1
|
Seitz-Holland J, Alemán-Gómez Y, Cho KIK, Pasternak O, Cleusix M, Jenni R, Baumann PS, Klauser P, Conus P, Hagmann P, Do KQ, Kubicki M, Dwir D. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024; 49:1140-1150. [PMID: 38431757 PMCID: PMC11109110 DOI: 10.1038/s41386-024-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Kocsis Z, Jenison RL, Taylor PN, Calmus RM, McMurray B, Rhone AE, Sarrett ME, Deifelt Streese C, Kikuchi Y, Gander PE, Berger JI, Kovach CK, Choi I, Greenlee JD, Kawasaki H, Cope TE, Griffiths TD, Howard MA, Petkov CI. Immediate neural impact and incomplete compensation after semantic hub disconnection. Nat Commun 2023; 14:6264. [PMID: 37805497 PMCID: PMC10560235 DOI: 10.1038/s41467-023-42088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.
Collapse
Affiliation(s)
- Zsuzsanna Kocsis
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Rick L Jenison
- Departments of Neuroscience and Psychology, University of Wisconsin, Madison, WI, USA
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Ryan M Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Bob McMurray
- Department of Psychological and Brain Science, University of Iowa, Iowa City, IA, USA
| | - Ariane E Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | | | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Zhao S, Bao Q, Ma G, Yao Y, Xie L, Xiong J. Benzo[b]fluoranthene (B[b]F) affects apoptosis, oxidative stress, mitochondrial membrane potential and expressions of blood-brain barrier markers in microvascular endothelial cells. Toxicol In Vitro 2022; 86:105522. [DOI: 10.1016/j.tiv.2022.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
|
4
|
Boshra R, Eradath M, Dougherty K, Wu B, Morea BM, Harris M, Pinsk MA, Kastner S. Case studies in neuroscience: reversible signatures of edema following electric and piezoelectric craniotomy drilling in macaques. J Neurophysiol 2022; 128:919-926. [PMID: 36043799 PMCID: PMC9550573 DOI: 10.1152/jn.00108.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
In vivo electrophysiology requires direct access to brain tissue, necessitating the development and refinement of surgical procedures and techniques that promote the health and well-being of animal subjects. Here, we report a series of findings noted on structural magnetic resonance imaging (MRI) scans in monkeys with MRI-compatible implants following small craniotomies that provide access for intracranial electrophysiology. We found distinct brain regions exhibiting hyperintensities in T2-weighted scans that were prominent underneath the sites at which craniotomies had been performed. We interpreted these hyperintensities as edema of the neural tissue and found that they were predominantly present following electric and piezoelectric drilling, but not when manual, hand-operated drills were used. Furthermore, the anomalies subsided within 2-3 wk following surgery. Our report highlights the utility of MRI-compatible implants that promote clinical examination of the animal's brain, sometimes revealing findings that may go unnoticed when incompatible implants are used. We show replicable differences in outcome when using electric versus mechanical devices, both ubiquitous in the field. If electric drills are used, our report cautions against electrophysiological recordings from tissue directly underneath the craniotomy for the first 2-3 wk following the procedure due to putative edema.NEW & NOTEWORTHY Close examination of structural MRI in eight nonhuman primates following craniotomy surgeries for intracranial electrophysiology highlights a prevalence of hyperintensities on T2-weighted scans following surgeries conducted using electric and piezoelectric drills, but not when using mechanical, hand-operated drills. We interpret these anomalies as edema of neural tissue that resolved 2-3 wk postsurgery. This finding is especially of interest as electrophysiological recordings from compromised tissue may directly influence the integrity of collected data immediately following surgery.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Manoj Eradath
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Kacie Dougherty
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Britney M Morea
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Michael Harris
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Department of Psychology, Princeton University, Princeton, New Jersey
| |
Collapse
|
5
|
Wallen TE, Singer KE, Baucom MR, England LG, Schuster RM, Pritts TA, Goodman MD. Effects of antifibrinolytics on systemic and cerebral inflammation after traumatic brain injury. J Trauma Acute Care Surg 2022; 93:30-37. [PMID: 35319541 PMCID: PMC9232970 DOI: 10.1097/ta.0000000000003607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Administration of antifibrinolytic medications, including tranexamic acid (TXA), may reduce head injury-related mortality. The effect of these medications on post-traumatic brain injury (TBI) inflammatory response is unknown. The goal of this study was to investigate the role of available antifibrinolytic medications on both systemic and cerebral inflammation after TBI. METHODS An established murine weight drop model was used to induce a moderate TBI. Mice were administered 1, 10, or 100 mg/kg of TXA, 400 mg/kg of aminocaproic acid (Amicar, Hospira, Lake Forest, IL), 100 kIU/kg of aprotonin, or equivalent volume of normal saline (NS) 10 minutes after recovery. Mice were euthanized at 1, 6, or 24 hours. Serum and cerebral tissue were analyzed for neuron-specific enolase and inflammatory cytokines. Hippocampal histology was evaluated at 30 days for phosphorylated tau accumulation. RESULTS One hour after TBI, mice given TXA displayed decreased cerebral cytokine concentrations of tumor necrosis factor α (TNF-α) and, by 24 hours, displayed decreased concentrations of cerebral TNF-α, interleukin (IL)-6, and monocyte chemoattractant protein 1 compared with TBI-NS. However, serum concentrations of TNF-α and macrophage inflammatory protein 1α (MIP-1α) were significantly elevated from 1 to 24 hours in TBI-TXA groups compared with TBI-NS. The concentration of phosphorylated tau was significantly decreased in a dose-dependent manner in TBI-TXA groups compared with TBI-NS. By contrast, Amicar administration increased cerebral cytokine levels of IL-6 1 hour after TBI, with serum elevations noted in TNF-α, MIP-1α, and monocyte chemoattractant protein 1 at 24 hours compared with TBI-NS. Aprotonin administration increased serum TNF-α, IL-6, and MIP-1α from 1 to 24 hours without differences in cerebral cytokines compared with TBI-NS. CONCLUSION Tranexamic acid administration may provide acute neuroinflammatory protection in a dose-dependent manner. Amicar administration may be detrimental after TBI with increased cerebral and systemic inflammatory effects. Aprotonin administration may increase systemic inflammation without significant contributions to neuroinflammation. While no antifibrinolytic medication improved systemic inflammation, these data suggest that TXA may provide the most beneficial inflammatory modulation after TBI.
Collapse
Affiliation(s)
- Taylor E Wallen
- From the Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
6
|
Lin X, Chen L, Jullienne A, Zhang H, Salehi A, Hamer M, C. Holmes T, Obenaus A, Xu X. Longitudinal dynamics of microvascular recovery after acquired cortical injury. Acta Neuropathol Commun 2022; 10:59. [PMID: 35468870 PMCID: PMC9036719 DOI: 10.1186/s40478-022-01361-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Acquired brain injuries due to trauma damage the cortical vasculature, which in turn impairs blood flow to injured tissues. There are reports of vascular morphological recovery following traumatic brain injury, but the remodeling process has not been examined longitudinally in detail after injury in vivo. Understanding the dynamic processes that influence recovery is thus critically important. We evaluated the longitudinal and dynamic microvascular recovery and remodeling up to 2 months post injury using live brain miniscope and 2-photon microscopic imaging. The new imaging approaches captured dynamic morphological and functional recovery processes at high spatial and temporal resolution in vivo. Vessel painting documented the initial loss and subsequent temporal morphological vascular recovery at the injury site. Miniscopes were used to longitudinally image the temporal dynamics of vascular repair in vivo after brain injury in individual mice across each cohort. We observe near-immediate nascent growth of new vessels in and adjacent to the injury site that peaks between 14 and 21 days post injury. 2-photon microscopy confirms new vascular growth and further demonstrates differences between cortical layers after cortical injury: large vessels persist in deeper cortical layers (> 200 μm), while superficial layers exhibit a dense plexus of fine (and often non-perfused) vessels displaying regrowth. Functionally, blood flow increases mirror increasing vascular density. Filopodia development and endothelial sprouting is measurable within 3 days post injury that rapidly transforms regions devoid of vessels to dense vascular plexus in which new vessels become increasingly perfused. Within 7 days post injury, blood flow is observed in these nascent vessels. Behavioral analysis reveals improved vascular modulation after 9 days post injury, consistent with vascular regrowth. We conclude that morphological recovery events are closely linked to functional recovery of blood flow to the compromised tissues, which subsequently leads to improved behavioral outcomes.
Collapse
|
7
|
Dunn C, Sturdivant N, Venier S, Ali S, Wolchok J, Balachandran K. Blood-Brain Barrier Breakdown and Astrocyte Reactivity Evident in the Absence of Behavioral Changes after Repeated Traumatic Brain Injury. Neurotrauma Rep 2021; 2:399-410. [PMID: 34901939 PMCID: PMC8655814 DOI: 10.1089/neur.2021.0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repeated traumatic brain injuries (TBIs) cause debilitating effects. Without understanding the acute effects of repeated TBIs, treatment options to halt further degeneration and damage cannot be developed. This study sought to examine the acute effects of blood-brain barrier (BBB) dysfunction, edema, inflammation and behavioral changes after either a single or double TBI using a C57BL/6 mouse model. We examined the effects of one or two TBIs, of either a mild or moderate severity. Double injuries were spaced 7 days apart, and all analysis was performed 24 h post-injury. To examine edema and inflammation, protein levels of glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B, interleukin-6, and matrix metallopeptidase 9 (MMP9) were analyzed. Aquaporin-4 (AQP4) and zonula occludens-1 (ZO-1) were analyzed to observe BBB dysfunction. Ionized calcium-binding adapter molecule 1 (IBA1) was analyzed to observe microglial activation. Rotarod, beam walking, and grip strength tests were used to measure changes in physical behavior post-injury. A sample size of ≥5 was used for all analysis. Double injuries led to an increase in BBB breakdown, as indicated by altered MMP-9, AQP4, and ZO-1 protein expression. Single injuries showed an increase in microglial activation, astrocyte activation, and BBB breakdown. Behavioral tasks showed no significant differences between injured and control groups. Based on our findings, we suggest that behavioral studies should not be used as the sole clinical indicator on brain tissue recovery. Analysis of markers such as IBA1, GFAP, MMP-9, AQP4, and ZO-1 provide valuable insight on pathophysiological response to injury.
Collapse
Affiliation(s)
- Celeste Dunn
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nasya Sturdivant
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara Venier
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Syed Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, NCTR/FDA, Jefferson, Arkansas, USA
| | - Jeffery Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
8
|
Karmakar RS, Wang JC, Huang YT, Lin KJ, Wei KC, Hsu YH, Huang YC, Lu YJ. Real-Time Intraoperative Pressure Monitoring to Avoid Surgically Induced Localized Brain Injury Using a Miniaturized Piezoresistive Pressure Sensor. ACS OMEGA 2020; 5:29342-29350. [PMID: 33225165 PMCID: PMC7676343 DOI: 10.1021/acsomega.0c04142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 05/05/2023]
Abstract
Neurosurgical procedures often cause damage to the brain tissue at the periphery from surgical manipulations. Especially during retraction, a large amount of pressure could be applied on the brain surface, which can damage it, leading to brain herniation, which can be fatal for patients. To resolve this issue, we have developed a pressure sensor that can be used to monitor the applied pressure during surgery for intraoperative care. This device was tested on a rodent model to create a superficial surgically induced damage profile for three different applied pressures (30, 50, and 70 mmHg) and compared to a standard intracranial pressure monitoring system. Magnetic resonance imaging has been performed after surgical procedures to detect the herniation caused by applied pressure. To evaluate the damage to brain cells and tissue rupture, histological analysis was performed using hematoxylin and eosin staining. A scoring system was developed to understand the severity of the surgically induced brain injury, which will help neurosurgeons to limit the pressure to an optimum point without causing damage.
Collapse
Affiliation(s)
- Rajat Subhra Karmakar
- Department of Electronic
Engineering, Chang Gung University, Guishan Dist., Taoyuan 33302, Taiwan
| | - Jer-Chyi Wang
- Department of Electronic
Engineering, Chang Gung University, Guishan Dist., Taoyuan 33302, Taiwan
- Biosensor Group,
Biomedical Engineering Center, Chang Gung
University, Guishan District, Taoyuan 33302, Taiwan
- Department
of Electronic Engineering, Ming Chi University
of Technology, Taishan District, New Taipei City 24301, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan 33305, Taiwan
| | - Yu-Ting Huang
- Department of Electronic
Engineering, Chang Gung University, Guishan Dist., Taoyuan 33302, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan 33305, Taiwan
- Department of Medical Imaging and Radiological
Sciences, Chang Gung University, Guishan District, Taoyuan 33302, Taiwan
| | - Kuo-Chen Wei
- School of Medicine, Chang Gung University, Guishan District, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan 33305, Taiwan
| | - Yung-Hsin Hsu
- Department of Neurosurgery, Asia University Hospital, Wufeng District, Taichung 41354, Taiwan
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan 33305, Taiwan
| | - Yu-Jen Lu
- School of Traditional Chinese Medicine, Chang Gung University, Guishan District, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan 33305, Taiwan
| |
Collapse
|
9
|
The Activation of Phosphatidylserine/CD36/TGF- β1 Pathway prior to Surgical Brain Injury Attenuates Neuroinflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4921562. [PMID: 32849998 PMCID: PMC7441426 DOI: 10.1155/2020/4921562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation plays an important pathological role in experimental surgical brain injury (SBI). Apoptotic associated with phosphatidylserine (PS) externalization promotes anti-inflammatory mediator TGF-β1 release. In the present study, we investigated the anti-neuroinflammation effect of PS liposome or isoflurane pretreatment via PS/CD36/TGF-β1 signaling in a rat model of SBI. A total of 120 male Sprague-Dawley rats (weighing 280-330 gms) were used. SBI was induced by partial right frontal lobe corticotomy. Intranasal PS liposome or isoflurane inhalation was administered prior to SBI induction. CD36 small interfering RNA (siRNA) was administered intracerebroventricularly. Recombinant Annexin V protein (rAnnexin V) was delivered intranasally. Post-SBI assessments included neurological tests, brain water content, Western blot, and immunohistochemistry. Endogenous CD36 protein levels but not TGF-β1 was significantly increased within peri-resection brain tissues over 72 h after SBI. SBI rats were associated with increased brain water content surrounding corticotomy and neurological deficits. PS liposome pretreatment significantly reduced brain water content and improved some neurological deficits at 24 hours and 72 hours after SBI. PS liposome increased CD36 and TGF-β1 protein levels, but decreased IL-1β and TNFα protein levels in peri-resection brain tissues at 24 hours after SBI. CD36 siRNA or rAnnexin V partially countered the protective effect of PS liposome. Isoflurane pretreatment produced similar antineuroinflammation and neurological benefits in SBI rats partially by upregulating CD36/Lyn/TGF-β1 signaling. Collectively, our findings suggest that the activation of PS/CD36/TGF-β1 pathway by PS liposome or isoflurane prior to SBI could attenuate neuroinflammation and improve neurological outcomes in rats. PS liposome or isoflurane pretreatment may serve as an effective preventive strategy to minimize the brain injury caused by neurosurgical procedures in patients.
Collapse
|
10
|
Ramnath RD, Butler MJ, Newman G, Desideri S, Russell A, Lay AC, Neal CR, Qiu Y, Fawaz S, Onions KL, Gamez M, Crompton M, Michie C, Finch N, Coward RJ, Welsh GI, Foster RR, Satchell SC. Blocking matrix metalloproteinase-mediated syndecan-4 shedding restores the endothelial glycocalyx and glomerular filtration barrier function in early diabetic kidney disease. Kidney Int 2020; 97:951-965. [PMID: 32037077 PMCID: PMC7184681 DOI: 10.1016/j.kint.2019.09.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
The endothelial glycocalyx is a key component of the glomerular filtration barrier. We have shown that matrix metalloproteinase (MMP)-mediated syndecan 4 shedding is a mechanism of glomerular endothelial glycocalyx damage in vitro, resulting in increased albumin permeability. Here we sought to determine whether this mechanism is important in early diabetic kidney disease, by studying streptozotocin-induced type 1 diabetes in DBA2/J mice. Diabetic mice were albuminuric, had increased glomerular albumin permeability and endothelial glycocalyx damage. Syndecan 4 mRNA expression was found to be upregulated in isolated glomeruli and in flow cytometry-sorted glomerular endothelial cells. In contrast, glomerular endothelial luminal surface syndecan 4 and Marasmium oreades agglutinin lectin labelling measurements were reduced in the diabetic mice. Similarly, syndecan 4 protein expression was significantly decreased in isolated glomeruli but increased in plasma and urine, suggesting syndecan 4 shedding. Mmp-2, 9 and 14 mRNA expression were upregulated in isolated glomeruli, suggesting a possible mechanism of glycocalyx damage and albuminuria. We therefore characterised in detail the activity of MMP-2 and 9 and found significant increases in kidney cortex, plasma and urine. Treatment with MMP-2/9 inhibitor I for 21 days, started six weeks after diabetes induction, restored endothelial glycocalyx depth and coverage and attenuated diabetes-induced albuminuria and reduced glomerular albumin permeability. MMP inhibitor treatment significantly attenuated glomerular endothelial and plasma syndecan 4 shedding and inhibited plasma MMP activity. Thus, our studies confirm the importance of MMPs in endothelial glycocalyx damage and albuminuria in early diabetes and demonstrate that this pathway is amenable to therapeutic intervention. Hence, treatments targeted at glycocalyx protection by MMP inhibition may be of benefit in diabetic kidney disease.
Collapse
Affiliation(s)
- Raina D Ramnath
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Matthew J Butler
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Georgina Newman
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sara Desideri
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Amy Russell
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Abigail C Lay
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Chris R Neal
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Yan Qiu
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sarah Fawaz
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karen L Onions
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Monica Gamez
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Michael Crompton
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Chris Michie
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Natalie Finch
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard J Coward
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gavin I Welsh
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rebecca R Foster
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Simon C Satchell
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Travis ZD, Sherchan P, Hayes WK, Zhang JH. Surgically-induced brain injury: where are we now? Chin Neurosurg J 2019; 5:29. [PMID: 32922928 PMCID: PMC7398187 DOI: 10.1186/s41016-019-0181-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Neurosurgical procedures cause inevitable brain damage from the multitude of surgical manipulations utilized. Incisions, retraction, thermal damage from electrocautery, and intraoperative hemorrhage cause immediate and long-term brain injuries that are directly linked to neurosurgical operations, and these types of injuries, collectively, have been termed surgical brain injury (SBI). For the past decade, a model developed to study the underlying brain pathologies resulting from SBI has provided insight on cellular mechanisms and potential therapeutic targets. This model, as seen in a rat, mouse, and rabbit, mimics a neurosurgical operation and causes commonly encountered post-operative complications such as brain edema, neuroinflammation, and hemorrhage. In this review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, the importance of applying therapeutics before neurosurgical procedures (i.e., preconditioning), and the new direction of applying venom-derived proteins to attenuate SBI.
Collapse
Affiliation(s)
- Zachary D Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - William K Hayes
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| |
Collapse
|
12
|
Enhanced Expression of PD-L1 on Microglia After Surgical Brain Injury Exerts Self-Protection from Inflammation and Promotes Neurological Repair. Neurochem Res 2019; 44:2470-2481. [DOI: 10.1007/s11064-019-02864-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
|
13
|
Trivedi A, Noble-Haeusslein LJ, Levine JM, Santucci AD, Reeves TM, Phillips LL. Matrix metalloproteinase signals following neurotrauma are right on cue. Cell Mol Life Sci 2019; 76:3141-3156. [PMID: 31168660 PMCID: PMC11105352 DOI: 10.1007/s00018-019-03176-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Neurotrauma, a term referencing both traumatic brain and spinal cord injuries, is unique to neurodegeneration in that onset is clearly defined. From the perspective of matrix metalloproteinases (MMPs), there is opportunity to define their temporal participation in injury and recovery beginning at the level of the synapse. Here we examine the diverse roles of MMPs in the context of targeted insults (optic nerve lesion and hippocampal and olfactory bulb deafferentation), and clinically relevant focal models of traumatic brain and spinal cord injuries. Time-specific MMP postinjury signaling is critical to synaptic recovery after focal axonal injuries; members of the MMP family exhibit a signature temporal profile corresponding to axonal degeneration and regrowth, where they direct postinjury reorganization and synaptic stabilization. In both traumatic brain and spinal cord injuries, MMPs mediate early secondary pathogenesis including disruption of the blood-brain barrier, creating an environment that may be hostile to recovery. They are also critical players in wound healing including angiogenesis and the formation of an inhibitory glial scar. Experimental strategies to reduce their activity in the acute phase result in long-term neurological recovery after neurotrauma and have led to the first clinical trial in spinal cord injured pet dogs.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Psychology, College of Liberal Arts, and Neurology, the Dell Medical School, University of Texas, Austin, TX, 78712, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alison D Santucci
- Department of Neuroscience, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
14
|
Lorente L, Martín MM, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, Borreguero-León JM, González-Rivero AF, Orbe J, Rodríguez JA, Páramo JA. Persistently high circulating tissue inhibitor of matrix metalloproteinase-1 levels in non-survivor brain trauma injury patients. J Crit Care 2019; 51:117-121. [PMID: 30802757 DOI: 10.1016/j.jcrc.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Previously, higher circulating levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor matrix metalloproteinases (TIMP)-1 were reported in the first hours after TBI in blood samples from patients with poor prognosis. Thus, the objectives of this study were to determine whether MMP-9 and TIMP-1 levels during the first week of a severe TBI could be used as biomarker predictive of mortality. METHODS We included patients with severe TBI (defined as Glasgow Coma Scale lower than 9), and with Injury Severity Score in non-cranial aspects lower than 9. We determined serum concentrations of MMP-9 and TIMP-1 at days 1, 4 and 8 of TBI. RESULTS TIMP-1 concentrations at days 1 (p < .001), 4 (p = .001), and 8 (p = .01) of TBI were higher in non-surviving (n = 34) than in surviving (n = 90) patients. ROC curve analyses showed an area under curve of TIMP-1 concentrations at days 1, 4, and 8 of TBI to predict 30-day mortality of 78% (p < .001), 76% (p < .001) and 71% (p = .02) respectively. CONCLUSIONS The most relevant new findings of our study were that TIMP-1 levels during the first week of a severe TBI were higher in non-surviving than in surviving patients and that could be used as biomarker predictive of mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife 38010, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, Valencia 46004, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Juan M Borreguero-León
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| |
Collapse
|
15
|
Gao W, Li F, Liu L, Xu X, Zhang B, Wu Y, Yin D, Zhou S, Sun D, Huang Y, Zhang J. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Exp Neurol 2018; 307:99-108. [PMID: 29883579 DOI: 10.1016/j.expneurol.2018.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) tends to cause disruption of the blood-brain barrier (BBB). Previous studies have shown that intravenously or intracerebroventricularly infused human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) can home to injury sites and improve outcomes in mice subjected to experimental TBI. Several reports have demonstrated that these cells did not incorporate directly into newly formed vasculature but instead stimulated the proliferation and migration of tissue-resident endothelial cells (ECs) via paracrine mechanisms. In the present study, exosomes, which range from 30 to 150 nm in diameter, were isolated from ECFC-conditioned medium. The exosomes were labeled with PKH67 ex vivo, and we observed that they were taken up by ECs with high efficiency after 12 h of incubation. Pretreatment with ECFC-derived exosomes promoted the migration of ECs subjected to scratch injury, and incubating ECs exposed to hypoxia with ECFC-derived exosomes decreased PTEN expression, stimulated AKT phosphorylation and increased tight junction (TJ) protein expression in the cells. Furthermore, in vivo delivery of ECFC-derived exosomes into TBI mice also inhibited PTEN expression and increased AKT expression, changes accompanied by reductions in Evans blue (EB) dye extravasation, brain edema and TJ degradation. These data demonstrated that ECFC-derived exosomes have beneficial effects on BBB integrity in mice with TBI.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, China
| | - Fei Li
- Department of Neurosurgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, PR China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Xin Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Baoliang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Yingang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Dongpei Yin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Shuai Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Dongdong Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China
| | - Ying Huang
- Department of Neurosurgery, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, PR China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, PR China; Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin City 300052, PR China.
| |
Collapse
|
16
|
Akyol O, Sherchan P, Yilmaz G, Reis C, Ho WM, Wang Y, Huang L, Solaroglu I, Zhang JH. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Exp Neurol 2018; 307:82-89. [PMID: 29883578 DOI: 10.1016/j.expneurol.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical brain injury (SBI) which occurs due to the inadvertent injury inflicted to surrounding brain tissue during neurosurgical procedures can potentiate blood brain barrier (BBB) permeability, brain edema and neurological deficits. This study investigated the role of neurotrophin 3 (NT-3) and tropomyosin related kinase receptor C (TrkC) against brain edema and neurological deficits in a rat SBI model. METHODS SBI was induced in male Sprague Dawley rats by partial right frontal lobe resection. Temporal expression of endogenous NT-3 and TrkC was evaluated at 6, 12, 24 and 72 h after SBI. SBI rats received recombinant NT-3 which was directly applied to the brain surgical injury site using gelfoam. Brain edema and neurological function was evaluated at 24 and 72 h after SBI. Small interfering RNA (siRNA) for TrkC and Rap1 was administered via intracerebroventricular injection 24 h before SBI. BBB permeability assay and western blot was performed at 24 h after SBI. RESULTS Endogenous NT-3 was decreased and TrkC expression increased after SBI. Topical administration of recombinant NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. Recombinant NT-3 administration increased the expression of phosphorylated Rap1 and Erk5. The protective effect of NT-3 was reversed with TrkC siRNA but not Rap1 siRNA. CONCLUSIONS Topical application of NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. The protective effect of NT-3 was possibly mediated via TrkC dependent activation of Erk5.
Collapse
Affiliation(s)
- Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gokce Yilmaz
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Wingi Man Ho
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, CA 92354, USA
| | - Ihsan Solaroglu
- Koç University, School of Medicine, Department of Neurosurgery, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, CA 92354, USA; Department of Anesthesiology, Loma Linda University, CA 92354, USA.
| |
Collapse
|
17
|
McBride DW, Nowrangi D, Kaur H, Wu G, Huang L, Lekic T, Tang J, Zhang JH. A composite neurobehavioral test to evaluate acute functional deficits after cerebellar haemorrhage in rats. J Cereb Blood Flow Metab 2018; 38:433-446. [PMID: 28318366 PMCID: PMC5851133 DOI: 10.1177/0271678x17696509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cerebellar haemorrhage accounts for 5-10% of all intracerebral haemorrhages and leads to severe, long-lasting functional deficits. Currently, there is limited research on this stroke subtype, which may be due to the lack of a suitable composite neuroscoring system specific for cerebellar injury in rodents. The purpose of this study is to develop a comprehensive composite neuroscore test for cerebellar injury using a rat model of cerebellar haemorrhage. Sixty male Sprague-Dawley rats were subjected to either sham surgery or cerebellar haemorrhage. Twenty-four hours post-injury, neurological behaviour was evaluated using 17 cost-effective and easy-to-perform tests, and a composite neuroscore was developed. The composite neuroscore was then used to assess functional recovery over seven days after cerebellar haemorrhage. Differences in the composite neuroscore deficits for the mild and moderate cerebellar haemorrhage models were observed for up to five days post-ictus. Until now, a composite neuroscore for cerebellar injury was not available for rodent studies. Herein, using mild and moderate cerebellar haemorrhage rat models a composite neuroscore for cerebellar injury was developed and used to assess functional deficits after cerebellar haemorrhage. This composite neuroscore may also be useful for other cerebellar injury models.
Collapse
Affiliation(s)
- Devin W McBride
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Derek Nowrangi
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Harpreet Kaur
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Guangyong Wu
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Huang
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA.,2 Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Tim Lekic
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jiping Tang
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - John H Zhang
- 1 Departments of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA.,2 Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, USA.,3 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
18
|
Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH. Multiple mechanisms underlying neuroprotection by secretory phospholipase A2 preconditioning in a surgically induced brain injury rat model. Exp Neurol 2018; 300:30-40. [PMID: 29074417 PMCID: PMC5745263 DOI: 10.1016/j.expneurol.2017.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intra-operative bleeding, post-operative brain edema and neuroinflammation are major complications in patients with surgical brain injury (SBI). Phospholipase A2 (PLA2) is the upstream enzyme which initiates the PLA2, 5-lipoxygenase (5-LOX) and leukotriene B4 (LTB4) inflammatory pathway. We hypothesized PLA2preconditioning (PPC) prior to SBI can activate endogenous anti-inflammatory responses to protect against SBI. This study evaluated if PPC can ameliorate neurosurgical complications and elucidated PPC-mediated possible protective mechanisms in a rat SBI model. METHODS Total 105 adult male Sprague Dawley rats were used for this study. SBI was induced by partial resection of the right frontal lobe. PLA2 or 0.9% NaCl was injected via rats' tail vein for 3 consecutive days prior to SBI. For mechanism study, a selective PLA2 inhibitor, Manoalide and 5-LOX inhibitor, Zileuton were injected intravenously with PPC to elucidate the role of PLA2 and 5-LOX in PPC-mediated anti-inflammatory effects. Brain water content (BWC) and lung water content, neurological tests, ELISA, western blot, immunohistochemistry, white blood cells (WBC) count, and spectrophotometric assay for intra-operative hemorrhage volume were evaluated. RESULTS First, PPC reduced brain water content, intra-operative bleeding, and improved neurological function after SBI. Second, PPC decreased 5-LOX expression and brain leukocyte infiltration, while increasing glial fibrillary acidic protein (GFAP) expression in the peri-resection brain tissue after SBI. Third, PPC induced peripheral inflammation represented by mild pulmonary inflammation and increased peripheral blood WBC count and LTB4 level. Lastly, PPC increased blood glucose concentration and glucocorticoid levels after SBI. In addition, PPC mediated above-mentioned changes were partially reversed by administration of PLA2 inhibitor, Manoalide and 5-LOX inhibitor, Zileuton. CONCLUSIONS PPC conferred neuroprotection against SBI via multi-target involvement induced anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Physiology, Jinan University School of Medicine, Guangzhou, Guangdong Province, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Lei Huang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Onat Akyol
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Devin W. McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - John H. Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| |
Collapse
|
19
|
Naja sputatrix Venom Preconditioning Attenuates Neuroinflammation in a Rat Model of Surgical Brain Injury via PLA2/5-LOX/LTB4 Cascade Activation. Sci Rep 2017; 7:5466. [PMID: 28710425 PMCID: PMC5511148 DOI: 10.1038/s41598-017-05770-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 01/30/2023] Open
Abstract
Inflammatory preconditioning is a mechanism in which exposure to small doses of inflammatory stimuli prepares the body against future massive insult by activating endogenous protective responses. Phospholipase A2/5-lipoxygenase/leukotriene-B4 (PLA2/5-LOX/LTB4) axis is an important inflammatory signaling pathway. Naja sputatrix (Malayan spitting cobra) venom contains 15% secretory PLA2 of its dry weight. We investigated if Naja sputatrix venom preconditioning (VPC) reduces surgical brain injury (SBI)-induced neuroinflammation via activating PLA2/5-LOX/LTB4 cascade using a partial frontal lobe resection SBI rat model. Naja sputatrix venom sublethal dose was injected subcutaneously for 3 consecutive days prior to SBI. We observed that VPC reduced brain edema and improved neurological function 24 h and 72 h after SBI. The expression of pro-inflammatory mediators in peri-resection brain tissue was reduced with VPC. Administration of Manoalide, a PLA2 inhibitor or Zileuton, a 5-LOX inhibitor with VPC reversed the protective effects of VPC against neuroinflammation. The current VPC regime induced local skin inflammatory reaction limited to subcutaneous injection site and elicited no other toxic effects. Our findings suggest that VPC reduces neuroinflammation and improves outcomes after SBI by activating PLA2/5-LOX/LTB4 cascade. VPC may be beneficial to reduce post-operative neuroinflammatory complications after brain surgeries.
Collapse
|
20
|
Recombinant Slit2 Reduces Surgical Brain Injury Induced Blood Brain Barrier Disruption via Robo4 Dependent Rac1 Activation in a Rodent Model. Sci Rep 2017; 7:746. [PMID: 28389649 PMCID: PMC5429690 DOI: 10.1038/s41598-017-00827-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Brain tissue surrounding surgical resection site can be injured inadvertently due to procedures such as incision, retractor stretch, and electrocauterization when performing neurosurgical procedures, which is termed as surgical brain injury (SBI). Blood brain barrier (BBB) disruption due to SBI can exacerbate brain edema in the post-operative period. Previous studies showed that Slit2 exhibited vascular anti-permeability effects outside the brain. However, BBB protective effects of Slit2 following SBI has not been evaluated. The objective of this study was to evaluate whether recombinant Slit2 via its receptor roundabout4 (Robo4) and the adaptor protein, Paxillin were involved in reducing BBB permeability in SBI rat model. Our results showed that endogenous Slit2 increased in the surrounding peri-resection brain tissue post-SBI, Robo4 remained unchanged and Paxillin showed a decreasing trend. Recombinant Slit2 administered 1 h before injury increased BBB junction proteins, reduced BBB permeability, and decreased neurodeficits 24 h post-SBI. Furthermore, recombinant Slit2 administration increased Rac1 activity which was reversed by Robo4 and Paxillin siRNA. Our findings suggest that recombinant Slit2 reduced SBI-induced BBB permeability, possibly by stabilizing BBB tight junction via Robo4 mediated Rac1 activation. Slit2 may be beneficial for BBB protection during elective neurosurgeries.
Collapse
|
21
|
Kim CH, McBride DW, Sherchan P, Person CE, Gren ECK, Kelln W, Lekic T, Hayes WK, Tang J, Zhang JH. Crotalus helleri venom preconditioning reduces postoperative cerebral edema and improves neurological outcomes after surgical brain injury. Neurobiol Dis 2017; 107:66-72. [PMID: 28286182 DOI: 10.1016/j.nbd.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Postoperative cerebral edema is a devastating complication in neurosurgical patients. Loss of blood-brain barrier integrity has been shown to lead to the development of brain edema following neurosurgical procedures. The aim of this study was to evaluate preconditioning with Crotalus helleri venom (Cv-PC) as a potential preventive therapy for reducing postoperative brain edema in the rodent SBI model. C. helleri venom is known to contain phospholipase A2 (PLA2), an enzyme upstream to cyclooxygenase-2 (COX-2) in the inflammatory cascade, acts to increase the production of inflammatory mediators, such as prostaglandins. We hypothesize that Cv-PC will downregulate the response of the COX-2 pathway to injury, thereby reducing the inflammatory response and the development of brain edema after SBI. MATERIALS AND METHODS 75 male Sprague Dawley rats (280-330g) were divided to the following groups-naïve+vehicle, naïve+Cv-PC, sham, vehicle, Cv-PC, Cv-PC+NS398 (COX-2 inhibitor). Vehicle preconditioned and Cv-PC animals received either three daily subcutaneous doses of saline or C. helleri venom at 72h, 48h, and 24h prior to surgery. In Cv-PC+NS398 animals, NS398 was administered intraperitoneally 1h prior to each Cv-PC injection. Sham-operated animals received craniotomy only, whereas SBI animals received a partial right frontal lobectomy. Neurological testing and brain water content were assessed at 24h and 72h after SBI; COX-2 and PGE2 expression was assessed at 24h postoperatively by Western blot and immunohistochemistry, respectively. RESULTS At 24h after SBI, the vehicle-treated animals were observed to have increased brain water content (83.1±0.2%) compared to that of sham animals (80.2±0.1%). The brain water content of vehicle-treated animals at 72h post-SBI was elevated at 83.3±0.2%. Cv-PC-treated animals with doses of 10% LD50 had significantly reduced brain water content of 81.92±0.7% and 81.82±0.3% at 24h and 72h, respectively, after SBI compared to that of vehicle-treated animals, while Cv-PC with 5% LD50 doses showed brain water content that trended lower but did not reach statistical significance. At 24h and 72h post-SBI, Cv-PC-treated animals had significantly higher neurological score than vehicle-treated animals. The COX-2 over-expression characterized in SBI was attenuated in Cv-PC-treated animals; NS398 reversed the protective effect of Cv-PC on COX-2 expression. Cv-PC tempered the over-expression of the inflammatory marker PGE2. CONCLUSION Our findings indicate that Cv-PC may provide a promising therapy for reducing postoperative edema and improving neurological function after neurosurgical procedures.
Collapse
Affiliation(s)
- Cherine H Kim
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carl E Person
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Eric C K Gren
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Wayne Kelln
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Tim Lekic
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - William K Hayes
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
22
|
Rangel-Castilla L, Russin JJ, Spetzler RF. Surgical management of skull base tumors. Rep Pract Oncol Radiother 2016; 21:325-35. [PMID: 27330418 PMCID: PMC4899518 DOI: 10.1016/j.rpor.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/21/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022] Open
Abstract
AIM To present a review of the contemporary surgical management of skull base tumors. BACKGROUND Over the last two decades, the treatment of skull base tumors has evolved from observation, to partial resection combined with other therapy modalities, to gross total resection and no adjuvant treatment with good surgical results and excellent clinical outcomes. MATERIALS AND METHODS The literature review of current surgical strategies and management of skull base tumors was performed and complemented with the experience of Barrow Neurological Institute. RESULTS Skull base tumors include meningiomas, pituitary tumors, sellar/parasellar tumors, vestibular and trigeminal schwannomas, esthesioneuroblastomas, chordomas, chondrosarcomas, and metastases. Surgical approaches include the modified orbitozygomatic, pterional, middle fossa, retrosigmoid, far lateral craniotomy, midline suboccipital craniotomy, and a combination of these approaches. The selection of an appropriate surgical approach depends on the characteristics of the patient and the tumor, as well as the experience of the neurosurgeon. CONCLUSION Modern microsurgical techniques, diagnostic imaging, intraoperative neuronavigation, and endoscopic technology have remarkably changed the concept of skull base surgery. These refinements have extended the boundaries of tumor resection with minimal morbidity.
Collapse
Affiliation(s)
| | | | - Robert F. Spetzler
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
23
|
Hamard L, Ratel D, Selek L, Berger F, van der Sanden B, Wion D. The brain tissue response to surgical injury and its possible contribution to glioma recurrence. J Neurooncol 2016; 128:1-8. [PMID: 26961772 DOI: 10.1007/s11060-016-2096-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
Surgery is the first line therapy for glioma. However, glioma recurs in 90 % of the patients in the resection margin. The impact of surgical brain injury (SBI) on glioma recurrence is largely overlooked. Herein, we review some of the mechanisms involved in tissue repair that may impact glioma recurrence at the resection margin. Many processes or molecules involved in tissue repair after brain injury are also critical for glioma growth. They include a wide array of secreted growth factors, cytokines and transcription factors including NFКB and STAT3 which in turn activate proliferative and anti-apoptotic genes and processes such as angiogenesis and inflammation. Because some residual glioma cells always remain in the tumor resection margin, there are now compelling arguments to suggest that some aspects of the brain tissue response to SBI can also participate to glioma recurrence at the resection margin. Brain tissue response to SBI recruits angiogenesis and inflammation that precede and then follow tumor recurrence at the resection margin. The healing response to SBI is double edged, as inflammation is involved in regeneration and healing, and has both pro- and anti-tumorigenic functions. A promising therapeutic approach is to normalize and re-educate the molecular and cellular responses at the resection margin to promote anti-tumorigenic processes involved in healing while inhibiting pro-tumorigenic activities. Manipulation of the inflammatory response to SBI to prevent local recurrence could also enhance the efficacy of other therapies such as immunotherapy. However, our current knowledge is far from sufficient to achieve this goal. Acknowledging, understanding and manipulating the double-edged role played by SBI in glioma recurrence is surely challenging, but it cannot be longer delayed.
Collapse
Affiliation(s)
- Lauriane Hamard
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France
| | | | - Laurent Selek
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France.,Clinique de neurochirurgie, CHU de Grenoble, Grenoble, France.,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France
| | - François Berger
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France.,CHU de Grenoble, Grenoble, France.,Université Joseph Fourier, B.P. 217, 38043, Grenoble cedex 09, France.,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France.,Université Grenoble Alpes, 38043, Grenoble cedex 09, France
| | - Boudewijn van der Sanden
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France.,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France
| | - Didier Wion
- INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054, Grenoble cedex, France. .,INSERM UMR 1205, bâtiment modulaire 40-23, CEA, 17 rue des Martyrs, 38054, Grenoble, France.
| |
Collapse
|
24
|
Komanapalli ES, Sherchan P, Rolland W, Khatibi N, Martin RD, Applegate RL, Tang J, Zhang JH. Epsilon Aminocaproic Acid Pretreatment Provides Neuroprotection Following Surgically Induced Brain Injury in a Rat Model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:311-315. [PMID: 26463967 DOI: 10.1007/978-3-319-18497-5_54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Neurosurgical procedures can damage viable brain tissue unintentionally by a wide range of mechanisms. This surgically induced brain injury (SBI) can be a result of direct incision, electrocauterization, or tissue retraction. Plasmin, a serine protease that dissolves fibrin blood clots, has been shown to enhance cerebral edema and hemorrhage accumulation in the brain through disruption of the blood brain barrier. Epsilon aminocaproic acid (EAA), a recognized antifibrinolytic lysine analogue, can reduce the levels of active plasmin and, in doing so, potentially can preserve the neurovascular unit of the brain. We investigated the role of EAA as a pretreatment neuroprotective modality in a SBI rat model, hypothesizing that EAA therapy would protect brain tissue integrity, translating into preserved neurobehavioral function. Male Sprague-Dawley rats were randomly assigned to one of four groups: sham (n = 7), SBI (n = 7), SBI with low-dose EAA, 150 mg/kg (n = 7), and SBI with high-dose EAA, 450 mg/kg (n = 7). SBI was induced by partial right frontal lobe resection through a frontal craniotomy. Postoperative assessment at 24 h included neurobehavioral testing and measurement of brain water content. Results at 24 h showed both low- and high-dose EAA reduced brain water content and improved neurobehavioral function compared with the SBI groups. This suggests that EAA may be a useful pretherapeutic modality for SBI. Further studies are needed to clarify optimal therapeutic dosing and to identify mechanisms of neuroprotection in rat SBI models.
Collapse
Affiliation(s)
- Esther S Komanapalli
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - William Rolland
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nikan Khatibi
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Robert D Martin
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Richard L Applegate
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- Departments of Anesthesiology, Physiology and Neurosurgery, Loma Linda University School of Medicine, 11234 Anderson Street, Room 2562B, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
25
|
Pakkianathan C, Benggon M, Khatibi NH, Chen H, Marcantonio S, Applegate R, Tang J, Zhang J. Propofol Pretreatment Fails to Provide Neuroprotection Following a Surgically Induced Brain Injury Rat Model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:323-7. [PMID: 26463969 DOI: 10.1007/978-3-319-18497-5_56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neurosurgical procedures are associated with unintentional damage to the brain during surgery, known as surgically induced brain injuries (SBI), which have been implicated in orchestrating structural and neurobehavioral deterioration. Propofol, an established hypnotic anesthetic agent, has been shown to ameliorate neuronal injury when given after injury in a number of experimental brain studies. We tested the hypothesis that propofol pretreatment confers neuroprotection against SBI and will reduce cerebral edema formation and neurobehavioral deficits in our rat population. Sprague-Dawley rats were treated with low- and high-dose propofol 30 min before SBI. At 24 h post injury, brain water content and neurobehavioral assessment was conducted based on previously established models. In vehicle-treated rats, SBI resulted in significant cerebral edema and higher neurological deficit scores compared with sham-operated rats. Low- or high-dose propofol therapy neither reduced cerebral edema nor improved neurologic function. The results suggest that propofol pretreatment fails to provide neuroprotection in SBI rats. However, it is possible that a SBI model with less magnitude of injury or that propofol re-dosing, given the short-acting pharmacokinetic property of propofol, may be needed to provide definitive conclusions.
Collapse
Affiliation(s)
- Colleen Pakkianathan
- Department of Anesthesiology, Loma Linda School of Medicine, Room 2532 LLUMC, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Michael Benggon
- Department of Anesthesiology, Loma Linda School of Medicine, Room 2532 LLUMC, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Nikan H Khatibi
- Department of Anesthesiology, Loma Linda School of Medicine, Room 2532 LLUMC, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Hank Chen
- Division of Physiology, Department of Basic Science, Loma Linda School of Medicine, Loma Linda, CA, USA
| | - Suzzanne Marcantonio
- Department of Anesthesiology, Loma Linda School of Medicine, Room 2532 LLUMC, 11234 Anderson Street, Loma Linda, CA, 92354, USA.,Division of Physiology, Department of Basic Science, Loma Linda School of Medicine, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda School of Medicine, Room 2532 LLUMC, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
| | - Jiping Tang
- Division of Physiology, Department of Basic Science, Loma Linda School of Medicine, Loma Linda, CA, USA
| | - John Zhang
- Department of Anesthesiology, Loma Linda School of Medicine, Room 2532 LLUMC, 11234 Anderson Street, Loma Linda, CA, 92354, USA.,Division of Physiology, Department of Basic Science, Loma Linda School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
26
|
Valproic Acid Pretreatment Reduces Brain Edema in a Rat Model of Surgical Brain Injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:305-10. [PMID: 26463966 DOI: 10.1007/978-3-319-18497-5_53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgically induced brain injury (SBI) results in brain edema and neurological decline. Valproic acid (VA) has been shown to be neuroprotective in several experimental brain diseases. In this study, we investigated the pretreatment effect of VA in a rat model of SBI. A total of 57 male Sprague-Dawley rats were use in four groups: sham, SBI + vehicle, SBI + low dose (100 mg/kg) VA, and SBI + high dose (300 mg/kg) VA. SBI was induced by partially resecting right frontal lobes. Shams underwent identical surgical procedures without brain resection. VA or vehicle was administered subcutaneously 30 min prior to SBI. At 24 and 72 h post SBI, neurobehavior and brain water content were assessed as well as matrix metalloproteinases (MMPs) activities. There was significantly higher brain water content within the right frontal lobe in SBI rats than in shams. Without neurobehavioral improvements, the low-dose but not high-dose VA significantly reduced brain edema at 24 h post SBI. The protection tends to persist to 72 h post SBI. At 24 h post SBI, low-dose VA did not significantly reduce the elevated MMP-9 activity associated with SBI. In conclusion, VA pretreatment attenuated brain edema at 24 h after SBI but lacked MMP inhibition. The single dose VA was not associated with neurobehavioral benefits.
Collapse
|
27
|
Sherchan P, Huang L, Wang Y, Akyol O, Tang J, Zhang JH. Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiol Dis 2016; 85:164-173. [PMID: 26550694 PMCID: PMC4688150 DOI: 10.1016/j.nbd.2015.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral immune cell infiltration to the brain tissue at the perisurgical site can promote neuroinflammation after surgical brain injury (SBI). Slit2, an extracellular matrix protein, has been reported to reduce leukocyte migration. This study evaluated the effect of recombinant Slit2 and the role of its receptor roundabout1 (Robo1) and its downstream mediator Slit-Robo GTPase activating protein 1 (srGAP1)-Cdc42 on peripheral immune cell infiltration after SBI in a rat model. METHODS One hundred and fifty-three adult male Sprague-Dawley rats (280-350 g) were used. Partial resection of right frontal lobe was performed to induce SBI. Slit2 siRNA was administered by intracerebroventricular injection 24h before SBI. Recombinant Slit2 was injected intraperitoneally 1h before SBI. Recombinant Robo1 used as a decoy receptor was co-administered with recombinant Slit2. srGAP1 siRNA was administered by intracerebroventricular injection 24h before SBI. Post-assessments included brain water content measurement, neurological tests, ELISA, Western blot, immunohistochemistry, and Cdc42 activity assay. RESULTS Endogenous Slit2 was increased after SBI. Robo1 was expressed by peripheral immune cells. Endogenous Slit2 knockdown worsened brain edema after SBI. Recombinant Slit2 administration reduced brain edema, neurological deficits, and pro-inflammatory cytokines after SBI. Recombinant Slit2 reduced peripheral immune cell markers cluster of differentiation 45 (CD45) and myeloperoxidase (MPO), as well as Cdc42 activity in the perisurgical brain tissue which was reversed by recombinant Robo1 co-administration and srGAP1 siRNA. CONCLUSIONS Recombinant Slit2 improved outcomes by reducing neuroinflammation after SBI, possibly by decreasing peripheral immune cell infiltration to the perisurgical site through Robo1-srGAP1 mediated inhibition of Cdc42 activity. These results suggest that Slit2 may be beneficial to reduce SBI-induced neuroinflammation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A.; Department of Anesthesiology, Loma Linda University, CA 92354, U.S.A
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, U.S.A.; Department of Anesthesiology, Loma Linda University, CA 92354, U.S.A.; Department of Neurosurgery, Loma Linda University, CA 92354, U.S.A..
| |
Collapse
|
28
|
Lorente L. New Prognostic Biomarkers in Patients With Traumatic Brain Injury. ARCHIVES OF TRAUMA RESEARCH 2015; 4:e30165. [PMID: 26848476 PMCID: PMC4733516 DOI: 10.5812/atr.30165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/15/2015] [Indexed: 01/02/2023]
Abstract
CONTEXT Traumatic brain injury (TBI) is a leading cause of death, disability, and resource consumption per year. There are two kinds of brain injury in TBI, primary and secondary injuries. Primary injury refers to the initial physical forces applied to the brain at the moment of impact. Secondary injury occurs over a period of hours or days following the initial trauma and results from the activation of different pathways such as inflammation, coagulation, oxidation, and apoptosis. EVIDENCE ACQUISITION This review focuses on new prognostic biomarkers of mortality in TBI patients related to inflammation, coagulation, oxidation, and apoptosis. RESULTS Recently circulating levels of substance P (SP), soluble CD40 ligand (sCD40L), tissue inhibitor of matrix metalloproteinases (TIMP)-1, malondialdehyde (MDA), and cytokeratin (CK)-18 fragmented have been found to be associated with mortality in TBI patients. Substance P is a neuropeptide of the tachykinin family, mainly synthesized in the central and peripheral nervous system, with proinflammatory effects when binding to their neurokinin-1 receptor (NK1R). Soluble CD40 ligand, a member of the tumor necrosis factor (TNF) family that is released into circulation from activated platelets, exhibit proinflamatory, and procoagulant properties on binding to their cell surface receptor CD40. Matrix metalloproteinases (MMPs) are a family of zinc-containing endoproteinases involved neuroinflammation and TIMP-1 is the inhibitor of some of them. Malondialdehyde is an end-product formed during lipid peroxidation due to degradation of cellular membrane phospholipids, that is released into extracellular space and finally into the blood. Cytokeratin -18 is cleaved by the action of caspases during apoptosis, and CK-18 fragmented is released into the blood. CONCLUSIONS Circulating levels of some biomarkers, such as SP, sCD40L, TIMP-1, MDA, and CK-18 fragmented, related to inflammation, coagulation, oxidation, and apoptosis have been recently associated with mortality in patients with TBI. These biomarkers could help in the prognostic classification of the patients and open new research lines in the treatment of patients with TBI.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
29
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
30
|
McBride DW, Wang Y, Sherchan P, Tang J, Zhang JH. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats. Behav Brain Res 2015; 290:161-71. [PMID: 25975171 PMCID: PMC4447543 DOI: 10.1016/j.bbr.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 01/31/2023]
Abstract
Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI.
Collapse
Affiliation(s)
- Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yuechun Wang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, GuangDong, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
31
|
Michinaga S, Seno N, Fuka M, Yamamoto Y, Minami S, Kimura A, Hatanaka S, Nagase M, Matsuyama E, Yamanaka D, Koyama Y. Improvement of cold injury-induced mouse brain edema by endothelin ETBantagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A. Eur J Neurosci 2015; 42:2356-70. [DOI: 10.1111/ejn.13020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Naoki Seno
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Mayu Fuka
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Yui Yamamoto
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Shizuho Minami
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Akimasa Kimura
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Shunichi Hatanaka
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Marina Nagase
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Emi Matsuyama
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Daisuke Yamanaka
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| |
Collapse
|
32
|
Huang L, Sherchan P, Wang Y, Reis C, Applegate RL, Tang J, Zhang JH. Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury. J Neurosci 2015; 35:10390-401. [PMID: 26203135 PMCID: PMC4510283 DOI: 10.1523/jneurosci.0546-15.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation plays an important role in the pathophysiology of surgical brain injury (SBI). Phosphoinositide 3-kinase gamma (PI3Kγ), predominately expressed in immune and endothelial cells, activates multiple inflammatory responses. In the present study, we investigated the role of PI3Kγ and PI3Kγ-activated phosphodiesterase 3B (PDE3B) in neuroinflammation in a rat model of SBI. One hundred and fifty-two male Sprague Dawley rats (weight 280-350 g) were subjected to a partial right frontal lobe corticotomy model of SBI. A PI3Kγ pharmacological inhibitor (AS252424 or AS605240) was administered intraperitoneally. PI3Kγ siRNA, human recombinant active-PI3Kγ protein, or human recombinant active-PDE3B protein were administered intracerebroventricularly. Post-SBI assessments included neurobehavioral tests, brain water content, Western blot, and immunohistochemistry. Endogenous PI3Kγ levels were increased within peri-resection brain tissues after SBI, accompanied by increased brain water content and neurological functional deficits. There was a trend toward increased endogenous PDE3B phosphorylation after SBI. The selective PI3Kγ inhibitors AS252424 and AS605240 reduced brain water content surrounding corticotomy and improved neurological function after SBI. SBI increased and PI3Kγ inhibitor decreased levels of myeloperoxidase, cluster of differentiation 3, mast cell degranulation, E-selectin, and IL-1 in peri-resection brain tissues. Direct administration of human recombinant active-PI3Kγ protein and active-PDE3B protein countered the protective effect of AS252424. PI3Kγ siRNA reduced PI3Kγ levels, decreased brain water content within peri-resection brain tissues, and improved neurological function after SBI. Collectively, our findings suggest that PI3Kγ contributed to neuroinflammation after SBI. The use of selective PI3Kγ inhibitors may be a novel approach to ameliorating SBI via their anti-inflammation effects. Significance statement: Life-saving or elective neurosurgeries often involve unavoidable damages to neighboring, nondiseased brain tissues. Such surgical brain injury (SBI) is attributable exclusively to the neurosurgical procedure itself and may cause postoperative complications that exacerbate neurological function. Although the importance of this medical problem is fully acknowledged, intraoperative administration of adjunctive treatment such as steroids and mannitol to patients undergoing neurosurgery appear not to be efficient remedies for SBI. To date, the issue of perioperative neuroprotection specifically against SBI has not been well studied. Using a clinically relevant rat model of SBI, we are exploring a new neuroprotective strategy targeting phosphoinositide 3-kinase gamma (PI3Kγ). PI3Kγ activates multiple inflammatory responses. By attenuating neuroinflammation, selective PI3Kγ inhibition would limit postoperative complications and benefit neurological outcomes.
Collapse
Affiliation(s)
- Lei Huang
- Departments of Anesthesiology, Physiology and Pharmacology, and
| | | | - Yuechun Wang
- Physiology and Pharmacology, and Department of Physiology, School of Medicine, University of Jinan, Guangzhou 510632, China
| | | | | | | | - John H Zhang
- Departments of Anesthesiology, Physiology and Pharmacology, and Neurosurgery, Loma Linda University, Loma Linda, California 92354, and
| |
Collapse
|
33
|
Guilfoyle MR, Carpenter KLH, Helmy A, Pickard JD, Menon DK, Hutchinson PJA. Matrix Metalloproteinase Expression in Contusional Traumatic Brain Injury: A Paired Microdialysis Study. J Neurotrauma 2015; 32:1553-9. [PMID: 25858502 PMCID: PMC4593877 DOI: 10.1089/neu.2014.3764] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular enzymes that have been implicated in the pathophysiology of blood–brain barrier (BBB) breakdown, contusion expansion, and vasogenic edema after traumatic brain injury (TBI). Specifically, in focal injury models, increased MMP-9 expression has been observed in pericontusional brain, and MMP-9 inhibitors reduce brain swelling and final lesion volume. The aim of this study was to examine whether there is a similarly localized increase of MMP concentrations in patients with contusional TBI. Paired microdialysis catheters were inserted into 12 patients with contusional TBI (with or without associated mass lesion) targeting pericontusional and radiologically normal brain defined on admission computed tomography scan. Microdialysate was pooled every 8 h and analyzed for MMP-1, -2, -7, -9, and -10 using a multiplex immunoassay. Concentrations of MMP-1, -2, and -10 were similar at both monitoring sites and did not show discernible temporal trends. Overall, there was a gradual increase in MMP-7 concentrations in both normal and injured brain over the monitoring period, although this was not consistent in every patient. MMP-9 concentrations were elevated in pericontusional, compared to normal, brain, with the maximal difference at the earliest monitoring times (i.e., <24 h postinjury). Repeated-measures analysis of variance showed that MMP-9 concentrations were significantly higher in pericontusional brain (p=0.03) and within the first 72 h of injury, compared with later in the monitoring period (p=0.04). No significant differences were found for the other MMPs assayed. MMP-9 concentrations are increased in pericontusional brain early post-TBI and may represent a potential therapeutic target to reduce hemorrhagic progression and vasogenic edema.
Collapse
Affiliation(s)
- Mathew R Guilfoyle
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Adel Helmy
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - John D Pickard
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 2 Division of Anesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Peter J A Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
34
|
Muradashvili N, Benton RL, Saatman KE, Tyagi SC, Lominadze D. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice. Metab Brain Dis 2015; 30:411-26. [PMID: 24771110 PMCID: PMC4213324 DOI: 10.1007/s11011-014-9550-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6 J) and MMP-9 gene knockout (Mmp9(-/-)) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrP(C)) were found in pericontusional area. These changes were attenuated in Mmp9(-/-) mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrP(C) and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - Richard L. Benton
- Department of Anatomical Sciences and Neurobiology and Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, School of Medicine, Louisville, KY
| | - Kathryn E. Saatman
- Department of Physiology and Neurosurgery and Spinal Cord & Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, USA
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - David Lominadze
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
- Corresponding Author: David Lominadze, Ph. D., University of Louisville, Dept. of Physiology & Biophysics, School of Medicine, Bldg. A, Room 1115, 500 South Preston Street, Louisville, KY 40202, Phone (502) 852-4902, Fax (502) 852-6239,
| |
Collapse
|
35
|
Wei X, Wan X, Zhao B, Hou J, Liu M, Cheng B. Propofol inhibits inflammation and lipid peroxidation following cerebral ischemia/reperfusion in rabbits. Neural Regen Res 2015; 7:837-41. [PMID: 25737711 PMCID: PMC4342711 DOI: 10.3969/j.issn.1673-5374.2012.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022] Open
Abstract
The present study established a rabbit model of global cerebral ischemia using the ‘six-vessel’ method, which was reperfused after 30 minutes of ischemia. Rabbits received intravenous injection of propofol at 5 mg/kg prior to ischemia and 20 mg/kg per hour after ischemia until samples were prepared. Results revealed that propofol inhibited serum interleukin-8, endothelin-1 and malondialdehyde increases and promoted plasma superoxide dismutase activity after cerebral ischemia/reperfusion. In addition, cerebral cortex edema was attenuated with little neuronal nuclear degeneration and pyknosis with propofol treatment. The cross-sectional area of neuronal nuclei was, however, increased following propofol treatment. These findings suggested that propofol could improve anti-oxidant activity and inhibit synthesis of inflammatory factors to exert a protective effect on cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiaodong Wei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Xing Wan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Bangchang Cheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
36
|
Liu D, Zhang HG, Zhao ZA, Chang MT, Li Y, Yu J, Zhang Y, Zhang LY. Melanocortin MC4 receptor agonists alleviate brain damage in abdominal compartment syndrome in the rat. Neuropeptides 2015; 49:55-61. [PMID: 25616531 DOI: 10.1016/j.npep.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
Abstract
Intra-abdominal hypertension (IAH) is accompanied by high morbidity and mortality in surgical departments and ICUs. However, its specific pathophysiology is unclear. IAH not only leads to intra-abdominal tissue damage but also causes dysfunction in distal organs, such as the brain. In this study, we explore the protective effects of melanocortin 4 receptor agonists in IAH-induced brain injury. The IAH rat models were induced by hemorrhagic shock/resuscitation (with the mean arterial pressure (MAP) maintained at 30 mm Hg for 90 min followed by the reinfusion of the withdrawn blood with lactated Ringer's solution). Then, air was injected into the peritoneal cavity of the rats to maintain an intra-abdominal pressure of 20 mm Hg for 4 h. The effects of the melanocortin 4 receptor agonist RO27-3225 in alleviating the rats' IAH brain injuries were observed, which indicated that RO27-3225 could reduce brain edema, the expressions of the IL-1β and TNF-α inflammatory cytokines, the blood-brain barrier's permeability and the aquaporin4 (AQP4) and matrix metalloproteinase 9 (MMP9) levels. Moreover, the nicotinic acetylcholine receptor antagonist chlorisondamine and the selective melanocortin 4 receptor antagonist HS024 can negate the protective effects of the RO27-3225. The MC4R agonist can effectively reduce the intracerebral proinflammatory cytokine gene expression and alleviate the brain injury caused by blood-brain barrier damage following IAH.
Collapse
Affiliation(s)
- Dong Liu
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hong-Guang Zhang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zi-Ai Zhao
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ming-Tao Chang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yang Li
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jian Yu
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ye Zhang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Lian-Yang Zhang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
37
|
Novel targets for Spinal Cord Injury related neuropathic pain. Ann Neurosci 2014; 18:162-7. [PMID: 25205949 PMCID: PMC4116958 DOI: 10.5214/ans.0972.7531.1118413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 08/26/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022] Open
Abstract
Millions of people suffer from spinal cord injury (SCI) with little known effective clinical therapy. Neuropathic pain (NP) is often accompanied with SCI, making clinical treatment challenging. Even though the key mediators in the development of NP have been discovered, the pathogenesis is still unclear. Some of the key mediators in the sustenance of NP include the inflammatory processes, cannabinoid receptors, matrix metalloproteases, and their tissue inhibitors. Animal models have shown promising results with modulation of these mediators, yet the clinical models have been unsuccessful. One such study with matrix metalloproteases (MMPs) has yielded encouraging results. The relationship between MMPs and their tissue inhibitors (TIMPs) plays a significant role in the pathogenesis and recovery of SCI and the CNS. Key factors that lead to the functional consequences of MMP activity are cellular localization, tissue distribution, and temporal pattern of MMP expression. Studies concluding that MMPs can be seen as contributors of tissue damage and as contributors in the repair mechanisms have provided a need to reexamine their roles after acute and chronic neuropathic pain
Collapse
|
38
|
Zhou QB, Jin YL, Jia Q, Zhang Y, Li LY, Liu P, Liu YT. Baicalin attenuates brain edema in a rat model of intracerebral hemorrhage. Inflammation 2014; 37:107-15. [PMID: 23974988 PMCID: PMC3929027 DOI: 10.1007/s10753-013-9717-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Baicalin is a flavonoid compound purified from the roots of Scutellaria baicalensis, which possesses multiple biological activities. Previous studies have shown that baicalin is protective in ischemic cerebral diseases. The aim of the present study was to examine the effects of baicalin on brain injury in a rat model of intracerebral hemorrhage (ICH) and to explore the possible mechanisms. Intracerebral hemorrhage was induced in male Wistar rats by injection of 0.5 U collagenaseVII to the caudate nucleus. Sham operation rats were injected with equal volume of saline. After the induction of ICH, the rats were randomly divided into four groups and administered with different dose of baicalin (0, 25, 50, or 100 mg/kg in saline) through peritoneal injection. The brain tissues around the hemorrhage areas were collected on days 1, 3, and 5 after treatment. Brain edema was analyzed by desiccation method; the metalloproteinase-9 (MMP-9) protein and mRNA expression were determined by western blotting and real time RT-PCR, respectively. Nuclear factor-κB (NF-κB) protein expression was analyzed by western blotting. IL-1β and IL-6 levels were determined by enzyme-linked immunosorbent assay. Blood-brain barrier permeability was determined by Evans blue leakage method. The results showed that baicalin reduced brain edema following ICH in a dose-dependent manner, with concomitant inhibition of NF-κB activation and suppression of MMP-9 expression. In addition, baicalin also reduced IL-1β and IL-6 production, as well as blood-brain barrier permeability. The above results indicated that baicalin prevents against perihematomal edema development after intracerebral hemorrhage possibly through an anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Qing-Bo Zhou
- Department of Neurology, The Second Hospital, Shandong University, Jinan, 250033, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Xu FF, Sun S, Ho ASW, Lee D, Kiang KMY, Zhang XQ, Wang AM, Wu EX, Lui WM, Liu BY, Leung GKK. Effects of progesterone vs. dexamethasone on brain oedema and inflammatory responses following experimental brain resection. Brain Inj 2014; 28:1594-601. [PMID: 25093611 DOI: 10.3109/02699052.2014.943289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fei-Fan Xu
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
BeijingPR China
| | - Stella Sun
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Amy S. W. Ho
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Derek Lee
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Karrie M. Y. Kiang
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Xiao-Qin Zhang
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Anna M. Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong
Hong KongPR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong
Hong KongPR China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong
Hong KongPR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong
Hong KongPR China
| | - Wai-Man Lui
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Bai-Yun Liu
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
- Beijing Neurosurgical Institute
BeijingPR China
- Department of Neurotrauma, General Hospital of Chinese People’s Armed Police Force
BeijingPR China
| | - Gilberto K. K. Leung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| |
Collapse
|
40
|
Pathak NN, Balaganur V, Lingaraju MC, More AS, Kant V, Kumar D, Kumar D, Tandan SK. Antihyperalgesic and anti-inflammatory effects of atorvastatin in chronic constriction injury-induced neuropathic pain in rats. Inflammation 2014; 36:1468-78. [PMID: 23872719 DOI: 10.1007/s10753-013-9688-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atorvastatin is a 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor used in treatment of hypercholesterolemia and prevention of coronary heart disease. The aim of this study is to investigate the antihyperalgesic and anti-inflammatory effects of atorvastatin (3, 10, and 30 mg/kg by oral gavages for 14 days) in chronic constriction injury (CCI) model of neuropathic pain in rats. CCI caused significant increase in tumor necrosis factor-α, interleukin 1 beta, prostaglandin E2, along with matrix metalloproteases (MMP-2) and nerve growth factor (NGF) levels in sciatic nerve and spinal cord concomitant with mechanical and thermal hyperalgesia, which were significantly reduced by oral administration of atorvastatin for 14 days as compared to CCI rats. Our study demonstrated that atorvastatin attenuates neuropathic pain through inhibition of cytokines, MMP-2, and NGF in sciatic nerve and spinal cord suggesting that atorvastatin could be an additional therapeutic strategy in management of neuropathic pain.
Collapse
Affiliation(s)
- Nitya N Pathak
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lorente L, Martín MM, López P, Ramos L, Blanquer J, Cáceres JJ, Solé-Violán J, Solera J, Cabrera J, Argueso M, Ortiz R, Mora ML, Lubillo S, Jiménez A, Borreguero-León JM, González A, Orbe J, Rodríguez JA, Páramo JA. Association between serum tissue inhibitor of matrix metalloproteinase-1 levels and mortality in patients with severe brain trauma injury. PLoS One 2014; 9:e94370. [PMID: 24728097 PMCID: PMC3984169 DOI: 10.1371/journal.pone.0094370] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/15/2014] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. METHODS This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. RESULTS Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001-1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624-0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. CONCLUSIONS The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality in TBI patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
- * E-mail:
| | - María M. Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Patricia López
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - José Blanquer
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Fundación INCLIVA, Valencia, Spain
| | - Juan J. Cáceres
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jorge Solera
- Deparment of Anesthesiology and Reanimation, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Judith Cabrera
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Fundación INCLIVA, Valencia, Spain
| | - Raquel Ortiz
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - María L. Mora
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Santiago Lubillo
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Agustín González
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - José A. Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - José A. Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Pamplona, Spain
| |
Collapse
|
42
|
Mohebbi N, Khoshnevisan A, Naderi S, Abdollahzade S, Salamzadeh J, Javadi M, Mojtahedzadeh M, Gholami K. Effects of atorvastatin on plasma matrix metalloproteinase-9 concentration after glial tumor resection; a randomized, double blind, placebo controlled trial. ACTA ACUST UNITED AC 2014; 22:10. [PMID: 24397933 PMCID: PMC3896688 DOI: 10.1186/2008-2231-22-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/06/2013] [Indexed: 11/10/2022]
Abstract
Background Neurosurgical procedures such as craniotomy and brain tumor resection could potentially lead to unavoidable cerebral injuries. Matrix metalloproteinase-9 (MMP-9) is up-regulated in neurological injuries. Statins have been suggested to reduce MMP- 9 level and lead to neuroprotection. Atorvastatin preoperatively administered to evaluate its neuroprotective effects and outcome assessment in neurosurgical-induced brain injuries after glial tumor resection. In this prospective, randomized, double-blind, placebo-controlled trial, 42 patients undergoing glial tumor surgery randomly received 40 mg atorvastatin or placebo twice daily from seven days prior to operation and continued for a 3 weeks period. Plasma MMP-9 concentration measured 4 times, immediately before starting atorvastatin or placebo, immediately before surgery, 24 hours and two weeks after the surgery. Karnofsky performance score was assessed before first dose of atorvastatin as a baseline and 2 months after the surgery. Results Karnofsky performance scale after surgery raised significantly more in Atorvastatin group (11.43 +/- 10.62 vs. 4.00 +/- 8.21) (p = 0.03). Atorvastatin did not significantly reduce MMP-9 plasma concentration 24 hours after surgery in comparison to placebo. No statistical significance detected regarding length of hospital stay among the groups. Significant reduction in MMP-9 plasma concentration was recorded in atorvastatin group two weeks after surgery (p = 0.048). Conclusions Significant statistical differences detected with atorvastatin group regarding MMP-9 plasma concentration, clinical outcome and Karnofsky performance score. Consequently, atorvastatin use may lead to better outcome after neurosurgical procedures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kheirollah Gholami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Roberts DJ, Jenne CN, Léger C, Kramer AH, Gallagher CN, Todd S, Parney IF, Doig CJ, Yong VW, Kubes P, Zygun DA. Association between the Cerebral Inflammatory and Matrix Metalloproteinase Responses after Severe Traumatic Brain Injury in Humans. J Neurotrauma 2013; 30:1727-36. [DOI: 10.1089/neu.2012.2842] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Derek J. Roberts
- Department of Surgery, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Craig N. Jenne
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Caroline Léger
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Andreas H. Kramer
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Clare N. Gallagher
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Stephanie Todd
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ian F. Parney
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher J. Doig
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - David A. Zygun
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Division of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Sherchan P, Kim CH, Zhang JH. Surgical brain injury and edema prevention. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:129-33. [PMID: 23564118 DOI: 10.1007/978-3-7091-1434-6_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neurosurgical procedures, carried out routinely in health institutions, present postoperative complications that result from unavoidable brain injury inflicted by surgical maneuvers. These maneuvers, which include incisions, electrocauterization, and retraction, place brain tissue at the margins of the operative site at risk of injury. Brain edema is a major complication that develops subsequent to this surgically induced brain injury. In the present review, we will discuss type of injury as well as the animal model available to study it. In addition, we will discuss potential mediators, including vascular endothelial growth factor, metalloproteinases, and cyclooxygenases, which have been tested in in vivo experimental studies and have been shown to be potential targets for the development of clinical therapies for neuroprotection against brain edema.
Collapse
Affiliation(s)
- Prativa Sherchan
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
45
|
Blood-brain barrier permeability is positively correlated with cerebral microvascular perfusion in the early fluid percussion-injured brain of the rat. J Transl Med 2012; 92:1623-34. [PMID: 22964852 DOI: 10.1038/labinvest.2012.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The blood-brain barrier (BBB) opening following traumatic brain injury (TBI) provides a chance for therapeutic agents to cross the barrier, yet the reduction of the cerebral microvascular perfusion after TBI may limit the intervention. Meanwhile, optimizing the cerebral capillary perfusion by the strategies such as fluid administration may cause brain edema due to the BBB opening post trauma. To guide the TBI therapy, we characterized the relationship between the changes in the cerebral capillary perfusion and BBB permeability after TBI. First, we observed the changes of the cerebral capillary perfusion by the intracardiac perfusion of Evans Blue and the BBB disruption with magnetic resonance imaging (MRI) in the rat subjected to lateral fluid percussion (FP) brain injury. The correlation between two variables was next evaluated with the correlation analysis. Since related to BBB breakdown, matrix metalloproteinase-9 (MMP-9) activity was finally detected by gelatin zymography. We found that the ratios of the perfused microvessel numbers in the lesioned cortices were significantly reduced at 0 and 1 h post trauma compared with that in the normal cortex, which then dramatically recovered at 4 and 24 h after injury, and that the BBB permeability was greatly augmented in the ipsilateral parts at 4, 12, and 24 h, and in the contralateral area at 24 h after injury compared with that in the uninjured brain. The correlation analysis showed that the BBB permeability increase was related to the restoration of the cerebral capillary perfusion over a 24-h period post trauma. Moreover, the gelatin zymography analysis indicated that the MMP-9 activity in the injured brain increased at 4 h and significantly elevated at 12 and 24 h as compared to that at 0 or 1 h after TBI. Our findings demonstrate that the 4 h post trauma is a critical turning point during the development of TBI, and, importantly, the correlation analysis may guide us how to treat TBI.
Collapse
|
46
|
Manaenko A, Sun X, Kim CH, Yan J, Ma Q, Zhang JH. PAR-1 antagonist SCH79797 ameliorates apoptosis following surgical brain injury through inhibition of ASK1-JNK in rats. Neurobiol Dis 2012; 50:13-20. [PMID: 23000356 DOI: 10.1016/j.nbd.2012.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Neurosurgical procedures inevitably produce intraoperative hemorrhage. The subsequent entry of blood into the brain parenchyma results in the release of large amounts of thrombin, a known contributor to perihematomal edema formation and apoptosis after brain injury. The present study seeks to test 1) the effect of surgically induced brain injury (SBI) on thrombin activity, expression of thrombin's receptor PAR-1, and PAR-1 mediated apoptosis; 2) the effect of thrombin inhibition by argatroban and PAR-1 inhibition by SCH79797 on the development of secondary brain injury in the SBI model on rats. A total of 88 Sprague-Dawley male rats were randomly divided into sham, vehicle-, argatroban-, or SCH79797-treated groups. SBI involved partial resection of the right frontal lobe under inhalation isoflurane anesthesia. Sham-operated animals received only craniotomy. Thrombin activity, brain water content, and neurological deficits were measured at 24 h following SBI. Involvement of the Ask1/JNK pathway in PAR-1-induced post-SBI apoptosis was characterized by using Ask1 or JNK inhibitors. We observed that SBI increased thrombin activity, yet failed to demonstrate any effect on PAR-1 expression. Argatroban and SCH79797 reduced SBI-induced brain edema and neurological deficits in a dose-dependent manner. SBI-induced apoptosis seemed mediated by the PAR-1/Ask1/JNK pathways. Administration of SCH79797 ameliorated the apoptosis following SBI. Our findings indicate that PAR-1 antagonist protects against secondary brain injury after SBI by decreasing both brain edema and apoptosis by inactivating PAR-1/Ask1/JNK pathway. The anti-apoptotic effect of PAR-1 antagonists may provide a promising path for therapy following SBI.
Collapse
Affiliation(s)
- Anatol Manaenko
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Effect of dexmedetomidine on brain edema and neurological outcomes in surgical brain injury in rats. Anesth Analg 2012; 115:154-9. [PMID: 22584551 DOI: 10.1213/ane.0b013e31824e2b86] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Surgical brain injury (SBI) is damage to functional brain tissue resulting from neurosurgical manipulations such as sharp dissection, electrocautery, retraction, and direct applied pressure. Brain edema is the major contributor to morbidity with inflammation, necrosis, oxidative stress, and apoptosis likely playing smaller roles. Effective therapies for SBI may improve neurological outcomes and postoperative morbidities associated with brain surgery. Previous studies show an adrenergic correlation to blood-brain barrier control. The α-2 receptor agonist dexmedetomidine (DEX) has been shown to improve neurological outcomes in stroke models. We hypothesized that DEX may reduce brain edema and improve neurological outcomes in a rat model of SBI. METHODS Male Sprague-Dawley rats (n = 63) weighing 280 to 350 g were randomly assigned to 1 of 4 IP treatment groups: sham IP, vehicle IP, DEX 10 mg/kg, and DEX 30 mg/kg. Treatments were given 30 min before SBI. These treatment groups were repeated to observe the physiologic impact of DEX on mean arterial blood pressure (MAP), heart rate (HR), and blood glucose on SBI naïve animals. Rats were also assigned to 4 postinjury IV treatment groups: sham IV, vehicle IV, DEX 10/5, and DEX 30/15 (DEX group doses were 10 and 30 mg/kg/hr, with 5 and 15 mg/kg initial loading doses, respectively). Initial loading doses began 20 min after SBI, followed by 2 h of infusion. SBI animals were subjected to neurological testing 24 h after brain injury by a blinded observer, promptly killed, and brain water content measured via the dry/wet weight method. RESULTS All treatment groups showed a significant difference in ipsilateral frontal brain water content and neurological scores when compared with sham animals. However, there was no difference between DEX-treated and vehicle animals. Physiologic monitoring showed treatment with low or high doses of DEX significantly decreased MAP and HR, and briefly increased blood glucose compared with naïve or vehicle-treated animals. CONCLUSIONS DEX administration did not reduce brain edema or improve neurological function after SBI in this study. The statistical difference in brain water content and neurological scores when comparing sham treatment to vehicle and DEX treatments shows consistent reproduction of this model. Significant changes in MAP, HR, and blood glucose after DEX as compared to vehicle and sham treatments suggest appropriate delivery of drug.
Collapse
|
48
|
Spetzler RF, Sanai N. The quiet revolution: retractorless surgery for complex vascular and skull base lesions. J Neurosurg 2012; 116:291-300. [DOI: 10.3171/2011.8.jns101896] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Smaller operative exposures, endoscopic approaches, and minimally invasive neurosurgery have emerged as a dominant trend in the modern era. In keeping with this evolution, the authors have recently eliminated the use of fixed retractors, instead employing dynamic retraction, with the use of handheld instruments. In the present study, the authors report the results of applying this strategy to challenging vascular and skull base lesions.
Methods
This 6-month study prospectively analyzed the use of retractorless surgery in a consecutive series of 223 patients with intracranial vascular or skull base lesions undergoing craniotomy. A single surgeon performed all operations.
Results
The microsurgical approaches (in descending order of frequency) included an orbitozygomatic craniotomy (77 patients [35%]), frontal (36 patients [16%]), retrosigmoid (27 patients [12%]), interhemispheric (16 patients [7%]), and lateral supracerebellar (15 patients [7%]). The most common lesions were aneurysms (83 lesions overall [37%]), 18 of which required a bypass. Of 159 vascular lesions, there were also 46 cavernous malformations (29%). Meningiomas were the most common skull base tumors (37 cases [58%]). Of the 223 patients, 7 cases of various vascular and skull base lesions required fixed retraction. Therefore, 97% of the cases were successfully treated without a self-retaining retractor system.
Conclusions
Fixed retraction can be supplanted by dynamic retraction with surgical instruments, limiting the risk of retractor-induced tissue edema and injury. This quiet revolution has precipitated a major change in surgical techniques. Extensive dissection of arachnoidal planes, careful placement of the handheld suction device, patient positioning that enhances gravity retraction, the refinement of microsurgical instrumentation, and appropriate selection of the operative corridor all serve to obviate the need for fixed retraction in most intracranial procedures. Retractorless neurosurgery is an achievable goal, even when complex lesions of the vasculature and skull base are being treated.
Collapse
|
49
|
Yang JT, Lee TH, Lee IN, Chung CY, Kuo CH, Weng HH. Dexamethasone inhibits ICAM-1 and MMP-9 expression and reduces brain edema in intracerebral hemorrhagic rats. Acta Neurochir (Wien) 2011; 153:2197-203. [PMID: 21822780 DOI: 10.1007/s00701-011-1122-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND The molecular mechanism of hemorrhagic stroke is unclear, and the identification of therapeutic agents for attenuating post-stroke brain damage remains an unresolved challenge. Dexamethasone (DEX) is used clinically to treat spinal cord injury and brain tumor patients by reducing edema formation, but has produced conflicting results in stroke management. METHODS In this study, intracerebral hemorrhage (ICH) was induced in rats by intracranial stereotactic injection of collagenase into the caudate nucleus. DEX was given immediately and 3 days after ICH. The expression of intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), nuclear factor (NF)-κB, and IκB were analyzed by Western blotting, and perihematomal edema formation was evaluated by magnetic resonance imaging. RESULTS The results showed that ICH caused an increase of ICAM-1 and MMP-9 expression from 4 h to 7 days, which was inhibited following the administration of DEX. The perihematomal edema volume in ICH rats was high, with two peak periods at 12 h and 3 days, which was also reduced in DEX-treated groups. Furthermore, the administration of DEX not only maintained IκB in cytoplasm, but also decreased NF-κB elevation in the nucleus at 3 and 5 days in ICH rats. CONCLUSIONS In conclusion, these data show that DEX successfully reduced post-stroke brain edema by decreasing MMP-9 and ICAM-1 levels, partially through the IκB/NF-κB signaling pathway. The timing of DEX administration in relation to the onset of brain injury may be critical.
Collapse
|
50
|
Eckermann JM, Chen W, Jadhav V, Hsu FP, Colohan AR, Tang J, Zhang JH. Hydrogen is neuroprotective against surgically induced brain injury. Med Gas Res 2011; 1:7. [PMID: 22146427 PMCID: PMC3231979 DOI: 10.1186/2045-9912-1-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/18/2011] [Indexed: 11/12/2022] Open
Abstract
Background Neurosurgical operations cause unavoidable damage to healthy brain tissues. Direct surgical injury as well as surgically induced oxidative stress contributes to the subsequent formation of brain edema. Therefore, we tested the neuroprotective effects of hydrogen (H2) in an established surgical brain injury (SBI) model in rats. Materials and methods Adult male Sprague - Dawley rats (weight 300-350g) were divided into three groups to serve as sham operated, SBI without treatment, and SBI treated with H2 (2.9%). Brain water content, myeloperoxidase (MPO) assay, lipid peroxidation (LPO), and neurological function were measured at 24 hrs after SBI. Results SBI resulted in localized brain edema (p = < 0.001). Hydrogen (2.9%) administered concurrently with surgery significantly decreased the formation of cerebral edema (p = 0.028) and improved neurobehavioral score (p = 0.022). However, hydrogen treatment failed to reduce oxidative stress (LPO assay) or inflammation (MPO assay) in brain tissues. Conclusions Hydrogen appears to be promising as an effective, yet inexpensive way to reduce cerebral edema caused by surgical procedures. Hydrogen has the potential to improve clinical outcome, decrease hospital stay, and reduce overall cost to patients and the health care system.
Collapse
Affiliation(s)
- Jan M Eckermann
- Department of Neurosurgery, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA 92354, USA.
| | | | | | | | | | | | | |
Collapse
|