1
|
Kerdiles O, Oye Mintsa Mi-mba MF, Coulombe K, Tremblay C, Émond V, Saint-Pierre M, Rouxel C, Berthiaume L, Julien P, Cicchetti F, Calon F. Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson's disease. Neural Regen Res 2025; 20:574-586. [PMID: 38819068 PMCID: PMC11317935 DOI: 10.4103/nrr.nrr-d-23-00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00033/figure1/v/2024-05-28T214302Z/r/image-tiff There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson's disease after diagnosis. Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids, such as docosahexaenoic acid, and exercise in Parkinson's disease, we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway. First, mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation. Four weeks after lesion, animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks. During this period, the animals had access to a running wheel, which they could use or not. Docosahexaenoic acid treatment, voluntary exercise, or the combination of both had no effect on (i) distance traveled in the open field test, (ii) the percentage of contraversive rotations in the apomorphine-induction test or (iii) the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta. However, the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum. Compared to docosahexaenoic acid treatment or exercise alone, the combination of docosahexaenoic acid and exercise (i) improved forelimb balance in the stepping test, (ii) decreased the striatal DOPAC/dopamine ratio and (iii) led to increased dopamine transporter levels in the lesioned striatum. The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Olivier Kerdiles
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Méryl-Farelle Oye Mintsa Mi-mba
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Katherine Coulombe
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Cyntia Tremblay
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Vincent Émond
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Martine Saint-Pierre
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Clémence Rouxel
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
| | - Line Berthiaume
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Pierre Julien
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Quebec, QC, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| |
Collapse
|
2
|
Wu H, Qi J, Purwanto E, Zhu X, Yang P, Chen J. Multi-Scale Feature and Multi-Channel Selection toward Parkinson's Disease Diagnosis with EEG. SENSORS (BASEL, SWITZERLAND) 2024; 24:4634. [PMID: 39066031 PMCID: PMC11280892 DOI: 10.3390/s24144634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Motivated by Health Care 4.0, this study aims to reducing the dimensionality of traditional EEG features based on manual extracted features, including statistical features in the time and frequency domains. METHODS A total of 22 multi-scale features were extracted from the UNM and Iowa datasets using a 4th order Butterworth filter and wavelet packet transform. Based on single-channel validation, 29 channels with the highest R2 scores were selected from a pool of 59 common channels. The proposed channel selection scheme was validated on the UNM dataset and tested on the Iowa dataset to compare its generalizability against models trained without channel selection. RESULTS The experimental results demonstrate that the proposed model achieves an optimal classification accuracy of 100%. Additionally, the generalization capability of the channel selection method is validated through out-of-sample testing based on the Iowa dataset Conclusions: Using single-channel validation, we proposed a channel selection scheme based on traditional statistical features, resulting in a selection of 29 channels. This scheme significantly reduced the dimensionality of EEG feature vectors related to Parkinson's disease by 50%. Remarkably, this approach demonstrated considerable classification performance on both the UNM and Iowa datasets. For the closed-eye state, the highest classification accuracy achieved was 100%, while for the open-eye state, the highest accuracy reached 93.75%.
Collapse
Affiliation(s)
- Haoyu Wu
- Department of Computing, Xi’an Jiaotong-Liverpool Univeristy, Suzhou 215000, China; (H.W.); (E.P.); (X.Z.)
| | - Jun Qi
- Department of Computing, Xi’an Jiaotong-Liverpool Univeristy, Suzhou 215000, China; (H.W.); (E.P.); (X.Z.)
| | - Erick Purwanto
- Department of Computing, Xi’an Jiaotong-Liverpool Univeristy, Suzhou 215000, China; (H.W.); (E.P.); (X.Z.)
| | - Xiaohui Zhu
- Department of Computing, Xi’an Jiaotong-Liverpool Univeristy, Suzhou 215000, China; (H.W.); (E.P.); (X.Z.)
| | - Po Yang
- Department of Computer Science, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Jianjun Chen
- Department of Computing, Xi’an Jiaotong-Liverpool Univeristy, Suzhou 215000, China; (H.W.); (E.P.); (X.Z.)
| |
Collapse
|
3
|
Xiu N, Li W, Liu L, Liu Z, Cai Z, Li L, Vaxelaire B, Sock R, Ling Z, Chen J, Wang Y. A Study on Voice Measures in Patients with Parkinson's Disease. J Voice 2024:S0892-1997(24)00168-1. [PMID: 38890016 DOI: 10.1016/j.jvoice.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE This research aims to identify acoustic features which can distinguish patients with Parkinson's disease (PD patients) and healthy speakers. METHODS Thirty PD patients and 30 healthy speakers were recruited in the experiment, and their speech was collected, including three vowels (/i/, /a/, and /u/) and nine consonants (/p/, /pʰ/, /t/, /tʰ/, /k/, /kʰ/, /l/, /m/, and /n/). Acoustic features like fundamental frequency (F0), Jitter, Shimmer, harmonics-to-noise ratio (HNR), first formant (F1), second formant (F2), third formant (F3), first bandwidth (B1), second bandwidth (B2), third bandwidth (B3), voice onset, voice onset time were analyzed in our experiment. Two-sample independent t test and the nonparametric Mann-Whitney U (MWU) test were carried out alternatively to compare the acoustic measures between the PD patients and healthy speakers. In addition, after figuring out the effective acoustic features for distinguishing PD patients and healthy speakers, we adopted two methods to detect PD patients: (1) Built classifiers based on the effective acoustic features and (2) Trained support vector machine classifiers via the effective acoustic features. RESULTS Significant differences were found between the male PD group and the male health control in vowel /i/ (Jitter and Shimmer) and /a/ (Shimmer and HNR). Among female subjects, significant differences were observed in F0 standard deviation (F0 SD) of /u/ between the two groups. Additionally, significant differences between PD group and health control were also found in the F3 of /i/ and /n/, whereas other acoustic features showed no significant differences between the two groups. The HNR of vowel /a/ performed the best classification accuracy compared with the other six acoustic features above found to distinguish PD patients and healthy speakers. CONCLUSIONS PD can cause changes in the articulation and phonation of PD patients, wherein increases or decreases occur in some acoustic features. Therefore, the use of acoustic features to detect PD is expected to be a low-cost and large-scale diagnostic method.
Collapse
Affiliation(s)
- Noé Xiu
- Interdisciplinary Research Center for Linguistic Sciences - University of Science and Technology of China, Hefei, China; U.R. 1339 Linguistique, Langues et Parole (LiLPa) and Institut de Phonétique de Strasbourg (IPS) - University of Strasbourg, Strasbourg, France
| | - Wenmei Li
- Interdisciplinary Research Center for Linguistic Sciences - University of Science and Technology of China, Hefei, China
| | - Lu Liu
- Neurology Department II, Fuyang People's Hospital, Fuyang, China
| | - Zhaoqi Liu
- Interdisciplinary Research Center for Linguistic Sciences - University of Science and Technology of China, Hefei, China
| | - Zhuo Cai
- Neurology Department II, Fuyang People's Hospital, Fuyang, China
| | - Lanlan Li
- Interdisciplinary Research Center for Linguistic Sciences - University of Science and Technology of China, Hefei, China
| | - Béatrice Vaxelaire
- U.R. 1339 Linguistique, Langues et Parole (LiLPa) and Institut de Phonétique de Strasbourg (IPS) - University of Strasbourg, Strasbourg, France
| | - Rudolph Sock
- U.R. 1339 Linguistique, Langues et Parole (LiLPa) and Institut de Phonétique de Strasbourg (IPS) - University of Strasbourg, Strasbourg, France
| | - Zhenhua Ling
- Interdisciplinary Research Center for Linguistic Sciences - University of Science and Technology of China, Hefei, China
| | - Juluo Chen
- Neurology Department II, Fuyang People's Hospital, Fuyang, China
| | - Youmeng Wang
- Neurology Department II, Fuyang People's Hospital, Fuyang, China.
| |
Collapse
|
4
|
Tripathi U, Rosh I, Ben Ezer R, Nayak R, Hussein Y, Choudhary A, Djamus J, Manole A, Houlden H, Gage FH, Stern S. Upregulated ECM genes and increased synaptic activity in Parkinson's human DA neurons with PINK1/ PRKN mutations. NPJ Parkinsons Dis 2024; 10:103. [PMID: 38762512 PMCID: PMC11102563 DOI: 10.1038/s41531-024-00715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Primary symptoms of PD arise with the loss of dopaminergic (DA) neurons in the Substantia Nigra Pars Compacta, but PD also affects the hippocampus and cortex, usually in its later stage. Approximately 15% of PD cases are familial with a genetic mutation. Two of the most associated genes with autosomal recessive (AR) early-onset familial PD are PINK1 and PRKN. In vitro studies of these genetic mutations are needed to understand the neurophysiological changes in patients' neurons that may contribute to neurodegeneration. In this work, we generated and differentiated DA and hippocampal neurons from human induced pluripotent stem cells (hiPSCs) derived from two patients with a double mutation in their PINK1 and PRKN (one homozygous and one heterozygous) genes and assessed their neurophysiology compared to two healthy controls. We showed that the synaptic activity of PD neurons generated from patients with the PINK1 and PRKN mutations is impaired in the hippocampus and dopaminergic neurons. Mutant dopaminergic neurons had enhanced excitatory post-synaptic activity. In addition, DA neurons with the homozygous mutation of PINK1 exhibited more pronounced electrophysiological differences compared to the control neurons. Signaling network analysis of RNA sequencing results revealed that Focal adhesion and ECM receptor pathway were the top two upregulated pathways in the mutant PD neurons. Our findings reveal that the phenotypes linked to PINK1 and PRKN mutations differ from those from other PD mutations, suggesting a unique interplay between these two mutations that drives different PD mechanisms.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ran Ben Ezer
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Andreea Manole
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry Houlden
- UCL queen square institute of neurology, University College London, London, England
| | - Fred H Gage
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Janssen Daalen JM, Gerritsen A, Gerritse G, Gouman J, Meijerink H, Rietdijk LE, Darweesh SKL. How Lifetime Evolution of Parkinson's Disease Could Shape Clinical Trial Design: A Shared Patient-Clinician Viewpoint. Brain Sci 2024; 14:358. [PMID: 38672010 PMCID: PMC11048137 DOI: 10.3390/brainsci14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) has a long, heterogeneous, pre-diagnostic phase, during which pathology insidiously accumulates. Increasing evidence suggests that environmental and lifestyle factors in early life contribute to disease risk and progression. Thanks to the extensive study of this pre-diagnostic phase, the first prevention trials of PD are being designed. However, the highly heterogenous evolution of the disease across the life course is not yet sufficiently taken into account. This could hamper clinical trial success in the advent of biological disease definitions. In an interdisciplinary patient-clinician study group, we discussed how an approach that incorporates the lifetime evolution of PD may benefit the design of disease-modifying trials by impacting population, target and outcome selection. We argue that the timepoint of exposure to risk and protective factors plays a critical role in PD subtypes, influencing population selection. In addition, recent developments in differential disease mechanisms, aided by biological disease definitions, could impact optimal treatment targets. Finally, multimodal biomarker panels using this lifetime approach will likely be most sensitive as progression markers for more personalized trials. We believe that the lifetime evolution of PD should be considered in the design of clinical trials, and that such initiatives could benefit from more patient-clinician partnerships.
Collapse
Affiliation(s)
- Jules M. Janssen Daalen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Aranka Gerritsen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Gijs Gerritse
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Jan Gouman
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Hannie Meijerink
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Leny E. Rietdijk
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Sirwan K. L. Darweesh
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| |
Collapse
|
6
|
Marras C, Fereshtehnejad SM, Berg D, Bohnen NI, Dujardin K, Erro R, Espay AJ, Halliday G, Van Hilten JJ, Hu MT, Jeon B, Klein C, Leentjens AFG, Mollenhauer B, Postuma RB, Rodríguez-Violante M, Simuni T, Weintraub D, Lawton M, Mestre TA. Transitioning from Subtyping to Precision Medicine in Parkinson's Disease: A Purpose-Driven Approach. Mov Disord 2024; 39:462-471. [PMID: 38243775 DOI: 10.1002/mds.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The International Parkinson and Movement Disorder Society (MDS) created a task force (TF) to provide a critical overview of the Parkinson's disease (PD) subtyping field and develop a guidance on future research in PD subtypes. Based on a literature review, we previously concluded that PD subtyping requires an ultimate alignment with principles of precision medicine, and consequently novel approaches were needed to describe heterogeneity at the individual patient level. In this manuscript, we present a novel purpose-driven framework for subtype research as a guidance to clinicians and researchers when proposing to develop, evaluate, or use PD subtypes. Using a formal consensus methodology, we determined that the key purposes of PD subtyping are: (1) to predict disease progression, for both the development of therapies (use in clinical trials) and prognosis counseling, (2) to predict response to treatments, and (3) to identify therapeutic targets for disease modification. For each purpose, we describe the desired product and the research required for its development. Given the current state of knowledge and data resources, we see purpose-driven subtyping as a pragmatic and necessary step on the way to precision medicine. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Nicolaas I Bohnen
- Departments of Radiology & Neurology, University of Michigan, University of Michigan Udall Center, Ann Arbor, Michigan, USA
| | - Kathy Dujardin
- Center of Excellence for Parkinson's Disease, CHU Lille, Univ Lille, Inserm, Lille Neuroscience & Cognition, Lille, France
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Glenda Halliday
- Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jacobus J Van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, Oxford University and John Radcliffe Hospital, West Wing, Neurology Department, Level 3, Oxford, United Kingdom
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Department of Neurology, University Medical Center Goettingen, Kassel, Germany
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania; Parkinson's Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Tiago A Mestre
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Parkinson's Disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa Brain and Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ. Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. Brain Sci 2024; 14:151. [PMID: 38391726 PMCID: PMC10887152 DOI: 10.3390/brainsci14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Emily M. Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Ameya A. Saraf
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Joaquin A. Vizcarra
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 15213, USA;
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| |
Collapse
|
8
|
Goodheart AE, Blackstone C. Getting to the heart of Lewy body disease. J Clin Invest 2024; 134:e175798. [PMID: 38165040 PMCID: PMC10760943 DOI: 10.1172/jci175798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Early identification of neurodegenerative diseases before extensive neuronal loss or disabling symptoms have occurred is imperative for effective use of disease-modifying therapies. Emerging data indicate that central Lewy body diseases - Parkinson disease and dementia with Lewy bodies - can begin in the peripheral nervous system, opening up a therapeutic window before central involvement. In this issue of the JCI, Goldstein et al. report that cardiac 18F-dopamine positron emission tomography reveals lower activity selectively in individuals with several self-reported Parkinson disease risk factors who later develop Parkinson disease or dementia with Lewy bodies. Accurately identifying which at-risk individuals will develop central Lewy body disease will optimize early patient selection for disease-modifying therapies.
Collapse
|
9
|
Tsukita K, Sakamaki-Tsukita H, Kaiser S, Zhang L, Messa M, Serrano-Fernandez P, Takahashi R. High-Throughput CSF Proteomics and Machine Learning to Identify Proteomic Signatures for Parkinson Disease Development and Progression. Neurology 2023; 101:e1434-e1447. [PMID: 37586882 PMCID: PMC10573147 DOI: 10.1212/wnl.0000000000207725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to identify CSF proteomic signatures characteristic of Parkinson disease (PD) and evaluate their clinical utility. METHODS This observational study used data from the Parkinson's Progression Markers Initiative (PPMI), which enrolled patients with PD, healthy controls (HCs), and non-PD participants carrying GBA1, LRRK2, and/or SNCA pathogenic variants (genetic prodromals) at international sites. Study participants were chosen from PPMI enrollees based on the availability of aptamer-based CSF proteomic data, quantifying 4,071 proteins, and classified as patients with PD without GBA1, LRRK2, and/or SNCA pathogenic variants (nongenetic PD), HCs, patients with PD carrying the aforementioned pathogenic variants (genetic PD), or genetic prodromals. Differentially expressed protein (DEP) analysis and the least absolute shrinkage and selection operator (LASSO) were applied to the data from nongenetic PD and HCs. Signatures characteristics of nongenetic PD were quantified as a PD proteomic score (PD-ProS), validated internally and then externally using data of 1,556 CSF proteins from the LRRK2 Cohort Consortium (LCC). We further tested the PD-ProS in genetic PD and genetic prodromals and examined associations with clinical progression. RESULTS Data from 279 patients with nongenetic PD (mean ± SD, age 62.0 ± 9.6 years; male 67.7%) and 141 HCs (age 60.5 ± 11.9 years; male 64.5%) were used for PD-ProS derivation. From 23 DEPs, LASSO determined weights of 14 DEPs for the PD-ProS (area under the curve [AUC] 0.83, 95% CI 0.78-0.87), validated in an independent internal validation cohort of 71 patients with nongenetic PD and 35 HCs (AUC 0.81, 95% CI 0.73-0.90). In the LCC, only 5 of the 14 DEPs were also measured. Notably, these 5 DEPs still distinguished 34 patients with nongenetic PD from 31 HCs with the same weights (AUC 0.75, 95% CI 0.63-0.87). Furthermore, the PD-ProS distinguished 258 patients with genetic PD from 365 genetic prodromals. Finally, regardless of genetic status, the PD-ProS independently predicted both cognitive and motor decline in PD (dementia, adjusted hazard ratio in the highest quintile [aHR-Q5] 2.8 [95% CI 1.6-5.0]; Hoehn and Yahr stage IV, aHR-Q5 2.1 [95% CI 1.1-4.0]). DISCUSSION By integrating high-throughput proteomics with machine learning, we identified PD-associated CSF proteomic signatures crucial for PD development and progression. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov (NCT01176565). A link to the trial registry page is clinicaltrials.gov/ct2/show/NCT01141023. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the CSF proteome contains clinically important information regarding the development and progression of Parkinson disease that can be deciphered by a combination of high-throughput proteomics and machine learning.
Collapse
Affiliation(s)
- Kazuto Tsukita
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
| | - Haruhi Sakamaki-Tsukita
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Sergio Kaiser
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Luqing Zhang
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Mirko Messa
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Pablo Serrano-Fernandez
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Ryosuke Takahashi
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| |
Collapse
|
10
|
Colvett I, Gilmore A, Guzman S, Ledreux A, Quintero JE, Ginjupally DR, Gurwell JA, Slevin JT, Guduru Z, Gerhardt GA, van Horne CG, Granholm AC. Recipient Reaction and Composition of Autologous Sural Nerve Tissue Grafts into the Human Brain. J Clin Med 2023; 12:6121. [PMID: 37834764 PMCID: PMC10573749 DOI: 10.3390/jcm12196121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurological disease for which there is no effective treatment or cure, and therefore it remains an unmet need in medicine. We present data from four participants who received autologous transplantation of small pieces of sural nerve tissue into either the basal forebrain containing the nucleus basalis of Meynert (NBM) or the midbrain substantia nigra (SN). The grafts did not exhibit significant cell death or severe host-tissue reaction up to 55 months post-grafting and contained peripheral cells. Dopaminergic neurites showed active growth in the graft area and into the graft in the SN graft, and cholinergic neurites were abundant near the graft in the NBM. These results provide a histological basis for changes in clinical features after autologous peripheral nerve tissue grafting into the NBM or SN in PD.
Collapse
Affiliation(s)
- Isaac Colvett
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Samuel Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aurélie Ledreux
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Jorge E. Quintero
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Dhanunjaya Rao Ginjupally
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad 500003, Telangana, India
| | - Julie A. Gurwell
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - John T. Slevin
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zain Guduru
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Craig G. van Horne
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| |
Collapse
|
11
|
Filippi M, Balestrino R, Agosta F. Editorial: Biomarkers of non-motor symptoms in Parkinson's disease and parkinsonisms. Front Neurol 2023; 14:1257064. [PMID: 37767533 PMCID: PMC10520349 DOI: 10.3389/fneur.2023.1257064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Massimo Filippi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Lombardy, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Balestrino
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Lombardy, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Lombardy, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Couto B, Sousa M, Gonzalez-Latapi P, McArthur E, Lang A, Chen-Plotkin A, Marras C. Disease Progression and Sphingolipids and Neurofilament Light Chain in Early Idiopathic Parkinson's Disease. Can J Neurol Sci 2023:1-4. [PMID: 37641969 DOI: 10.1017/cjn.2023.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Parkinson's disease(PD) lacks a biomarker for disease progression. To analyze how cerebrospinal fluid (CSF), glucosylceramide (GlcCer), sphingomyelin (SM), or serum neurofilament light chain (NfL) associate with progression of PD in a retrospective cohort, we used linear mixed-model regressions between baseline biomarkers and change in dopamine transporter brain-imaging (DaTscan©), Montreal cognitive assesment (MoCA), or global composite outcome (GCO) score. In 191 PD patients, biomarkers were not associated with DaTscan or MoCA change over 2.1 years. Higher baseline GlcCer/SM ratio and serum-NfL nonsignificantly associated with increase in GCO score. Results do not support a role for CSF-sphingolipid/serum-NfL to predict cognitive and DaTscan progression in early-PD. Potential prediction of global clinical change warrants further study.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Institute of Cognitive and Traslational Neuroscience (INCyT), at the INECO-CONICET-Favaloro University Hospital, Buenos Aires, Argentina
| | - Mario Sousa
- Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Anthony Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
13
|
Huh E, Choi JG, Lee MY, Kim JH, Choi Y, Ju IG, Eo H, Park MG, Kim DH, Park HJ, Lee CH, Oh MS. Peripheral metabolic alterations associated with pathological manifestations of Parkinson's disease in gut-brain axis-based mouse model. Front Mol Neurosci 2023; 16:1201073. [PMID: 37635904 PMCID: PMC10447900 DOI: 10.3389/fnmol.2023.1201073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a representative neurodegenerative disease, and its diagnosis relies on the evaluation of clinical manifestations or brain neuroimaging in the absence of a crucial noninvasive biomarker. Here, we used non-targeted metabolomics profiling to identify metabolic alterations in the colon and plasma samples of Proteus mirabilis (P. mirabilis)-treated mice, which is a possible animal model for investigating the microbiota-gut-brain axis. Methods We performed gas chromatography-mass spectrometry to analyze the samples and detected metabolites that could reflect P. mirabilis-induced disease progression and pathology. Results and discussion Pattern, correlation and pathway enrichment analyses showed significant alterations in sugar metabolism such as galactose metabolism and fructose and mannose metabolism, which are closely associated with energy metabolism and lipid metabolism. This study indicates possible metabolic factors for P. mirabilis-induced pathological progression and provides evidence of metabolic alterations associated with P. mirabilis-mediated pathology of brain neurodegeneration.
Collapse
Affiliation(s)
- Eugene Huh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Gyu Choi
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Mee Youn Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Myoung Gyu Park
- MetaCen Therapeutics Inc. R&D Center, Suwon, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Yassine S, Gschwandtner U, Auffret M, Duprez J, Verin M, Fuhr P, Hassan M. Identification of Parkinson's Disease Subtypes from Resting-State Electroencephalography. Mov Disord 2023; 38:1451-1460. [PMID: 37310340 DOI: 10.1002/mds.29451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) patients present with a heterogeneous clinical phenotype, including motor, cognitive, sleep, and affective disruptions. However, this heterogeneity is often either ignored or assessed using only clinical assessments. OBJECTIVES We aimed to identify different PD sub-phenotypes in a longitudinal follow-up analysis and their electrophysiological profile based on resting-state electroencephalography (RS-EEG) and to assess their clinical significance over the course of the disease. METHODS Using electrophysiological features obtained from RS-EEG recordings and data-driven methods (similarity network fusion and source-space spectral analysis), we have performed a clustering analysis to identify disease sub-phenotypes and we examined whether their different patterns of disruption are predictive of disease outcome. RESULTS We showed that PD patients (n = 44) can be sub-grouped into three phenotypes with distinct electrophysiological profiles. These clusters are characterized by different levels of disruptions in the somatomotor network (Δ and β band), the frontotemporal network (α2 band) and the default mode network (α1 band), which consistently correlate with clinical profiles and disease courses. These clusters are classified into either moderate (only-motor) or mild-to-severe (diffuse) disease. We showed that EEG features can predict cognitive evolution of PD patients from baseline, when the cognitive clinical scores were overlapped. CONCLUSIONS The identification of novel PD subtypes based on electrical brain activity signatures may provide a more accurate prognosis in individual patients in clinical practice and help to stratify subgroups in clinical trials. Innovative profiling in PD can also support new therapeutic strategies that are brain-based and designed to modulate brain activity disruption. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sahar Yassine
- LTSI - INSERM U1099, University of Rennes, Rennes, France
- NeuroKyma, Rennes, France
- Behavior and Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Manon Auffret
- LTSI - INSERM U1099, University of Rennes, Rennes, France
- Behavior and Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
- France Développement Electronique, Monswiller, France
| | - Joan Duprez
- LTSI - INSERM U1099, University of Rennes, Rennes, France
| | - Marc Verin
- LTSI - INSERM U1099, University of Rennes, Rennes, France
- Behavior and Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
- Movement Disorders Unit, Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Peter Fuhr
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Mahmoud Hassan
- Behavior and Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- MINDIG, Rennes, France
| |
Collapse
|
15
|
Price DL, Khan A, Angers R, Cardenas A, Prato MK, Bani M, Bonhaus DW, Citron M, Biere AL. In vivo effects of the alpha-synuclein misfolding inhibitor minzasolmin supports clinical development in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:114. [PMID: 37460603 PMCID: PMC10352257 DOI: 10.1038/s41531-023-00552-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Direct targeting of alpha-synuclein (ASYN) has emerged as a disease-modifying strategy for Parkinson's disease and other synucleinopathies which is being approached using both small molecule compounds and ASYN-targeted biologics. Minzasolmin (UCB0599) is an orally bioavailable and brain-penetrant small molecule ASYN misfolding inhibitor in clinical development as a disease-modifying therapeutic for Parkinson's disease. Herein the results of preclinical evaluations of minzasolmin that formed the basis for subsequent clinical development are described. Pharmacokinetic evaluations of intraperitoneal 1 and 5 mg/kg minzasolmin in wildtype mice revealed parallel and dose-proportional exposures in brain and plasma. Three-month administration studies in the Line 61 transgenic mouse model of PD were conducted to measure ASYN pathology and other PD-relevant endpoints including markers of CNS inflammation, striatal DAT labeling and gait. Reductions in ASYN pathology were correlated with improved aspects of gait and balance, reductions in CNS inflammation marker abundance, and normalized striatal DAT levels. These findings provide support for human dose determinations and have informed the translational strategy for clinical trial design and biomarker selection for the ongoing clinical studies of minzasolmin in patients living with early-stage Parkinson's disease (ClinicalTrials.gov ID: NCT04658186; EudraCT Number 2020-003265).
Collapse
Affiliation(s)
| | - Asma Khan
- Neuropore Therapies, Inc., San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Song H, Chen J, Huang J, Sun P, Liu Y, Xu L, Wei C, Mu X, Lu X, Wang W, Zhang N, Shang M, Mo M, Zhang W, Zhao H, Han F. Epigenetic modification in Parkinson's disease. Front Cell Dev Biol 2023; 11:1123621. [PMID: 37351278 PMCID: PMC10283008 DOI: 10.3389/fcell.2023.1123621] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder caused by genetic, epigenetic, and environmental factors. Recent advance in genomics and epigenetics have revealed epigenetic mechanisms in PD. These epigenetic modifications include DNA methylation, post-translational histone modifications, chromatin remodeling, and RNA-based mechanisms, which regulate cellular functions in almost all cells. Epigenetic alterations are involved in multiple aspects of neuronal development and neurodegeneration in PD. In this review, we discuss current understanding of the epigenetic mechanisms that regulate gene expression and neural degeneration and then highlight emerging epigenetic targets and diagnostic and therapeutic biomarkers for treating or preventing PD.
Collapse
Affiliation(s)
- Hao Song
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jin Huang
- Laboratory of Basic Medical Research, PLA Strategic Support Force Characteristic Medical Centre, Beijing, China
| | - Peng Sun
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanming Liu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Li Xu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xin Mu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Miwei Shang
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mei Mo
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- Affiliated Yidu Central Hospital, Weifang Medical University, Weifang, China
| | - Hui Zhao
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| |
Collapse
|
17
|
Rao SC, Li Y, Lapin B, Pattipati S, Ghosh Galvelis K, Naito A, Gutierrez N, Leal TP, Salim A, Salles PA, De Leon M, Mata IF. Association of women-specific health factors in the severity of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:86. [PMID: 37277346 PMCID: PMC10241917 DOI: 10.1038/s41531-023-00524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Parkinson's disease (PD) is an age-related neurological disorder known for the observational differences in its risk, progression, and severity between men and women. While estrogen has been considered to be a protective factor in the development of PD, there is little known about the role that fluctuations in hormones and immune responses from sex-specific health experiences have in the disease's development and severity. We sought to identify women-specific health experiences associated with PD severity, after adjusting for known PD factors, by developing and distributing a women-specific questionnaire across the United States and creating multivariable models for PD severity. We created a questionnaire that addresses women's specific experiences and their PD clinical history and deployed it through The Parkinson's Foundation: PD Generation. To determine the association between women-specific health factors and PD severity, we constructed multivariable logistic regression models based on the MDS-UPDRS scale and the participants' questionnaire responses, genetics, and clinical data. For our initial launch in November 2021, we had 304 complete responses from PD GENEration. Univariate and multivariate logistic modeling found significant associations between major depressive disorder, perinatal depression, natural childbirth, LRRK2 genotype, B12 deficiency, total hysterectomy, and increased PD severity. This study is a nationally available questionnaire for women's health and PD. It shifts the paradigm in understanding PD etiology and acknowledging how sex-specific experiences may contribute to PD severity. In addition, the work in this study sets the foundation for future research to investigate the factors behind sex differences in PD.
Collapse
Affiliation(s)
- Shilpa C Rao
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yadi Li
- Center for Outcomes Research and Evaluation, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Brittany Lapin
- Center for Outcomes Research and Evaluation, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Sreya Pattipati
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Amira Salim
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Philippe A Salles
- Center for Movement Disorders CETRAM, University of Santiago de Chile, Santiago, Chile
| | - Maria De Leon
- DefeatParkinsons, Houston, TX, USA
- De Leon Enterprises, Houston, TX, USA
| | - Ignacio F Mata
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
18
|
Wüllner U, Borghammer P, Choe CU, Csoti I, Falkenburger B, Gasser T, Lingor P, Riederer P. The heterogeneity of Parkinson's disease. J Neural Transm (Vienna) 2023; 130:827-838. [PMID: 37169935 PMCID: PMC10174621 DOI: 10.1007/s00702-023-02635-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
The heterogeneity of Parkinson's disease (PD), i.e. the various clinical phenotypes, pathological findings, genetic predispositions and probably also the various implicated pathophysiological pathways pose a major challenge for future research projects and therapeutic trail design. We outline several pathophysiological concepts, pathways and mechanisms, including the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative stress, iron and melanin, deficient autophagy processes, insulin and incretin signaling, T-cell autoimmunity, the gut-brain axis and the evidence that microbial (viral) agents may induce molecular hallmarks of neurodegeneration. The hypothesis is discussed, whether PD might indeed be triggered by exogenous (infectious) agents in susceptible individuals upon entry via the olfactory bulb (brain first) or the gut (body-first), which would support the idea that disease mechanisms may change over time. The unresolved heterogeneity of PD may have contributed to the failure of past clinical trials, which attempted to slow the course of PD. We thus conclude that PD patients need personalized therapeutic approaches tailored to specific phenomenological and etiologic subtypes of disease.
Collapse
Affiliation(s)
- Ullrich Wüllner
- Department of Neurology, University Clinic Bonn and German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Chi-un Choe
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Straße 2, 25524 Itzehoe, Germany
| | - Ilona Csoti
- Fachklinik Für Parkinson, Gertrudis Klinik Biskirchen, Karl-Ferdinand-Broll-Straße 2-4, 35638 Leun-Biskirchen, Germany
| | - Björn Falkenburger
- Department of Neurology, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Gasser
- Department of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology and German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Peter Riederer
- University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
19
|
Senkevich K, Bandres-Ciga S, Cisterna-García A, Yu E, Bustos BI, Krohn L, Lubbe SJ, Botía JA, Gan-Or Z. Genome-wide association study stratified by MAPT haplotypes identifies potential novel loci in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.14.23288478. [PMID: 37292720 PMCID: PMC10246147 DOI: 10.1101/2023.04.14.23288478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective To identify genetic factors that may modify the effects of the MAPT locus in Parkinson's disease (PD). Methods We used data from the International Parkinson's Disease Genomics Consortium (IPDGC) and the UK biobank (UKBB). We stratified the IPDGC cohort for carriers of the H1/H1 genotype (PD patients n=8,492 and controls n=6,765) and carriers of the H2 haplotype (with either H1/H2 or H2/H2 genotypes, patients n=4,779 and controls n=4,849) to perform genome-wide association studies (GWASs). Then, we performed replication analyses in the UKBB data. To study the association of rare variants in the new nominated genes, we performed burden analyses in two cohorts (Accelerating Medicines Partnership - Parkinson Disease and UKBB) with a total sample size PD patients n=2,943 and controls n=18,486. Results We identified a novel locus associated with PD among MAPT H1/H1 carriers near EMP1 (rs56312722, OR=0.88, 95%CI= 0.84-0.92, p= 1.80E-08), and a novel locus associated with PD among MAPT H2 carriers near VANGL1 (rs11590278, OR=1.69 95%CI=1.40-2.03, p=2.72E-08). Similar analysis of the UKBB data did not replicate these results and rs11590278 near VANGL1 did have similar effect size and direction in carriers of H2 haplotype, albeit not statistically significant (OR= 1.32, 95%CI= 0.94-1.86, p=0.17). Rare EMP1 variants with high CADD scores were associated with PD in the MAPT H2 stratified analysis (p=9.46E-05), mainly driven by the p.V11G variant. Interpretation We identified several loci potentially associated with PD stratified by MAPT haplotype and larger replication studies are required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington DC, USA
| | - Alejandro Cisterna-García
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Bernabe I. Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lynne Krohn
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Steven J. Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Juan A. Botía
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | | | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
20
|
Patel N. To lump or to split? Deep brain stimulation may improve non-motor symptoms in certain Parkinson's disease subtypes. Parkinsonism Relat Disord 2023; 109:105369. [PMID: 36948990 DOI: 10.1016/j.parkreldis.2023.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Neepa Patel
- Department of Neurological Sciences, Rush University Medical Center, 1725 West Harrison, Suite 755, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Porrini V, Pilotto A, Vezzoli M, Lanzillotta A, Gennari MM, Bonacina S, Alberici A, Turrone R, Bellucci A, Antonini A, Padovani A, Pizzi M. NF-κB/c-Rel DNA-binding is reduced in substantia nigra and peripheral blood mononuclear cells of Parkinson's disease patients. Neurobiol Dis 2023; 180:106067. [PMID: 36893901 DOI: 10.1016/j.nbd.2023.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Although Parkinson's disease (PD) key neuropathological hallmarks are well known, the underlying pathogenic mechanisms of the disease still need to be elucidated to identify innovative disease-modifying drugs and specific biomarkers. NF-κB transcription factors are involved in regulating several processes associated with neurodegeneration, such as neuroinflammation and cell death, that could be related to PD pathology. NF-κB/c-Rel deficient (c-rel-/-) mice develop a progressive PD-like phenotype. The c-rel-/- mice present both prodromal and motor symptoms as well as key neuropathological features, including nigrostriatal dopaminergic neurons degeneration, accumulation of pro-apoptotic NF-κB/RelA acetylated at the lysine 310 residue (Ac-RelA(lys310)) and progressive caudo-rostral brain deposition of alpha-synuclein. c-Rel inhibition can exacerbate MPTP-induced neurotoxicity in mice. These findings support the claim that misregulation of c-Rel protein may be implicated in PD pathophysiology. In this study, we aimed at evaluating c-Rel levels and DNA-binding activity in human brains and peripheral blood mononuclear cells (PBMCs) of sporadic PD patients. We analyzed c-Rel protein content and activity in frozen substantia nigra (SN) samples from post-mortem brains of 10 PD patients and 9 age-matched controls as well as in PBMCs from 72 PD patients and 40 age-matched controls. c-Rel DNA-binding was significantly lower and inversely correlated with Ac-RelA(lys310) content in post-mortem SN of sporadic PD cases, when compared to healthy controls. c-Rel DNA-binding activity was also reduced in PBMCs of followed-up PD subjects. The decrease of c-Rel activity in PBMCs from PD patients appeared to be independent from dopaminergic medication or disease progression, as it was evident even in early stage, drug-naïve patients. Remarkably, the levels of c-Rel protein were comparable in PD and control subjects, pointing out a putative role for post-translational modifications of the protein in c-Rel dysfunctions. These findings support that PD is characterized by the loss of NF-κB/c-Rel activity that potentially has a role in PD pathophysiology. Future studies will be aimed at addressing whether the reduction of c-Rel DNA-binding could constitute a novel biomarker for PD.
Collapse
Affiliation(s)
- Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Michele M Gennari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Sonia Bonacina
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Rosanna Turrone
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Centre for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35121, Italy; IRCCS S. Camillo, Lido Alberoni, Venice 30126, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
22
|
Kasanga EA, Han Y, Navarrete W, McManus R, Shifflet MK, Parry C, Barahona A, Manfredsson FP, Nejtek VA, Richardson JR, Salvatore MF. Differential expression of RET and GDNF family receptor, GFR-α1, between striatum and substantia nigra following nigrostriatal lesion: a case for diminished GDNF-signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530671. [PMID: 36909534 PMCID: PMC10002742 DOI: 10.1101/2023.03.01.530671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Although glial cell line-derived neurotrophic factor (GDNF) showed efficacy in preclinical and early clinical studies to alleviate parkinsonian signs in Parkinson's disease (PD), later trials did not meet primary endpoints, giving pause to consider further investigation. While GDNF dose and delivery methods may have contributed to diminished efficacy, one crucial aspect of these clinical studies is that GDNF treatment across all studies began ∼8 years after PD diagnosis; a time point representing several years after near 100% depletion of nigrostriatal dopamine markers in striatum and at least 50% in substantia nigra (SN), and is later than the timing of GDNF treatment in preclinical studies. With nigrostriatal terminal loss exceeding 70% at PD diagnosis, we utilized hemi-parkinsonian rats to determine if expression of GDNF family receptor, GFR-α1, and receptor tyrosine kinase, RET, differed between striatum and SN at 1 and 4 weeks following a 6-hydroxydopamine (6-OHDA) lesion. Whereas GDNF expression changed minimally, GFR-α1 expression decreased progressively in striatum and in tyrosine hydroxylase positive (TH+) cells in SN, correlating with reduced TH cell number. However, in nigral astrocytes, GFR-α1 expression increased. RET expression decreased maximally in striatum by 1 week, whereas in the SN, a transient bilateral increase occurred that returned to control levels by 4 weeks. Expression of brain-derived neurotrophic factor (BDNF) or its receptor, TrkB, were unchanged throughout lesion progression. Together, these results reveal that differential GFR-α1 and RET expression between the striatum and SN, and cell-specific differences in GFR-α1 expression in SN, occur during nigrostriatal neuron loss. Targeting loss of GDNF receptors appears critical to enhance GDNF therapeutic efficacy against nigrostriatal neuron loss. Significance Statement Although preclinical evidence supports that GDNF provides neuroprotection and improves locomotor function in preclinical studies, clinical data supporting its efficacy to alleviate motor impairment in Parkinson's disease patients remains uncertain. Using the established 6-OHDA hemi-parkinsonian rat model, we determined whether expression of its cognate receptors, GFR-α1 and RET, were differentially affected between striatum and substantia nigra in a timeline study. In striatum, there was early and significant loss of RET, but a gradual, progressive loss of GFR-α1. In contrast, RET transiently increased in lesioned substantia nigra, but GFR-α1 progressively decreased only in nigrostriatal neurons and correlated with TH cell loss. Our results indicate that direct availability of GFR-α1 may be a critical element that determines GDNF efficacy following striatal delivery. Highlights GDNF expression was minimally affected by nigrostriatal lesionGDNF family receptor, GFR-α1, progressively decreased in striatum and in TH neurons in SN.GFR-α1 expression decreased along with TH neurons as lesion progressedGFR-α1 increased bilaterally in GFAP+ cells suggesting an inherent response to offset TH neuron lossRET expression was severely reduced in striatum, whereas it increased in SN early after lesion induction.
Collapse
|
23
|
Emmi A, Sandre M, Russo FP, Tombesi G, Garrì F, Campagnolo M, Carecchio M, Biundo R, Spolverato G, Macchi V, Savarino E, Farinati F, Parchi P, Porzionato A, Bubacco L, De Caro R, Kovacs GG, Antonini A. Duodenal alpha-Synuclein Pathology and Enteric Gliosis in Advanced Parkinson's Disease. Mov Disord 2023. [PMID: 36847308 DOI: 10.1002/mds.29358] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The role of the gut-brain axis has been recently highlighted as a major contributor to Parkinson's disease (PD) physiopathology, with numerous studies investigating bidirectional transmission of pathological protein aggregates, such as α-synuclein (αSyn). However, the extent and the characteristics of pathology in the enteric nervous system have not been fully investigated. OBJECTIVE We characterized αSyn alterations and glial responses in duodenum biopsies of patients with PD by employing topography-specific sampling and conformation-specific αSyn antibodies. METHODS We examined 18 patients with advanced PD who underwent Duodopa percutaneous endoscopic gastrostomy and jejunal tube procedure, 4 untreated patients with early PD (disease duration <5 years), and 18 age- and -sex-matched healthy control subjects undergoing routine diagnostic endoscopy. A mean of four duodenal wall biopsies were sampled from each patient. Immunohistochemistry was performed for anti-aggregated αSyn (5G4) and glial fibrillary acidic protein antibodies. Morphometrical semiquantitative analysis was performed to characterize αSyn-5G4+ and glial fibrillary acidic protein-positive density and size. RESULTS Immunoreactivity for aggregated α-Syn was identified in all patients with PD (early and advanced) compared with controls. αSyn-5G4+ colocalized with neuronal marker β-III-tubulin. Evaluation of enteric glial cells demonstrated an increased size and density when compared with controls, suggesting reactive gliosis. CONCLUSIONS We found evidence of synuclein pathology and gliosis in the duodenum of patients with PD, including early de novo cases. Future studies are required to evaluate how early in the disease process duodenal pathology occurs and its possible contribution to levodopa effect in chronic patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, Padova, Italy
| | - Federica Garrì
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Roberta Biundo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Gaya Spolverato
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Edoardo Savarino
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Fabio Farinati
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Piero Parchi
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Luigi Bubacco
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Departments of Laboratory Medicine and Pathobiology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Padua Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Espay AJ, Herrup K, Daly T. Finding the falsification threshold of the toxic proteinopathy hypothesis in neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:143-154. [PMID: 36796939 DOI: 10.1016/b978-0-323-85538-9.00008-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A biomedical hypothesis is a theoretical assumption amenable to being tested in a randomized clinical trial. The main hypotheses in neurodegenerative disorders are based on the concept that proteins accumulate in an aggregated fashion and trigger toxicity. The toxic proteinopathy hypothesis posits that neurodegeneration is caused by toxicity of aggregated amyloid in Alzheimer's disease (toxic amyloid hypothesis), aggregated α-synuclein in Parkinson's disease (toxic synuclein hypothesis), and aggregated tau in progressive supranuclear palsy (toxic tau hypothesis). To date, we have accumulated 40 negative anti-amyloid randomized clinical, 2 anti-synuclein trials, and 4 anti-tau trials. These results have not prompted a major reconsideration of the toxic proteinopathy hypothesis of causality. Imperfections in trial design and execution (incorrect dosage, insensitive endpoints, too-advanced population) but not in the underlying hypotheses have prevailed as explaining the failures. We review here the evidence suggesting that the threshold of hypothesis falsifiability may be too high and advocate in favor of a minimal set of rules that facilitate the interpretation of negative clinical trials as falsifying the driving hypotheses, in particular if the desirable change in surrogate endpoints has been achieved. We propose four steps to refute a hypothesis in future-negative surrogate-backed trials and argue that for the actual rejection to take place, refutation must be accompanied by the proposal of an alternative hypothesis. The absence of alternative hypotheses may be the single greatest reason why there remains hesitancy in rejecting the toxic proteinopathy hypothesis: in the absence of alternatives, we have no clear guidance as to where to redirect or focus.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Timothy Daly
- Science Norms Democracy, Sorbonne University, Paris, France
| |
Collapse
|
25
|
Müller MLTM, Stephenson DT. Leveraging the regulatory framework to facilitate drug development in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:347-360. [PMID: 36803822 DOI: 10.1016/b978-0-323-85555-6.00015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
There is an exigent need for disease-modifying and symptomatic treatment approaches for Parkinson's disease. A better understanding of Parkinson's disease pathophysiology and new insights in genetics has opened exciting new venues for pharmacological treatment targets. There are, however, many challenges on the path from discovery to drug approval. These challenges revolve around appropriate endpoint selection, the lack of accurate biomarkers, challenges with diagnostic accuracy, and other challenges commonly encountered by drug developers. The regulatory health authorities, however, have provided tools to provide guidance for drug development and to assist with these challenges. The main goal of the Critical Path for Parkinson's Consortium, a nonprofit public-private partnership part of the Critical Path Institute, is to advance these so-called drug development tools for Parkinson's disease trials. The focus of this chapter will be on how the health regulators' tools were successfully leveraged to facilitate drug development in Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Critical Path for Parkinson's Consortium - Critical Path Institute, Tucson, AZ, United States.
| | - Diane T Stephenson
- Critical Path for Parkinson's Consortium - Critical Path Institute, Tucson, AZ, United States
| |
Collapse
|
26
|
Fasano M, Alberio T. Neurodegenerative disorders: From clinicopathology convergence to systems biology divergence. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:73-86. [PMID: 36796949 DOI: 10.1016/b978-0-323-85538-9.00007-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Neurodegenerative diseases are multifactorial. This means that several genetic, epigenetic, and environmental factors contribute to their emergence. Therefore, for the future management of these highly prevalent diseases, it is necessary to change perspective. If a holistic viewpoint is assumed, the phenotype (the clinicopathological convergence) emerges from the perturbation of a complex system of functional interactions among proteins (systems biology divergence). The systems biology top-down approach starts with the unbiased collection of sets of data generated through one or more -omics techniques and has the aim to identify the networks and the components that participate in the generation of a phenotype (disease), often without any available a priori knowledge. The principle behind the top-down method is that the molecular components that respond similarly to experimental perturbations are somehow functionally related. This allows the study of complex and relatively poorly characterized diseases without requiring extensive knowledge of the processes under investigation. In this chapter, the use of a global approach will be applied to the comprehension of neurodegeneration, with a particular focus on the two most prevalent ones, Alzheimer's and Parkinson's diseases. The final purpose is to distinguish disease subtypes (even with similar clinical manifestations) to launch a future of precision medicine for patients with these disorders.
Collapse
Affiliation(s)
- Mauro Fasano
- Department of Science and High Technology, University of Insubria, Busto Arsizio and Como, Italy; Center of Neuroscience, University of Insubria, Busto Arsizio and Como, Italy.
| | - Tiziana Alberio
- Department of Science and High Technology, University of Insubria, Busto Arsizio and Como, Italy; Center of Neuroscience, University of Insubria, Busto Arsizio and Como, Italy
| |
Collapse
|
27
|
Olszewska DA, Lang AE. The definition of precision medicine in neurodegenerative disorders and the one disease-many diseases tension. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:3-20. [PMID: 36796946 DOI: 10.1016/b978-0-323-85538-9.00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Precision medicine is a patient-centered approach that aims to translate new knowledge to optimize the type and timing of interventions for the greatest benefit to individual patients. There is considerable interest in applying this approach to treatments designed to slow or halt the progression of neurodegenerative diseases. Indeed, effective disease-modifying treatment (DMT) remains the greatest unmet therapeutic need in this field. In contrast to the enormous progress in oncology, precision medicine in the field of neurodegeneration faces multiple challenges. These are related to major limitations in our understanding of many aspects of the diseases. A critical barrier to advances in this field is the question of whether the common sporadic neurodegenerative diseases (of the elderly) are single uniform disorders (particularly related to their pathogenesis) or whether they represent a collection of related but still very distinct disease states. In this chapter, we briefly touch on lessons from other fields of medicine that might be applied to the development of precision medicine for DMT in neurodegenerative diseases. We discuss why DMT trials may have failed to date, and particularly the importance of appreciating the multifaceted nature of disease heterogeneity and how this has and will impact on these efforts. We conclude with comments on how we can move from this complex disease heterogeneity to the successful application of precision medicine principles in DMT for neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana A Olszewska
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Anthony E Lang
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
28
|
Duque KR, Vizcarra JA, Hill EJ, Espay AJ. Disease-modifying vs symptomatic treatments: Splitting over lumping. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:187-209. [PMID: 36803811 DOI: 10.1016/b978-0-323-85555-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Clinical trials of putative disease-modifying therapies in neurodegeneration have obeyed the century-old principle of convergence, or lumping, whereby any feature of a clinicopathologic disease entity is considered relevant to most of those affected. While this convergent approach has resulted in important successes in trials of symptomatic therapies, largely aimed at correcting common neurotransmitter deficiencies (e.g., cholinergic deficiency in Alzheimer's disease or dopaminergic deficiency in Parkinson's disease), it has been consistently futile in trials of neuroprotective or disease-modifying interventions. As individuals affected by the same neurodegenerative disorder do not share the same biological drivers, splitting such disease into small molecular/biological subtypes, to match people to therapies most likely to benefit them, is vital in the pursuit of disease modification. We here discuss three paths toward the splitting needed for future successes in precision medicine: (1) encourage the development of aging cohorts agnostic to phenotype in order to enact a biology-to-phenotype direction of biomarker development and validate divergence biomarkers (present in some, absent in most); (2) demand bioassay-based recruitment of subjects into disease-modifying trials of putative neuroprotective interventions in order to match the right therapies to the right recipients; and (3) evaluate promising epidemiologic leads of presumed pathogenetic potential using Mendelian randomization studies before designing the corresponding clinical trials. The reconfiguration of disease-modifying efforts for patients with neurodegenerative disorders will require a paradigm shift from lumping to splitting and from proteinopathy to proteinopenia.
Collapse
Affiliation(s)
- Kevin R Duque
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Joaquin A Vizcarra
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily J Hill
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
29
|
Abstract
The clinicopathologic model that defines neurodegenerative disorders has remained unchanged for over a century. According to it, clinical manifestations are defined and explained by a given pathology, that is, by the burden and distribution of selected proteins aggregated into insoluble amyloids. There are two logical consequences from this model: (1) a measurement of the disease-defining pathology represents a biomarker of that disease in everyone affected, and (2) the targeted elimination of that pathology should end that disease. But success in disease modification guided by this model has remained elusive. New technologies to probe living biology have been used to validate rather than question the clinicopathologic model, despite three important observations: (1) a disease-defining pathology in isolation (without other pathologies) is an exceptional autopsy finding; (2) many genetic and molecular pathways converge on the same pathology; (3) the presence of pathology without neurological disease is more common than expected by chance. We here discuss the rationale for abandoning the clinicopathologic model, review the competing biological model of neurodegeneration, and propose developmental pathways for biomarker development and disease-modifying efforts. Further, in justifying future disease-modifying trials testing putative neuroprotective molecules, a key inclusion criterion must be the deployment of a bioassay of the mechanism corrected by the therapy of interest. No improvements in trial design or execution can overcome the fundamental deficit created by testing experimental therapies in clinically defined recipients unselected for their biologically suitability. Biological subtyping is the key developmental milestone needed to launch precision medicine for patients living with neurodegenerative disorders.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
30
|
Standaert DG, Harms AS, Childers GM, Webster JM. Disease mechanisms as subtypes: Inflammation in Parkinson disease and related disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:95-106. [PMID: 36803825 DOI: 10.1016/b978-0-323-85555-6.00011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neuroinflammation is a core feature of Parkinson disease (PD) and related disorders. Inflammation is detectable early in PD and persists throughout the disease state. Both the innate and the adaptive arms of the immune system are engaged in both human PD as well as in animal models of the disease. The upstream causes of PD are likely multiple and complex, which makes targeting of disease-modifying therapies based on etiological factors difficult. Inflammation is a broadly shared common mechanism and likely makes an important contribution to progression in most patients with manifest symptoms. Development of treatments targeting neuroinflammation in PD will require an understanding of the specific immune mechanisms which are active, their relative effects on both injury and neurorestoration, as well as the role of key variables likely to modulate the immune response: age, sex, the nature of the proteinopathies present, and the presence of copathologies. Studies characterizing the specific state of immune response in individuals and groups of people affected by PD will be essential to the development of targeted disease-modifying immunotherapies.
Collapse
Affiliation(s)
- David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gabrielle M Childers
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jhodi M Webster
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials. Biomedicines 2023; 11:biomedicines11020505. [PMID: 36831041 PMCID: PMC9953050 DOI: 10.3390/biomedicines11020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Stem cell-based therapies (SCT) to treat neurodegenerative disorders have promise but clinical trials have only recently begun, and results are not expected for several years. While most SCTs largely lead to a symptomatic therapeutic effect by replacing lost cell types, there may also be disease-modifying therapeutic effects. In fact, SCT may complement a multi-drug, subtype-specific therapeutic approach, consistent with the idea of precision medicine, which matches molecular therapies to biological subtypes of disease. In this narrative review, we examine published and ongoing trials in SCT in Parkinson's Disease, atypical parkinsonian disorders, Huntington's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia in humans. We discuss the benefits and pitfalls of using this treatment approach within the spectrum of disease-modification efforts in neurodegenerative diseases. SCT may hold greater promise in the treatment of neurodegenerative disorders, but much research is required to determine the feasibility, safety, and efficacy of these complementary aims of therapeutic efforts.
Collapse
|
32
|
Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. Int J Mol Sci 2023; 24:ijms24031842. [PMID: 36768161 PMCID: PMC9915927 DOI: 10.3390/ijms24031842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is diagnosed many years after its onset, under a significant degradation of the nigrostriatal dopaminergic system, responsible for the regulation of motor function. This explains the low effectiveness of the treatment of patients. Therefore, one of the highest priorities in neurology is the development of the early (preclinical) diagnosis of PD. The aim of this study was to search for changes in the blood of patients at risk of developing PD, which are considered potential diagnostic biomarkers. Out of 1835 patients, 26 patients were included in the risk group and 20 patients in the control group. The primary criteria for inclusion in a risk group were the impairment of sleep behavior disorder and sense of smell, and the secondary criteria were neurological and mental disorders. In patients at risk and in controls, the composition of plasma and the expression of genes of interest in lymphocytes were assessed by 27 indicators. The main changes that we found in plasma include a decrease in the concentrations of l-3,4-dihydroxyphenylalanine (L-DOPA) and urates, as well as the expressions of some types of microRNA, and an increase in the total oxidative status. In turn, in the lymphocytes of patients at risk, an increase in the expression of the DA D3 receptor gene and the lymphocyte activation gene 3 (LAG3), as well as a decrease in the expression of the Protein deglycase DJ-1 gene (PARK7), were observed. The blood changes we found in patients at risk are considered candidates for diagnostic biomarkers at the prodromal stage of PD.
Collapse
|
33
|
Pontone GM, Perepezko KM, Hinkle JT, Gallo JJ, Grill S, Leoutsakos JM, Mills KA, Weiss HD, Mari Z. 'Anxious fluctuators' a subgroup of Parkinson's disease with high anxiety and problematic on-off fluctuations. Parkinsonism Relat Disord 2022; 105:62-68. [PMID: 36371868 PMCID: PMC9722648 DOI: 10.1016/j.parkreldis.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Anxiety that occurs in association with on-off dopamine medication fluctuations is a major cause of distress, dysfunction, and lower quality of life in people with Parkinson's disease (PD). However, the association between anxiety and on-off fluctuations is poorly understood and it is difficult to predict which patients will suffer from this atypical form of anxiety. To understand whether fluctuating anxiety in PD exists as part of an endophenotype that is associated with other signs or symptoms, we prospectively assessed the change in anxiety and a battery of clinical variables when transitioning from the off-dopamine medication state to the on state in 200 people with PD. We performed latent profile analysis with observed variables as latent profile indicators measuring the on-off-state difference in anxiety, depression, motor function, daily functioning, and the wearing off questionnaire 19 item scale (WOQ-19) in order to model unobserved (i.e., latent) profiles. A two-class model produced the best fit. The majority of participants, 69%, were categorized as having a 'typical on-off response' compared to a second profile constituting 31% of the sample who experienced a worsening in anxiety in the off state that was three times that of other participants. This profile referred to as "anxious fluctuators" had a Hamilton Anxiety Rating Scale change between the off and on medication state of 10.22(32.85) compared to 3.27 (7.62), higher depression scores, greater disability and was less likely to improve on select WOQ-19 items when in the on-state. Anxious fluctuators were more likely to be male and have a family history of anxiety disorder. Given the adverse impact of this profile we believe it may be important to distinguish patients with a typical on-off response from those with this more problematic course of fluctuations.
Collapse
Affiliation(s)
- Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Kate M Perepezko
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jared T Hinkle
- Medical Scientist Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joseph J Gallo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephen Grill
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Parkinson's and Movement Disorder Center of Maryland, Baltimore, MD, USA
| | | | - Kelly A Mills
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Howard D Weiss
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zoltan Mari
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| |
Collapse
|
34
|
Alberts JL, Kaya RD, Scelina K, Scelina L, Zimmerman EM, Walter BL, Rosenfeldt AB. Digitizing a Therapeutic: Development of an Augmented Reality Dual-Task Training Platform for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:8756. [PMID: 36433353 PMCID: PMC9694181 DOI: 10.3390/s22228756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Augmented reality (AR) may be a useful tool for the delivery of dual-task training. This manuscript details the development of the Dual-task Augmented Reality Treatment (DART) platform for individuals with Parkinson's disease (PD) and reports initial feasibility, usability, and efficacy of the DART platform in provoking dual-task interference in individuals with PD. The DART platform utilizes the head-mounted Microsoft HoloLens2 AR device to deliver concurrent motor and cognitive tasks. Biomechanical metrics of gait and cognitive responses are automatically computed and provided to the supervising clinician. To assess feasibility, individuals with PD (N = 48) completed a bout of single-task and dual-task walking using the DART platform. Usability was assessed by the System Usability Scale (SUS). Dual-task interference was assessed by comparing single-task walking and walking during an obstacle course while performing a cognitive task. Average gait velocity decreased from 1.06 to 0.82 m/s from single- to dual-task conditions. Mean SUS scores were 81.3 (11.3), which placed the DART in the "good" to "excellent" category. To our knowledge, the DART platform is the first to use a head-mounted AR system to deliver a dual-task paradigm and simultaneously provide biomechanical data that characterize cognitive and motor performance. Individuals with PD were able to successfully use the DART platform with satisfaction, and dual-task interference was provoked. The DART platform should be investigated as a platform to treat dual-task declines associated with PD.
Collapse
Affiliation(s)
- Jay L. Alberts
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Ryan D. Kaya
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Kathryn Scelina
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Logan Scelina
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Eric M. Zimmerman
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Benjamin L. Walter
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Anson B. Rosenfeldt
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| |
Collapse
|
35
|
Li D, Mastaglia FL, Yau WY, Chen S, Wilton SD, Akkari PA. Targeted Molecular Therapeutics for Parkinson's Disease: A Role for Antisense Oligonucleotides? Mov Disord 2022; 37:2184-2190. [PMID: 36036206 PMCID: PMC9804368 DOI: 10.1002/mds.29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Dunhui Li
- Perron Institute for Neurological and Translational ScienceThe University of Western AustraliaNedlandsAustralia,Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochAustralia,College of Nursing and HealthZhengzhou UniversityZhengzhouChina
| | - Frank L. Mastaglia
- Perron Institute for Neurological and Translational ScienceThe University of Western AustraliaNedlandsAustralia,Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochAustralia
| | - Wai Yan Yau
- Perron Institute for Neurological and Translational ScienceThe University of Western AustraliaNedlandsAustralia
| | - Shengdi Chen
- Department of Neurology and Institute of NeurologyRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational ScienceThe University of Western AustraliaNedlandsAustralia,Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochAustralia
| | - Patrick A. Akkari
- Perron Institute for Neurological and Translational ScienceThe University of Western AustraliaNedlandsAustralia,Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochAustralia,Department of NeurologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
36
|
Sadaei HJ, Cordova-Palomera A, Lee J, Padmanabhan J, Chen SF, Wineinger NE, Dias R, Prilutsky D, Szalma S, Torkamani A. Genetically-informed prediction of short-term Parkinson's disease progression. NPJ Parkinsons Dis 2022; 8:143. [PMID: 36302787 PMCID: PMC9613892 DOI: 10.1038/s41531-022-00412-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) treatments modify disease symptoms but have not been shown to slow progression, characterized by gradual and varied motor and non-motor changes overtime. Variation in PD progression hampers clinical research, resulting in long and expensive clinical trials prone to failure. Development of models for short-term PD progression prediction could be useful for shortening the time required to detect disease-modifying drug effects in clinical studies. PD progressors were defined by an increase in MDS-UPDRS scores at 12-, 24-, and 36-months post-baseline. Using only baseline features, PD progression was separately predicted across all timepoints and MDS-UPDRS subparts in independent, optimized, XGBoost models. These predictions plus baseline features were combined into a meta-predictor for 12-month MDS UPDRS Total progression. Data from the Parkinson's Progression Markers Initiative (PPMI) were used for training with independent testing on the Parkinson's Disease Biomarkers Program (PDBP) cohort. 12-month PD total progression was predicted with an F-measure 0.77, ROC AUC of 0.77, and PR AUC of 0.76 when tested on a hold-out PPMI set. When tested on PDBP we achieve a F-measure 0.75, ROC AUC of 0.74, and PR AUC of 0.73. Exclusion of genetic predictors led to the greatest loss in predictive accuracy; ROC AUC of 0.66, PR AUC of 0.66-0.68 for both PPMI and PDBP testing. Short-term PD progression can be predicted with a combination of survey-based, neuroimaging, physician examination, and genetic predictors. Dissection of the interplay between genetic risk, motor symptoms, non-motor symptoms, and longer-term expected rates of progression enable generalizable predictions.
Collapse
Affiliation(s)
- Hossein J Sadaei
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | | | - Jonghun Lee
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | - Jaya Padmanabhan
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | - Shang-Fu Chen
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | - Nathan E Wineinger
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | - Raquel Dias
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Daria Prilutsky
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | - Sandor Szalma
- Takeda Development Center Americas, Inc., San Diego, CA, 92121, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
37
|
Thaler A, Alcalay RN. Diagnosis and Medical Management of Parkinson Disease. Continuum (Minneap Minn) 2022; 28:1281-1300. [DOI: 10.1212/con.0000000000001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Seibyl JP, Kuo P. What Is the Role of Dopamine Transporter Imaging in Parkinson Prevention Clinical Trials? Neurology 2022; 99:61-67. [PMID: 35970589 DOI: 10.1212/wnl.0000000000200786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- John Peter Seibyl
- From the Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT; Department of Radiology (P.K.), University of Arizona, Tucson; and Invicro, LLC (P.K.), New Haven, CT.
| | - Phillip Kuo
- From the Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT; Department of Radiology (P.K.), University of Arizona, Tucson; and Invicro, LLC (P.K.), New Haven, CT
| |
Collapse
|
39
|
Tsukita K, Sakamaki-Tsukita H, Takahashi R. Author Response: Long-term Effect of Regular Physical Activity and Exercise Habits in Patients With Early Parkinson Disease. Neurology 2022; 99:133-134. [PMID: 35851550 DOI: 10.1212/wnl.0000000000200925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Kehagia AA, North TK, Grose J, Jeffery AN, Cocking L, Chapman R, Carroll C. Enhancing Trial Delivery in Parkinson’s Disease: Qualitative Insights from PD STAT. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1591-1604. [PMID: 35466952 PMCID: PMC9398073 DOI: 10.3233/jpd-212987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: Recruitment and retention of participants in clinical trials for Parkinson’s disease (PD) is challenging. A qualitative study embedded in the PD STAT multi-centre randomised controlled trial of simvastatin for neuroprotection in PD explored the motivators, barriers and challenges of participants, care partners and research staff. Objective: To outline a set of considerations informing a patient-centred approach to trial recruitment, retention, and delivery. Method: We performed semi-structured interviews and focus groups with a subset of trial participants and their care partners. Quantitative and qualitative data were obtained through surveys circulated among the 235 participants across 23 UK sites at the beginning, middle and end of the 2-year trial. We also interviewed and surveyed research staff at trial closure. Results: Twenty-seven people with PD, 6 care partners and 9 researchers participated in interviews and focus groups. A total of 463 trial participant survey datasets were obtained across three timepoints, and 53 staff survey datasets at trial closure. Trial participants discussed the physical and psychological challenges they faced, especially in the context of OFF state assessments, relationships, and communication with research staff. Care partners shared their insights into OFF state challenges, and the value of being heard by research teams. Research staff echoed many concerns with suggestions on flexible, person-centred approaches to maximising convenience, comfort, and privacy. Conclusion: These considerations, in favour of person-centred research protocols informed by the variable needs of participants, care partners and staff, could be developed into a set of recommendations for future trials.
Collapse
Affiliation(s)
- Angie A. Kehagia
- University College Hospital, University London Hospitals NHS Trust, London, UK
- University of Plymouth, Faculty of Health, Plymouth, Devon, UK
| | - Tracie K. North
- University of Plymouth, Faculty of Health, Plymouth, Devon, UK
| | - Jane Grose
- University of Plymouth, Faculty of Health, Plymouth, Devon, UK
| | | | - Laura Cocking
- University of Plymouth, Faculty of Health, Plymouth, Devon, UK
| | - Rebecca Chapman
- University of Plymouth, Faculty of Health, Plymouth, Devon, UK
| | - Camille Carroll
- University of Plymouth, Faculty of Health, Plymouth, Devon, UK
| |
Collapse
|
41
|
Extraction of Reduced Infrared Biomarker Signatures for the Stratification of Patients Affected by Parkinson’s Disease: An Untargeted Metabolomic Approach. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
An untargeted Fourier transform infrared (FTIR) metabolomic approach was employed to study metabolic changes and disarrangements, recorded as infrared signatures, in Parkinson’s disease (PD). Herein, the principal aim was to propose an efficient sequential classification strategy based on SELECT-LDA, which enabled optimal stratification of three main categories: PD patients from subjects with Alzheimer’s disease (AD) and healthy controls (HC). Moreover, sub-categories, such as PD at the early stage (PDI) from PD in the advanced stage (PDD), and PDD vs. AD, were stratified. Every classification step with selected wavenumbers achieved 90.11% to 100% correct assignment rates in classification and internal validation. Therefore, selected metabolic signatures from new patients could be used as input features for screening and diagnostic purposes.
Collapse
|
42
|
Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer's disease from bench to bedside. Mol Neurobiol 2022; 59:4384-4404. [PMID: 35545730 DOI: 10.1007/s12035-022-02859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and cognitive impairment; yet, there is currently no treatment. A buildup of Aβ, tau protein phosphorylation, oxidative stress, and inflammation in AD is pathogenic. The accumulation of amyloid-beta (Aβ) peptides in these neurocognitive areas is a significant characteristic of the disease. Therefore, inhibiting Aβ peptide aggregation has been proposed as the critical therapeutic approach for AD treatment. Resveratrol has been demonstrated in multiple studies to have a neuroprotective, anti-inflammatory, and antioxidant characteristic and the ability to minimize Aβ peptides aggregation and toxicity in the hippocampus of Alzheimer's patients, stimulating neurogenesis and inhibiting hippocampal degeneration. Furthermore, resveratrol's antioxidant effect promotes neuronal development by activating the silent information regulator-1 (SIRT1), which can protect against the detrimental effects of oxidative stress. Resveratrol-induced SIRT1 activation is becoming more crucial in developing novel therapeutic options for AD and other diseases that have neurodegenerative characteristics. This review highlighted a better knowledge of resveratrol's mechanism of action and its promising therapeutic efficacy in treating AD. We also highlighted the therapeutic potential of resveratrol as an AD therapeutic agent, which is effective against neurodegenerative disorders.
Collapse
|
43
|
Redefining the hypotheses driving Parkinson's diseases research. NPJ Parkinsons Dis 2022; 8:45. [PMID: 35440633 PMCID: PMC9018840 DOI: 10.1038/s41531-022-00307-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/04/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) research has largely focused on the disease as a single entity centred on the development of neuronal pathology within the central nervous system. However, there is growing recognition that PD is not a single entity but instead reflects multiple diseases, in which different combinations of environmental, genetic and potential comorbid factors interact to direct individual disease trajectories. Moreover, an increasing body of recent research implicates peripheral tissues and non-neuronal cell types in the development of PD. These observations are consistent with the hypothesis that the initial causative changes for PD development need not occur in the central nervous system. Here, we discuss how the use of neuronal pathology as a shared, qualitative phenotype minimises insights into the possibility of multiple origins and aetiologies of PD. Furthermore, we discuss how considering PD as a single entity potentially impairs our understanding of the causative molecular mechanisms, approaches for patient stratification, identification of biomarkers, and the development of therapeutic approaches to PD. The clear consequence of there being distinct diseases that collectively form PD, is that there is no single biomarker or treatment for PD development or progression. We propose that diagnosis should shift away from the clinical definitions, towards biologically defined diseases that collectively form PD, to enable informative patient stratification. N-of-one type, clinical designs offer an unbiased, and agnostic approach to re-defining PD in terms of a group of many individual diseases.
Collapse
|
44
|
Vijayakumar D, Jankovic J. Slowing Parkinson's Disease Progression with Vaccination and Other Immunotherapies. CNS Drugs 2022; 36:327-343. [PMID: 35212935 DOI: 10.1007/s40263-022-00903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. There are several recognized pathways leading up to dopaminergic neuron loss in the substantia nigra pars compacta and other cells in the brain as a result of age-related, genetic, environmental, and other processes. Of these, the most prominent is the role played by the protein α-synuclein, which aggregates and is the primary component of Lewy bodies, the histopathological hallmark of PD. The latest disease-modifying treatment options being investigated in PD are active and passive immunization against α-synuclein. There are currently five different monoclonal antibodies investigated as passive immunization and three drugs being studied as active immunization modalities in PD. These work through different mechanisms but with a common goal-to minimize or prevent α-synuclein-driven neurotoxicity by reducing α-synuclein synthesis, increasing α-synuclein degradation, and preventing aggregation and propagation from cell to cell. These promising strategies, along with other potential therapies, may favorably alter disease progression in PD.
Collapse
Affiliation(s)
- Dhanya Vijayakumar
- Department of Medicine, Prisma Health Upstate, The University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Joseph Jankovic
- Distinguished Chair in Movement Disorders, Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Baylor St. Luke's Medical Center at the McNair Campus, 7200 Cambridge, 9th Floor, Suite 9A, Houston, TX, 77030-4202, USA.
| |
Collapse
|
45
|
Rahimpour S, Zhang SC, Vitek JL, Mitchell KT, Turner DA. Comparative efficacy of surgical approaches to disease modification in Parkinson disease. NPJ Parkinsons Dis 2022; 8:33. [PMID: 35338165 PMCID: PMC8956588 DOI: 10.1038/s41531-022-00296-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) may optimally be treated with a disease-modifying therapy to slow progression. We compare data underlying surgical approaches proposed to impart disease modification in PD: (1) cell transplantation therapy with stem cell-derived dopaminergic neurons to replace damaged cells; (2) clinical trials of growth factors to promote survival of existing dopaminergic neurons; (3) subthalamic nucleus deep brain stimulation early in the course of PD; and (4) abdominal vagotomy to lower risk of potential disease spread from gut to brain. Though targeted to engage potential mechanisms of PD these surgical approaches remain experimental, indicating the difficulty in translating therapeutic concepts into clinical practice. The choice of outcome measures to assess disease modification separate from the symptomatic benefit will be critical to evaluate the effect of the disease-modifying intervention on long-term disease burden, including imaging studies and clinical rating scales, i.e., Unified Parkinson Disease Rating Scale. Therapeutic interventions will require long follow-up times (i.e., 5-10 years) to analyze disease modification compared to symptomatic treatments. The promise of invasive, surgical treatments to achieve disease modification through mechanistic approaches has been constrained by the reality of translating these concepts into effective clinical trials.
Collapse
Affiliation(s)
- Shervin Rahimpour
- Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Su-Chun Zhang
- Waisman Center and Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857, Singapore, Singapore
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kyle T Mitchell
- Department of Neurology, Duke University, Durham, NC, 27710, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
46
|
Mari Z, Mestre TA. The Disease Modification Conundrum in Parkinson’s Disease: Failures and Hopes. Front Aging Neurosci 2022; 14:810860. [PMID: 35296034 PMCID: PMC8920063 DOI: 10.3389/fnagi.2022.810860] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
In the last half-century, Parkinson’s disease (PD) has played a historical role in demonstrating our ability to translate preclinical scientific advances in pathology and pharmacology into highly effective clinical therapies. Yet, as highly efficacious symptomatic treatments were successfully developed and adopted in clinical practice, PD remained a progressive disease without a cure. In contrast with the success story of symptomatic therapies, the lack of translation of disease-modifying interventions effective in preclinical models into clinical success has continued to accumulate failures in the past two decades. The ability to stop, prevent or mitigate progression in PD remains the “holy grail” in PD science at the present time. The large number of high-quality disease modification clinical trials in the past two decades with its lessons learned, as well as the growing knowledge of PD molecular pathology should enable us to have a deeper understanding of the reasons for past failures and what we need to do to reach better outcomes. Periodic reviews and mini-reviews of the unsolved disease modification conundrum in PD are important, considering how this field is rapidly evolving along with our views and understanding of the possible explanations.
Collapse
Affiliation(s)
- Zoltan Mari
- Parkinson’s and Movement Disorders Program, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- *Correspondence: Zoltan Mari,
| | - Tiago A. Mestre
- Division of Neurology, Department of Medicine, Parkinson’s Disease and Movement Disorders Center, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
47
|
Merchant K, Sullivan J. c-Abl Inhibitors as Disease-Modifying Therapies for Parkinson's Disease: Gaps and Opportunities. Mov Disord 2022; 37:3-5. [PMID: 35043450 DOI: 10.1002/mds.28907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Kalpana Merchant
- Neurology Department, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
48
|
Daly T, Mastroleo I, Henry V, Bourdenx M. An Argument for Simple Tests of Treatment of Alzheimer's Disease. J Alzheimers Dis 2022; 86:49-52. [PMID: 35001895 DOI: 10.3233/jad-215492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two potential disease-modifying approaches for dementia are being vigorously tested: the early targeting of the neuropathology of Alzheimer's disease (AD) and multi-domain lifestyle interventions to promote resilience to neuropathology. We apply the "web of information" model of clinical translation to both approaches to argue firstly that tests of treatments aiming to achieve clinically meaningful outcomes should remain simple, and secondly, that building clinically-meaningful treatments should be kept separate from public health policy which means promoting wide-reaching action against risk factors now with available information.
Collapse
Affiliation(s)
- Timothy Daly
- Science Norms Democracy, UMR 8011 Sorbonne University, Paris, France
| | - Ignacio Mastroleo
- National Scientific and Technical Research Council (CONICET) and Programa de Bioetica, Buenos Aires, Argentina
| | | | - Mathieu Bourdenx
- Institute des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Institute des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France
| |
Collapse
|
49
|
Gokuladhas S, Zaied RE, Schierding W, Farrow S, Fadason T, O'Sullivan JM. Integrating Multimorbidity into a Whole-Body Understanding of Disease Using Spatial Genomics. Results Probl Cell Differ 2022; 70:157-187. [PMID: 36348107 DOI: 10.1007/978-3-031-06573-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multimorbidity is characterized by multidimensional complexity emerging from interactions between multiple diseases across levels of biological (including genetic) and environmental determinants and the complex array of interactions between and within cells, tissues and organ systems. Advances in spatial genomic research have led to an unprecedented expansion in our ability to link alterations in genome folding with changes that are associated with human disease. Studying disease-associated genetic variants in the context of the spatial genome has enabled the discovery of transcriptional regulatory programmes that potentially link dysregulated genes to disease development. However, the approaches that have been used have typically been applied to uncover pathological molecular mechanisms occurring in a specific disease-relevant tissue. These forms of reductionist, targeted investigations are not appropriate for the molecular dissection of multimorbidity that typically involves contributions from multiple tissues. In this perspective, we emphasize the importance of a whole-body understanding of multimorbidity and discuss how spatial genomics, when integrated with additional omic datasets, could provide novel insights into the molecular underpinnings of multimorbidity.
Collapse
Affiliation(s)
| | - Roan E Zaied
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Sophie Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Tayaza Fadason
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| |
Collapse
|
50
|
Taguchi K, Iwaoka K, Yamaguchi T, Nozaki R, Sato Y, Terauchi T, Suzuki Y, Takahashi K, Takahashi K, Akasaka H, Ishizuka N, Maeda T. A cross-sectional study of Parkinson’s disease and the prodromal phase in community-dwelling older adults in eastern Japan. Clin Park Relat Disord 2022; 7:100147. [PMID: 35647516 PMCID: PMC9136122 DOI: 10.1016/j.prdoa.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to clarify the recent prevalence rate of PD and prodromal PD. (78/85). Questionnaire-based approach was conducted to investigate prodromal PD. (71/85). 714 community-dwelling older adults aged 65 or more were enrolled. (66/85). Prevalence rate of PD was 279.7 per 100,000 in this study. (58/85). Prevalence rate and probability of prodromal PD were 5034.5 and 0.057. (70/85).
Introduction Parkinson’s disease (PD) is more prevalent in the aging population, and epidemiological evidence must be constantly updated to provide an accurate understanding of PD prevalence. Various nonmotor symptoms of PD precede the onset of motor symptoms and prodromal PD. The detection of such symptoms is crucial yet remains challenging. In this study, we aimed to clarify the current prevalence of PD and prodromal PD. Methods We enrolled 714 community-dwelling older adults (330 men and 384 women) aged ≥ 65 years (mean age 76.3 years). We used a self-administered questionnaire based on the International Parkinson and Movement Disorder Society prodromal PD criteria to obtain information on prodromes and calculate PD probability. Patients with a probability of ≥ 0.3 were considered as having prodromal PD. We analyzed the crude prevalence rates of PD and prodromal PD. Results The crude prevalence rate of PD in our sample was 279.7 per 100,000 persons. The crude prevalence rate of prodromal PD and PD probability were 5034.5 per 100,000 persons and 0.057 ± 0.121, respectively. Never smoker (61.4%), physical inactivity (47.0%), regular pesticide exposure (30.7%), and urinary dysfunction (26.5%) were frequent positive prodromes. Subjects with higher PD probability possessed more variable prodromal markers than those with lower probability. Conclusion We examined current prevalence rates of PD and prodromal PD in community-dwelling older adults aged ≥ 65 years in Japan. Our questionnaire-based approach to examine prodromal PD provided valuable evidence for the prevalence of prodromal PD in the aging population.
Collapse
|