1
|
Inforzato A, Day AJ. Oligomerisation of pentraxin-3: Insights from cryoEM. Matrix Biol 2025; 138:22-26. [PMID: 40187541 DOI: 10.1016/j.matbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Pentraxin-3 (PTX3) is a secreted protein with roles in the stabilisation of hyaluronan-rich extracellular matrices involved in reproductive biology and inflammatory processes, as well as additional functions in innate immunity and cancer. Our recent structural studies (Shah et al., 2025; DOI:10.1016/j.matbio.2025.01.002), involving X-ray crystallography, cryo-electron microscopy (cryoEM) and AlphaFold modelling, have provided clues as to how PTX3 becomes assembled into an octamer from eight identical protomer subunits. Here it was proposed that four protomers initially form a tetramer, composed of a highly extended N-terminal region consisting of coiled-coil structures and C-terminal pentraxin domains, where two tetramers then immediately align and associate via an extensive network of salt bridges, allowing stabilisation of the octamer via the formation of disulphide bonds. However, a paper published around the same time provides an alternative perspective (Guo et al., 2025; DOI: 10.1016/j.ijbiomac.2024.139207). The authors propose, based on cryoEM analyses, that in addition to octamers, stable dimers, tetramers and hexamers of PTX3 can also assemble, where it is the dimers that provide the 'building blocks' for generation of the various oligomeric forms. In this commentary we suggest that the presence of dimers, tetramers and hexamers is likely an artefact of the construct used in recombinant expression, since the existence of these oligomers is not consistent with other studies on PTX3. We also provide a model to clarify how protomers become assembled into an octamer via sequential formation of a disulphide-linked tetramer, non-covalent association of two tetramers through aligned ionic interactions and the formation of disulphide bonds between the C-terminal pentraxin domains.
Collapse
Affiliation(s)
- Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy.
| | - Anthony J Day
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
2
|
Ardizzone A, Liuzzo C, Ferro A, Galletta M, Esposito E, Capra AP. PTX3/NF-κB/TLR4 Pathway Evaluation in the Follicular Fluid to Successfully Predict Blastocyst Implantation: A Pilot Study. Biomedicines 2025; 13:1071. [PMID: 40426899 PMCID: PMC12109426 DOI: 10.3390/biomedicines13051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Background: The implantation process is complex and involves numerous factors that can affect its success. In artificial reproductive treatments (ARTs), chronic inflammation seems to be associated with implantation failure, largely contributing to reproductive dysfunction. Pentraxin 3 (PTX3) is overexpressed in several pathological conditions by exerting a pivotal role both as a regulator and indicator of inflammatory response. Some literature data have shown that PTX3 could have an impact on follicle growth and development, influencing women's fertility. This study aimed to detect PTX3 in follicular fluids collected during an ART protocol in relation to implantation outcomes. Methods: The PTX3/NF-kB/TLR4 pathway and other cytokines were assessed in the follicular fluid of 169 subjects, under the age of 40 years, undergoing IVF cycles, including females without achieved implantation (n = 98) and those with implantation (n = 71). Furthermore, subgroup analyses were performed to evaluate PTX3 values according to age difference. Results: From our data, PTX3 emerged as a strong predictor, more than TNFα and IL-1β, of implantation failure and related inflammatory follicular state. Overall, the results point to PTX3 as a potential biomarker for ART success, and their testing may be helpful in women whose successful implantation remains unexplained. Conclusions: Therefore, PTX3 could constitute a reliable biomarker and a valuable target to improve ART outcomes.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (A.P.C.)
| | - Carmelo Liuzzo
- UOSD Center for Medically Assisted Procreation (MAP), AO “Papardo” Hospital, Contrada Papardo, 98158 Messina, Italy; (C.L.); (A.F.); (M.G.)
| | - Arianna Ferro
- UOSD Center for Medically Assisted Procreation (MAP), AO “Papardo” Hospital, Contrada Papardo, 98158 Messina, Italy; (C.L.); (A.F.); (M.G.)
| | - Marco Galletta
- UOSD Center for Medically Assisted Procreation (MAP), AO “Papardo” Hospital, Contrada Papardo, 98158 Messina, Italy; (C.L.); (A.F.); (M.G.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (A.P.C.)
- Genetics and Pharmacogenetics Unit, “Gaetano Martino” University Hospital, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (A.P.C.)
- Genetics and Pharmacogenetics Unit, “Gaetano Martino” University Hospital, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
3
|
Shah A, Zhang X, Snee M, Lockhart-Cairns MP, Levy CW, Jowitt TA, Birchenough HL, Dean L, Collins R, Dodd RJ, Roberts ARE, Enghild JJ, Mantovani A, Fontana J, Baldock C, Inforzato A, Richter RP, Day AJ. The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix. Matrix Biol 2025; 136:52-68. [PMID: 39814214 DOI: 10.1016/j.matbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections. To better understand the physiological and pathological roles of PTX3 we have analysed how its quaternary structure underpins HA crosslinking via its interactions with HCs. A combination of X-ray crystallography, cryo-electron microscopy (cryo-EM) and AlphaFold predictive modelling revealed that the C-terminal pentraxin domains of the PTX3 octamer are arranged in a central cube, with two long extensions on either side, each formed from four protomers assembled into tetrameric coiled-coil regions, essentially as described by (Noone et al., 2022; doi:10.1073/pnas.2208144119). From crystallography and cryo-EM data, we identified a network of inter-protomer salt bridges that facilitate the assembly of the octamer. Small angle X-ray scattering (SAXS) validated our model for the octameric protein, including the analysis of two PTX3 constructs: a tetrameric 'Half-PTX3' and a construct missing the 24 N-terminal residues (Δ1-24_PTX3). SAXS determined a length of ∼520 Å for PTX3 and, combined with 3D variability analysis of cryo-EM data, defined the flexibility of the N-terminal extensions. Biophysical analyses revealed that the prototypical heavy chain HC1 does not interact with PTX3 at pH 7.4, consistent with our previous studies showing that, at this pH, PTX3 only associates with HC•HA complexes if they are formed in its presence. However, PTX3 binds to HC1 at acidic pH, and can also be incorporated into pre-formed HC•HA complexes under these conditions. This provides a novel mechanism for the regulation of PTX3-mediated HA crosslinking (e.g., during inflammation), likely mediated by a pH-dependent conformational change in HC1. The PTX3 octamer was found to associate simultaneously with up to eight HC1 molecules and, thus, has the potential to form a major crosslinking node within HC•HA matrices, i.e., where the physical and biochemical properties of resulting matrices could be tuned by the HC/PTX3 composition.
Collapse
Affiliation(s)
- Anokhi Shah
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Xiaoli Zhang
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, LS2 9JT Leeds, UK
| | - Matthew Snee
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology, University of Manchester, Manchester Academic Health Science Centre, Manchester M1 7DN, UK
| | - Thomas A Jowitt
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Holly L Birchenough
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Louisa Dean
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Richard Collins
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Rebecca J Dodd
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Abigail R E Roberts
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, LS2 9JT Leeds, UK
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy; Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Clair Baldock
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy.
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, LS2 9JT Leeds, UK.
| | - Anthony J Day
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom.
| |
Collapse
|
4
|
Pérez-García F, Muñoz-Acuña E, Valencia C, Aguila L, Felmer R, Arias ME. Effect of Bovine Follicular Fluid Small Extracellular Vesicles Isolated by Ultracentrifugation and Chromatography on In Vitro Oocyte Maturation and Embryo Development. Int J Mol Sci 2025; 26:2880. [PMID: 40243476 PMCID: PMC11988610 DOI: 10.3390/ijms26072880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 04/18/2025] Open
Abstract
Small extracellular vesicles (sEVs) play a crucial role in intercellular communication and have demonstrated significant relevance in reproductive biotechnology, particularly in in vitro maturation (IVM) and bovine embryo production. This study evaluates the effects of bovine follicular fluid-derived extracellular vesicles (ffsEVs) isolated using two methods: ultracentrifugation (UC) and size-exclusion chromatography (SEC) on oocyte maturation and preimplantational embryonic development. Significant differences in the size of ffsEVs obtained by both isolation methods were noted, with UC-derived ffsEVs (UC ffsEVs) being smaller than those isolated by SEC (SEC ffsEVs). UC ffsEVs were more effective in upregulating critical oocyte quality genes, such as HSF1 and CPT1B. However, no significant differences were observed in embryonic developmental rates. Furthermore, the expression of genes associated with preimplantational embryonic quality revealed that only the SEC ffsEVs group exhibited a significant increase in IFNT1 and SOX2 levels, indicating an enhancement in embryonic quality. Notably, blastocysts derived from SEC ffsEVs also showed a higher total cell count compared to those from UC ffsEVs. No differences were found in other critical genes like GLUT1 and CDX2. These results suggest that the use of SEC ffsEVs could improve the in vitro embryo production process, highlighting the importance of the isolation method in determining the functional efficacy of ffsEVs according to research objectives.
Collapse
Affiliation(s)
- Felipe Pérez-García
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Erwin Muñoz-Acuña
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Department of Animal Production, Faculty of Agriculture and EnvironmentalSciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cecilia Valencia
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Department of Animal Production, Faculty of Agriculture and EnvironmentalSciences, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Wang C, Peng H, Yuan X, Ji H, Xu Y, Kim NH, Li Y. Thiamethoxam Exposure Impairs Oocyte Maturation via Induction of Lipid Metabolism and Mitochondrial Dysfunctions in Porcine. Reprod Domest Anim 2025; 60:e70020. [PMID: 40034099 DOI: 10.1111/rda.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Neonicotinoid insecticides (NEOs) are the most widely used pesticides in modern agriculture, and there are residues in the environment and food. Thiamethoxam (TMX) has been proven to destroy the ovarian homeostasis of mice in vivo and reduce the development of porcine oocytes in vitro. However, whether TMX can interfere with porcine oocyte maturation and its potential mechanism remains unknown. This study indicated that TMX affects the expansion of cumulus cells, destroys the balance of lipid metabolism, and damages mitochondrial function. TMX treatment decreased the expression of genes related to cumulus cell expansion, lipid synthesis and mitochondrial synthesis. Collectively, results confirm that TMX exposure can damage oocyte maturation and produce reproductive toxicity by inducing lipid metabolism and mitochondrial dysfunction in porcine.
Collapse
Affiliation(s)
- ChaoRui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - HuiLin Peng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - XiuWen Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - HeWei Ji
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - YongNan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - YingHua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| |
Collapse
|
6
|
Dong W, Yang C, Guo D, Jia M, Wang Y, Wang J. PTX3-assembled pericellular hyaluronan matrix enhances endochondral ossification during fracture healing and heterotopic ossification. Bone 2025; 192:117385. [PMID: 39732447 DOI: 10.1016/j.bone.2024.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling. However, it remains unclear whether PTX3 affects EO by regulating HA-rich PCM assembly of chondrocytes, thereby impacting fracture healing and traumatic HO. This study demonstrates that PTX3 deficiency impairs fracture healing and inhibits traumatic HO, but dose not affect growth plate development in mice. PTX3 expression is up-regulated during chondrocyte matrix synthesis and maturation and is localized in the HA-rich PCM. PTX3 promotes the assembly of HA-rich PCM in a serum- and TSG6-dependent manner, fostering CD44 receptor clustering, activating the FAK/AKT signaling pathway, and promoting chondrocyte matrix synthesis and maturation. Local injection of PTX3/TSG6 matrix protein mixture effectively promotes fracture healing in mice. In conclusion, PTX3-assembled HA-rich PCM promotes chondrocyte matrix synthesis and maturation via CD44/FAK/AKT signaling. This mechanism facilitates EO during fracture healing and traumatic HO in mice.
Collapse
Affiliation(s)
- Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Gokyer D, Laws MJ, Kleinhans A, Riley JK, Flaws JA, Babayev E. Phthalates are detected in the follicular fluid of adolescents and oocyte donors with associated changes in the cumulus cell transcriptome. F&S SCIENCE 2025; 6:30-41. [PMID: 39515754 PMCID: PMC11829829 DOI: 10.1016/j.xfss.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the follicular fluid (FF) phthalate levels in adolescents undergoing fertility preservation compared with oocyte donors and explore its association with ovarian reserve and cumulus cell (CC) gene expression. DESIGN Retrospective study and molecular analysis of CCs and FF. SUBJECTS Adolescents (n = 20, 16.7 ± 0.6 years) undergoing fertility preservation and oocyte donors (n = 24, 26.2 ± 0.4 years). EXPOSURE Not applicable. MAIN OUTCOME MEASURES Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were analyzed for each group. The FF levels of 9 phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates, ƩPhthalates; di(2-ethylhexyl) phthalate (DEHP)-associated phthalate metabolites, ƩDEHP), exposure sources (plastics, ƩPlastic; personal care products, ƩPCP), and modes of action (antiandrogenic, ƩAA) and compared between the 2 groups. The transcriptome of CC associated with mature oocytes was compared between adolescents and oocyte donors using bulk ribonucleic acid sequencing. RESULTS The FF ƩPlastic and ƩPCP levels were significantly higher in adolescents than in oocyte donors. The FF ƩDEHP, ƩPlastic, ƩPCP, ƩAA, and ƩPhthalates levels were positively associated with antral follicle count in oocyte donors when adjusted for age, body mass index, and race/ethnicity. Ribonucleic acid sequencing analysis revealed 248 differentially expressed genes in CCs of adolescents within the top quartile (n = 4) of the FF ƩPhthalates levels compared with those of the adolescents within the bottom half (n = 9). Genes enriched in pathways involved in cell motility and development were significantly down-regulated. CONCLUSIONS Adolescents undergoing fertility preservation cycles demonstrate higher levels of phthalate metabolites in their FF than oocyte donors. Higher phthalate levels are associated with alterations in cumulus cells transcriptome in adolescents. The phthalate metabolite levels in FF are associated with higher antral follicle count levels in oocyte donors.
Collapse
Affiliation(s)
- Dilan Gokyer
- Division of Reproductive Endocrinology and Infertility, and Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mary J Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois
| | - Joan K Riley
- Division of Reproductive Endocrinology and Infertility, and Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Elnur Babayev
- Division of Reproductive Endocrinology and Infertility, and Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois.
| |
Collapse
|
8
|
Zhang S, Tseng SCG. Presence of heavy chain-hyaluronan/pentraxin 3 (HC-HA/PTX3) complex in human umbilical cord. Tissue Cell 2024; 91:102535. [PMID: 39217785 DOI: 10.1016/j.tice.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The heavy chain (HC)-hyaluronan (HA)/pentraxin 3 (HC-HA/PTX3) complex is formed by tumor necrosis factor-stimulated gene-6 (TSG-6) catalyzing the covalent (ester bond) transfer of HC1 from inter-α-trypsin inhibitor (IαI) to HA followed by tight binding of PTX3. The presence of such a complex has been found in human amniotic membrane (AM) and is considered to be a major matrix component responsible for its anti‑inflammatory and anti‑scarring properties to promote regenerative healing. Because the therapeutic potentials of AM and umbilical cord (UC) are similar, we herein evaluated whether human UC also contains HC-HA/PTX3. Immunostaining of UC cross-sections showed abundant PTX3, HC1, HA, TSG-6, and bikunin. Western blot analysis suggested the presence of HC1 complex bound via a NaOH-sensitive bond and tightly bound to PTX3 multimer in UC and AM extracts but not in chorion and placenta extracts. HC-HA/PTX3 was purified from UC extract by successive runs of density gradient ultracentrifugation and verified the presence of HC1 but not HC2 or HC3 based on western blot analysis. These results suggest the presence of HC-HA/PTX3 complex in UC is similar to AM.
Collapse
Affiliation(s)
- Suzhen Zhang
- BioTissue Holdings Inc., 7300 Corporate Center Dr Suite 700, Miami, FL, USA
| | - Scheffer C G Tseng
- BioTissue Holdings Inc., 7300 Corporate Center Dr Suite 700, Miami, FL, USA.
| |
Collapse
|
9
|
Doni A, Sironi M, Del Prete A, Pasqualini F, Valentino S, Cuccovillo I, Parente R, Calvi M, Tosoni A, Vago G, Nebuloni M, Garlanda C, Vecchi A, Bottazzi B, Mantovani A. PTX3 is expressed in terminal lymphatics and shapes their organization and function. Front Immunol 2024; 15:1426869. [PMID: 39640269 PMCID: PMC11617523 DOI: 10.3389/fimmu.2024.1426869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The lymphatic system is a multifaceted regulator of tissue homeostasis and an integral part of immune responses. Previous studies had shown that subsets of lymphatic endothelial cells (LEC) express PTX3, an essential component of humoral innate immunity and tissue homeostasis. Methods In the present study using whole-mount imaging and image-based morphometric quantifications, Ptx3-targeted mice and in vivo functional analysis, we investigated the involvement of PTX3 in shaping and function of the lymphatic vasculature. Results We found that PTX3 is localized in the extracellular matrix (ECM) surrounding human and murine lymphatic vessels (LV). In murine tissues, PTX3 was localized in the ECM close to LV terminals and sprouting. Ptx3-deficient mice showed LV abnormalities in the colon submucosa and diaphragm, including a disorganized pattern and hyperplasia of initial LV capillaries associated with altered distribution of tight junction-associated molecules. Mice with LEC-restricted PTX3 gene inactivation showed morphological and organization abnormalities similar to those observed in Ptx3-deficient animals. Ptx3-deficient mice showed defective fluid drainage from footpads and defective dendritic cell (DC) trafficking. Discussion Thus, PTX3 is strategically localized in the ECM of specialized LV, playing an essential role in their structural organization and immunological function.
Collapse
Affiliation(s)
- Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Sironi
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Annalisa Del Prete
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Pasqualini
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sonia Valentino
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ivan Cuccovillo
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela Calvi
- Clinical and Experimental Immunology Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonella Tosoni
- Pathology Unit, L. Sacco Hospital, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Gianluca Vago
- Pathology Unit, L. Sacco Hospital, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Manuela Nebuloni
- Pathology Unit, L. Sacco Hospital, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cecilia Garlanda
- Experimental Immunopathology Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Annunciata Vecchi
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Bottazzi
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Wang S, Yang B, Mu H, Dong W, Yang B, Wang X, Yu W, Dong Z, Wang J. PTX3 promotes cementum formation and cementoblast differentiation via HA/ITGB1/FAK/YAP1 signaling pathway. Bone 2024; 187:117199. [PMID: 38992453 DOI: 10.1016/j.bone.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
11
|
Gokyer D, Akinboro S, Zhou LT, Kleinhans A, Laronda MM, Duncan FE, Riley JK, Goldman KN, Babayev E. The oocyte microenvironment is altered in adolescents compared to oocyte donors. Hum Reprod Open 2024; 2024:hoae047. [PMID: 39211054 PMCID: PMC11361810 DOI: 10.1093/hropen/hoae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY QUESTION Do the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of oocyte donors? SUMMARY ANSWER The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. WHAT IS KNOWN ALREADY Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. STUDY DESIGN SIZE DURATION This was a prospective cohort study. Adolescents (10-19 years old, n = 23) and oocyte donors (22-30 years old, n = 31) undergoing ovarian stimulation and oocyte retrieval at a single center between 1 November 2020 and 1 May 2023 were enrolled in this study. PARTICIPANTS/MATERIALS SETTING METHODS Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n = 19) and oocyte donors (22-30 years old, n = 19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n = 18 vs 25-30 years old, n = 16) were compared using cytokine arrays. MAIN RESULTS AND THE ROLE OF CHANCE RNA-seq analysis revealed 581 differentially expressed genes in CCs of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g. GO: 1903047, P = 3.5 × 10-43; GO: 0051983, P = 4.1 × 10-30; GO: 0000281, P = 7.7 × 10-15; GO: 0044839, P = 5.3 × 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g. GO: 0010256, P = 1.2 × 10-8; GO: 0051129, P = 6.8 × 10-7; GO: 0016050, P = 7.4 × 10-7; GO: 0051640, P = 8.1 × 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of nine cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold), and ENA-78 (1.4-fold). Interestingly, seven of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes nor FF cytokine profiles were different in adolescents with or without cancer. LARGE SCALE DATA Original high-throughput sequencing data have been deposited in Gene Expression Omnibus (GEO) database with the accession number GSE265995. LIMITATIONS REASONS FOR CAUTION This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but would provide a more accurate assessment of oocyte reproductive potential. WIDER IMPLICATIONS OF THE FINDINGS Our findings have implications for the adolescent fertility preservation cycles. Understanding the expected quality of cryopreserved eggs in this age group will lead to better counseling of these patients about their reproductive potential and may help to determine the number of eggs that is recommended to be banked to achieve a reasonable chance of future live birth(s). STUDY FUNDING/COMPETING INTERESTS This project was supported by Friends of Prentice organization SP0061324 (M.M.L. and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sophia Akinboro
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Basic and Preclinical Science, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joan K Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Kara N Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
13
|
Li Y, Chang HM, Zhu H, Sun YP, Leung PCK. EGF-like growth factors upregulate pentraxin 3 expression in human granulosa-lutein cells. J Ovarian Res 2024; 17:97. [PMID: 38720330 PMCID: PMC11077866 DOI: 10.1186/s13048-024-01404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/30/2024] [Indexed: 05/12/2024] Open
Abstract
The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.
Collapse
Affiliation(s)
- Yuxi Li
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hsun-Ming Chang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Hua Zhu
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Ying-Pu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
14
|
Imran FS, Al-Thuwaini TM. The Novel PTX3 Variant g.22645332G>T Is Strongly Related to Awassi and Hamdani Sheep Litter Size. Bioinform Biol Insights 2024; 18:11779322241248912. [PMID: 38681096 PMCID: PMC11047254 DOI: 10.1177/11779322241248912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
The detection of polymorphisms in genes that control livestock reproduction could be highly beneficial for identifying and enhancing economic traits. One of these genes is pentraxin 3 (PTX3), which affects the reproduction of sheep. Therefore, this study investigated whether the variability of the PTX3 gene was related to the litter size of Awassi and Hamdani ewes. A total of 200 ewes (130 Awassi and 70 Hamdani) were used for genomic DNA extraction. Polymerase chain reaction was used to amplify the sequence fragments of exons 1, 2, 3, and 4 from the PTX3 gene (Oar_v4.0; Chr 1, NC_056054.1), resulting in products of 254, 312, 302, and 253, respectively. Two genotypes, GG and GT, were identified for 302 bp amplicon. A novel mutation was discovered through sequence analysis in the GT genotype at position g.22645332G>T. The statistical analysis revealed a significant association between single nucleotide polymorphism (SNP g.22645332G>T; Oar_v4.0; Chr 1, NC_056054.1) and litter size. The presence of the SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) genotype in ewes resulted in a significant difference compared to ewes with GG genotypes. The discrepancy became apparent in several aspects, including litter sizes, twinning rates, lambing rates, litter weight at birth, and days to lambing. There were fewer lambs born to ewes with the GG genotype than to ewes with the GT genotype. The variant SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) has positive effects on the litter size of Awassi and Hamdani sheep. The SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1 has been associated with an increase in litter size and higher prolificacy in ewes.
Collapse
Affiliation(s)
- Faris S Imran
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
- Department of Public Health, Faculty of Veterinary Medicine, Kerbala University, Karbala, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| |
Collapse
|
15
|
Gokyer D, Laws MJ, Kleinhans A, Riley JK, Flaws JA, Babayev E. Phthalates are detected in the follicular fluid of adolescents and oocyte donors with associated changes in the cumulus cell transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588126. [PMID: 38645121 PMCID: PMC11030231 DOI: 10.1101/2024.04.04.588126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Purpose To investigate follicular fluid (FF) phthalate levels in adolescents undergoing fertility preservation compared to oocyte donors and explore its association with ovarian reserve and cumulus cell gene expression. Methods 20 Adolescents (16.7 ± 0.6 years old) and 24 oocyte donors (26.2 ± 0.4 years old) undergoing fertility preservation were included in the study. Patient demographics, ovarian stimulation and oocyte retrieval outcomes were analyzed for each group. FF levels of 9 phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates: ΣPhthalates; DEHP: ΣDEHP), exposure sources (plastics: ΣPlastic; personal care products: ΣPCP), and modes of action (anti-androgenic: ΣAA) and compared between the two groups. Results Follicular fluid ΣPlastic and ΣPCP levels were significantly higher in adolescents compared to oocyte donors (p<0.05). Follicular fluid ΣDEHP, ΣPlastic, ΣPCP, ΣAA, and ΣPhthalates levels were positively associated with antral follicle count (AFC) (p<0.05) in oocyte donors when adjusted for age, BMI, and race/ethnicity. RNA-seq analysis revealed 248 differentially expressed genes (DEGs) in cumulus cells of adolescents within the top quartile (n=4) of FF ΣPhthalates levels compared to the adolescents within the bottom half (n=9). Genes enriched in pathways involved in cell motility and development were significantly downregulated. Conclusion Adolescents undergoing fertility preservation cycles demonstrate higher levels of phthalate metabolites in their follicular fluid compared to oocyte donors. Phthalate metabolite levels in FF are associated with higher AFC levels in oocyte donors. Higher phthalate levels in FF are associated with alterations in the cumulus cells transcriptome in adolescents.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mary J. Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL
| | - Joan K. Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL
| |
Collapse
|
16
|
Gokyer D, Akinboro S, Zhou LT, Kleinhans A, Laronda MM, Duncan FE, Riley JK, Goldman KN, Babayev E. The oocyte microenvironment is altered in adolescents compared to oocyte donors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588118. [PMID: 38617323 PMCID: PMC11014529 DOI: 10.1101/2024.04.04.588118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Study question Are the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of reproductively adult oocyte donors? Summary answer The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. What is known already Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. Study design size duration This was a prospective cohort study. Adolescents (10-19 years old, N=23) and oocyte donors (22-30 years old, N=31) undergoing ovarian stimulation and oocyte retrieval at the Northwestern Fertility and Reproductive Medicine Center between November 1, 2020 and May 1, 2023 were enrolled in this study. Participants/materials setting methods Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n=19), and oocyte donors (22-30 years old, n=19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n=18 vs. 25-30 years old, n=16) were compared using cytokine arrays. Main results and the role of chance RNA-seq analysis revealed 581 differentially expressed genes (DEGs) in cumulus cells of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g., GO:1903047, p= 3.5 × 10-43; GO:0051983, p= 4.1 × 10-30; GO:0000281, p= 7.7 × 10-15; GO:0044839, p= 5.3 × 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g., GO:0010256, p= 1.2 × 10-8; GO:0051129, p= 6.8 × 10-7; GO:0016050, p= 7.4 × 10-7; GO:0051640, p= 8.1 × 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of 9 cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold) and ENA-78 (1.4-fold). Interestingly, 7 of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes or FF cytokine profiles were different in adolescents with or without cancer. Large scale data Original high-throughput sequencing data will be deposited in Gene Expression Omnibus (GEO) before publication, and the GEO accession number will be provided here. Limitations reasons for caution This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but will provide a more accurate assessment of oocyte reproductive potential. Wider implications of the findings Understanding the underpinnings of altered immediate oocyte microenvironment of adolescent patients may provide insights into the reproductive potential of the associated gametes in the younger end of the age spectrum. This has implications for the fertility preservation cycles for very young patients. Study funding/competing interests This project was supported by Friends of Prentice organization SP0061324 (M.M.L and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Sophia Akinboro
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| | - Monica M. Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, 60611
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Joan K. Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| | - Kara N. Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| |
Collapse
|
17
|
da Silva Rosa PM, Bridi A, de Ávila Ferronato G, Prado CM, Bastos NM, Sangalli JR, Meirelles FV, Perecin F, da Silveira JC. Corpus luteum presence in the bovine ovary increase intrafollicular progesterone concentration: consequences in follicular cells gene expression and follicular fluid small extracellular vesicles miRNA contents. J Ovarian Res 2024; 17:65. [PMID: 38500173 PMCID: PMC10946200 DOI: 10.1186/s13048-024-01387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND It is well described that circulating progesterone (P4) plays a key role in several reproductive events such as oocyte maturation. However, during diestrus, when circulating P4 is at the highest concentrations, little is known about its local impact on the follicular cells such as intrafollicular P4 concentration due to corpus luteum (CL) presence within the same ovary. Based on that, our hypothesis is that the CL presence in the ovary during diestrus alters intrafollicular P4 concentrations, oocyte competence acquisition, follicular cells gene expression, and small extracellular vesicles (sEVs) miRNAs contents. RESULTS P4 hormonal analysis revealed that ipsilateral to the CL follicular fluid (iFF) presented higher P4 concentration compared to contralateral follicular fluid (cFF). Furthermore, oocyte maturation and miRNA biogenesis pathways transcripts (ADAMTS-1 and AGO2, respectively) were increased in cumulus and granulosa cells of iFF, respectively. Nevertheless, a RT-PCR screening of 382 miRNAs showed that three miRNAs were upregulated and two exclusively expressed in sEVs from iFF and are predicted to regulate cell communication pathways. Similarly, seven miRNAs were higher and two exclusively expressed from cFF sEVs and are predicted to modulate proliferation signaling pathways. CONCLUSION In conclusion, intrafollicular P4 concentration is influenced by the presence of the CL and modulates biological processes related to follicular cell development and oocyte competence, which may influence the oocyte quality. Altogether, these results are crucial to improve our knowledge about the follicular microenvironment involved in oocyte competence acquisition.
Collapse
Affiliation(s)
- Paola Maria da Silva Rosa
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Giuliana de Ávila Ferronato
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Cibele Maria Prado
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Natália Marins Bastos
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13635-900, Brazil.
| |
Collapse
|
18
|
Wijesena HR, Keel BN, Nonneman DJ, Cushman RA, Lents CA. Clustering of multi-tissue transcriptomes in gilts with normal cyclicity or delayed puberty reveals genes related to pubertal development†. Biol Reprod 2024; 110:261-274. [PMID: 37870496 DOI: 10.1093/biolre/ioad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023] Open
Abstract
In gilts, puberty is marked by standing estrus in the presence of a boar. Delayed puberty (DP; failure to display pubertal estrus) is a major reason for gilt removal. To investigate the physiological determinants underlying DP in gilts, transcriptomic data from tissues relevant to estrus and puberty, such as mediobasal hypothalamus, anterior pituitary gland, ovarian cortex, olfactory bulb, amygdala, and hippocampus, were obtained from age-matched DP (n = 8) and cyclic control gilts at follicular phase (n = 8) and luteal phase (n = 8) of the estrous cycle. A gene expression module analysis via three-way gene × individual × tissue clustering using tensor decomposition identified pituitary and ovary gene modules contributing to regulation of pubertal development. Analysis of gene expression in the hypothalamic-pituitary-ovary axis identified reduced expression of hypothalamic genes critical for stimulating gonadotropin secretion (KISS1 and TAC3) and reduced expression of LHB in the anterior pituitary of DP gilts compared with their cyclic counterparts. Consequently, luteinizing hormone-induced genes in the ovary important for folliculogenesis (OXTR, RUNX2, and PTX3) were less expressed in DP gilts. Other intrafollicular genes (AHR, PTGS2, PTGFR, and IGFBP7) and genes in the steroidogenesis pathways (STAR and CYP11A1) necessary to complete the ovulatory cascade were also less expressed in DP gilts. This is the first clustering of multi-tissue expression data from DP and cyclic gilts to identify genes differentially expressed in gilts of similar ages but at different levels of sexual development. A critical lack of gonadotropin support and reduced ovarian responsiveness underlie DP in gilts.
Collapse
Affiliation(s)
| | - Brittney N Keel
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| | - Dan J Nonneman
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| | | | - Clay A Lents
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
19
|
Wang CR, Yuan XW, Ji HW, Xu YN, Li YH, Kim NH. Chrysoeriol Improves the Early Development Potential of Porcine Oocytes by Maintaining Lipid Homeostasis and Improving Mitochondrial Function. Antioxidants (Basel) 2024; 13:122. [PMID: 38275647 PMCID: PMC10812720 DOI: 10.3390/antiox13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Our previous study established that chrysoeriol (CHE) can reduce reactive oxygen species (ROS) accumulation, apoptosis, and autophagy in vitro culture (IVC) of porcine embryos. However, the role of CHE in oocyte maturation and lipid homeostasis is unclear. Herein, we aimed to elucidate the effect of CHE on porcine oocyte competence in vitro maturation (IVM) and subsequent embryo development. The study chooses parthenogenetic activated porcine oocytes as the research model. The study revealed that the cumulus expansion index and related gene expressions are significantly elevated after supplementing 1 μM CHE. Although there were no significant differences in nuclear maturation and cleavage rates, the blastocyst formation rate and total cell numbers were significantly increased in the 1 μM CHE group. In addition, CHE improved the expression of genes related to oocyte and embryo development. ROS was significantly downregulated in all CHE treatment groups, and intracellular GSH (glutathione) was significantly upregulated in 0.01, 0.1, and 1 μM CHE groups. The immunofluorescence results indicated that mitochondrial membrane potential (MMP) and lipid droplet (LD), fatty acid (FA), ATP, and functional mitochondria contents significantly increased with 1 μM CHE compared to the control. Furthermore, CHE increased the expression of genes related to lipid metabolism, mitochondrial biogenesis, and β-oxidation.
Collapse
Affiliation(s)
| | | | | | | | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China; (C.-R.W.); (H.-W.J.)
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China; (C.-R.W.); (H.-W.J.)
| |
Collapse
|
20
|
Ersahin A, Celik O, Gungor ND, Celik N, Melil S, Yardim M, Dalkilic S, Ersahin C, Dogukargin E, Celik S, Akkoc RF. Long pentraxin 3 and vitamin D receptor mRNA expression pattern of cumulus granulosa cells isolated from PCOS oocytes at different stages of nuclear maturation. Reprod Biol Endocrinol 2024; 22:6. [PMID: 38167474 PMCID: PMC10759607 DOI: 10.1186/s12958-023-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND A fine-tuned pro-inflammatory and anti-inflammatory balance in the follicular unit is essential for cumulus expansion and successful ovulation. While the long pentraxin 3 (PTX3) gene is required for the expansion of cumulus cells (CCs), ovulation, resumption of meiosis and fertilization, the vitamin D receptor gene (VDR-X2) is required for intra-follicle redox balance. This study was planned to determine the expression pattern of VDR-X2 and PTX3 mRNA in CCs isolated from germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) oocytes of PCOS patients with ovulatory dysfunction. METHODS The relative expression of CC-PTX3 and CC-VDR-X2 mRNA were evaluated using qRT-PCR in a total of 79 CC samples collected from individual cumulus-oocyte complex of 40 infertile patients (20 PCOS and 20 non-PCOS normal responders) who underwent ovarian stimulation with the GnRH antagonist protocol. RESULTS Relative PTX3 mRNA expressions of CCMI-control and CCMII-control showed 3- and 9-fold significant upregulation compared to CCGV-control, respectively. The relative PTX3 mRNA expression of CCMII-control increased approximately three fold compared to CCMI-control. Compared to CCGV-pcos, a 3-fold increase was noted in the relative PTX3 mRNA expression of CCMI-pcos and an approximately 4-fold increase in the PTX3 mRNA expression of CCMII-pcos. Relative PTX3 mRNA expression values of CCMII-pcos and CCMI-pcos were similar. A 6-fold upregulation of relative PTX3 mRNA and a 4-fold upregulation of VDR-X2 mRNA were detected in CCMII-control compared to CCMII-pcos. CC-VDR-X2 expression patterns of the PCOS and control groups overlapped with the CC-PTX3 pattern. Fertilization rates of the PCOS group exhibiting failed transcript expression were similar to normal responders. CONCLUSION The fact that relative CC-PTX3 and CC-VDR mRNA expression does not increase during the transition from MI to MII stage in PCOS as in normal responders suggests that PTX3 and VDR expression may be defective in cumulus cells of PCOS patients with ovulatory dysfunction.
Collapse
Affiliation(s)
- Aynur Ersahin
- Department of Obstetrics and Gynecology, Bahcesehir University Goztepe Medicalpark Hospital, Istanbul, 34732, Turkey
| | - Onder Celik
- Department of Obstetrics and Gynecology, Private Clinic, Usak, 64000, Turkey.
| | - Nur D Gungor
- Department of Obstetrics and Gynecology, Bahcesehir University Goztepe Medicalpark Hospital, Istanbul, 34732, Turkey
| | - Nilufer Celik
- Department of Medical Biochemistry, Behcet Uz Children's Hospital, Izmir, 35210, Turkey
| | - Sureyya Melil
- Göztepe Medicalpark Hospital IVF-Unit, Istanbul, 34732, Turkey
| | - Meltem Yardim
- Department of Medical Biochemistry, Yerkoy State Hospital, Yozgat, 66900, Turkey
| | - Semih Dalkilic
- Faculty of Science, Department of Biology, Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Cenk Ersahin
- Bahcesehir University School of Medicine, Istanbul, 34732, Turkey
| | - Ece Dogukargin
- Bahcesehir University School of Medicine, Istanbul, 34732, Turkey
| | - Sudenaz Celik
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia, 1407, Bulgaria
| | - Ramazan F Akkoc
- Department of Anatomy, School of Medicine, Firat University, Elazig, 34060, Turkey
| |
Collapse
|
21
|
Nagyova E, Mlynarcikova AB, Nemcova L, Scsukova S. Unique hyaluronan structure of expanded oocyte-cumulus extracellular matrix in ovarian follicles. Endocr Regul 2024; 58:174-180. [PMID: 39121477 DOI: 10.2478/enr-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
In preovulatory follicles, after the endogenous gonadotropin surge, the oocyte-cumulus complexes (OCCs) produce hyaluronan (HA) in a process called "cumulus expansion". During this process, the heavy chains (HCs) of the serum-derived inter-alpha-trypsin inhibitor (IαI) family bind covalently to synthesized HA and form a unique structure of the expanded cumulus HA-rich extracellular matrix. Understanding the biochemical mechanism of the covalent linkage between HA and the HCs of the IαI family is one of the most significant discoveries in reproductive biology, since it explains basis of the cumulus expansion process running in parallel with the oocyte maturation, both essential for ovulation. Two recent studies have supported the above-mentioned findings: in the first, seven components of the extracellular matrix were detected by proteomic, evolutionary, and experimental analyses, and in the second, the essential role of serum in the process of cumulus expansion in vitro was confirmed. We have previously demonstrated the formation of unique structure of the covalent linkage of HA to HCs of IαI in the expanded gonadotropin-stimulated OCC, as well as interactions with several proteins produced by the cumulus cells: tumor necrosis factor-alpha-induced protein 6, pentraxin 3, and versican. Importantly, deletion of these genes in the mice produces female infertility due to defects in the oocyte-cumulus structure.
Collapse
Affiliation(s)
- Eva Nagyova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | | | - Lucie Nemcova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Sona Scsukova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
22
|
Shirafuta Y, Tamura I, Shiroshita A, Fujimura T, Maekawa R, Taketani T, Sugino N. Analysis of cell-cell interaction between mural granulosa cells and cumulus granulosa cells during ovulation using single-cell RNA sequencing data of mouse ovary. Reprod Med Biol 2024; 23:e12564. [PMID: 38361634 PMCID: PMC10867398 DOI: 10.1002/rmb2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Purpose We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-β-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Amon Shiroshita
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Taishi Fujimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryo Maekawa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Toshiaki Taketani
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
23
|
Okamoto A, Nakanishi T, Tonai S, Shimada M, Yamashita Y. Neurotensin induces sustainable activation of the ErbB-ERK1/2 pathway, which is required for developmental competence of oocytes in mice. Reprod Med Biol 2024; 23:e12571. [PMID: 38510925 PMCID: PMC10951886 DOI: 10.1002/rmb2.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose LH induces the expression of EGF-like factors and their shedding enzyme (ADAM17) in granulosa cells (GCs), which is essential for ovulation via activation of the ErbB-ERK1/2 pathway in cumulus cells (CCs). Neurotensin (NTS) is reported as a novel regulator of ovulation, whereas the NTS-induced maturation mechanism in oocytes remains unclear. In this study, we focused on the role of NTS in the expression of EGF-like factors and ErbBs, and ADAM17 activity, during oocyte maturation and ovulation in mice. Methods The expression and localization in GC and CC were examined. Next, hCG and NTS receptor 1 antagonist (SR) were injected into eCG-primed mice, and the effects of SR on ERK1/2 phosphorylation were investigated. Finally, we explored the effects of SR on the expression of EGF-like factors and ErbBs, and ADAM17 activity in GC and CC. Results NTS was significantly upregulated in GC and CC following hCG injection. SR injection suppressed oocyte maturation and ERK1/2 phosphorylation. SR also downregulated part of the expression of EGF-like factors and their receptors, and ADAM17 activity. Conclusions NTS induces oocyte maturation through the sustainable activation of the ERK1/2 signaling pathway by upregulating part of the EGF-like factor-induced pathway during oocyte maturation in mice.
Collapse
Affiliation(s)
- Asako Okamoto
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| |
Collapse
|
24
|
Xin X, Chang HM, Leung PCK, Dong L, Li J, Lian F, Wu H. Bone morphogenetic protein 6 induces downregulation of pentraxin 3 expression in human granulosa lutein cells in women with polycystic ovary syndrome. J Assist Reprod Genet 2024; 41:31-48. [PMID: 37930517 PMCID: PMC10789681 DOI: 10.1007/s10815-023-02972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
PURPOSE To evaluate whether PTX3 is differentially expressed in the granulosa lutein cells derived from women with PCOS and whether BMP6 can regulate the expression of PTX3 in hGL cells. METHODS The expression levels of BMP6 and PTX3 in granulosa lutein cells were evaluated by RT-qPCR. The correlation between the expression levels of BMP6 /PTX3 and oocyte quality indexes were analyzed using clinical samples. The cells were incubated with BMP6 at different concentrations and times to check the expression of PTX3 in KGN cells. TGF-β type I inhibitors and small interfering RNA targeting ALK2/3/6,SMAD1/5/8 and SMAD4 were used to study the involvement of SMAD dependent pathways in KGN cells. RESULTS The levels of BMP6 in hGL cells were negatively correlated with the corresponding oocyte maturation rate and high-quality embryo rate, whereas the levels of PTX3 were positively correlated with the corresponding oocyte maturation rate in PCOS. Additionally, the in vitro cell cultured results showed BMP6 significantly inhibited the expression of PTX3 in KGN cells. Furthermore, using a dual inhibition approach (kinase inhibitors and small interfering RNAs), we identified the ALK2/ALK3 type I receptors and BMPR2/ACVR2A type II receptors and the downstream SMAD1/SMAD5-SMAD4 signaling pathway were responsible for the BMP6-induced cellular activities in KGN cells. CONCLUSIONS The suppressive effect of BMP6 on PTX3 was mediated by ALK2/ALK3 type I receptors and BMPR2/ACVR2A type II receptors in granulosa cells through the SMAD1/5-SMAD4 dependent signaling pathway in PCOS.Our findings provides new insights into the understanding of the pathogenesis of PCOS-related ovulatory disorders.
Collapse
Affiliation(s)
- Xin Xin
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Hsun-Ming Chang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jiaxi Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Fang Lian
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Haicui Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
25
|
Zhang CH, Liu XY, Wang J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16247. [PMID: 38003436 PMCID: PMC10671516 DOI: 10.3390/ijms242216247] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Granulosa cells are crucial for the establishment and maintenance of bidirectional communication among oocytes. Various intercellular material exchange modes, including paracrine and gap junction, are used between them to achieve the efficient delivery of granulosa cell structural components, energy substrates, and signaling molecules to oocytes. Glucose metabolism and lipid metabolism are two basic energy metabolism pathways in granulosa cells; these are involved in the normal development of oocytes. Pyruvate, produced by granulosa cell glycolysis, is an important energy substrate for oocyte development. Granulosa cells regulate changes in intrafollicular hormone levels through the processing of steroid hormones to control the development process of oocytes. This article reviews the material exchange between oocytes and granulosa cells and expounds the significance of granulosa cells in the development of oocytes through both glucose metabolism and lipid metabolism. In addition, we discuss the effects of glucose and lipid metabolism on oocytes under pathological conditions and explore its relationship to polycystic ovary syndrome (PCOS). A series of changes were found in the endogenous molecules and ncRNAs that are related to glucose and lipid metabolism in granulosa cells under PCOS conditions. These findings provide a new therapeutic target for patients with PCOS; additionally, there is potential for improving the fertility of patients with PCOS and the clinical outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Xiang-Yi Liu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Jing Wang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
26
|
Babayev E, Suebthawinkul C, Gokyer D, Parkes WS, Rivas F, Pavone ME, Hall AR, Pritchard MT, Duncan FE. Cumulus expansion is impaired with advanced reproductive age due to loss of matrix integrity and reduced hyaluronan. Aging Cell 2023; 22:e14004. [PMID: 37850336 PMCID: PMC10652338 DOI: 10.1111/acel.14004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Reproductive aging is associated with ovulatory defects. Age-related ovarian fibrosis partially contributes to this phenotype as short-term treatment with anti-fibrotic compounds improves ovulation in reproductively old mice. However, age-dependent changes that are intrinsic to the follicle may also be relevant. In this study, we used a mouse model to demonstrate that reproductive aging is associated with impaired cumulus expansion which is accompanied by altered morphokinetic behavior of cumulus cells as assessed by time-lapse microscopy. The extracellular matrix integrity of expanded cumulus-oocyte complexes is compromised with advanced age as evidenced by increased penetration of fluorescent nanoparticles in a particle exclusion assay and larger open spaces on scanning electron microscopy. Reduced hyaluronan (HA) levels, decreased expression of genes encoding HA-associated proteins (e.g., Ptx3 and Tnfaip6), and increased expression of inflammatory genes and matrix metalloproteinases underlie this loss of matrix integrity. Importantly, HA levels are decreased with age in follicular fluid of women, indicative of conserved reproductive aging mechanisms. These findings provide novel mechanistic insights into how defects in cumulus expansion contribute to age-related infertility and may serve as a target to extend reproductive longevity.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Chanakarn Suebthawinkul
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Obstetrics and Gynecology, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Wendena S. Parkes
- Department of Pharmacology, Toxicology, & Therapeutics, Institute for Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Felipe Rivas
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Adam R. Hall
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology, & Therapeutics, Institute for Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
27
|
Appeltant R, Hermes R, Holtze S, Modina SC, Galli C, Bjarkadottir BD, Adeniran BV, Wei X, Swegen A, Hildebrandt TB, Williams SA. The neonatal southern white rhinoceros ovary contains oogonia in germ cell nests. Commun Biol 2023; 6:1049. [PMID: 37848538 PMCID: PMC10582104 DOI: 10.1038/s42003-023-05256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/18/2023] [Indexed: 10/19/2023] Open
Abstract
The northern white rhinoceros is functionally extinct with only two females left. Establishing methods to culture ovarian tissues, follicles, and oocytes to generate eggs will support conservation efforts using in vitro embryo production. To the best of our knowledge, this is the first description of the structure and molecular signature of any rhinoceros, more specifically, we describe the neonatal and adult southern white rhinoceros (Ceratotherium simum simum) ovary; the closest relation of the northern white rhinoceros. Interestingly, all ovaries contain follicles despite advanced age. Analysis of the neonate reveals a population of cells molecularly characterised as mitotically active, pluripotent with germ cell properties. These results indicate that unusually, the neonatal ovary still contains oogonia in germ cell nests at birth, providing an opportunity for fertility preservation. Therefore, utilising ovaries from stillborn and adult rhinoceros can provide cells for advanced assisted reproductive technologies and investigating the neonatal ovaries of other endangered species is crucial for conservation.
Collapse
Affiliation(s)
- Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 17, D-10315, Berlin, Germany
| | - Silvia Clotilde Modina
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Via Porcellasco 7/F, 26100, Cremona, Italy
- Fondazione Avantea, 26100, Cremona, Italy
| | - Briet D Bjarkadottir
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Babatomisin V Adeniran
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Xi Wei
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Thomas Bernd Hildebrandt
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
- Freie Universität Berlin, D-14195, Berlin, Germany
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
28
|
Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol 2023; 14:1274634. [PMID: 37885881 PMCID: PMC10598717 DOI: 10.3389/fimmu.2023.1274634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.
Collapse
Affiliation(s)
| | | | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
29
|
Zaniker EJ, Babayev E, Duncan FE. Common mechanisms of physiological and pathological rupture events in biology: novel insights into mammalian ovulation and beyond. Biol Rev Camb Philos Soc 2023; 98:1648-1667. [PMID: 37157877 PMCID: PMC10524764 DOI: 10.1111/brv.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Ovulation is a cyclical biological rupture event fundamental to fertilisation and endocrine function. During this process, the somatic support cells that surround the germ cell undergo a remodelling process that culminates in breakdown of the follicle wall and release of a mature egg. Ovulation is driven by known proteolytic and inflammatory pathways as well as structural alterations to the follicle vasculature and the fluid-filled antral cavity. Ovulation is one of several types of systematic remodelling that occur in the human body that can be described as rupture. Although ovulation is a physiological form of rupture, other types of rupture occur in the human body which can be pathological, physiological, or both. In this review, we use intracranial aneurysms and chorioamniotic membrane rupture as examples of rupture events that are pathological or both pathological and physiological, respectively, and compare these to the rupture process central to ovulation. Specifically, we compared existing transcriptomic profiles, immune cell functions, vascular modifications, and biomechanical forces to identify common processes that are conserved between rupture events. In our transcriptomic analysis, we found 12 differentially expressed genes in common among two different ovulation data sets and one intracranial aneurysm data set. We also found three genes that were differentially expressed in common for both ovulation data sets and one chorioamniotic membrane rupture data set. Combining analysis of all three data sets identified two genes (Angptl4 and Pfkfb4) that were upregulated across rupture systems. Some of the identified genes, such as Rgs2, Adam8, and Lox, have been characterised in multiple rupture contexts, including ovulation. Others, such as Glul, Baz1a, and Ddx3x, have not yet been characterised in the context of ovulation and warrant further investigation as potential novel regulators. We also identified overlapping functions of mast cells, macrophages, and T cells in the process of rupture. Each of these rupture systems share local vasoconstriction around the rupture site, smooth muscle contractions away from the site of rupture, and fluid shear forces that initially increase and then decrease to predispose one specific region to rupture. Experimental techniques developed to study these structural and biomechanical changes that underlie rupture, such as patient-derived microfluidic models and spatiotemporal transcriptomic analyses, have not yet been comprehensively translated to the study of ovulation. Review of the existing knowledge, transcriptomic data, and experimental techniques from studies of rupture in other biological systems yields a better understanding of the physiology of ovulation and identifies avenues for novel studies of ovulation with techniques and targets from the study of vascular biology and parturition.
Collapse
Affiliation(s)
- Emily J. Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Zhong Q, Zhong Q, Cai X, Wu R. Identification and validation of an ECM organization-related gene signature as a prognostic biomarker and therapeutic target for glioma patients. Genes Genomics 2023; 45:1211-1226. [PMID: 37301776 DOI: 10.1007/s13258-023-01413-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glioma is the most common and devastating form of malignant brain tumor, with a poor prognosis. Extracellular matrix (ECM) organization is a crucial determinant of glioma invasion and progression. However, the clinical significance of ECM organization in glioma patients remains unclear. OBJECTIVE To evaluate the prognostic value of ECM organization-related genes in glioma patients and identify potential therapeutic targets. METHODS Bulk RNA-sequencing and corresponding clinical data for patients with glioma were downloaded from TCGA and GEO databases. Differentially expressed ECM organization genes were identified, and an ECM organization-related gene prognostic model was then generated. Furthermore, the prognostic model has validated in the Chinese Glioma Genome Atlas (CGGA) dataset. The role of TIMP1 in glioma cells by using various functional assays revealed their underlying mechanism in vitro. RESULTS We identified and validated a nine-gene signature (TIMP1, SERPINE1, PTX3, POSTN, PLOD3, PDPN, LOXL1, ITGA2, and COL8A1) related to ECM organization as a robust prognostic biomarker for glioma. Time-dependent ROC curve analysis confirmed the specificity and sensitivity of the signature. The signature was closely related to an immunosuppressive phenotype, and its combination with immune checkpoints served as a good predictor for patients' clinical outcomes. Notably, single-cell RNA sequencing analysis revealed high expression of TIMP1 in astrocytes and oligodendrocyte progenitor cells in glioma patients. Last, we show that TIMP1 regulates glioma cell growth and invasion via the AKT/GSK3β signaling pathway. CONCLUSION This study provides promising insights into predicting glioma prognosis and identifying a potential therapeutic target in TIMP1.
Collapse
Affiliation(s)
- Qiong Zhong
- Department of Oncology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
| | - Qiuxia Zhong
- Department of Oncology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Xiaolong Cai
- Department of Oncology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Renrui Wu
- Department of Oncology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
31
|
Albtoush N, Queisser KA, Zawerton A, Lauer ME, Beswick EJ, Petrey AC. TSG6 hyaluronan matrix remodeling dampens the inflammatory response during colitis. Matrix Biol 2023; 121:149-166. [PMID: 37391162 PMCID: PMC10530565 DOI: 10.1016/j.matbio.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical "HA-cable" structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kimberly A Queisser
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ash Zawerton
- Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark E Lauer
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Department of Pathology, Division of Microbiology & Immunology, University of Utah School of Medicine, Salt Lake City, Utah, 84132, USA; Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
32
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
33
|
Huang SJ, Huang CY, Huang YH, Cheng JH, Yu YC, Lai JC, Hung YP, Chang CC, Shiu LY. A novel therapeutic approach for endometriosis using adipose-derived stem cell-derived conditioned medium- A new hope for endometriotic patients in improving fertility. Front Endocrinol (Lausanne) 2023; 14:1158527. [PMID: 37293500 PMCID: PMC10244723 DOI: 10.3389/fendo.2023.1158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Endometriosis is defined as the growth of endometrial glands and stromal cells in a heterotopic location with immune dysregulation. It usually leads to chronic pelvic pain and subfertility. Although various treatments are available, the recurrence rate remains high. Adipose tissue is an abundant source of multipotent mesenchymal adipose-derived stem cells (ADSCs). ADSCs display effects on not only tissue regeneration, but also immune regulation. Thus, the current study aims to test the effects of ADSCs on the growth of endometriosis. Methods ADSCs isolated from lipoaspiration-generated adipose tissue and their conditioned medium (ADSC-CM) were subjected to quality validation, including karyotyping as well as growth promotion and sterility tests for microbial contamination under Good Tissue Practice and Good Manufacturing Practice regulations. An autologous endometriosis mouse model was established by suturing endometrial tissue to peritoneal wall followed by treating with DMEM/F12 medium, ADSC-CM, ADSCs or ADSC-CM+ADSCs for 28 days. The area of endometriotic cysts and the degree of pelvic adhesion were measured. ICAM-1, VEGF and caspase 3 expression was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Moreover, the mice were allowed to mate and deliver. The pregnancy outcomes were recorded. The ADSC-CM was subjected to proteomics analysis with further data mining with Ingenuity Pathway Analysis (IPA). Results Both ADSC-CM and ADSCs passed quality validation. ADSC-CM reduced the area of endometriotic cysts. The inhibition by ADSC-CM was obliterated by adding ADSCs. The presence of ADSCs with or without ADSC-CM increased the peritoneal adhesion. ADSC-CM inhibited ICAM-1 and VEGF mRNA and protein expression, whereas the addition of ADSCs not only did not inhibit by itself, but also blocked the inhibition by ADSC-CM. The resorption rate was reduced by ADSC-CM. The number of live birth/dam and the survival rate of pup at 1 week-old were both increased by ADSC-CM in mice with endometriosis. IPA demonstrated that PTX3 was potentially critical for the inhibition of endometriosis by ADSC-CM due to its anti-inflammatory and antiangiogenic properties as well as its importance in implantation. Conclusion ADSC-CM inhibited endometriosis development and improved pregnancy outcomes in mice. Potential translation to clinical treatment for human endometriosis is expected.
Collapse
Affiliation(s)
- S. Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, United States
| | - Chun-Yen Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Hao Huang
- Department of Plastic Surgery, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Ya-Chun Yu
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Chi Lai
- Cell Therapy Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | | | - Chi-Chang Chang
- Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Gwon MA, Kim MJ, Kang HG, Joo YE, Jeon SB, Jeong PS, Kim SU, Sim BW, Koo DB, Song BS. Cadmium exposure impairs oocyte meiotic maturation by inducing endoplasmic reticulum stress in vitro maturation of porcine oocytes. Toxicol In Vitro 2023; 91:105615. [PMID: 37207789 DOI: 10.1016/j.tiv.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is toxic metal that can induce various diseases, such as cardiovascular, nervous, and reproductive systems. This study investigated the effect of Cd exposure on porcine oocyte maturation and the underlying mechanism. Porcine cumulus-oocyte complexes were exposed various Cd concentration and tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress during in vitro maturation (IVM). After IVM, we evaluated meiotic maturation, ER stress, and oocyte quality by Cd exposure. Cd exposure inhibited cumulus cell expansion and meiotic maturation, increased oocyte degeneration, and induced ER stress. The levels of spliced XBP1 and ER stress-associated transcripts, markers of ER stress, were elevated in Cd-treated cumulus-oocyte complexes and denuded oocytes during IVM. Moreover, Cd-induced ER stress impaired oocyte quality by disrupting mitochondrial function and elevating intracellular reactive oxygen species levels while decreasing ER function. Interestingly, TUDCA supplementation significantly decreased the expression of ER stress-related genes and increased the quantity of ER compared with the Cd treatment. Additionally, TUDCA was also able to rescue excessive levels of ROS and restore normal mitochondrial function. Moreover, the addition of TUDCA under Cd exposure greatly ameliorated Cd-mediated detrimental effects on meiotic maturation and oocyte quality, including cumulus cell expansion and MII rate. These findings suggest that Cd exposure during IVM impairs the meiotic maturation of oocytes by inducing of ER stress.
Collapse
Affiliation(s)
- Min-Ah Gwon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Ye Eun Joo
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea.
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea.
| |
Collapse
|
35
|
Conte JG, Tellechea ML, Park B, Ballerini MG, Jaita G, Peluffo MC. Interaction between epidermal growth factor receptor and C-C motif chemokine receptor 2 in the ovulatory cascade. Front Cell Dev Biol 2023; 11:1161813. [PMID: 37082622 PMCID: PMC10110862 DOI: 10.3389/fcell.2023.1161813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is one of the main pathways responsible for propagating the luteinizing hormone (LH) signal throughout the cumulus cells and the oocyte. Recently, we have proposed the C-C motif chemokine receptor 2 (CCR2) and its main ligand (monocyte chemoattractant protein-1, MCP1) as novel mediators of the ovulatory cascade. Our previous results demonstrate that the gonadotropins (GNT), amphiregulin (AREG), and prostaglandin E2 (PGE2) stimulation of periovulatory gene mRNA levels occurs, at least in part, through the CCR2/MCP1 pathway, proposing the CCR2 receptor as a novel mediator of the ovulatory cascade in a feline model. For that purpose, feline cumulus-oocyte complexes (COCs) were cultured in the presence or absence of an EGFR inhibitor, recombinant chemokine MCP1, and gonadotropins [as an inducer of cumulus-oocyte expansion (C-OE), and oocyte maturation] to further assess the mRNA expression of periovulatory key genes, C-OE, oocyte nuclear maturation, and steroid hormone production. We observed that MCP1 was able to revert the inhibition of AREG mRNA expression by an EGFR inhibitor within the feline COC. In accordance, the confocal analysis showed that the GNT-stimulated hyaluronic acid (HA) synthesis, blocked by the EGFR inhibitor, was recovered by the addition of recombinant MCP1 in the C-OE culture media. Also, MCP1 was able to revert the inhibition of progesterone (P4) production by EGFR inhibitor in the C-OE culture media. Regarding oocyte nuclear maturation, recombinant MCP1 could also revert the inhibition triggered by the EGFR inhibitor, leading to a recovery in the percentage of metaphase II (MII)-stage oocytes. In conclusion, our results confirm the chemokine receptor CCR2 as a novel intermediate in the ovulatory cascade and demonstrate that the EGFR/AREG and the CCR2/MCP1 signaling pathways play critical roles in regulating feline C-OE and oocyte nuclear maturation, with CCR2/MCP1 signaling pathway being downstream EGFR/AREG pathway within the ovulatory cascade.
Collapse
Affiliation(s)
- J. G. Conte
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. L. Tellechea
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - B. Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - M. G. Ballerini
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - G. Jaita
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular e Histología, Facultad de Medicina-Universidad de Buenos Aires Buenos, Buenos Aires, Argentina
| | - M. C. Peluffo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
36
|
Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update 2023; 29:1-23. [PMID: 35856663 DOI: 10.1093/humupd/dmac031] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Folliculogenesis occurs in the highly dynamic environment of the ovary. Follicle cyclic recruitment, neo-angiogenesis, spatial displacement, follicle atresia and ovulation stand out as major events resulting from the interplay between mechanical forces and molecular signals. Morphological and functional changes to the growing follicle and to the surrounding tissue are required to produce oocytes capable of supporting preimplantation development to the blastocyst stage. OBJECTIVE AND RATIONALE This review will summarize the ovarian morphological and functional context that contributes to follicle recruitment, growth and ovulation, as well as to the acquisition of oocyte developmental competence. We will describe the changes occurring during folliculogenesis to the ovarian extracellular matrix (ECM) and to the vasculature, their influence on the mechanical properties of the ovarian tissue, and, in turn, their influence on the regulation of signal transduction. Also, we will outline how their dysregulation might be associated with pathologies such as polycystic ovary syndrome (PCOS), endometriosis or premature ovarian insufficiency (POI). Finally, for each of these three pathologies, we will highlight therapeutic strategies attempting to correct the altered biomechanical context in order to restore fertility. SEARCH METHODS For each area discussed, a systematic bibliographical search was performed, without temporal limits, using PubMed Central, Web of Science and Scopus search engines employing the keywords extracellular matrix, mechanobiology, biomechanics, vasculature, angiogenesis or signalling pathway in combination with: ovary, oogenesis, oocyte, folliculogenesis, ovarian follicle, theca, granulosa, cumulus, follicular fluid, corpus luteum, meiosis, oocyte developmental competence, preimplantation, polycystic ovary syndrome, premature ovarian insufficiency or endometriosis. OUTCOMES Through search engines queries, we yielded a total of 37 368 papers that were further selected based on our focus on mammals and, specifically, on rodents, bovine, equine, ovine, primates and human, and also were trimmed around each specific topic of the review. After the elimination of duplicates, this selection process resulted in 628 papers, of which 287 were cited in the manuscript. Among these, 89.2% were published in the past 22 years, while the remaining 8.0%, 2.4% or 0.3% were published during the 1990s, 1980s or before, respectively. During folliculogenesis, changes occur to the ovarian ECM composition and organization that, together with vasculature modelling around the growing follicle, are aimed to sustain its recruitment and growth, and the maturation of the enclosed oocyte. These events define the scenario in which mechanical forces are key to the regulation of cascades of molecular signals. Alterations to this context determine impaired folliculogenesis and decreased oocyte developmental potential, as observed in pathological conditions which are causes of infertility, such as PCOS, endometriosis or POI. WIDER IMPLICATIONS The knowledge of these mechanisms and the rules that govern them lay a sound basis to explain how follicles recruitment and growth are modulated, and stimulate insights to develop, in clinical practice, strategies to improve follicular recruitment and oocyte competence, particularly for pathologies like PCOS, endometriosis and POI.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | | | | - Daria Soscia
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | | | | | - Gianluca Gennarelli
- Obstetrics and Gynecology, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Torino, Turin, Italy.,Livet, GeneraLife IVF, Turin, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
37
|
Chiari D, Pirali B, Perano V, Leone R, Mantovani A, Bottazzi B. The crossroad between autoimmune disorder, tissue remodeling and cancer of the thyroid: The long pentraxin 3 (PTX3). Front Endocrinol (Lausanne) 2023; 14:1146017. [PMID: 37025408 PMCID: PMC10070760 DOI: 10.3389/fendo.2023.1146017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Thyroid is at the crossroads of immune dysregulation, tissue remodeling and oncogenesis. Autoimmune disorders, nodular disease and cancer of the thyroid affect a large amount of general population, mainly women. We wondered if there could be a common factor behind three processes (immune dysregulation, tissue remodeling and oncogenesis) that frequently affect, sometimes coexisting, the thyroid gland. The long pentraxin 3 (PTX3) is an essential component of the humoral arm of the innate immune system acting as soluble pattern recognition molecule. The protein is found expressed in a variety of cell types during tissue injury and stress. In addition, PTX3 is produced by neutrophils during maturation in the bone-marrow and is stored in lactoferrin-granules. PTX3 is a regulator of the complement cascade and orchestrates tissue remodeling and repair. Preclinical data and studies in human tumors indicate that PTX3 can act both as an extrinsic oncosuppressor by modulating complement-dependent tumor-promoting inflammation, or as a tumor-promoter molecule, regulating cell invasion and proliferation and epithelial to mesenchymal transition, thus suggesting that this molecule may have different functions on carcinogenesis. The involvement of PTX3 in the regulation of immune responses, tissue remodeling and oncosuppressive processes led us to explore its potential role in the development of thyroid disorders. In this review, we aimed to highlight what is known, at the state of the art, regarding the connection between the long pentraxin 3 and the main thyroid diseases i.e., nodular thyroid disease, thyroid cancer and autoimmune thyroid disorders.
Collapse
Affiliation(s)
- Damiano Chiari
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- General Surgery Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Barbara Pirali
- Endocrinology Clinic, Internal Medicine Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Vittoria Perano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Harvey Research Institute, Queen Mary University of London Charterhouse Square, London, United Kingdom
| | | |
Collapse
|
38
|
Zhang H, Wang R, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Feng S, Peng Y, Liu Z, Cheng Q. Molecular insight into pentraxin-3: Update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [PMID: 36240615 DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Ruixuan Wang
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; Department of Neurosurgery, and Department of Cellular & Molecular Physiology,Yale University School of Medicine, USA; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Jason Hu
- Department of Neonatology, Yale University School of Medicine, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| |
Collapse
|
39
|
Stepanov YK, Speidel JD, Herrmann C, Schmid N, Behr R, Köhn FM, Stöckl JB, Pickl U, Trottmann M, Fröhlich T, Mayerhofer A, Welter H. Profound Effects of Dexamethasone on the Immunological State, Synthesis and Secretion Capacity of Human Testicular Peritubular Cells. Cells 2022; 11:cells11193164. [PMID: 36231125 PMCID: PMC9562650 DOI: 10.3390/cells11193164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
The functions of human testicular peritubular cells (HTPCs), forming a small compartment located between the seminiferous epithelium and the interstitial areas of the testis, are not fully known but go beyond intratesticular sperm transport and include immunological roles. The expression of the glucocorticoid receptor (GR) indicates that they may be regulated by glucocorticoids (GCs). Herein, we studied the consequences of the GC dexamethasone (Dex) in cultured HTPCs, which serves as a unique window into the human testis. We examined changes in cytokines, mainly by qPCR and ELISA. A holistic mass-spectrometry-based proteome analysis of cellular and secreted proteins was also performed. Dex, used in a therapeutic concentration, decreased the transcript level of proinflammatory cytokines, e.g., IL6, IL8 and MCP1. An siRNA-mediated knockdown of GR reduced the actions on IL6. Changes in IL6 were confirmed by ELISA measurements. Of note, Dex also lowered GR levels. The proteomic results revealed strong responses after 24 h (31 significantly altered cellular proteins) and more pronounced ones after 72 h of Dex exposure (30 less abundant and 42 more abundant cellular proteins). Dex also altered the composition of the secretome (33 proteins decreased, 13 increased) after 72 h. Among the regulated proteins were extracellular matrix (ECM) and basement membrane components (e.g., FBLN2, COL1A2 and COL3A1), as well as PTX3 and StAR. These results pinpoint novel, profound effects of Dex in HTPCs. If transferrable to the human testis, changes specifically in ECM and the immunological state of the testis may occur in men upon treatment with Dex for medical reasons.
Collapse
Affiliation(s)
| | - Jan Dominik Speidel
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Carola Herrmann
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Nina Schmid
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | | | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | | | | | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| | - Harald Welter
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| |
Collapse
|
40
|
Sun JT, Yuan JD, Zhang Q, Luo X, Qi XY, Liu JH, Jiang XQ, Lee S, Taweechaipaisankul A, Liu ZH, Jin JX. Ramelteon Reduces Oxidative Stress by Maintenance of Lipid Homeostasis in Porcine Oocytes. Antioxidants (Basel) 2022; 11:antiox11091640. [PMID: 36139716 PMCID: PMC9495855 DOI: 10.3390/antiox11091640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the underlying mechanism of ramelteon on the competence of oocyte and subsequent embryo development in pigs during in vitro maturation (IVM). Our results showed that the cumulus expansion index was significantly lower in the control group compared to the ramelteon groups (p < 0.05). Moreover, supplementation of 10−11 and 10−9 M ramelteon significantly increased the cumulus expansion and development-related genes expression, and reduced apoptosis in cumulus cells (p < 0.05). In oocytes, the nuclear maturation rate was significantly improved in 10−11, 10−9, and 10−7 M ramelteon groups compared to the control (p < 0.05). Additionally, the level of intracellular GSH was significantly increased and ROS was significantly decreased in ramelteon-supplemented groups, and the gene expression of oocyte development and apoptosis were significantly up- and down-regulated by 10−11 and 10−9 M ramelteon (p < 0.05), respectively. The immunofluorescence results showed that the protein levels of GDF9, BMP15, SOD1, CDK1, and PGC1α were significantly increased by 10−11 M ramelteon compared to the control (p < 0.05). Although there was no significant difference in cleavage rate, the blastocyst formation rate, total cell numbers, and hatching/-ed rate were significantly improved in 10−11 M ramelteon group compared to the control (p < 0.05). Furthermore, embryo development, hatching, and mitochondrial biogenesis-related genes were dramatically up-regulated by 10−11 M ramelteon (p < 0.05). In addition, the activities of lipogenesis and lipolysis in oocytes were dramatically increased by 10−11 M ramelteon compared to the control (p < 0.05). In conclusion, supplementation of 10−11 M ramelteon during IVM improved the oocyte maturation and subsequent embryo development by reducing oxidative stress and maintenance of lipid homeostasis.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Dong Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Luo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yue Qi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Hui Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xi-Qing Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Anukul Taweechaipaisankul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| |
Collapse
|
41
|
Coltrini D, Chandran AMK, Belleri M, Poliani PL, Cominelli M, Pagani F, Capra M, Calza S, Prioni S, Mauri L, Prinetti A, Kofler JK, Escolar ML, Presta M. β-Galactosylceramidase Deficiency Causes Upregulation of Long Pentraxin-3 in the Central Nervous System of Krabbe Patients and Twitcher Mice. Int J Mol Sci 2022; 23:ijms23169436. [PMID: 36012705 PMCID: PMC9409448 DOI: 10.3390/ijms23169436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is a neurodegenerative sphingolipidosis caused by genetic deficiency of lysosomal β-galactosylceramidase (GALC), characterized by neuroinflammation and demyelination of the central (CNS) and peripheral nervous system. The acute phase protein long pentraxin-3 (PTX3) is a soluble pattern recognition receptor and a regulator of innate immunity. Growing evidence points to the involvement of PTX3 in neurodegeneration. However, the expression and role of PTX3 in the neurodegenerative/neuroinflammatory processes that characterize GLD remain unexplored. Here, immunohistochemical analysis of brain samples from Krabbe patients showed that macrophages and globoid cells are intensely immunoreactive for PTX3. Accordingly, Ptx3 expression increases throughout the course of the disease in the cerebrum, cerebellum, and spinal cord of GALC-deficient twitcher (Galctwi/twi) mice, an authentic animal model of GLD. This was paralleled by the upregulation of proinflammatory genes and M1-polarized macrophage/microglia markers and of the levels of PTX3 protein in CNS and plasma of twitcher animals. Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice) demonstrated that constitutive PTX3 overexpression reduced the severity of clinical signs and the upregulation of proinflammatory genes in the spinal cord of P35 hPTX3/Galctwi/twi mice when compared to Galctwi/twi littermates, leading to a limited increase of their life span. However, this occurred in the absence of a significant impact on the histopathological findings and on the accumulation of the neurotoxic metabolite psychosine when evaluated at this late time point of the disease. In conclusion, our results provide the first evidence that PTX3 is produced in the CNS of GALC-deficient Krabbe patients and twitcher mice. PTX3 may exert a protective role by reducing the neuroinflammatory response that occurs in the spinal cord of GALC-deficient animals.
Collapse
Affiliation(s)
- Daniela Coltrini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Pietro L. Poliani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Francesca Pagani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Miriam Capra
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Stefano Calza
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Julia K. Kofler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Maria L. Escolar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
- Correspondence:
| |
Collapse
|
42
|
PTX3 structure determination using a hybrid cryoelectron microscopy and AlphaFold approach offers insights into ligand binding and complement activation. Proc Natl Acad Sci U S A 2022; 119:e2208144119. [PMID: 35939690 PMCID: PMC9388099 DOI: 10.1073/pnas.2208144119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pattern recognition molecules (PRMs) form an important part of innate immunity, where they facilitate the response to infections and damage by triggering processes such as inflammation. The pentraxin family of soluble PRMs comprises long and short pentraxins, with the former containing unique N-terminal regions unrelated to other proteins or each other. No complete high-resolution structural information exists about long pentraxins, unlike the short pentraxins, where there is an abundance of both X-ray and cryoelectron microscopy (cryo-EM)-derived structures. This study presents a high-resolution structure of the prototypical long pentraxin, PTX3. Cryo-EM yielded a 2.5-Å map of the C-terminal pentraxin domains that revealed a radically different quaternary structure compared to other pentraxins, comprising a glycosylated D4 symmetrical octameric complex stabilized by an extensive disulfide network. The cryo-EM map indicated α-helices that extended N terminal of the pentraxin domains that were not fully resolved. AlphaFold was used to predict the remaining N-terminal structure of the octameric PTX3 complex, revealing two long tetrameric coiled coils with two hinge regions, which was validated using classification of cryo-EM two-dimensional averages. The resulting hybrid cryo-EM/AlphaFold structure allowed mapping of ligand binding sites, such as C1q and fibroblast growth factor-2, as well as rationalization of previous biochemical data. Given the relevance of PTX3 in conditions ranging from COVID-19 prognosis, cancer progression, and female infertility, this structure could be used to inform the understanding and rational design of therapies for these disorders and processes.
Collapse
|
43
|
Zhang X, Zhao H, Li Y, Zhang Y, Liang Y, Shi J, Zhou R, Hong L, Cai G, Wu Z, Li Z. Amphiregulin Supplementation During Pig Oocyte In Vitro Maturation Enhances Subsequent Development of Cloned Embryos by Promoting Cumulus Cell Proliferation. Cell Reprogram 2022; 24:175-185. [PMID: 35861708 DOI: 10.1089/cell.2022.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oocyte in vitro maturation (IVM) technique is important in animal husbandry, biomedicine, and human-assisted reproduction. However, the developmental potential of in vitro matured oocytes is usually lower than that of in vivo matured (IVVM) oocytes. Amphiregulin (AREG) is an EGF-like growth factor that plays critical roles in the maturation and development of mammalian oocytes. This study investigated the effects of AREG supplementation during pig oocyte IVM on the subsequent development of cloned embryos. The addition of AREG to pig oocyte IVM medium improved the developmental competence of treated oocyte-derived cloned embryos by enhancing the expansion and proliferation of cumulus cells (CCs) during IVM. The positive effect of AREG on enhancing the quality of IVVM pig oocytes might be due to the activation of proliferation-related pathways in CCs by acting on the AREG receptor. The present study provides an AREG treatment-based method to improve the developmental competence of cloned pig embryos.
Collapse
Affiliation(s)
- Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
44
|
Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 2022; 20:96. [PMID: 35780124 PMCID: PMC9250276 DOI: 10.1186/s12958-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Myostatin (MSTN) is member of the transforming growth factor β (TGF-β) superfamily and was originally identified in the musculoskeletal system as a negative regulator of skeletal muscle growth. The functional roles of MSTN outside of the musculoskeletal system have aroused researchers' interest in recent years, with an increasing number of studies being conducted in this area. Notably, the expression of MSTN and its potential activities in various reproductive organs, including the ovary, placenta, and uterus, have recently been examined. Numerous studies published in the last few years demonstrate that MSTN plays a critical role in human reproduction and fertility, including the regulation of follicular development, ovarian steroidogenesis, granule-cell proliferation, and oocyte maturation regulation. Furthermore, findings from clinical samples suggest that MSTN may play a key role in the pathogenesis of several reproductive disorders such as uterine myoma, preeclampsia (PE), ovary hyperstimulation syndrome (OHSS), and polycystic ovarian syndrome (PCOS). There is no comprehensive review regarding to MSTN related to the female reproductive system in the literature. This review serves as a summary of the genes in reproductive medicine and their potential influence. We summarized MSTN expression in different compartments of the female reproductive system. Subsequently, we discuss the role of MSTN in both physiological and several pathological conditions related to the female fertility and reproduction-related diseases.
Collapse
Affiliation(s)
- Sijia Wang
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Luping Cong
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Jacqueline Pui Wah Chung
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Tin Chiu Li
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - David Yiu Leung Chan
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China.
| |
Collapse
|
45
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
46
|
Mohan Jeena L, Kumar D, Rahangdale S, Pratap Singh A, Chandra Sarkhel B. Transcriptional profile of cumulus associated GJA1, PTX3, PRSS35, and SERPINE2 genes with oocytes and embryonic development in water buffalo. Mol Biol Rep 2022; 49:6285-6293. [PMID: 35460443 DOI: 10.1007/s11033-022-07435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the present study, the potential of different groups of cumulus-oocyte complexes (COC's) for in vitro maturation (IVM) and embryonic development was assessed in two groups of COC's of water buffalo. Further, the expression pattern of cumulus-associated GJA1, PTX3, PRSS35, and SERPINE2 genes and their effects on embryonic development was analyzed. Slaughterhouse-derived buffalo COC's were graded into groups A and B. An equal number of 410 COC's were taken in both groups. IVM was carried out using Slaughterhouse-derived buffalo epididymis. A remarkable degree of cumulus expansion was noticed in group A (92.68%) as compared to group B (81.25%) oocytes. On in vitro fertilization (IVF) and embryo culture, group A produced a significantly higher rate of cleavage and blastocyst (92.682 ± 0.7179% and 42.682 ± 0.9683%) as compared to group B (85.365 ± 0.7608% and 31.707 ± 0.9688%). Also, the transcriptional analysis of cumulus-associated genes revealed significantly higher expression in group A as compared to group B. RESULTS It was revealed that oocytes having good cumulus mass had a higher developmental potential. Based on differential gene expression of cumulus-associated genes, different quality of COC's, and the resultant embryos after IVF, it was concluded that these genes could be used as a marker for predicting the developmental competence of the oocytes. CONCLUSION We concluded that morphologically good quality of COC's had a higher developmental competence, and also the differential expressions of cumulus-associated genes in cumulus cells and embryos. So, we can conclude that these genes could be used as marker genes for predicting the developmental competence of buffalo's oocytes.
Collapse
Affiliation(s)
- Lalit Mohan Jeena
- Animal Biotechnology Center, Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh, 482004, India.
| | - Dharmendra Kumar
- Animal Biotechnology Center, Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh, 482004, India
| | - Sandeep Rahangdale
- Animal Biotechnology Center, Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh, 482004, India
| | - Ajit Pratap Singh
- Animal Biotechnology Center, Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh, 482004, India
| | - Bikash Chandra Sarkhel
- Animal Biotechnology Center, Nanaji Deshmukh Veterinary Science University, Jabalpur, Madhya Pradesh, 482004, India
| |
Collapse
|
47
|
Maternal Blood-Based Protein Biomarkers in Relation to Abdominal Fat Distribution Measured by Ultrasound in Early Mid-Pregnancy. Reprod Sci 2022; 29:2333-2341. [PMID: 35147910 PMCID: PMC9352629 DOI: 10.1007/s43032-022-00876-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/05/2022] [Indexed: 12/28/2022]
Abstract
The objective of this study was to examine the associations of early mid-pregnancy ultrasound measured visceral and subcutaneous fat depths with blood-based protein biomarkers. This was a cross-sectional study including 201 pregnant women at Uppsala University Hospital, Sweden. The mean age of the women was 31.0 years, and 57.7% were nulliparous. Maternal visceral and subcutaneous fat depths were measured by ultrasound at the early second-trimester anomaly scan. A non-fasting blood sample was collected in conjunction with the second-trimester anomaly scan, and the Olink cardiovascular II panel was used to measure 92 blood-based protein biomarkers in the sample. Cross-sectional associations of visceral and subcutaneous fat depths with blood-based protein biomarkers were examined using Mann-Whitney U tests with false discovery rate adjustments. In addition, linear regression analyses adjusting for maternal age, parity, and early pregnancy body mass index were performed. The results showed differences in one biomarker between women with elevated (≥ 52 mm) versus normal (< 52 mm) visceral fat depth, and in three biomarkers between women with elevated (≥ 22 mm) versus normal (< 22 mm) subcutaneous fat depth. Hence, levels of blood-based protein biomarkers differ between pregnant women with dissimilar body fat distributions, which might reflect disparities in biological pathways.
Collapse
|
48
|
Yeşil F, Deveci K, Karli P. Evaluation of the clinical significance of serum pentraxin-3 levels in patients with polycystic ovary syndrome. CLIN EXP OBSTET GYN 2022; 49. [DOI: 10.31083/j.ceog4902038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Polycystic ovary syndrome (PCOS) is commonly associated with insulin resistance (IR), hyperinsulinemia, and dyslipidemia, which play a role in the development of endothelial dysfunction and promote the early onset of cardiovascular diseases. The aim of this study was to evaluate the clinical importance of pentraxin-3 levels in PCOS patients. Methods: Forty-five female patients diagnosed with PCOS according to the 2003 Rotterdam criteria and 42 healthy women were included in the study. All women studied were tested within 3 and 5 days of their menstrual cycle. Ultrasonographic evaluation of each patient was first conducted using the suprapubic method. Serum PTX-3, endothelin 1 (ET-1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and nitric oxide levels were measured using the enzyme-linked immunosorbent assay method. Results: Pentraxine-3 (PTX-3) levels in the patient group were significantly lower than those in the control group (p < 0.05). PTX-3 levels in the group with hirsutism were significantly higher than those in the nonhirsutism group (p < 0.05). Homeostatic model assessment for IR (HOMA-IR) levels in the patient group were significantly higher than those in the control group (p < 0.01). A weak negative correlation was found between PTX-3 and HbA1c levels. The accuracy rate of the PTX-3 test in distinguishing patients and nonpatients was moderate with a 0.634 area-under-the-curve value. Conclusions: During the follow-up of patients with PCOS, a decrease in serum PTX-3 levels associated with hirsutism and IR may be observed.
Collapse
Affiliation(s)
- Fatih Yeşil
- Department of Biochemistry, Gaziosmanpaşa University, Faculty of Medicine, 60250 Tokat, Turkey
| | - Köksal Deveci
- Department of Biochemistry, Gaziosmanpaşa University, Faculty of Medicine, 60250 Tokat, Turkey
| | - Pervin Karli
- Department of Obstetrics and Gynecology, İstinye University Medical Park Hospital, 34250 Samsun, Turkey
| |
Collapse
|
49
|
The Hippo pathway effectors YAP and TAZ interact with EGF-like signaling to regulate expansion-related events in bovine cumulus cells in vitro. J Assist Reprod Genet 2022; 39:481-492. [PMID: 35091965 PMCID: PMC8956774 DOI: 10.1007/s10815-021-02384-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To determine if the inhibition of the interaction between the Hippo effector YAP or its transcriptional co-activator TAZ with the TEAD family of transcription factors is critical for the cumulus expansion-related events induced by the EGF network in cumulus-oocyte complexes (COCs). METHODS We performed a series of experiments using immature bovine COCs subjected to an IVM protocol for up 24 h in which cumulus expansion was stimulated with EGF recombinant protein or FSH. RESULTS The main results indicated that EGFR activity stimulation in bovine cumulus cells (CC) increases mRNA levels encoding the classic YAP/TAZ-TEAD target gene CTGF. To determine if important genes for cumulus expansion are transcriptional targets of YAP/TAZ-TEAD interaction in CC, COCs were then subjected to IVM in the presence of FSH with or without distinct concentrations of Verteporfin (VP; a small molecule inhibitor that interferes with YAP/TAZ binding to TEADs). COCs were then collected at 6, 12, 18, and 24 h for total RNA extraction and RT-qPCR analyses. This experiment indicated that VP inhibits in a time- and concentration-dependent manner distinct cumulus expansion and oocyte maturation-related genes, by regulating EGFR and CTGF expression in CC. CONCLUSIONS Taken together, the results presented herein represent considerable insight into the functional relevance of a completely novel signaling pathway underlying cumulus expansion and oocyte maturation in monovulatory species. YAP/TAZ or CTGF may represent potential targets to improve the efficiency of IVM systems, not only for monovulatory species of agricultural importance as the cow, but for human embryo production.
Collapse
|
50
|
Single-Cell Sequencing Reveals an Intrinsic Heterogeneity of the Preovulatory Follicular Microenvironment. Biomolecules 2022; 12:biom12020231. [PMID: 35204732 PMCID: PMC8961562 DOI: 10.3390/biom12020231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The follicular microenvironment, including intra-follicular granulosa cells (GCs), is responsible for oocyte maturation and subsequent ovulation. However, the functions of GCs and cellular components of the follicular microenvironment in preovulatory follicles have not been extensively explored. Here, we surveyed the single-cell transcriptome of the follicular microenvironment around MII oocytes in six human preovulatory follicles in in vitro fertilization. There were six different cell types in the preovulatory follicles, including GCs and various immune cells. In GCs, we identified nine different functional clusters with different functional transcriptomic profiles, including specific clusters involved in inflammatory responses and adhesive function. Follicular macrophages are involved in immune responses, extracellular matrix remoulding and assist GCs in promoting the oocyte meiotic resumption. Interestingly, we observed that the specific terminal state subcluster of GCs with high levels of adhesive-related molecules should result in macrophage recruitment and residence, further contributing to an obvious heterogeneity of the immune cell proportion in preovulatory follicles from different patients. Our results provide a comprehensive understanding of the transcriptomic landscape of the preovulatory follicular microenvironment at the single-cell level. It provides valuable insights into understanding the regulation of the oocyte maturation and ovulation process, offering potential clues for the diagnosis and treatment of oocyte-maturation-related and ovulation-related diseases.
Collapse
|