1
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Anderson TA, Pacharinsak C, Vilches-Moure J, Kantarci H, Zuchero JB, Butts-Pauly K, Yeomans D. Focused ultrasound-induced inhibition of peripheral nerve fibers in an animal model of acute pain. Reg Anesth Pain Med 2023; 48:462-470. [PMID: 36822815 PMCID: PMC11233103 DOI: 10.1136/rapm-2022-104060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Moderate-to-severe acute pain is prevalent in many healthcare settings and associated with adverse outcomes. Peripheral nerve blockade using traditional needle-based and local anesthetic-based techniques improves pain outcomes for some patient populations but has shortcomings limiting use. These limitations include its invasiveness, potential for local anesthetic systemic toxicity, risk of infection with an indwelling catheter, and relatively short duration of blockade compared with the period of pain after major injuries. Focused ultrasound is capable of inhibiting the peripheral nervous system and has potential as a pain management tool. However, investigations of its effect on peripheral nerve nociceptive fibers in animal models of acute pain are lacking. In an in vivo acute pain model, we investigated focused ultrasound's effects on behavior and peripheral nerve structure. METHODS Focused ultrasound was applied directly to the sciatic nerve of rats just prior to a hindpaw incision; three control groups (focused ultrasound sham only, hindpaw incision only, focused ultrasound sham+hindpaw incision) were also included. For all four groups (intervention and controls), behavioral testing (thermal and mechanical hyperalgesia, hindpaw extension and flexion) took place for 4 weeks. Structural changes to peripheral nerves of non-focused ultrasound controls and after focused ultrasound application were assessed on days 0 and 14 using light microscopy and transmission electron microscopy. RESULTS Compared with controls, after focused ultrasound application, animals had (1) increased mechanical nociceptive thresholds for 2 weeks; (2) sustained increase in thermal nociceptive thresholds for ≥4 weeks; (3) a decrease in hindpaw motor response for 0.5 weeks; and (4) a decrease in hindpaw plantar sensation for 2 weeks. At 14 days after focused ultrasound application, alterations to myelin sheaths and nerve fiber ultrastructure were observed both by light and electron microscopy. DISCUSSION Focused ultrasound, using a distinct parameter set, reversibly inhibits A-delta peripheral nerve nociceptive, motor, and non-nociceptive sensory fiber-mediated behaviors, has a prolonged effect on C nociceptive fiber-mediated behavior, and alters nerve structure. Focused ultrasound may have potential as a peripheral nerve blockade technique for acute pain management. However, further investigation is required to determine C fiber inhibition duration and the significance of nerve structural changes.
Collapse
Affiliation(s)
- Thomas Anthony Anderson
- Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Cholawat Pacharinsak
- Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jose Vilches-Moure
- Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Husniye Kantarci
- Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - J Bradley Zuchero
- Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kim Butts-Pauly
- Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - David Yeomans
- Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Brewer CL, Baccei ML. The development of pain circuits and unique effects of neonatal injury. J Neural Transm (Vienna) 2020; 127:467-479. [PMID: 31399790 PMCID: PMC7007840 DOI: 10.1007/s00702-019-02059-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Pain is a necessary sensation that prevents further tissue damage, but can be debilitating and detrimental in daily life under chronic conditions. Neuronal activity strongly regulates the maturation of the somatosensory system, and aberrant sensory input caused by injury or inflammation during critical periods of early postnatal development can have prolonged, detrimental effects on pain processing. This review will outline the maturation of neuronal circuits responsible for the transmission of nociceptive signals and the generation of pain sensation-involving peripheral sensory neurons, the spinal cord dorsal horn, and brain-in addition to the influences of the neuroimmune system on somatosensation. This summary will also highlight the unique effects of neonatal tissue injury on the maturation of these systems and subsequent consequences for adult somatosensation. Ultimately, this review emphasizes the need to account for age as an independent variable in basic and clinical pain research, and importantly, to consider the distinct qualities of the pediatric population when designing novel strategies for pain management.
Collapse
Affiliation(s)
- Chelsie L Brewer
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Mark L Baccei
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
4
|
Gainfully employing descending controls in acute and chronic pain management. Vet J 2018; 237:16-25. [DOI: 10.1016/j.tvjl.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
|
5
|
Afify EA, Alkreathy HM, Ali AS, Alfaifi HA, Khan LM. Characterization of the Antinociceptive Mechanisms of Khat Extract ( Catha edulis) in Mice. Front Neurol 2017; 8:69. [PMID: 28316587 PMCID: PMC5332354 DOI: 10.3389/fneur.2017.00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
This study investigated the antinociceptive mechanisms of khat extract (100, 200, and 400 mg/kg, i.p.) in four pain models: two thermic (hot plate, tail-flick) and two chemical (acetic acid, formalin) models. Male mice were pretreated intraperitoneally (i.p.) with the opioid receptor blocker naloxone (5 mg/kg), the cholinergic antagonist atropine (2 mg/kg), the selective α1 blocker prazosin (1 mg/kg), the dopamine D2 antagonist haloperidol (1.5 mg/kg), or the GABAA receptor antagonist, bicuculline (1 mg/kg) 15 minutes prior to i.p. injection of khat extract (400 mg/kg). Khat extract reduced the nociceptive response of mice in the four pain tests. Naloxone significantly inhibited the antinociceptive effect of khat extract in the hot plate, tail-flick, and the first phase of formalin tests. Bicuculline significantly antagonized the antinociceptive effect of khat extract on the hot plate and tail-flick tests. Haloperidol significantly reversed the antinociceptive effect of khat extract on the tail-flick test and the first phase of formalin test. These results provide strong evidence that the antinociceptive activity of khat extract is mediated via opioidergic, GABAergic, and dopaminergic pathways. The mechanism of the antinociceptive action of khat may be linked to the different types of pain generated in animal models.
Collapse
Affiliation(s)
- Elham A Afify
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M Alkreathy
- Faculty of Medicine, Department of Pharmacology, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Ahmed S Ali
- Faculty of Medicine, Department of Pharmacology, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Hassan A Alfaifi
- Faculty of Medicine, Department of Pharmacology, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Lateef M Khan
- Faculty of Medicine, Department of Pharmacology, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
6
|
Yadlapalli JSK, Ford BM, Ketkar A, Wan A, Penthala NR, Eoff RL, Prather PL, Dobretsov M, Crooks PA. Antinociceptive effects of the 6-O-sulfate ester of morphine in normal and diabetic rats: Comparative role of mu- and delta-opioid receptors. Pharmacol Res 2016; 113:335-347. [PMID: 27637375 DOI: 10.1016/j.phrs.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
This study determined the antinociceptive effects of morphine and morphine-6-O-sulfate (M6S) in both normal and diabetic rats, and evaluated the comparative role of mu-opioid receptors (mu-ORs) and delta-opioid receptors (delta-ORs) in the antinociceptive action of these opioids. In vitro characterization of mu-OR and delta-OR-mediated signaling by M6S and morphine in stably transfected Chinese hamster ovary (CHO-K1) cells showed that M6S exhibited a 6-fold higher affinity for delta-ORs and modulated G-protein and adenylyl cyclase activity via delta-ORs more potently than morphine. Interestingly, while morphine acted as a full agonist at delta-ORs in both functional assays examined, M6S exhibited either partial or full agonist activity for modulation of G-protein or adenylyl cyclase activity, respectively. Molecular docking studies indicated that M6S but not morphine binds equally well at the ligand binding site of both mu- and delta-ORs. In vivo analgesic effects of M6S and morphine in both normal and streptozotocin-induced diabetic Sprague-Dawley rats utilizing the hot water tail flick latency test showed that M6S produced more potent antinociception than morphine in both normal rats and diabetic rats. This difference in potency was abrogated following antagonism of delta- but not mu- or kappa (kappa-ORs) opioid receptors. During 9days of chronic treatment, tolerance developed to morphine-treated but not to M6S-treated rats. Rats that developed tolerance to morphine still remained responsive to M6S. Collectively, this study demonstrates that M6S is a potent and efficacious mu/delta opioid analgesic with a delayed tolerance profile when compared to morphine in both normal and diabetic rats. PERSPECTIVE This study demonstrates that M6S acts at both mu- and delta-ORs, and adds to the growing evidence that the use of mixed mu/delta opioid agonists in pain treatment may have clinical benefit.
Collapse
Affiliation(s)
- Jai Shankar K Yadlapalli
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Benjamin M Ford
- Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Amit Ketkar
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Anqi Wan
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Narasimha R Penthala
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert L Eoff
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Paul L Prather
- Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Maxim Dobretsov
- Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Peter A Crooks
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
7
|
Hua Z, Liu L, Shen J, Cheng K, Liu A, Yang J, Wang L, Qu T, Yang H, Li Y, Wu H, Narouze J, Yin Y, Cheng J. Mesenchymal Stem Cells Reversed Morphine Tolerance and Opioid-induced Hyperalgesia. Sci Rep 2016; 6:32096. [PMID: 27554341 PMCID: PMC4995471 DOI: 10.1038/srep32096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/02/2016] [Indexed: 01/27/2023] Open
Abstract
More than 240 million opioid prescriptions are dispensed annually to treat pain in the US. The use of opioids is commonly associated with opioid tolerance (OT) and opioid-induced hyperalgesia (OIH), which limit efficacy and compromise safety. The dearth of effective way to prevent or treat OT and OIH is a major medical challenge. We hypothesized that mesenchymal stem cells (MSCs) attenuate OT and OIH in rats and mice based on the understanding that MSCs possess remarkable anti-inflammatory properties and that both OT and chronic pain are associated with neuroinflammation in the spinal cord. We found that the development of OT and OIH was effectively prevented by either intravenous or intrathecal MSC transplantation (MSC-TP), which was performed before morphine treatment. Remarkably, established OT and OIH were significantly reversed by either intravenous or intrathecal MSCs when cells were transplanted after repeated morphine injections. The animals did not show any abnormality in vital organs or functions. Immunohistochemistry revealed that the treatments significantly reduced activation level of microglia and astrocytes in the spinal cord. We have thus demonstrated that MSC-TP promises to be a potentially safe and effective way to prevent and reverse two of the major problems of opioid therapy.
Collapse
Affiliation(s)
- Zhen Hua
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.,Department of Anesthesiology, Beijing Hospital, No. 1 Dahua Road, Beijing 100730, China
| | - LiPing Liu
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jun Shen
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Kathleen Cheng
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Aijun Liu
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jing Yang
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Lina Wang
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Tingyu Qu
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - HongNa Yang
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Li
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Haiyan Wu
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - John Narouze
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Yan Yin
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jianguo Cheng
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
8
|
Jutzeler CR, Curt A, Kramer JLK. Effectiveness of High-Frequency Electrical Stimulation Following Sensitization With Capsaicin. THE JOURNAL OF PAIN 2015; 16:595-605. [PMID: 25866256 DOI: 10.1016/j.jpain.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Accepted: 03/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Although nonnoxious, high-frequency electrical stimulation applied segmentally (ie, conventional transcutaneous electrical nerve stimulation [TENS]) has been proposed to modulate pain, the mechanisms underlying analgesia remain poorly understood. To further elucidate how TENS modulates pain, we examined evoked responses to noxious thermal stimuli after the induction of sensitization using capsaicin in healthy volunteers. We hypothesized that sensitization caused by capsaicin application would unmask TENS analgesia, which could not be detected in the absence of sensitization. Forty-nine healthy subjects took part in a series of experiments. The experiments comprised the application of topical capsaicin (.075%) on the left hand in the C6 dermatome, varying the location of TENS (segmental, left C6 dermatome, vs extrasegmental, right shoulder), and assessing rating of perception (numeric rating scale: 0-10) and evoked potentials to noxious contact heat stimuli. The extrasegmental site was included as a control condition because previous studies indicate no analgesic effect to remote conventional TENS. Conventional TENS had no significant effect on rating or sensory evoked potentials in subjects untreated with capsaicin. However, segmental TENS applied in conjunction with capsaicin significantly reduced sensation to noxious thermal stimuli following a 60-minute period of sensitization. PERSPECTIVE The study indicates that sensitization with capsaicin unmasks the analgesic effect of conventional TENS on perception of noxious contact heat stimuli. Our findings indicate that TENS may be interacting segmentally to modulate distinct aspects of sensitization, which in turn results in analgesia to thermal stimulation.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; School of Kinesiology, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Effect of three peptidase inhibitors on antinociceptive potential and toxicity with intracerebroventricular administration of dynorphin A (1–17) or (1–13) in the rat. J Anesth 2014; 29:65-77. [DOI: 10.1007/s00540-014-1860-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
|
10
|
Potentiation of [Met5]enkephalin-induced antinociception by mixture of three peptidase inhibitors in rat. J Anesth 2014; 28:708-15. [DOI: 10.1007/s00540-014-1819-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
11
|
Mitchell K, Lebovitz EE, Keller JM, Mannes AJ, Nemenov MI, Iadarola MJ. Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion. Pain 2014; 155:733-745. [PMID: 24434730 DOI: 10.1016/j.pain.2014.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 12/19/2013] [Accepted: 01/10/2014] [Indexed: 01/23/2023]
Abstract
TRPV1 is expressed in a subpopulation of myelinated Aδ and unmyelinated C-fibers. TRPV1+ fibers are essential for the transmission of nociceptive thermal stimuli and for the establishment and maintenance of inflammatory hyperalgesia. We have previously shown that high-power, short-duration pulses from an infrared diode laser are capable of predominantly activating cutaneous TRPV1+ Aδ-fibers. Here we show that stimulating either subtype of TRPV1+ fiber in the paw during carrageenan-induced inflammation or following hind-paw incision elicits pronounced hyperalgesic responses, including prolonged paw guarding. The ultrapotent TRPV1 agonist resiniferatoxin (RTX) dose-dependently deactivates TRPV1+ fibers and blocks thermal nociceptive responses in baseline or inflamed conditions. Injecting sufficient doses of RTX peripherally renders animals unresponsive to laser stimulation even at the point of acute thermal skin damage. In contrast, Trpv1-/- mice, which are generally unresponsive to noxious thermal stimuli at lower power settings, exhibit withdrawal responses and inflammation-induced sensitization using high-power, short duration Aδ stimuli. In rats, systemic morphine suppresses paw withdrawal, inflammatory guarding, and hyperalgesia in a dose-dependent fashion using the same Aδ stimuli. The qualitative intensity of Aδ responses, the leftward shift of the stimulus-response curve, the increased guarding behaviors during carrageenan inflammation or after incision, and the reduction of Aδ responses with morphine suggest multiple roles for TRPV1+ Aδ fibers in nociceptive processes and their modulation of pathological pain conditions.
Collapse
Affiliation(s)
- Kendall Mitchell
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA Department of Anesthesia, Stanford University, Palo Alto, CA, USA Lasmed LLC, Mountain View, CA, USA Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
12
|
Koch SC, Fitzgerald M. The selectivity of rostroventral medulla descending control of spinal sensory inputs shifts postnatally from A fibre to C fibre evoked activity. J Physiol 2014; 592:1535-44. [PMID: 24421353 PMCID: PMC3979610 DOI: 10.1113/jphysiol.2013.267518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Brainstem descending control is crucial in maintaining the balance of excitation and inhibition in spinal sensory networks. In the adult, descending inhibition of spinal dorsal horn circuits arising from the brainstem rostroventral medial medulla (RVM) is targeted to neurons with a strong nociceptive C fibre input. Before the fourth postnatal week, the RVM exerts a net facilitation of spinal networks but it is not known if this is targeted to specific dorsal horn neuronal inputs. As the maturation from descending facilitation to inhibition occurs only after C fibre central synaptic maturation is complete, we hypothesized that RVM facilitation in young animals is targeted to A fibre afferent inputs. To test this, the RVM was stimulated while recording dorsal horn neuronal activity in vivo under isoflurane anaesthesia at postnatal day (P) 21 and P40 (adult). Electrical thresholds for A and C fibre evoked activity, spike counts and wind-up characteristics at baseline and during RVM stimulation (10–100 µA, 10 Hz) were compared. In adults, RVM stimulation selectively increased the threshold for C fibre evoked activity while at P21, it selectively decreased the threshold for A fibre evoked activity and these effects were correlated to the wind-up characteristics of the neuron. Thus, the postnatal shift in RVM control of dorsal horn circuits is not only directional but also modality specific, from facilitation of A fibre input in the young animal to inhibition of nociceptive C input in the adult, with additional contextual factors. The descending control of spinal sensory networks serves very different functions in young and adult animals.
Collapse
Affiliation(s)
- Stephanie C Koch
- Current address: Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037.
| | | |
Collapse
|
13
|
Ritter A, Franz M, Dietrich C, Miltner WHR, Weiss T. Human brain stem structures respond differentially to noxious heat. Front Hum Neurosci 2013; 7:530. [PMID: 24032012 PMCID: PMC3764478 DOI: 10.3389/fnhum.2013.00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/15/2013] [Indexed: 01/21/2023] Open
Abstract
Concerning the physiological correlates of pain, the brain stem is considered to be one core region that is activated by noxious input. In animal studies, different slopes of skin heating (SSH) with noxious heat led to activation in different columns of the midbrain periaqueductal gray (PAG). The present study aimed at finding a method for differentiating structures in PAG and other brain stem structures, which are associated with different qualities of pain in humans according to the structures that were associated with different behavioral significances to noxious thermal stimulation in animals. Brain activity was studied by functional MRI in healthy subjects in response to steep and shallow SSH with noxious heat. We found differential activation to different SSH in the PAG and the rostral ventromedial medulla (RVM). In a second experiment, we demonstrate that the different SSH were associated with different pain qualities. Our experiments provide evidence that brainstem structures, i.e., the PAG and the RVM, become differentially activated by different SSH. Therefore, different SSH can be utilized when brain stem structures are investigated and when it is aimed to activate these structures differentially. Moreover, percepts of first pain were elicited by shallow SSH whereas percepts of second pain were elicited by steep SSH. The stronger activation of these brain stem structures to SSH, eliciting percepts of second vs. first pain, might be of relevance for activating different coping strategies in response to the noxious input with the two types of SSH.
Collapse
Affiliation(s)
- Alexander Ritter
- Department of Biological and Clinical Psychology, Friedrich Schiller University , Jena , Germany
| | | | | | | | | |
Collapse
|
14
|
Marini P, Romanelli L, Valeri D, Cascio MG, Tucci P, Valeri P, Palmery M. The NOP receptor involvement in both withdrawal- and CCk-8-induced contracture responses of guinea pig isolated ileum after acute activation of κ-opioid receptor. Peptides 2012; 38:418-26. [PMID: 23059394 DOI: 10.1016/j.peptides.2012.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023]
Abstract
In isolated guinea-pig ileum (GPI), the κ-opioid acute withdrawal response is under the control of several neuronal signaling systems, including the μ-opioid, the A(1)-adenosine and the CB(1) receptors, which are involved in the inhibitory control of the κ-withdrawal response. After κ-opioid system stimulation, indirect activation of μ-opioid, A(1)-adenosine and CB(1) systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the NOP system is also involved in the regulation of the acute κ-withdrawal response. Interestingly, we found that in GPI preparation, the NOP system is not indirectly activated by the κ-opioid receptor stimulation, but instead this system is able by itself to directly regulate the acute κ-withdrawal response. Specifically, our results clearly highlight first the existence of an endogenous tone of the NOP system in GPI, and second that it behaves as a functional anti-opioid system. We also found that, the NOP receptor system is involved in the regulation of the CCk-8-induced contracture intensity, only when in the presence of the κ-opioid receptor stimulation. This effect seems to be regulated by an activation threshold mechanism. In conclusion, the NOP system could act as neuromodulatory system, whose action is strictly related to the modulation of both excitatory and inhibitory neurotransmitters released in GPI enteric nervous system.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Okada-Ogawa A, Kurose M, Meng ID. Attenuation of cannabinoid-induced inhibition of medullary dorsal horn neurons by a kappa-opioid receptor antagonist. Brain Res 2010; 1359:81-9. [PMID: 20807519 DOI: 10.1016/j.brainres.2010.08.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022]
Abstract
The kappa-opioid receptor (KOR) antagonist norbinaltorphimine (nor-BNI) attenuates behavioral antinociception produced by spinal administration of the cannabinoid receptor agonist delta-9-tetrahydorcannabinol (THC). The present study examined the ability of nor-BNI to prevent cannabinoid-induced inhibition of medullary dorsal horn (MDH) nociceptive neurons and antinociception produced by the cannabinoid agonist WIN 55,212-2 (WIN-2). Extracellular, single-unit recordings of lamina I and lamina V MDH neurons were performed in urethane anesthetized rats. Heat-evoked activity was measured before and after local brainstem application of nor-BNI or vehicle followed by WIN-2. In both lamina I and lamina V neurons, prior application of nor-BNI prevented the inhibition of heat-evoked activity by WIN-2. In separate experiments, the contribution of KOR to cannabinoid-induced increases in heat-evoked head withdrawal latencies was assessed in lightly urethane-anesthetized rats. Antinociception produced by intrathecal administration of WIN-2 and THC was attenuated by prior administration of nor-BNI. In contrast, antinociception produced by the cannabinoid CP55940 remained unaffected by prior administration of nor-BNI. These results indicate that cannabinoid inhibition of nociceptive reflexes produced by WIN-2 and THC may result from inhibition of dorsal horn neurons through a KOR-dependent mechanism.
Collapse
Affiliation(s)
- Akiko Okada-Ogawa
- Department of Oral Diagnosis, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | |
Collapse
|
16
|
Cuellar JM, Manering NA, Klukinov M, Nemenov MI, Yeomans DC. Thermal nociceptive properties of trigeminal afferent neurons in rats. Mol Pain 2010; 6:39. [PMID: 20609212 PMCID: PMC2910000 DOI: 10.1186/1744-8069-6-39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/07/2010] [Indexed: 11/16/2022] Open
Abstract
Background Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating. Results The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating. Conclusions This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies.
Collapse
Affiliation(s)
- Jason M Cuellar
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
17
|
Sustained morphine-induced sensitization and loss of diffuse noxious inhibitory controls in dura-sensitive medullary dorsal horn neurons. J Neurosci 2010; 29:15828-35. [PMID: 20016098 DOI: 10.1523/jneurosci.3623-09.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Overuse of medications used to treat migraine headache can produce a chronic daily headache, termed medication overuse headache (MOH). Although "overuse" of opioids, triptans, and over-the-counter analgesics can all produce MOH, the neuronal mechanisms remain unknown. Headache pain is likely to be produced by stimulation of primary afferent neurons that innervate the intracranial vasculature and the resulting activation of medullary dorsal horn (MDH) neurons. The present study compared the receptive field properties of MDH dura-sensitive neurons in rats treated with morphine to those given vehicle. Animals were implanted with osmotic minipumps or pellets for sustained subcutaneous administration of morphine or vehicle 6-7 d before recording from dura-sensitive neurons. Electrical and mechanical activation thresholds from the dura were significantly lower in chronic morphine-treated animals when compared to vehicle controls. In addition, sustained morphine increased the cutaneous receptive field sizes. The presence of diffuse noxious inhibitory controls (DNICs) was examined by placing the tail in 55 degrees C water during concomitant noxious thermal stimulation of the cutaneous receptive field, usually located in the ophthalmic region. The DNIC stimulus produced significant inhibition of heat-evoked activity in vehicle- but not chronic morphine-treated animals. Inactivation of the rostral ventromedial medulla with 4% lidocaine reinstated DNICs in chronic morphine-treated animals. These results are consistent with studies demonstrating a loss of DNICs in patients that suffer from chronic daily headache and may partially explain why overuse of medication used to treat migraine can induce headaches.
Collapse
|
18
|
Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 2009; 29:14015-25. [PMID: 19890011 DOI: 10.1523/jneurosci.3447-09.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previous studies of peripheral immune cells have documented that activation of adenosine 2A receptors (A(2A)Rs) decrease proinflammatory cytokine release and increase release of the potent anti-inflammatory cytokine, interleukin-10 (IL-10). Given the growing literature supporting that glial proinflammatory cytokines importantly contribute to neuropathic pain and that IL-10 can suppress such pain, we evaluated the effects of intrathecally administered A(2A)R agonists on neuropathic pain using the chronic constriction injury (CCI) model. A single intrathecal injection of the A(2A)R agonists 4-(3-(6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl)prop-2-ynyl)piperidine-1-carboxylic acid methyl ester (ATL313) or 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine HCl (CGS21680), 10-14 d after CCI versus sham surgery, produced a long-duration reversal of mechanical allodynia and thermal hyperalgesia for at least 4 weeks. Neither drug altered the nociceptive responses of sham-operated controls. An A(2A)R antagonist [ZM241385 (4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-ylamino]ethyl)phenol)] coadministered intrathecally with ATL313 abolished the action of ATL313 in rats with neuropathy-induced allodynia but had no effect on allodynia in the absence of the A(2A)R agonist. ATL313 attenuated CCI-induced upregulation of spinal cord activation markers for microglia and astrocytes in the L4-L6 spinal cord segments both 1 and 4 weeks after a single intrathecal ATL313 administration. Neutralizing IL-10 antibodies administered intrathecally transiently abolished the effect of ATL313 on neuropathic pain. In addition, IL-10 mRNA was significantly elevated in the CSF cells collected from the lumbar region. Activation of A(2A)Rs after intrathecal administration may be a novel, therapeutic approach for the treatment of neuropathic pain by increasing IL-10 in the immunocompetent cells of the CNS.
Collapse
|
19
|
Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. BRAIN RESEARCH REVIEWS 2009; 60:214-25. [PMID: 19146877 PMCID: PMC2894733 DOI: 10.1016/j.brainresrev.2008.12.009] [Citation(s) in RCA: 649] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/23/2022]
Abstract
The dorsal horn of the spinal cord is the location of the first synapse in pain pathways, and as such, offers a very powerful target for regulation of nociceptive transmission by both local segmental and supraspinal mechanisms. Descending control of spinal nociception originates from many brain regions and plays a critical role in determining the experience of both acute and chronic pain. The earlier concept of descending control as an "analgesia system" is now being replaced with a more nuanced model in which pain input is prioritized relative to other competing behavioral needs and homeostatic demands. Descending control arises from a number of supraspinal sites, including the midline periaqueductal gray-rostral ventromedial medulla (PAG-RVM) system, and the more lateral and caudal dorsal reticular nucleus (DRt) and ventrolateral medulla (VLM). Inhibitory control from the PAG-RVM system preferentially suppresses nociceptive inputs mediated by C-fibers, preserving sensory-discriminative information conveyed by more rapidly conducting A-fibers. Analysis of the circuitry within the RVM reveals that the neural basis for bidirectional control from the midline system is two populations of neurons, ON-cells and OFF-cells, that are differentially recruited by higher structures important in fear, illness and psychological stress to enhance or inhibit pain. Dynamic shifts in the balance between pain inhibiting and facilitating outflows from the brainstem play a role in setting the gain of nociceptive processing as dictated by behavioral priorities, but are also likely to contribute to pathological pain states.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | |
Collapse
|
20
|
Tuboly G, Benedek G, Horvath G. Selective disturbance of pain sensitivity after social isolation. Physiol Behav 2009; 96:18-22. [DOI: 10.1016/j.physbeh.2008.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 07/22/2008] [Accepted: 07/30/2008] [Indexed: 11/29/2022]
|
21
|
Simpson DAA, Headley MP, Lumb BM. Selective inhibition from the anterior hypothalamus of C- versus A-fibre mediated spinal nociception. Pain 2008; 136:305-312. [PMID: 17822851 DOI: 10.1016/j.pain.2007.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/21/2007] [Accepted: 07/16/2007] [Indexed: 11/23/2022]
Abstract
Modulation of spinal nociception from the anterior hypothalamus/preoptic area (AH/POA), and consequent alterations in the pain experience may contribute to integrated responses brought into play during fear or stress and as part of the sickness response. This study was designed to compare the effects of descending control from AH/POA on A- versus C-fibre-evoked spinal nociception, since any differential control is of behavioural and clinical importance given that A-fibre and C-fibre nociceptors convey different qualities of the pain signal (first and second pain, respectively), and play different roles in the development and maintenance of chronic pain states. In anaesthetised rats, electromyographic responses were recorded to monitor thresholds of withdrawal to slow (2.5 degrees Cs(-1)) or fast (7.5 degrees Cs(-1)) rates of skin heating of the hindpaw, to preferentially activate C- or A-nociceptors, respectively. Neuronal activation by microinjection of dl-homocysteic acid at sites within a specific region of AH/POA, lateral area of the anterior hypothalamus (LAAH), significantly increased response thresholds to slow heating rates (p<0.02, n=11), but not those to fast rates of heating (p=0.48, n=10). Injection of DLH adjacent to LAAH (n=9) had no significant effect on responses to slow (n=8) or fast (n=9) rates of skin heating. The functional significance of differential descending control of spinal processing of C- and A-nociceptive inputs is discussed with respect to roles both of the LAAH in pain processing, and of C- and A-nociceptive inputs in acute and chronic pain.
Collapse
Affiliation(s)
- Daniel A A Simpson
- Department of Physiology, School of Medical Sciences, University of Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
22
|
Waters AJ, Lumb BM. Descending control of spinal nociception from the periaqueductal grey distinguishes between neurons with and without C-fibre inputs. Pain 2008; 134:32-40. [PMID: 17467173 DOI: 10.1016/j.pain.2007.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/01/2007] [Accepted: 03/19/2007] [Indexed: 11/20/2022]
Abstract
Information about noxious events in the periphery is conveyed to the spinal cord in A- and C-fibre nociceptive afferents, which have largely distinct electrical and chemical properties and which convey different qualities of the pain signal. Descending control that originates in the different functional columns of the midbrain periaqueductal grey (PAG) has important roles in the modulation of spinal nociception in different behavioural and emotional states and, it is now believed, in animal models of chronic pain. However, few studies of descending control have considered differential modulation of A- versus C-nociceptor-evoked responses. Here, we report that descending inhibitory control from the rostrocaudal extent of the dorsolateral/lateral and ventrolateral columns of the PAG preferentially targets Class 2 deep dorsal horn neurons with C-fibre inputs. Pinch-evoked responses of these neurons were depressed significantly by -37+/-4.2% (P<0.0001). In contrast, the pinch-evoked responses of Class 2 neurons without C-fibre inputs (presumably A-fibre mediated) were enhanced significantly by +34+/-11.8% (P<0.01). Further experiments indicated these facilitatory effects were at least partly due to a reduction in C-fibre-mediated segmental inhibition. We suggest this differential control of spinal nociception would be appropriate in many of the varied situations in which the PAG is believed to become active, whether short term (e.g. fight or flight) or long term (e.g. chronic pain). Additionally, the pro-nociceptive effects observed in a subset of spinal neurons may be related to the descending facilitation that has been reported in animal models of chronic pain.
Collapse
Affiliation(s)
- Alexander J Waters
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
23
|
Leith JL, Wilson AW, Donaldson LF, Lumb BM. Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C- versus A-fiber-evoked spinal nociception. J Neurosci 2007; 27:11296-305. [PMID: 17942724 PMCID: PMC6673041 DOI: 10.1523/jneurosci.2586-07.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 08/23/2007] [Accepted: 08/28/2007] [Indexed: 11/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert analgesic effects by inhibiting peripheral cyclooxygenases (COXs). It is now clear that these drugs also have central actions that include the modulation of descending control of spinal nociception from the midbrain periaqueductal gray (PAG). Descending control is a powerful determinant of the pain experience and is thus a potential target for analgesic drugs, including COX inhibitors. Noxious information from the periphery is conveyed to the spinal cord in A- and C-fiber nociceptors, which convey different qualities of the pain signal and have different roles in chronic pain. This in vivo study used different rates of skin heating to preferentially activate A- or C-heat nociceptors to further investigate the actions of COX inhibitors and prostaglandins in the PAG on spinal nociceptive processing. The results significantly advance our understanding of the central mechanisms underlying the actions of NSAIDs and prostaglandins by demonstrating that (1) in the PAG, it is COX-1 and not COX-2 that is responsible for acute antinociceptive effects of NSAIDs in vivo; (2) these effects are only evoked from the opioid-sensitive ventrolateral PAG; and (3) prostaglandins in the PAG exert tonic facilitatory control that targets C- rather than A-fiber-mediated spinal nociception. This selectivity of control is of particular significance given the distinct roles of A- and C-nociceptors in acute and chronic pain. Thus, effects of centrally acting prostaglandins are pivotal, we suggest, to both the understanding of nociceptive processing and the development of new analgesic drugs.
Collapse
Affiliation(s)
- J. Lianne Leith
- Department of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom, and
| | - Alex W. Wilson
- Neurology and Gastrointestinal Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, Essex CM19 5AW, United Kingdom
| | - Lucy F. Donaldson
- Department of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom, and
| | - Bridget M. Lumb
- Department of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom, and
| |
Collapse
|
24
|
Couto LB, Moroni CR, dos Reis Ferreira CM, Elias-Filho DH, Parada CA, Pelá IR, Coimbra NC. Descriptive and functional neuroanatomy of locus coeruleus-noradrenaline-containing neurons involvement in bradykinin-induced antinociception on principal sensory trigeminal nucleus. J Chem Neuroanat 2006; 32:28-45. [PMID: 16678997 DOI: 10.1016/j.jchemneu.2006.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 11/24/2022]
Abstract
The present study was carried out in Wistar rats, using the jaw-opening reflex and dental pulp stimulation, to investigate noradrenaline- and serotonin-mediated antinociceptive circuits. The effects of microinjections of bradykinin into the principal sensory trigeminal nucleus (PSTN) before and after neurochemical lesions of the locus coeruleus noradrenergic neurons were studied. Neuroanatomical experiments showed evidence for reciprocal neuronal pathways connecting the locus coeruleus (LC) to trigeminal sensory nuclei and linking monoaminergic nuclei of the pain inhibitory system to spinal trigeminal nucleus (STN). Fast blue (FB) injections in the locus coeruleus/subcoeruleus region retrogradely labeled neurons in the contralateral PSTN and LC. Microinjections of FB into the STN showed neurons labeled in both ipsilateral and contralateral LC, as well as in the ipsilateral Barrington's nucleus and subcoeruleus area. Retrograde tract-tracing with FB also showed that the mesencephalic trigeminal nucleus sends neural pathways towards the ipsilateral PSTN, with outputs from cranial and caudal aspects of the brainstem. In addition, neurons from the lateral and dorsolateral columns of periaqueductal gray matter also send outputs to the ipsilateral PSTN. Microinjections of FB in the interpolar and caudal divisions of the STN labeled neurons in the caudal subdivision of STN. Microinjections in the STN interpolar and caudal divisions also retrogradely labeled serotonin- and noradrenaline-containing nucleus of the brainstem pain inhibitory system. Finally, the gigantocellularis complex (nucleus reticularis gigantocellularis/paragigantocellularis), nucleus raphe magnus and nucleus raphe pallidus also projected to the caudal divisions of the STN. Microinjections of bradykinin in the PSTN caused a statistically significant long-lasting antinociception, antagonized by the damage of locus coeruleus-noradrenergic neuronal fibres with (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) (DSP4), a neurotoxin that specifically depleted noradrenaline from locus coeruleus terminal fields. These data suggest that serotonin- and noradrenaline-containing nuclei of the endogenous pain inhibitory system exert a key-role in the antinociceptive mechanisms of bradykinin and the locus coeruleus is crucially involved in this effect.
Collapse
Affiliation(s)
- Lucélio Bernardes Couto
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 3900, Ribeirão Preto (SP), 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|