal infant mortality in the United States, is typically associated with a sleep period. Previously, we showed evidence of serotonergic abnormalities in the medulla (e.g. altered serotonin (5-HT)1A receptor binding), in SIDS cases. In rodents, 5-HT2A/C receptor signaling contributes to arousal and autoresuscitation, protecting brain oxygen status during sleep. Nonetheless, the role of 5-HT2A/C receptors in the pathophysiology of SIDS is unclear. We hypothesize that in SIDS, 5-HT2A/C receptor binding is altered in medullary nuclei that are key for arousal and autoresuscitation. Here, we report altered 5-HT2A/C binding in several key medullary nuclei in SIDS cases (n = 58) compared to controls (n = 12). In some nuclei the reduced 5-HT2A/C and 5-HT1A binding overlapped, suggesting abnormal 5-HT receptor interactions. The data presented here (Part 1) suggest that a subset of SIDS is due in part to abnormal 5-HT2A/C and 5-HT1A signaling across multiple medullary nuclei vital for arousal and autoresuscitation. In Part II to follow, we highlight 8 medullary subnetworks with altered 5-HT receptor binding in SIDS. We propose the existence of an integrative brainstem network that fails to facilitate arousal and/or autoresuscitation in SIDS cases.
Collapse
Affiliation(s)
- Robin L Haynes
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Ryan Darnall
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children’s Hospital, San Diego, California, USA
| | - Richard D Goldstein
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - Henry F Krous
- University of California, San Diego, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hannah C Kinney
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci 2023; 245:103071. [PMID: 36580747 PMCID: PMC9789535 DOI: 10.1016/j.autneu.2022.103071] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID. The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly. Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Judith Naddour
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Amir Madi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Hatoum
- Faculty of Medicine, American University of Beirut, Lebanon
| | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
19
|
Humphrey CM, Hooker JW, Thapa M, Wilcox MJ, Ostrowski D, Ostrowski TD. Synaptic loss and gliosis in the nucleus tractus solitarii with streptozotocin-induced Alzheimer's disease. Brain Res 2023; 1801:148202. [PMID: 36521513 PMCID: PMC9840699 DOI: 10.1016/j.brainres.2022.148202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea is highly prevalent in Alzheimer's disease (AD). However, brainstem centers controlling respiration have received little attention in AD research, and mechanisms behind respiratory dysfunction in AD are not understood. The nucleus tractus solitarii (nTS) is an important brainstem center for respiratory control and chemoreflex function. Alterations of nTS integrity, like those shown in AD patients, likely affect neuronal processing and adequate control of breathing. We used the streptozotocin-induced rat model of AD (STZ-AD) to analyze cellular changes in the nTS that corroborate previously documented respiratory dysfunction. We used 2 common dosages of STZ (2 and 3 mg/kg STZ) for model induction and evaluated the early impact on cell populations in the nTS. The hippocampus served as control region to identify site-specific effects of STZ. There was significant atrophy in the caudal nTS of the 3 mg/kg STZ-AD group only, an area known to integrate chemoafferent information. Also, the hippocampus had significant atrophy with the highest STZ dosage tested. Both STZ-AD groups showed respiratory dysfunction along with multiple indices for astroglial and microglial activation. These changes were primarily located in the caudal and intermediate nTS. While there was no change of astrocytes in the hippocampus, microglial activation was accompanied by a reduction in synaptic density. Together, our data demonstrate that STZ-AD induces site-specific effects on all major cell types, primarily in the caudal/intermediate nTS. Both STZ dosages used in this study produced a similar outcome and can be used for future studies examining the initial symptoms of STZ-AD.
Collapse
Affiliation(s)
- Chuma M Humphrey
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson St., Kirksville, MO, USA
| | - John W Hooker
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson St., Kirksville, MO, USA
| | - Mahima Thapa
- Department of Biology, Truman State University, 100 E. Normal Ave., Kirksville, MO, USA
| | - Mason J Wilcox
- Department of Biology, Truman State University, 100 E. Normal Ave., Kirksville, MO, USA
| | - Daniela Ostrowski
- Department of Biology, Truman State University, 100 E. Normal Ave., Kirksville, MO, USA
| | - Tim D Ostrowski
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson St., Kirksville, MO, USA.
| |
Collapse
|
20
|
Colzato LS, Elmers J, Beste C, Hommel B. A Prospect to Ameliorate Affective Symptoms and to Enhance Cognition in Long COVID Using Auricular Transcutaneous Vagus Nerve Stimulation. J Clin Med 2023; 12:jcm12031198. [PMID: 36769845 PMCID: PMC9917620 DOI: 10.3390/jcm12031198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Long COVID, the postviral disorder caused by COVID-19, is expected to become one of the leading causes of disability in Europe. The cognitive consequences of long COVID have been described as "brain fog" and characterized by anxiety and depression, and by cognitive deficits. Long COVID is assumed to be a complex condition arising from multiple causes, including persistent brainstem dysfunction and disrupted vagal signaling. We recommend the potential application of auricular transcutaneous vagus nerve stimulation (atVNS) as an ADD-ON instrument to compensate for the cognitive decline and to ameliorate affective symptoms caused by long COVID. This technique enhances vagal signaling by directly activating the nuclei in the brainstem, which are hypoactive in long COVID to enhance mood and to promote attention, memory, and cognitive control-factors affected by long COVID. Considering that atVNS is a non-pharmacological intervention, its ADD-ON to standard pharmaceutical agents will be useful for non-responders, making of this method a suitable tool. Given that atVNS can be employed as an ecological momentary intervention (EMI), we outline the translational advantages of atVNS in the context of accelerating the cognitive and affective recovery from long COVID.
Collapse
Affiliation(s)
- Lorenza S. Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Christian Beste
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
21
|
Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, Kaniusas E, Papa M, Panetsos F. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn's and Other Inflammatory Bowel Diseases. Cells 2022; 11:cells11244103. [PMID: 36552867 PMCID: PMC9776705 DOI: 10.3390/cells11244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Flor Negrete-Diaz
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
| | - Daniela Yucuma
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Andalusian School of Public Health, University of Granada, 18011 Granada, Spain
| | - Assunta Virtuoso
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Michele Papa
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (M.P.); (F.P.)
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Correspondence: (M.P.); (F.P.)
| |
Collapse
|
22
|
Nishida K, Matsumura S, Kobayashi T. Involvement of Brn3a-positive spinal dorsal horn neurons in the transmission of visceral pain in inflammatory bowel disease model mice. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:979038. [PMID: 36570085 PMCID: PMC9768036 DOI: 10.3389/fpain.2022.979038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
The spinal dorsal horn plays a crucial role in the transmission and processing of somatosensory information. Although spinal neural circuits that process several distinct types of somatic sensations have been studied extensively, those responsible for visceral pain transmission remain poorly understood. In the present study, we analyzed dextran sodium sulfate (DSS)-induced inflammatory bowel disease (IBD) mouse models to characterize the spinal dorsal horn neurons involved in visceral pain transmission. Immunostaining for c-fos, a marker of neuronal activity, demonstrated that numerous c-fos-positive cells were found bilaterally in the lumbosacral spinal dorsal horn, and their distribution was particularly abundant in the shallow dorsal horn. Characterization of these neurons by several molecular markers revealed that the percentage of the Pit1-Oct1-Unc86 domain (POU domain)-containing transcription factor Brn3a-positive neurons among the c-fos-positive neurons in the shallow dorsal horn was 30%-40% in DSS-treated mice, which was significantly higher than that in the somatic pain model mice. We further demonstrated by neuronal tracing that, within the shallow dorsal horn, Brn3a-positive neurons were more highly represented in spino-solitary projection neurons than in spino-parabrachial projection neurons. These results raise the possibility that Brn3a-positive spinal dorsal horn neurons make a large contribution to visceral pain transmission, part of which is mediated through the spino-solitary pathway.
Collapse
|
23
|
Pérez-Carbonell L, Muñoz-Lopetegi A, Sánchez-Valle R, Gelpi E, Farré R, Gaig C, Iranzo A, Santamaria J. Sleep architecture and sleep-disordered breathing in fatal insomnia. Sleep Med 2022; 100:311-346. [PMID: 36182725 DOI: 10.1016/j.sleep.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 01/12/2023]
Abstract
STUDY OBJECTIVES Fatal insomnia (FI) is a rare prion disease severely affecting sleep architecture. Breathing during sleep has not been systematically assessed. Our aim was to characterize the sleep architecture, respiratory patterns, and neuropathologic findings in FI. METHODS Eleven consecutive FI patients (ten familial, one sporadic) were examined with video-polysomnography (vPSG) between 2002 and 2017. Wake/sleep stages and respiration were evaluated using a modified scoring system. Postmortem neuropathology was assessed in seven patients. RESULTS Median age at onset was 48 years and survival after vPSG was 1 year. All patients had different combinations of breathing disturbances including increased respiratory rate variability (RRV; n = 7), stridor (n = 9), central sleep apnea (CSA) (n = 5), hiccup (n = 6), catathrenia (n = 7), and other expiratory sounds (n = 10). RRV in NREM sleep correlated with ambiguous and solitary nuclei degeneration (r = 0.9, p = 0.008) and reduced survival (r = -0.7, p = 0.037). Two new stages, Subwake1 and Subwake2, present in all patients, were characterized. NREM sleep (conventional or undifferentiated) was identifiable in ten patients but reduced in duration in eight. REM sleep occurred in short segments in nine patients, and their reduced duration correlated with medullary raphe nuclei degeneration (r = -0.9, p = 0.005). Seven patients had REM without atonia. Three vPSG patterns were identified: agitated, with aperiodic, manipulative, and finalistic movements (n = 4); quiet-apneic, with CSA (n = 4); and quiet-non-apneic (n = 3). CONCLUSIONS FI patients show frequent breathing alterations, associated with respiratory nuclei damage, and, in addition to NREM sleep distortion, have severe impairment of REM sleep, related with raphe nuclei degeneration. Brainstem impairment is crucial in FI.
Collapse
Affiliation(s)
| | - Amaia Muñoz-Lopetegi
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain; Neurological Tissue Bank of the IDIBAPS, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the IDIBAPS, Barcelona, Spain; Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain
| | - Carles Gaig
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Alex Iranzo
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain.
| | - Joan Santamaria
- Sleep Center, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Clinical Neurophysiology Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); CIBER de Enfermedades Neurodegenerativas, Barcelona, Spain.
| |
Collapse
|
24
|
Ottaiano AC, Gomez GD, Freddi TDAL. The Facial Nerve: Anatomy and Pathology. Semin Ultrasound CT MR 2022; 44:71-80. [PMID: 37055142 DOI: 10.1053/j.sult.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facial nerve is the seventh cranial nerve and consists of motor, parasympathetic and sensory branches, which arise from the brainstem through 3 different nuclei (1). After leaving the brainstem, the facial nerve divides into 5 intracranial segments (cisternal, canalicular, labyrinthine, tympanic, and mastoid) and continues as the intraparotid extracranial segment (2). A wide variety of pathologies, including congenital abnormalities, traumatic disorders, infectious and inflammatory disease, and neoplastic conditions, can affect the facial nerve along its pathway and lead to weakness or paralysis of the facial musculature (1,2). The knowledge of its complex anatomical pathway is essential to clinical and imaging evaluation to establish if the cause of the facial dysfunction is a central nervous system process or a peripheral disease. Both computed tomography (CT) and magnetic resonance imaging (MRI) are the modalities of choice for facial nerve assessment, each of them providing complementary information in this evaluation (1).
Collapse
|
25
|
Yin DX, Toyoda H, Nozaki K, Satoh K, Katagiri A, Adachi K, Kato T, Sato H. Taste Impairments in a Parkinson’s Disease Model Featuring Intranasal Rotenone Administration in Mice. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1863-1880. [PMID: 35848036 PMCID: PMC9535587 DOI: 10.3233/jpd-223273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Taste impairments are often accompanied by olfactory impairments in the early stage of Parkinson’s disease (PD). The development of animal models is required to elucidate the mechanisms underlying taste impairments in PD. Objective: This study was conducted to clarify whether the intranasal administration of rotenone causes taste impairments prior to motor deficits in mice. Methods: Rotenone was administrated to the right nose of mice once a day for 1 or 4 week(s). In the 1-week group, taste, olfactory, and motor function was assessed before and after a 1-week recovery period following the rotenone administration. Motor function was also continuously examined in the 4-weeks group from 0 to 5 weeks. After a behavioral test, the number of catecholamine neurons (CA-Nos) was counted in the regions responsible for taste, olfactory, and motor function. Results: taste and olfactory impairments were simultaneously observed without locomotor impairments in the 1-week group. The CA-Nos was significantly reduced in the olfactory bulb and nucleus of the solitary tract. In the 4-week group, locomotor impairments were observed from the third week, and a significant reduction in the CA-Nos was observed in the substantia nigra (SN) and ventral tegmental area (VTA) at the fifth week along with the weight loss. Conclusion: The intranasal administration of rotenone caused chemosensory and motor impairments in an administration time-period dependent manner. Since chemosensory impairments were expressed prior to the locomotor impairments followed by SN/VTA CA neurons loss, this rotenone administration model may contribute to the clarification of the prodromal symptoms of PD.
Collapse
Affiliation(s)
- Dong Xu Yin
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazunori Nozaki
- Division of Medical Information, Osaka University Dental Hospital, Suita, Osaka, Japan
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazunori Adachi
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hajime Sato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| |
Collapse
|
26
|
Beckers AB, van Oudenhove L, Weerts ZZRM, Jacobs HIL, Priovoulos N, Poser BA, Ivanov D, Gholamrezaei A, Aziz Q, Elsenbruch S, Masclee AAM, Keszthelyi D. Evidence for engagement of the nucleus of the solitary tract in processing intestinal chemonociceptive input irrespective of conscious pain response in healthy humans. Pain 2022; 163:1520-1529. [PMID: 34799534 DOI: 10.1097/j.pain.0000000000002538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Neuroimaging studies have revealed important pathomechanisms related to disorders of brain-gut interactions, such as irritable bowel syndrome and functional dyspepsia. More detailed investigations aimed at neural processing in the brainstem, including the key relay station of the nucleus of the solitary tract (NTS), have hitherto been hampered by technical shortcomings. To ascertain these processes in more detail, we used multiecho multiband 7T functional magnetic resonance imaging and a novel translational experimental model based on a nutrient-derived intestinal chemonociceptive stimulus. In a randomized cross-over fashion, subjects received duodenal infusion of capsaicin (the pungent principle in red peppers) and placebo (saline). During infusion, functional magnetic resonance imaging data and concomitant symptom ratings were acquired. Of 26 healthy female volunteers included, 18 were included in the final analysis. Significantly increased brain activation over time during capsaicin infusion, as compared with placebo, was observed in brain regions implicated in pain processing, in particular the NTS. Brain activation in the thalamus, cingulate cortex, and insula was more pronounced in subjects who reported abdominal pain (visual analogue scale > 10 mm), as compared with subjects who experienced no pain. On the contrary, activations at the level of the NTS were independent of subjective pain ratings. The current experimental paradigm therefore allowed us to demonstrate activation of the principal relay station for visceral afferents in the brainstem, the NTS, which was engaged irrespective of the conscious pain response. These findings contribute to understanding the fundamental mechanism necessary for developing novel therapies aimed at correcting disturbances in visceral afferent pain processing.
Collapse
Affiliation(s)
- Abraham B Beckers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lukas van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Zsa Zsa R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Heidi I L Jacobs
- Department of Radiology, Gordon Center for Medical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Nikos Priovoulos
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Benedikt A Poser
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dimo Ivanov
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ali Gholamrezaei
- Faculty of Medicine and Health, Pain Management Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Qasim Aziz
- Barts and the London School of Medicine and Dentistry, Centre for Digestive Diseases, Wingate Institute of Neurogastroenterology, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Sigrid Elsenbruch
- Translational Pain Research Unit, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Ad A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
27
|
Konjusha A, Colzato L, Ghin F, Stock A, Beste C. Auricular transcutaneous vagus nerve stimulation for alcohol use disorder: A chance to improve treatment? Addict Biol 2022; 27:e13202. [DOI: 10.1111/adb.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
- Biopsychology, Faculty of Psychology TU Dresden Dresden Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| |
Collapse
|
28
|
Ludwig RJ, Welch MG. Wired to Connect: The Autonomic Socioemotional Reflex Arc. Front Psychol 2022; 13:841207. [PMID: 35814106 PMCID: PMC9268160 DOI: 10.3389/fpsyg.2022.841207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/04/2022] [Indexed: 01/10/2023] Open
Abstract
We have previously proposed that mothers and infants co-regulate one another’s autonomic state through an autonomic conditioning mechanism, which starts during gestation and results in the formation of autonomic socioemotional reflexes (ASRs) following birth. Theoretically, autonomic physiology associated with the ASR should correlate concomitantly with behaviors of mother and infant, although the neuronal pathway by which this phenomenon occurs has not been elucidated. In this paper, we consider the neuronal pathway by which sensory stimuli between a mother and her baby/child affect the physiology and emotional behavior of each. We divide our paper into two parts. In the first part, to gain perspective on current theories on the subject, we conduct a 500-year narrative history of scientific investigations into the human nervous system and theories that describe the neuronal pathway between sensory stimulus and emotional behavior. We then review inconsistencies between several currently accepted theories and recent data. In the second part, we lay out a new theory of emotions that describes how sensory stimuli between mother and baby unconsciously control the behavior and physiology of both. We present a theory of mother/infant emotion based on a set of assumptions fundamentally different from current theories. Briefly, we propose that mother/infant sensory stimuli trigger conditional autonomic socioemotional reflexes (ASRs), which drive cardiac function and behavior without the benefit of the thalamus, amygdala or cortex. We hold that the ASR is shaped by an evolutionarily conserved autonomic learning mechanism (i.e., functional Pavlovian conditioning) that forms between mother and fetus during gestation and continues following birth. We highlight our own and others research findings over the past 15 years that support our contention that mother/infant socioemotional behavior is driven by mutual autonomic state plasticity, as opposed to cortical trait plasticity. We review a novel assessment tool designed to measure the behaviors associated with the ASR phenomenon. Finally, we discuss the significance of our theory for the treatment of mothers and infants with socioemotional disorders.
Collapse
Affiliation(s)
- Robert J. Ludwig
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Robert J. Ludwig,
| | - Martha G. Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Anatomy and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
29
|
Dervisoglu E, Altintas Taslicay C, Alparslan B, Anik Y. Progressive MRI findings of West Nile virus encephalitis in a patient with diabetes mellitus. BMJ Case Rep 2022; 15:e249142. [PMID: 35584859 PMCID: PMC9119133 DOI: 10.1136/bcr-2022-249142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/04/2022] Open
Abstract
A man in his 70s was admitted to our hospital with complaints of fatigue, loss of appetite and fever. His neurological examination was normal. He had a medical history of diabetes mellitus for 25 years. Urine analysis showed many leucocytes. Empirical antibiotic treatment was started for urinary system infection. Three days later, his mental status worsened with confusion and disorientation. MRI of the brain was normal. Two days later, the patient was intubated because of respiratory insufficiency. MRI showed restricted diffusion in bilateral thalamic nuclei. Encephalitis and ischaemia were considered in the differential diagnosis. Cerebrospinal fluid IgM antibody for West Nile virus was positive. Sixteen days later, cranial nerve reflexes were lost. MRI showed restricted diffusion and increased T2 signal intensity in the dorsal medulla and increased T2 signal intensity without diffusion restriction in bilateral substantia nigra and dentate nuclei. He died of cardiac arrest 40 days after hospitalisation.
Collapse
Affiliation(s)
| | | | - Burcu Alparslan
- Radiology, Kocaeli University School of Medicine, Izmit, Turkey
| | - Yonca Anik
- Radiology, Kocaeli University School of Medicine, Izmit, Turkey
| |
Collapse
|
30
|
Schäfer E, Scheer C, Saljé K, Fritz A, Kohlmann T, Hübner NO, Napp M, Fiedler-Lacombe L, Stahl D, Rauch B, Nauck M, Völker U, Felix S, Lucchese G, Flöel A, Engeli S, Hoffmann W, Hahnenkamp K, Tzvetkov MV. Course of disease and risk factors for hospitalization in outpatients with a SARS-CoV-2 infection. Sci Rep 2022; 12:7249. [PMID: 35508524 PMCID: PMC9065670 DOI: 10.1038/s41598-022-11103-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
We analyzed symptoms and comorbidities as predictors of hospitalization in 710 outpatients in North-East Germany with PCR-confirmed SARS-CoV-2 infection. During the first 3 days of infection, commonly reported symptoms were fatigue (71.8%), arthralgia/myalgia (56.8%), headache (55.1%), and dry cough (51.8%). Loss of smell (anosmia), loss of taste (ageusia), dyspnea, and productive cough were reported with an onset of 4 days. Anosmia or ageusia were reported by only 18% of the participants at day one, but up to 49% between days 7 and 9. Not all participants who reported ageusia also reported anosmia. Individuals suffering from ageusia without anosmia were at highest risk of hospitalization (OR 6.8, 95% CI 2.5-18.1). They also experienced more commonly dyspnea and nausea (OR of 3.0, 2.9, respectively) suggesting pathophysiological connections between these symptoms. Other symptoms significantly associated with increased risk of hospitalization were dyspnea, vomiting, and fever. Among basic parameters and comorbidities, age > 60 years, COPD, prior stroke, diabetes, kidney and cardiac diseases were also associated with increased risk of hospitalization. In conclusion, due to the delayed onset, ageusia and anosmia may be of limited use in differential diagnosis of SARS-CoV-2. However, differentiation between ageusia and anosmia may be useful for evaluating risk for hospitalization.
Collapse
Affiliation(s)
- Eik Schäfer
- Department of Clinical Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
- Department of Anesthesiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Scheer
- Department of Anesthesiology, University Medicine Greifswald, Greifswald, Germany
| | - Karen Saljé
- Department of Clinical Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Anja Fritz
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17489, Greifswald, Germany
| | - Thomas Kohlmann
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany
| | - Nils-Olaf Hübner
- Central Unit for Infection Prevention and Control, University Medicine Greifswald, Greifswald, Germany
- Institute of Hygiene and Environmental Medicine, University of Greifswald, Greifswald, Germany
| | - Matthias Napp
- Departments of Emergency and Acute Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lizon Fiedler-Lacombe
- Independent Trusted Third Party, University Medicine Greifswald, Greifswald, Germany
| | - Dana Stahl
- Independent Trusted Third Party, University Medicine Greifswald, Greifswald, Germany
| | - Bernhard Rauch
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17489, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Felix
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Guglielmo Lucchese
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Engeli
- Department of Clinical Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany
| | - Klaus Hahnenkamp
- Department of Anesthesiology, University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
31
|
Tolman Z, Chaverra M, George L, Lefcort F. Elp1 is required for development of visceral sensory peripheral and central circuitry. Dis Model Mech 2022; 15:275184. [PMID: 35481599 PMCID: PMC9187870 DOI: 10.1242/dmm.049274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular instability and a blunted respiratory drive in hypoxic conditions are hallmark features of the genetic sensory and autonomic neuropathy, familial dysautonomia (FD). FD results from a mutation in the gene ELP1, the encoded protein of which is a scaffolding subunit of the six-subunit Elongator complex. In mice, we and others have shown that Elp1 is essential for the normal development of neural crest-derived dorsal root ganglia sensory neurons. Whether Elp1 is also required for development of ectodermal placode-derived visceral sensory receptors, which are required for normal baroreception and chemosensory responses, has not been investigated. Using mouse models for FD, we here show that the entire circuitry underlying baroreception and chemoreception is impaired due to a requirement for Elp1 in the visceral sensory neuron ganglia, as well as for normal peripheral target innervation, and in their central nervous system synaptic partners in the medulla. Thus, Elp1 is required in both placode- and neural crest-derived sensory neurons, and its reduction aborts the normal development of neuronal circuitry essential for autonomic homeostasis and interoception. This article has an associated First Person interview with the first author of the paper. Summary: Our data indicate that Elp1 is required in both placode- and neural crest-derived sensory neurons, and that it exerts comparable effects, including survival, axonal morphology and target innervation in both lineages.
Collapse
Affiliation(s)
- Zariah Tolman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Marta Chaverra
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Lynn George
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.,Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
32
|
Etonogestrel Administration Reduces the Expression of PHOX2B and Its Target Genes in the Solitary Tract Nucleus. Int J Mol Sci 2022; 23:ijms23094816. [PMID: 35563209 PMCID: PMC9101578 DOI: 10.3390/ijms23094816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heterozygous mutations of the transcription factor PHOX2B are responsible for Congenital Central Hypoventilation Syndrome, a neurological disorder characterized by inadequate respiratory response to hypercapnia and life-threatening hypoventilation during sleep. Although no cure is currently available, it was suggested that a potent progestin drug provides partial recovery of chemoreflex response. Previous in vitro data show a direct molecular link between progestins and PHOX2B expression. However, the mechanism through which these drugs ameliorate breathing in vivo remains unknown. Here, we investigated the effects of chronic administration of the potent progestin drug Etonogestrel (ETO) on respiratory function and transcriptional activity in adult female rats. We assessed respiratory function with whole-body plethysmography and measured genomic changes in brain regions important for respiratory control. Our results show that ETO reduced metabolic activity, leading to an enhanced chemoreflex response and concurrent increased breathing cycle variability at rest. Furthermore, ETO-treated brains showed reduced mRNA and protein expression of PHOX2B and its target genes selectively in the dorsal vagal complex, while other areas were unaffected. Histological analysis suggests that changes occurred in the solitary tract nucleus (NTS). Thus, we propose that the NTS, rich in both progesterone receptors and PHOX2B, is a good candidate for ETO-induced respiratory modulation.
Collapse
|
33
|
Pani T, Nayak S. The Non-motor Symptoms, Disability Progression, and Survival Analysis of Atypical Parkinsonism: Case Series from Eastern India and Brief Review of Literature. J Neurosci Rural Pract 2022; 13:276-282. [PMID: 35694072 PMCID: PMC9187423 DOI: 10.1055/s-0042-1744120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Abstract
Objective The objectives of this study are (1) to describe the non-motor profile, the motor disability progression, and survival analysis of atypical parkinsonism in a tertiary care hospital of eastern India and (2) to elucidate the neurocircuitry and the putative substrates responsible for non-motor manifestations.
Methods In this prospective observational study, patients were diagnosed based on Consensus Criteria for Progressive Supranuclear Palsy (PSP), The Fourth Consensus Report of the Dementia with Lewy Body (DLBD) Consortium 2017, The Autonomic Neuroscience 2018 Criteria for Multiple System Atrophy (MSA), and Armstrong 2013 Criteria for Corticobasal Degeneration (CBD). Disease severity was assessed at baseline and 6 months of follow-up using the Unified Parkinson's Disease Rating Scales (UPDRS). For PSP and MSA, the PSP-Clinical Deficits Scale (PSP-CDS) and the Unified MSA Rating Scale (UMSARS), respectively, were used. Cox regression analysis and the hazard ratio were calculated.
Results Out of 27 patients, the diagnosis was probable PSP in 12, probable MSA in 7, probable CBD in 5, and probable DLBD in 3. Non-motor symptoms were highly prevalent across all subtypes. Motor disability progression as assessed by UPDRS parts 2 and 3 showed significant deterioration over 6-month follow-up across all groups (p < 0.05). Disease progression assessed by PSP-CDS and UMSARS over 6 months was significant (p < 0.05). One PSP and two MSA patients died during a 6-month follow-up period. The hazard ratio in MSA was 3.5 (95% confidence interval: 0.31–0.38) with p = 0.306.
Conclusion Atypical parkinsonian disorders are rare, and usually more severe than idiopathic parkinsonism. As no definitive treatment is available, symptomatic management involving a multidisciplinary team approach must be prioritized.
Collapse
Affiliation(s)
- Tapas Pani
- Department of Neurology, SCB Medical College and Hospital, Cuttack, Odisha, India
| | - Soumyadarshan Nayak
- Department of Neurology, SCB Medical College and Hospital, Cuttack, Odisha, India
| |
Collapse
|
34
|
Putative Role of the Lung-Brain Axis in the Pathogenesis of COVID-19-Associated Respiratory Failure: A Systematic Review. Biomedicines 2022; 10:biomedicines10030729. [PMID: 35327531 PMCID: PMC8944980 DOI: 10.3390/biomedicines10030729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of SARS-CoV-2 and its related disease caused by coronavirus (COVID-19) has posed a huge threat to the global population, with millions of deaths and the creation of enormous social and healthcare pressure. Several studies have shown that besides respiratory illness, other organs may be damaged as well, including the heart, kidneys, and brain. Current evidence reports a high frequency of neurological manifestations in COVID-19, with significant prognostic implications. Importantly, emerging literature is showing that the virus may spread to the central nervous system through neuronal routes, hitting the brainstem and cardiorespiratory centers, potentially exacerbating the respiratory illness. In this systematic review, we searched public databases for all available evidence and discuss current clinical and pre-clinical data on the relationship between the lung and brain during COVID-19. Acknowledging the involvement of these primordial brain areas in the pathogenesis of the disease may fuel research on the topic and allow the development of new therapeutic strategies.
Collapse
|
35
|
Parayil Sankaran B, Wortmann SB, Willemsen MA, Balasubramaniam S. Teaching NeuroImage: Bilateral Nucleus Tractus Solitarius Lesions in Neurogenic Respiratory Failure. Neurology 2022; 98:e103-e104. [PMID: 34376511 PMCID: PMC8726572 DOI: 10.1212/wnl.0000000000012614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Bindu Parayil Sankaran
- From the Genetic Metabolic Disorders Service (B.P.S., S.B.), Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney; The Children's Hospital at Westmead Clinical School (B.P.S.), Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Department of Pediatric Neurology (S.B.W., M.A.W.), Amalia Children's Hospital, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (S.B.W.), University Children's Hospital, Salzburg, Austria; and Discipline of Genetic Medicine (S.B.), Sydney Medical School, University of Sydney, NSW, Australia.
| | - Saskia B Wortmann
- From the Genetic Metabolic Disorders Service (B.P.S., S.B.), Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney; The Children's Hospital at Westmead Clinical School (B.P.S.), Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Department of Pediatric Neurology (S.B.W., M.A.W.), Amalia Children's Hospital, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (S.B.W.), University Children's Hospital, Salzburg, Austria; and Discipline of Genetic Medicine (S.B.), Sydney Medical School, University of Sydney, NSW, Australia
| | - Michel A Willemsen
- From the Genetic Metabolic Disorders Service (B.P.S., S.B.), Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney; The Children's Hospital at Westmead Clinical School (B.P.S.), Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Department of Pediatric Neurology (S.B.W., M.A.W.), Amalia Children's Hospital, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (S.B.W.), University Children's Hospital, Salzburg, Austria; and Discipline of Genetic Medicine (S.B.), Sydney Medical School, University of Sydney, NSW, Australia
| | - Shanti Balasubramaniam
- From the Genetic Metabolic Disorders Service (B.P.S., S.B.), Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney; The Children's Hospital at Westmead Clinical School (B.P.S.), Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Department of Pediatric Neurology (S.B.W., M.A.W.), Amalia Children's Hospital, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (S.B.W.), University Children's Hospital, Salzburg, Austria; and Discipline of Genetic Medicine (S.B.), Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
36
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
37
|
Zhao Q, Yu CD, Wang R, Xu QJ, Dai Pra R, Zhang L, Chang RB. A multidimensional coding architecture of the vagal interoceptive system. Nature 2022; 603:878-884. [PMID: 35296859 PMCID: PMC8967724 DOI: 10.1038/s41586-022-04515-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Collapse
Affiliation(s)
- Qiancheng Zhao
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Chuyue D. Yu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rui Wang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Qian J. Xu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rafael Dai Pra
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| | - Rui B. Chang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
38
|
Sokhor N, Yasniy O. A case report of neuromyelitis optica spectrum disorder with lesions of the medulla oblongata. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:121-125. [DOI: 10.17116/jnevro2022122031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, Paula-Lima AC, Díaz-Zúñiga J. Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:781582. [PMID: 35822001 PMCID: PMC9261337 DOI: 10.3389/fragi.2021.781582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Periodontitis is considered a non-communicable chronic disease caused by a dysbiotic microbiota, which generates a low-grade systemic inflammation that chronically damages the organism. Several studies have associated periodontitis with other chronic non-communicable diseases, such as cardiovascular or neurodegenerative diseases. Besides, the oral bacteria considered a keystone pathogen, Porphyromonas gingivalis, has been detected in the hippocampus and brain cortex. Likewise, gut microbiota dysbiosis triggers a low-grade systemic inflammation, which also favors the risk for both cardiovascular and neurodegenerative diseases. Recently, the existence of an axis of Oral-Gut communication has been proposed, whose possible involvement in the development of neurodegenerative diseases has not been uncovered yet. The present review aims to compile evidence that the dysbiosis of the oral microbiota triggers changes in the gut microbiota, which creates a higher predisposition for the development of neuroinflammatory or neurodegenerative diseases.The Oral-Gut-Brain axis could be defined based on anatomical communications, where the mouth and the intestine are in constant communication. The oral-brain axis is mainly established from the trigeminal nerve and the gut-brain axis from the vagus nerve. The oral-gut communication is defined from an anatomical relation and the constant swallowing of oral bacteria. The gut-brain communication is more complex and due to bacteria-cells, immune and nervous system interactions. Thus, the gut-brain and oral-brain axis are in a bi-directional relationship. Through the qualitative analysis of the selected papers, we conclude that experimental periodontitis could produce both neurodegenerative pathologies and intestinal dysbiosis, and that periodontitis is likely to induce both conditions simultaneously. The severity of the neurodegenerative disease could depend, at least in part, on the effects of periodontitis in the gut microbiota, which could strengthen the immune response and create an injurious inflammatory and dysbiotic cycle. Thus, dementias would have their onset in dysbiotic phenomena that affect the oral cavity or the intestine. The selected studies allow us to speculate that oral-gut-brain communication exists, and bacteria probably get to the brain via trigeminal and vagus nerves.
Collapse
Affiliation(s)
- Luis Daniel Sansores-España
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Faculty of Dentistry, Autonomous University of Yucatán, Mérida, México
| | | | | | - Emilio A. Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica Del Sur, Lima, Perú
| | | | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Medicine, Faculty of Medicine, University of Atacama, Copiapó, Chile
- *Correspondence: Jaime Díaz-Zúñiga, ,
| |
Collapse
|
40
|
Borgmann D, Rigoux L, Kuzmanovic B, Edwin Thanarajah S, Münte TF, Fenselau H, Tittgemeyer M. Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation. Neuroimage 2021; 244:118566. [PMID: 34509623 DOI: 10.1016/j.neuroimage.2021.118566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany; Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany; Center for Anatomy II, Neuroanatomy, University Hospital Cologne, Joseph-Stelzmann Str. 9, 50937, Cologne, Germany.
| | - Lionel Rigoux
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany; Translational Neuromodeling Unit, Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Wilfriedstrasse 6, 8032, Zurich, Switzerland
| | - Bojana Kuzmanovic
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528, Frankfurt, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany; Cluster of Excellence in Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany; Cluster of Excellence in Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| |
Collapse
|
41
|
Arai Y, Kosugiyama K, Tamura T, Matsumoto S, Sudo A, Shiraishi H, Ivor C, Ohtake A, Nagumo K. Successful recovery from severe hypertension in a patient with Leigh syndrome. Mol Genet Metab Rep 2021; 25:100684. [PMID: 34589414 PMCID: PMC8461110 DOI: 10.1016/j.ymgmr.2020.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 11/27/2022] Open
Abstract
Hypertension is a rare complication of Leigh Syndrome (LS), but prognosis of patients with hypertension is poor and its presence is indicative of the terminal stage of the disease. Herein, we report a four-year-old girl case diagnosed with LS at 15 months of age who subsequently developed severe hypertension and respiratory failure. Physical examination and laboratory findings did not indicate a secondary cause of hypertension. Her respiratory failure was treated with non-invasive ventilation and hypertension controlled with enalapril, furosemide and spironolactone. To our knowledge, this is the first case of a patient with LS recovering from severe hypertension.
Collapse
Affiliation(s)
- Yuto Arai
- Department of Pediatrics, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Kiyotaka Kosugiyama
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Takuya Tamura
- Department of Pediatrics, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Sasagu Matsumoto
- Department of Pediatrics, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Akira Sudo
- Social Welfare Corporation Nire-no-kai Children's Clinic, Sapporo, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Cammack Ivor
- Department of Clinical Residency Training, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Akira Ohtake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Kiyoshi Nagumo
- Department of Pediatrics, Teine-Keijinkai Hospital, Sapporo, Japan
| |
Collapse
|
42
|
Wolf V, Kühnel A, Teckentrup V, Koenig J, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis. Psychophysiology 2021; 58:e13933. [PMID: 34473846 DOI: 10.1111/psyp.13933] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Non-invasive brain stimulation techniques, such as transcutaneous auricular vagus nerve stimulation (taVNS), have considerable potential for clinical use. Beneficial effects of taVNS have been demonstrated on symptoms in patients with mental or neurological disorders as well as transdiagnostic dimensions, including mood and motivation. However, since taVNS research is still an emerging field, the underlying neurophysiological processes are not yet fully understood, and the replicability of findings on biomarkers of taVNS effects has been questioned. The objective of this analysis was to synthesize the current evidence concerning the effects of taVNS on vagally mediated heart rate variability (vmHRV), a candidate biomarker that has, so far, received most attention in the field. We performed a living Bayesian random effects meta-analysis. To keep the synthesis of evidence transparent and up to date as new studies are being published, we developed a Shiny web app that regularly incorporates new results and enables users to modify study selection criteria to evaluate the robustness of the inference across potential confounds. Our analysis focuses on 16 single-blind studies comparing taVNS versus sham in healthy participants. The meta-analysis provides strong evidence for the null hypothesis (g = 0.014, CIshortest = [-0.103, 0.132], BF01 = 24.678), indicating that acute taVNS does not alter vmHRV compared to sham. To conclude, there is no support for the hypothesis that vmHRV is a robust biomarker for acute taVNS. By increasing transparency and timeliness, the concept of living meta-analyses can lead to transformational benefits in emerging fields such as non-invasive brain stimulation.
Collapse
Affiliation(s)
- Vinzent Wolf
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany.,Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Anne Kühnel
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany.,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Julian Koenig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach. Auton Neurosci 2021; 233:102811. [PMID: 33932866 DOI: 10.1016/j.autneu.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Vagal afferents form the primary gut-to-brain neural axis, communicating signals that regulate gastrointestinal (GI) function and promote satiation, appetition and reward. Neurotrophin-4 (NT-4) is essential for the survival of vagal smooth muscle afferents of the small intestine, but not the stomach. Here we took advantage of near-complete labeling of GI vagal mucosal afferents in Nav1.8cre-Rosa26tdTomato transgenic mice to determine whether these afferents depend on NT-4 for survival. We quantified the density and distribution of vagal afferent terminals in the stomach and small intestine mucosa and their central terminals in the solitary tract nucleus (NTS) and area postrema in NT-4 knockout (KO) and control mice. NT-4KO mice exhibited a 75% reduction in vagal afferent terminals in proximal duodenal villi and a 55% decrease in the distal ileum, whereas, those in the stomach glands remained intact. Vagal crypt afferents were also reduced in some regions of the small intestine, but to a lesser degree. Surprisingly, NT-4KO mice exhibited an increase in labeled terminals in the medial NTS. These findings, combined with previous results, suggest NT-4 is essential for survival of a large proportion of all classes of vagal afferents that innervate the small intestine, but not those that supply the stomach. Thus, NT-4KO mice could be valuable for distinguishing gastric and intestinal vagal afferent regulation of GI function and feeding. The apparent plasticity of central vagal afferent terminals - an increase in their density - could have compensated for loss of peripheral terminals by maintaining near-normal levels of satiety signaling.
Collapse
|
44
|
Abstract
PURPOSE OF THE REVIEW This article reviews the anatomic, functional, and neurochemical organization of the sympathetic and parasympathetic outputs; the effects on target organs; the central mechanisms controlling autonomic function; and the pathophysiologic basis for core symptoms of autonomic failure. RECENT FINDINGS Functional neuroimaging studies have elucidated the areas involved in central control of autonomic function in humans. Optogenetic and other novel approaches in animal experiments have provided new insights into the role of these areas in autonomic control across behavioral states, including stress and the sleep-wake cycle. SUMMARY Control of the function of the sympathetic, parasympathetic, and enteric nervous system functions depends on complex interactions at all levels of the neuraxis. Peripheral sympathetic outputs are critical for maintenance of blood pressure, thermoregulation, and response to stress. Parasympathetic reflexes control lacrimation, salivation, pupil response to light, beat-to-beat control of the heart rate, gastrointestinal motility, micturition, and erectile function. The insular cortex, anterior and midcingulate cortex, and amygdala generate autonomic responses to behaviorally relevant stimuli. Several nuclei of the hypothalamus generate coordinated patterns of autonomic responses to internal or social stressors. Several brainstem nuclei participate in integrated control of autonomic function in relationship to respiration and the sleep-wake cycle. Disorders affecting the central or peripheral autonomic pathways, or both, manifest with autonomic failure (including orthostatic hypotension, anhidrosis, gastrointestinal dysmotility, and neurogenic bladder or erectile dysfunction) or autonomic hyperactivity, primary hypertension, tachycardia, and hyperhidrosis.
Collapse
|
45
|
Kim W, Na JO, Thomas RJ, Jang WY, Kang DO, Park Y, Choi JY, Roh SY, Choi CU, Kim JW, Kim EJ, Rha SW, Park CG, Seo HS, Lim HE. Impact of Catheter Ablation on Sleep Quality and Relationship Between Sleep Stability and Recurrence of Paroxysmal Atrial Fibrillation After Successful Ablation: 24-Hour Holter-Based Cardiopulmonary Coupling Analysis. J Am Heart Assoc 2020; 9:e017016. [PMID: 33241769 PMCID: PMC7763792 DOI: 10.1161/jaha.120.017016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Sleep fragmentation and sleep apnea are common in patients with atrial fibrillation (AF). We investigated the impact of radio‐frequency catheter ablation (RFCA) on sleep quality in patients with paroxysmal AF and the effect of a change in sleep quality on recurrence of AF. Methods and Results Of 445 patients who underwent RFCA for paroxysmal AF between October 2007 and January 2017, we analyzed 225 patients who had a 24‐hour Holter test within 6 months before RFCA. Sleep quality was assessed by cardiopulmonary coupling analysis using 24‐hour Holter data. We compared cardiopulmonary coupling parameters (high‐frequency coupling, low‐frequency coupling, very‐low‐frequency coupling) before and after RFCA. Six months after RFCA, the high‐frequency coupling (marker of stable sleep) and very‐low‐frequency coupling (rapid eye movement/wake marker) was significantly increased (29.84%–36.15%; P<0.001; and 26.20%–28.76%; P=0.002, respectively) while low‐frequency coupling (unstable sleep marker) was decreased (41.25%–32.13%; P<0.001). We divided patients into 3 tertiles according to sleep quality before RFCA, and the risk of AF recurrence in each group was compared. The second tertile was used as a reference; patients with unstable sleep (Tertile 3) had a significantly lower risk of AF recurrence (hazard ratio [HR], 0.32; 95% CI, 0.12–0.83 for high‐frequency coupling; and HR, 0.22; 95% CI, 0.09–0.58 for low‐frequency coupling). Conclusions Sleep quality improved after RFCA in patients with paroxysmal AF. The recurrence rate was significantly lower in patients who had unstable sleep before RFCA. These results suggest that RFCA can influence sleep quality, and sleep quality assessment before RFCA may provide a risk marker for recurrence after RFCA in patients with paroxysmal AF.
Collapse
Affiliation(s)
- Woohyeun Kim
- Division of Cardiology Department of Internal Medicine College of Medicine Hanyang University Seoul Korea
| | - Jin Oh Na
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Robert J Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine Department of Medicine Beth Israel Deaconess Medical Center Boston MA
| | - Won Young Jang
- Cardiovascular Center Catholic University of Korea St. Vincent Hospital Suwon Korea
| | - Dong Oh Kang
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Yoonjee Park
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Jah Yeon Choi
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Seung-Young Roh
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Cheol Ung Choi
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Jin Won Kim
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Eung Ju Kim
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Seung-Woon Rha
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Chang Gyu Park
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Hong Seog Seo
- Cardiovascular Center Korea University Guro Hospital Seoul Korea
| | - Hong Euy Lim
- Division of Cardiology Hallym University Sacred Heart Hospital Hallym University College of Medicine Anyang Korea
| |
Collapse
|
46
|
Baptista AF, Baltar A, Okano AH, Moreira A, Campos ACP, Fernandes AM, Brunoni AR, Badran BW, Tanaka C, de Andrade DC, da Silva Machado DG, Morya E, Trujillo E, Swami JK, Camprodon JA, Monte-Silva K, Sá KN, Nunes I, Goulardins JB, Bikson M, Sudbrack-Oliveira P, de Carvalho P, Duarte-Moreira RJ, Pagano RL, Shinjo SK, Zana Y. Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Front Neurol 2020; 11:573718. [PMID: 33324324 PMCID: PMC7724108 DOI: 10.3389/fneur.2020.573718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
| | - Adriana Baltar
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Specialized Neuromodulation Center—Neuromod, Recife, Brazil
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Graduate Program in Physical Education, State University of Londrina, Londrina, Brazil
| | - Alexandre Moreira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Ana Mércia Fernandes
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - André Russowsky Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Clarice Tanaka
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edgard Morya
- Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaiba, Brazil
| | - Eduardo Trujillo
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | - Jaiti K. Swami
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Joan A. Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katia Monte-Silva
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Katia Nunes Sá
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Isadora Nunes
- Department of Physiotherapy, Pontifícia Universidade Católica de Minas Gerais, Betim, Brazil
| | - Juliana Barbosa Goulardins
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Universidade Cruzeiro do Sul (UNICSUL), São Paulo, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | | | - Priscila de Carvalho
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Jardim Duarte-Moreira
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | | | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
47
|
Briguglio M, Porta M, Zuffada F, Bona AR, Crespi T, Pino F, Perazzo P, Mazzocchi M, Giorgino R, De Angelis G, Ielasi A, De Blasio G, Turiel M. SARS-CoV-2 Aiming for the Heart: A Multicenter Italian Perspective About Cardiovascular Issues in COVID-19. Front Physiol 2020; 11:571367. [PMID: 33240098 PMCID: PMC7677571 DOI: 10.3389/fphys.2020.571367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the high fatality rate of coronavirus disease 2019 (COVID-19) have been putting a strain on the world since December 2019. Infected individuals exhibit unpredictable symptoms that tend to worsen if age is advanced, a state of malnutrition persists, or if cardiovascular comorbidities are present. Once transmitted, the virus affects the lungs and in predisposed individuals can elicit a sequela of fatal cardiovascular consequences. We aim to present the pathophysiology of COVID-19, emphasizing the major cellular and clinical manifestations from a cardiological perspective. As a roaming viral particle or more likely via the Trojan horse route, SARS-CoV-2 can access different parts of the body. Cardiovascular features of COVID-19 can count myocardial injuries, vasculitis-like syndromes, and atherothrombotic manifestations. Deviations in the normal electrocardiogram pattern could hide pericardial effusion or cardiac inflammation, and dispersed microthrombi can cause ischemic damages, stroke, or even medullary reflex dysfunctions. Tailored treatment for reduced ejection fraction, arrhythmias, coronary syndromes, macrothrombosis and microthrombosis, and autonomic dysfunctions is mandatory. Confidently, evidence-based therapies for this multifaceted nevertheless purely cardiological COVID-19 will emerge after the global assessment of different approaches.
Collapse
Affiliation(s)
- Matteo Briguglio
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, Milan, Italy
| | - Mauro Porta
- IRCCS Orthopedic Institute Galeazzi, Neurology Unit, Milan, Italy
| | | | - Alberto R Bona
- ICCS Istituto Clinico Città Studi, Neurosurgery Unit, Milan, Italy
| | - Tiziano Crespi
- IRCCS Orthopedic Institute Galeazzi, Intensive Care Unit, Milan, Italy
| | - Fabio Pino
- IRCCS Orthopedic Institute Galeazzi, Intensive Care Unit, Milan, Italy
| | - Paolo Perazzo
- IRCCS Orthopedic Institute Galeazzi, Intensive Care Unit, Milan, Italy
| | - Marco Mazzocchi
- IRCCS Orthopedic Institute Galeazzi, Intensive Care Unit, Milan, Italy
| | - Riccardo Giorgino
- University of Milan, Residency Program in Orthopedics and Traumatology, Milan, Italy
| | | | - Alfonso Ielasi
- Istituto Clinico Sant'Ambrogio, Cardiology Unit, Milan, Italy
| | | | - Maurizio Turiel
- IRCCS Orthopedic Institute Galeazzi, Cardiology Unit, Milan, Italy
| |
Collapse
|
48
|
Shaffer F, Meehan ZM. A Practical Guide to Resonance Frequency Assessment for Heart Rate Variability Biofeedback. Front Neurosci 2020; 14:570400. [PMID: 33117119 PMCID: PMC7578229 DOI: 10.3389/fnins.2020.570400] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Heart rate variability (HRV) represents fluctuations in the time intervals between successive heartbeats, which are termed interbeat intervals. HRV is an emergent property of complex cardiac-brain interactions and non-linear autonomic nervous system (ANS) processes. A healthy heart is not a metronome because it exhibits complex non-linear oscillations characterized by mathematical chaos. HRV biofeedback displays both heart rate and frequently, respiration, to individuals who can then adjust their physiology to improve affective, cognitive, and cardiovascular functioning. The central premise of the HRV biofeedback resonance frequency model is that the adult cardiorespiratory system has a fixed resonance frequency. Stimulation at rates near the resonance frequency produces large-amplitude blood pressure oscillations that can increase baroreflex sensitivity over time. The authors explain the rationale for the resonance frequency model and provide detailed instructions on how to monitor and assess the resonance frequency. They caution that patterns of physiological change must be compared across several breathing rates to evaluate candidate resonance frequencies. They describe how to fine-tune the resonance frequency following an initial assessment. Furthermore, the authors critically assess the minimum epochs required to measure key HRV indices, resonance frequency test-retest reliability, and whether rhythmic skeletal muscle tension can replace slow paced breathing in resonance frequency assessment.
Collapse
Affiliation(s)
- Fred Shaffer
- Center for Applied Psychophysiology, Truman State University, Kirksville, MO, United States
| | - Zachary M. Meehan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
49
|
Xue L, Sun J, Zhu J, Ding Y, Chen S, Ding M, Pei H. The patterns of exercise-induced β-endorphin expression in the central nervous system of rats. Neuropeptides 2020; 82:102048. [PMID: 32446530 DOI: 10.1016/j.npep.2020.102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Exercise at different intensities is able to induce different physical and psychological statuses of the subjects. The β-endorphin (β-EP) in central nervous system is thought to play an important role in physical exercise. However, its expression patterns and physiological effects in the central nuclei under different exercise states are not well understood. Five-week old male Sprague-Dawley rats were randomly divided into two groups of 21 each: Control and Exercise. Control rats were sedentary while Exercise rats were arranged to run on a treadmill (5-week adapting or moderate exercise and 2-week high-intensity exercise). Seven rats were taken from each group at day33, day42 and day49 for examination of blood biochemical parameters (lactate, Lac; blood urea nitrogen, BUN; glucose) and for detection of nuclei β-EP level with immunohistochemistry. The results showed that Lac and BUN levels were significant increased after the high intensity exercise. The five-week exercise caused a significantly increased β-EP in caudate putamen (CPu), amygdala, paraventricular thalamic nucleus (PVT), ventromedial hypothalamus nucleus (VMH) and gigantocellular reticular nucleus (Gi). The high intensity exercise induced an elevated β-EP in CPu and nucleus of the solitary tract (Sol), but a decreased β-EP in globus pallidus (GP). Compared with Control, exercise rats showed an elevated β-EP in CPu, PVT, VMH, accumbens nucleus, Gi and Sol, and a decreased β-EP in GP at day49. The β-EP levels in acurate nucleus, periadueductal gray and parabrachial nucleus were not changed at day33, 42 and 49. In conclusion, β-EP levels in different nuclei changed under the moderate and high intensity exercises, which may contribute to modifying exercise-produced psychological and physiological effects.
Collapse
Affiliation(s)
- Liang Xue
- Physical Education Department, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinrui Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiandi Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shuhuai Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong Pei
- Physical Education Department, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
50
|
Abstract
Many COVID-19 patients are presenting with atypical clinical features. Happy hypoxemia with almost normal breathing, anosmia in the absence of rhinitis or nasal obstruction, and ageusia are some of the reported atypical clinical findings. Based on the clinical manifestations of the disease, we are proposing a new hypothesis that SARS-CoV-2 mediated inflammation of the nucleus tractus solitarius may be the reason for happy hypoxemia in COVID-19 patients.
Collapse
Affiliation(s)
- Anoop U.R.
- UR Anoop Research Group, Pondicherry, India 605008
| | - Kavita Verma
- UR Anoop Research Group, Pondicherry, India 605008
| |
Collapse
|