1
|
Harland AJ, Perks CM. IGFBP-2 and IGF-II: Key Components of the Neural Stem Cell Niche? Implications for Glioblastoma Pathogenesis. Int J Mol Sci 2025; 26:4749. [PMID: 40429889 PMCID: PMC12111820 DOI: 10.3390/ijms26104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation-most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent of a neurodevelopmental hierarchy, in which neural stem and progenitor markers are widely expressed by tumour stem-like cells. However, NSC fates and the cues that drive them are poorly understood. Studying the crosstalk within NSC niches may better inform our understanding of glioblastoma initiation and development. Insulin-like growth factor binding protein 2 (IGFBP-2) has a well-established prognostic role in glioblastoma, and cell-based mechanistic studies show the independent activation of downstream oncogenic pathways. However, IGFBP-2 is more commonly recognised as a modulator of insulin-like growth factors (IGFs) for receptor tyrosine kinase signal propagation or attenuation. In the adult human brain, both IGFBP-2 and IGF-II expression are retained in the choroid plexus (ChP) and secreted into the cerebral spinal fluid (CSF). Moreover, secretion by closely associated cells and NSCs themselves position IGFBP-2 and IGF-II as interesting factors within the NSC niche. In this review, we will highlight the experimental findings that show IGFBP-2 and IGF-II influence NSC behaviour. Moreover, we will link this to glioblastoma biology and demonstrate the requirement for further analysis of these factors in glioma stem cells (GSCs).
Collapse
Affiliation(s)
| | - Claire M. Perks
- Cancer Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK;
| |
Collapse
|
2
|
Yabe T, Mitsui Y, Ohnishi M, Tanigawa R, Tanizaki M, Sugiyama R, Kiriyama N, Otsuka A, Munekazu K. Social-defeat stress exposure during pregnancy induces abnormalities in spontaneous activity, sociality, and resilience to stress in offspring of mice. Behav Brain Res 2025; 480:115367. [PMID: 39631504 DOI: 10.1016/j.bbr.2024.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Environmental stress during prenatal periods can lead to neurodevelopmental disorders. Psychosocial stress can be studied using the social-defeat stress (SDS) animal model. However, the effects of prenatal exposure to SDS on the behavior of mature offspring mice have not been clarified. The present study assessed the spontaneous activity and social interaction of pups born to mothers exposed to SDS during gestation, as well as their post-maturity responses to environmental stimuli, focusing on changes in anxiety-like behavior following restraint stress exposure. METHODS Pregnant C57BL/6 J mice were subjected to SDS for 4 days, from E12.5-E15.5, using aggressive male ICR mice. We assessed the mature offspring (after 10 weeks of age) born to these mothers for spontaneous activity, anxiety-like behavior, and social interactions, and evaluated their activity levels post-maturity following restraint stress exposure. RESULTS The open field test (OF) indicated reduced travel distance and duration in the SDS group versus controls, whereas home-cage monitoring showed increased area traveled. In a novel environment, the SDS group showed a decrease in interest in stranger mice. In a multiple-animal rearing environment, the SDS group showed an increase in the frequency and number of contact with other individuals. Movement duration in the OF following restraint stress reduced significantly from 30 min to 4 h in the control versus SDS group. CONCLUSIONS Prenatal exposure to SDS can result in behavior resembling developmental disorders, impacting spontaneous activity and social interactions. Altered responses to stress suggest potential brain function abnormalities in offspring after maturation due to maternal SDS exposure.
Collapse
Affiliation(s)
- Tamaki Yabe
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Yuko Mitsui
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Momoka Ohnishi
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Rena Tanigawa
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Mizuki Tanizaki
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Rei Sugiyama
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Niina Kiriyama
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Airi Otsuka
- Laboratory of Nutrition and Health Science, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
| | - Komada Munekazu
- Mammalian Embryology Laboratory, Department of Life Science, Faculty of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan.
| |
Collapse
|
3
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2025; 41:461-485. [PMID: 39023844 PMCID: PMC11876516 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Tran LN, Shinde A, Schuster KH, Sabaawy A, Dale E, Welch MJ, Isner TJ, Nunez SA, García-Moreno F, Sagerström CG, Appel BH, Franco SJ. Epigenetic priming of neural progenitors by Notch enhances Sonic hedgehog signaling and establishes gliogenic competence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633996. [PMID: 39896669 PMCID: PMC11785114 DOI: 10.1101/2025.01.20.633996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The remarkable cell diversity of multicellular organisms relies on the ability of multipotent progenitor cells to generate distinct cell types at the right times and locations during embryogenesis. A key question is how progenitors establish competence to respond to the different environmental signals required to produce specific cell types at critical developmental timepoints. We addressed this in the mouse developing forebrain, where neural progenitor cells must switch from producing neurons to making oligodendrocytes in response to increased Sonic Hedgehog (SHH) signaling during late embryogenesis. We show that progenitor responses to SHH are regulated by Notch signaling, thus permitting proper timing of the neuron-oligodendrocyte switch. Notch activity epigenetically primes genes associated with the oligodendrocyte lineage and SHH pathway, enabling amplified transcriptional responses to endogenous SHH and robust oligodendrogenesis. These results reveal a critical role for Notch in facilitating progenitor competence states and influencing cell fate transitions at the epigenetic level.
Collapse
Affiliation(s)
- Luuli N. Tran
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashwini Shinde
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen H. Schuster
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aiman Sabaawy
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Dale
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madalynn J. Welch
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Trevor J. Isner
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sylvia A. Nunez
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Edificio Sede del Parque Científico de la UPV/EHU, Leioa, Spain
| | - Charles G. Sagerström
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bruce H. Appel
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santos J. Franco
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Pediatric Stem Cell Biology, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Lead contact
| |
Collapse
|
5
|
Dhanya SK, Kalia K, Mohanty S, Azam T, Channakkar AS, D'Souza L, Swathi KS, Reddy PC, Muralidharan B. Histone-binding protein RBBP4 is necessary to promote neurogenesis in the developing mouse neocortical progenitors. eNeuro 2024; 11:ENEURO.0391-23.2024. [PMID: 39592227 PMCID: PMC7617683 DOI: 10.1523/eneuro.0391-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Chromatin regulation plays a crucial role in neocortical neurogenesis, and mutations in chromatin modifiers are linked to neurodevelopmental disorders. RBBP4 is a core subunit of several chromatin-modifying complexes; however, its functional role and genome-wide occupancy profile in the neocortical primordium are unknown. To address this, we performed RBBP4 knockdown using CRISPR/Cas9 on neocortical progenitors derived from mice of both sexes at embryonic age 12.5 during deep-layer neurogenesis. Our study demonstrates that downregulation of RBBP4 in the E12.5 neocortical progenitors reduced neuronal output, specifically affecting CTIP2-expressing neurons. We demonstrate that RBBP4 plays an essential role in regulating neocortical progenitor proliferation. However, overexpression of RBBP4 alone was not sufficient to regulate neuronal fate.Genome-wide occupancy analysis revealed that RBBP4 primarily binds to distal regulatory elements, and neuron differentiation is a significant GO biological pathway of RBBP4-bound genes. Interestingly, we found that RBBP4 binds to Cdon, a receptor protein in the Shh signaling pathway, and knockdown of Cdon phenocopies RBBP4 knockdown resulting in a significant reduction in neurogenesis, particularly CTIP2-expressing neurons. CDON overexpression could rescue the phenotype caused upon loss of RBBP4 in the neocortex, thereby suggesting the functional link between RBBP4 and its target gene CDON. Our results shed light on the cellular role of RBBP4 and identify CDON as a novel regulator of deep-layer neurogenesis in the neocortical progenitors. Our findings are significant in the context of understanding how dysregulated chromatin regulation impacts cellular mechanisms in neurodevelopmental disorders.Significance Statement Chromatin modifier RBBP4 regulates chromatin structure and, thereby, gene expression. It is expressed in the dorsal telencephalon progenitors during deep-layer neurogenesis. In this study, we unveil a novel role for RBBP4 in regulating deep-layer neurogenesis in the neocortical progenitors. Our research underscores RBBP4's critical role in governing progenitor proliferation and neuronal subtype specification in the neocortex while identifying its genome-wide binding occupancy profile. Moreover, we identify Cdon as a novel binding target of RBBP4, also involved in regulating deep-layer neurogenesis. These findings illuminate the mechanisms by which chromatin modifiers influence neocortical development, offering insights into how mutations in chromatin modifiers could impact cortical development and contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Sattwik Mohanty
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Tulaib Azam
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Asha S Channakkar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
- Regional Centre for Biotechnology, Faridabad - 121001
| | - Leora D'Souza
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - K S Swathi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi- 201314, India
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| |
Collapse
|
6
|
Shiohama T, Uchikawa H, Nitta N, Takatani T, Matsuda S, Ortug A, Takahashi E, Sawada D, Shimizu E, Fujii K, Aoki I, Hamada H. Brain morphological analysis in mice with hyperactivation of the hedgehog signaling pathway. Front Neurosci 2024; 18:1449673. [PMID: 39290714 PMCID: PMC11405378 DOI: 10.3389/fnins.2024.1449673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hedgehog signaling is a highly conserved pathway that plays pivotal roles in morphogenesis, tumorigenesis, osteogenesis, and wound healing. Previous investigations in patients with Gorlin syndrome found low harm avoidance traits, and increased volumes in the cerebrum, cerebellum, and cerebral ventricles, suggesting the association between brain morphology and the constitutive hyperactivation of hedgehog signaling, while the changes of regional brain volumes in upregulated hedgehog signaling pathway remains unclear so far. Herein, we investigated comprehensive brain regional volumes using quantitative structural brain MRI, and identified increased volumes of amygdala, striatum, and pallidum on the global segmentation, and increased volumes of the lateral and medial parts of the central nucleus of the amygdala on the detail segmentation in Ptch heterozygous deletion mice. Our data may enhance comprehension of the association between brain morphogenic changes and hyperactivity in hedgehog signaling.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Uchikawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhiro Nitta
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
- Central Institute for Experimental Medicine and Life Science Bio Imaging Center, Yokohama, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Tokyo, Japan
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Daisuke Sawada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pediatrics, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Baur K, Şan Ş, Hölzl-Wenig G, Mandl C, Hellwig A, Ciccolini F. GDF15 controls primary cilia morphology and function thereby affecting progenitor proliferation. Life Sci Alliance 2024; 7:e202302384. [PMID: 38719753 PMCID: PMC11077589 DOI: 10.26508/lsa.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.
Collapse
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Şeydanur Şan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
- Sorbonne University, Paris, France
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Barresi M, Hickmott RA, Bosakhar A, Quezada S, Quigley A, Kawasaki H, Walker D, Tolcos M. Toward a better understanding of how a gyrified brain develops. Cereb Cortex 2024; 34:bhae055. [PMID: 38425213 DOI: 10.1093/cercor/bhae055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.
Collapse
Affiliation(s)
- Mikaela Barresi
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Ryan Alexander Hickmott
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Anita Quigley
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
- School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC 3000, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Regent Street, Fitzroy, VIC 3065, Australia
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - David Walker
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
9
|
Li Z, Liu G, Yang L, Sun M, Zhang Z, Xu Z, Gao Y, Jiang X, Su Z, Li X, Yang Z. BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period. Protein Cell 2024; 15:21-35. [PMID: 37300483 PMCID: PMC10762677 DOI: 10.1093/procel/pwad036] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Collapse
Affiliation(s)
- Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Mengge Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yanjing Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Xin Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zihao Su
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Sun N, Teyssier N, Wang B, Drake S, Seyler M, Zaltsman Y, Everitt A, Teerikorpi N, Willsey HR, Goodarzi H, Tian R, Kampmann M, Willsey AJ. Autism genes converge on microtubule biology and RNA-binding proteins during excitatory neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573108. [PMID: 38187634 PMCID: PMC10769323 DOI: 10.1101/2023.12.22.573108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.
Collapse
|
11
|
Cai E, Barba MG, Ge X. Hedgehog Signaling in Cortical Development. Cells 2023; 13:21. [PMID: 38201225 PMCID: PMC10778342 DOI: 10.3390/cells13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedgehog (Hh) pathway plays a crucial role in embryonic development, acting both as a morphogenic signal that organizes tissue formation and a potent mitogenic signal driving cell proliferation. Dysregulated Hh signaling leads to various developmental defects in the brain. This article aims to review the roles of Hh signaling in the development of the neocortex in the mammalian brain, focusing on its regulation of neural progenitor proliferation and neuronal production. The review will summarize studies on genetic mouse models that have targeted different components of the Hh pathway, such as the ligand Shh, the receptor Ptch1, the GPCR-like transducer Smo, the intracellular transducer Sufu, and the three Gli transcription factors. As key insights into the Hh signaling transduction mechanism were obtained from mouse models displaying neural tube defects, this review will also cover some studies on Hh signaling in neural tube development. The results from these genetic mouse models suggest an intriguing hypothesis that elevated Hh signaling may play a role in the gyrification of the brain in certain species. Additionally, the distinctive production of GABAergic interneurons in the dorsal cortex in the human brain may also be linked to the extension of Hh signaling from the ventral to the dorsal brain region. Overall, these results suggest key roles of Hh signaling as both a morphogenic and mitogenic signal during the forebrain development and imply the potential involvement of Hh signaling in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
| | | | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95340, USA
| |
Collapse
|
12
|
Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: The emergence of cortical structure and folding. Dev Cell 2023; 58:2836-2849. [PMID: 38113850 PMCID: PMC10793202 DOI: 10.1016/j.devcel.2023.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/08/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The cerebral cortex-the brain's covering and largest region-has increased in size and complexity in humans and supports higher cognitive functions such as language and abstract thinking. There is a growing understanding of the human cerebral cortex, including the diversity and number of cell types that it contains, as well as of the developmental mechanisms that shape cortical structure and organization. In this review, we discuss recent progress in our understanding of molecular and cellular processes, as well as mechanical forces, that regulate the folding of the cerebral cortex. Advances in human genetics, coupled with experimental modeling in gyrencephalic species, have provided insights into the central role of cortical progenitors in the gyrification and evolutionary expansion of the cerebral cortex. These studies are essential for understanding the emergence of structural and functional organization during cortical development and the pathogenesis of neurodevelopmental disorders associated with cortical malformations.
Collapse
Affiliation(s)
- Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
13
|
Mattova S, Simko P, Urbanska N, Kiskova T. Bioactive Compounds and Their Influence on Postnatal Neurogenesis. Int J Mol Sci 2023; 24:16614. [PMID: 38068936 PMCID: PMC10706651 DOI: 10.3390/ijms242316614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Since postnatal neurogenesis was revealed to have significant implications for cognition and neurological health, researchers have been increasingly exploring the impact of natural compounds on this process, aiming to uncover strategies for enhancing brain plasticity. This review provides an overview of postnatal neurogenesis, neurogenic zones, and disorders characterized by suppressed neurogenesis and neurogenesis-stimulating bioactive compounds. Examining recent studies, this review underscores the multifaceted effects of natural compounds on postnatal neurogenesis. In essence, understanding the interplay between postnatal neurogenesis and natural compounds could bring novel insights into brain health interventions. Exploiting the therapeutic abilities of these compounds may unlock innovative approaches to enhance cognitive function, mitigate neurodegenerative diseases, and promote overall brain well-being.
Collapse
Affiliation(s)
| | | | | | - Terezia Kiskova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (S.M.); (P.S.); (N.U.)
| |
Collapse
|
14
|
Rudy MJ, Salois G, Cubello J, Newell R, Mayer-Proschel M. Gestational iron deficiency affects the ratio between interneuron subtypes in the postnatal cerebral cortex in mice. Development 2023; 150:dev201068. [PMID: 36805633 PMCID: PMC10110419 DOI: 10.1242/dev.201068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Gestational iron deficiency (gID) is highly prevalent and associated with an increased risk of intellectual and developmental disabilities in affected individuals that are often defined by a disrupted balance of excitation and inhibition (E/I) in the brain. Using a nutritional mouse model of gID, we previously demonstrated a shift in the E/I balance towards increased inhibition in the brains of gID offspring that was refractory to postnatal iron supplementation. We thus tested whether gID affects embryonic progenitor cells that are fated towards inhibitory interneurons. We quantified relevant cell populations during embryonic inhibitory neuron specification and found an increase in the proliferation of Nkx2.1+ interneuron progenitors in the embryonic medial ganglionic eminence at E14 that was associated with increased Shh signaling in gID animals at E12. When we quantified the number of mature inhibitory interneurons that are known to originate from the MGE, we found a persistent disruption of differentiated interneuron subtypes in early adulthood. Our data identify a cellular target that links gID with a disruption of cortical interneurons which play a major role in the establishment of the E/I balance.
Collapse
Affiliation(s)
- Michael J. Rudy
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Colorado Denver – Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Garrick Salois
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Janine Cubello
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Robert Newell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Mann B, Crawford JC, Reddy K, Lott J, Youn YH, Gao G, Guy C, Chou CH, Darnell D, Trivedi S, Bomme P, Loughran AJ, Thomas PG, Han YG, Tuomanen EI. Bacterial TLR2/6 Ligands Block Ciliogenesis, Derepress Hedgehog Signaling, and Expand the Neocortex. mBio 2023; 14:e0051023. [PMID: 37052506 PMCID: PMC10294647 DOI: 10.1128/mbio.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.
Collapse
Affiliation(s)
- Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kavya Reddy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Josi Lott
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Perrine Bomme
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Allister J. Loughran
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
16
|
Rukh S, Meechan DW, Maynard TM, Lamantia AS. Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder. Dev Neurosci 2023; 46:1-21. [PMID: 37231803 DOI: 10.1159/000530898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.
Collapse
Affiliation(s)
- Shah Rukh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Daniel W Meechan
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Thomas M Maynard
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Anthony-Samuel Lamantia
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Shin HS, Lee SH, Moon HJ, So YH, Lee HR, Lee EH, Jung EM. Exposure to polystyrene particles causes anxiety-, depression-like behavior and abnormal social behavior in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131465. [PMID: 37130475 DOI: 10.1016/j.jhazmat.2023.131465] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
In the era of plastic use, organisms are constantly exposed to polystyrene particles (PS-Ps). PS-Ps accumulated in living organisms exert negative effects on the body, although studies evaluating their effects on brain development are scarce. In this study, the effects of PS-Ps on nervous system development were investigated using cultured primary cortical neurons and mice exposed to PS-Ps at different stages of brain development. The gene expression associated with brain development was downregulated in embryonic brains following PS-Ps exposure, and Gabra2 expression decreased in the embryonic and adult mice exposed to PS-Ps. Additionally, offspring of PS-Ps-treated dams exhibited signs of anxiety- and depression-like behavior, and abnormal social behavior. We propose that PS-Ps accumulation in the brain disrupts brain development and behavior in mice. This study provides novel information regarding PS-Ps toxicity and its harmful effects on neural development and behavior in mammals.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Ram Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
18
|
Da Silva F, Niehrs C. Multimodal Wnt signalling in the mouse neocortex. Cells Dev 2023; 174:203838. [PMID: 37060946 DOI: 10.1016/j.cdev.2023.203838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
The neocortex is the site of higher cognitive functions and its development is tightly regulated by cell signalling pathways. Wnt signalling is inexorably linked with neocortex development but its precise role remains unclear. Most studies demonstrate that Wnt/β-catenin regulates neural progenitor self-renewal but others suggest it can also promote differentiation. Wnt/STOP signalling is a novel branch of the Wnt pathway that stabilizes proteins during G2/M by inhibiting glycogen synthase kinase 3 (GSK3)-mediated protein degradation. Recent data from Da Silva et al. (2021) demonstrate that Wnt/STOP is involved in neocortex development where, by stabilizing the neurogenic transcription factors Sox4 and Sox11, it promotes neural progenitor differentiation. The authors also show that Wnt/STOP regulates asymmetric cell division and cell cycle dynamics in apical and basal progenitors, respectively. This study reveals a division of labour in the Wnt signalling pathway by suggesting that Wnt/STOP is the primary driver of cortical neurogenesis while Wnt/β-catenin is mainly responsible for self-renewal. These results resolve a decades-old question on the role of Wnt signalling in cortical neural progenitors.
Collapse
Affiliation(s)
- Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
19
|
Sun D, Deng J, Wang Y, Xie J, Li X, Li X, Wang X, Zhou F, Qin S, Liu X. SAG, a sonic hedgehog signaling agonist, alleviates anxiety behavior in high-fat diet-fed mice. Brain Res Bull 2023; 195:25-36. [PMID: 36736922 DOI: 10.1016/j.brainresbull.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Anxiety is a prevalent and disabling psychiatric disorder. Mitochondrial dysfunction due to the high-fat diet (HFD) was regarded as a risk factor in the pathogenesis of anxiety. The Sonic hedgehog (SHH) pathway was known to improve mitochondrial dysfunction through antioxidant and anti-apoptotic effects on some neurological diseases. Nonetheless, its effect on anxiety has not been well studied. In this study, we aimed to explore whether SHH signaling pathway plays a protective role in anxiety by regulating mitochondrial homeostasis. SAG, a typical SHH signaling agonist, was administered intraperitoneally in HFD-fed mice. HFD-induced anxiety-like behavior in mice was confirmed using the open field and elevated plus maze tests. Immunofluorescence staining and Western blotting assays showed that the SHH signaling was downregulated in the prefrontal cortex neurons from HFD-fed mice. Electron microscopy results showed the mitochondria in the prefrontal cortex of HFD-fed mice were fragmented, which appeared small and spherical, and the area, perimeter and circularity of mitochondria were decreased. Mitofusin2 (Mfn2) and dynamin-related protein 1 (Drp1) were the key proteins involved in mitochondrial division and fusion. SAG treatment could rectify the imbalanced expression of Mfn2 and Drp1 in the prefrontal cortex of the HFD-fed mice, and alleviate the mitochondrial fragmentation. Furthermore, SAG decreased anxiety-like behavior in the HFD-fed mice. These findings suggested that SHH signal was neuroprotective in obesity and SAG relieved anxiety-like behavior through reducing mitochondrial fragmentation.
Collapse
Affiliation(s)
- Dexu Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiaxin Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinyu Xie
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
20
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
21
|
Karalis V, Donovan KE, Sahin M. Primary Cilia Dysfunction in Neurodevelopmental Disorders beyond Ciliopathies. J Dev Biol 2022; 10:54. [PMID: 36547476 PMCID: PMC9782889 DOI: 10.3390/jdb10040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are specialized, microtubule-based structures projecting from the surface of most mammalian cells. These organelles are thought to primarily act as signaling hubs and sensors, receiving and integrating extracellular cues. Several important signaling pathways are regulated through the primary cilium including Sonic Hedgehog (Shh) and Wnt signaling. Therefore, it is no surprise that mutated genes encoding defective proteins that affect primary cilia function or structure are responsible for a group of disorders collectively termed ciliopathies. The severe neurologic abnormalities observed in several ciliopathies have prompted examination of primary cilia structure and function in other brain disorders. Recently, neuronal primary cilia defects were observed in monogenic neurodevelopmental disorders that were not traditionally considered ciliopathies. The molecular mechanisms of how these genetic mutations cause primary cilia defects and how these defects contribute to the neurologic manifestations of these disorders remain poorly understood. In this review we will discuss monogenic neurodevelopmental disorders that exhibit cilia deficits and summarize findings from studies exploring the role of primary cilia in the brain to shed light into how these deficits could contribute to neurologic abnormalities.
Collapse
Affiliation(s)
- Vasiliki Karalis
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kathleen E. Donovan
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
22
|
Spice DM, Dierolf J, Kelly GM. Suppressor of Fused Regulation of Hedgehog Signaling is Required for Proper Astrocyte Differentiation. Stem Cells Dev 2022; 31:741-755. [PMID: 36103394 DOI: 10.1089/scd.2022.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hedgehog signaling is essential for vertebrate development; however, less is known about the negative regulators that influence this pathway. Using the mouse P19 embryonal carcinoma cell model, suppressor of fused (SUFU), a negative regulator of the Hedgehog (Hh) pathway, was investigated during retinoic acid (RA)-induced neural differentiation. We found Hh signaling increased activity in the early phase of differentiation, but was reduced during terminal differentiation of neurons and astrocytes. This early increase in pathway activity was required for neural differentiation; however, it alone was not sufficient to induce neural lineages. SUFU, which regulates signaling at the level of Gli, remained relatively unchanged during differentiation, but its loss through CRISPR-Cas9 gene editing resulted in ectopic expression of Hh target genes. Interestingly, these SUFU-deficient cells were unable to differentiate toward neural lineages without RA, and when directed toward these lineages, they showed delayed and decreased astrocyte differentiation; neuron differentiation was unaffected. Ectopic activation of Hh target genes in SUFU-deficient cells remained throughout RA-induced differentiation and this was accompanied by the loss of Gli3, despite the presence of the Gli3 message. Thus, the study indicates the proper timing and proportion of astrocyte differentiation requires SUFU, likely acting through Gli3, to reduce Hh signaling during late-stage differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | - Joshua Dierolf
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Gregory M Kelly
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Activation of Sonic Hedgehog Signaling Promotes Differentiation of Cortical Layer 4 Neurons via Regulation of Their Cell Positioning. J Dev Biol 2022; 10:jdb10040050. [PMID: 36547472 PMCID: PMC9787542 DOI: 10.3390/jdb10040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Neuronal subtypes in the mammalian cerebral cortex are determined by both intrinsic and extrinsic mechanisms during development. However, the extrinsic cues that are involved in this process remain largely unknown. Here, we investigated the role of sonic hedgehog (Shh) in glutamatergic cortical subtype specification. We found that E14.5-born, but not E15.5-born, neurons with elevated Shh expression frequently differentiated into layer 4 subtypes as judged by the cell positioning and molecular identity. We further found that this effect was achieved indirectly through the regulation of cell positioning rather than the direct activation of layer 4 differentiation programs. Together, we provided evidence that Shh, an extrinsic factor, plays an important role in the specification of cortical superficial layer subtypes.
Collapse
|
24
|
Turcato FC, Wegman E, Lu T, Ferguson N, Luo Y. Dopaminergic neurons are not a major Sonic hedgehog ligand source for striatal cholinergic or PV interneurons. iScience 2022; 25:105278. [PMID: 36281454 PMCID: PMC9587326 DOI: 10.1016/j.isci.2022.105278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
A model was previously proposed that DA neurons provide SHH ligand to striatal interneurons, which in turn support the survival of DA neurons through the release of trophic factors such as Glial cell-derived neurotrophic factor (GDNF). However, some key clinical observations do not support this proposed model, and a recent independent study shows that striatal cholinergic neuron survival does not rely on intact DA neuron projections. To resolve this discrepancy, we generated several independent mouse lines to examine the exact role of DA neuron-derived Shh signaling in the maintenance of the basal ganglia circuit and to identify the Shh-producing cells in the adult brain. Our data suggest that the deletion of Shh in DA neurons does not affect DA neuron survival or locomotive function in cKO mice during aging, nor does it affect the long-term survival of cholinergic or FS PV + interneurons in the striatum (STR).
Collapse
Affiliation(s)
- Flavia Correa Turcato
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Elliot Wegman
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Tao Lu
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nathan Ferguson
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
25
|
Somaiya RD, Stebbins K, Gingrich EC, Xie H, Campbell JN, Garcia ADR, Fox MA. Sonic hedgehog-dependent recruitment of GABAergic interneurons into the developing visual thalamus. eLife 2022; 11:e79833. [PMID: 36342840 PMCID: PMC9640189 DOI: 10.7554/elife.79833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Axons of retinal ganglion cells (RGCs) play critical roles in the development of inhibitory circuits in visual thalamus. We previously reported that RGC axons signal astrocytes to induce the expression of fibroblast growth factor 15 (FGF15), a motogen required for GABAergic interneuron migration into visual thalamus. However, how retinal axons induce thalamic astrocytes to generate Fgf15 and influence interneuron migration remains unknown. Here, we demonstrate that impairing RGC activity had little impact on interneuron recruitment into mouse visual thalamus. Instead, our data show that retinal-derived sonic hedgehog (SHH) is essential for interneuron recruitment. Specifically, we show that thalamus-projecting RGCs express SHH and thalamic astrocytes generate downstream components of SHH signaling. Deletion of RGC-derived SHH leads to a significant decrease in Fgf15 expression, as well as in the percentage of interneurons recruited into visual thalamus. Overall, our findings identify a morphogen-dependent neuron-astrocyte signaling mechanism essential for the migration of thalamic interneurons.
Collapse
Affiliation(s)
- Rachana Deven Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia TechBlacksburgUnited States
| | - Katelyn Stebbins
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia TechBlacksburgUnited States
- Virginia Tech Carilion School of MedicineRoanokeUnited States
| | - Ellen C Gingrich
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphiaUnited States
| | - Hehuang Xie
- Fralin Life Sciences Institute at Virginia TechBlacksburgUnited States
- School of Neuroscience, College of Science, Virginia TechBlacksburgUnited States
- Genetics, Bioinformatics and Computational Biology Program, Virginia TechBlacksburgUnited States
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary MedicineBlacksburgUnited States
| | - John N Campbell
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - A Denise R Garcia
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphiaUnited States
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- School of Neuroscience, College of Science, Virginia TechBlacksburgUnited States
- Department of Biological Sciences, College of Science, Virginia TechBlacksburgUnited States
- Department of Pediatrics, Virginia Tech Carilion School of MedicineRoanokeUnited States
| |
Collapse
|
26
|
Hirose T, Sugitani Y, Kurihara H, Kazama H, Kusaka C, Noda T, Takahashi H, Ohno S. PAR3 restricts the expansion of neural precursor cells by regulating hedgehog signaling. Development 2022; 149:277212. [DOI: 10.1242/dev.199931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
During brain development, neural precursor cells (NPCs) expand initially, and then switch to generating stage-specific neurons while maintaining self-renewal ability. Because the NPC pool at the onset of neurogenesis crucially affects the final number of each type of neuron, tight regulation is necessary for the transitional timing from the expansion to the neurogenic phase in these cells. However, the molecular mechanisms underlying this transition are poorly understood. Here, we report that the telencephalon-specific loss of PAR3 before the start of neurogenesis leads to increased NPC proliferation at the expense of neurogenesis, resulting in disorganized tissue architecture. These NPCs demonstrate hyperactivation of hedgehog signaling in a smoothened-dependent manner, as well as defects in primary cilia. Furthermore, loss of PAR3 enhanced ligand-independent ciliary accumulation of smoothened and an inhibitor of smoothened ameliorated the hyperproliferation of NPCs in the telencephalon. Thus, these findings support the idea that PAR3 has a crucial role in the transition of NPCs from the expansion phase to the neurogenic phase by restricting hedgehog signaling through the establishment of ciliary integrity.
Collapse
Affiliation(s)
- Tomonori Hirose
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
- Cancer Institute 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Japanese Foundation for Cancer Research 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
| | - Yoshinobu Sugitani
- Cancer Institute 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Japanese Foundation for Cancer Research 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Juntendo University School of Medicine 3 Department of Pathology and Oncology , , Tokyo 113-8421 , Japan
| | - Hidetake Kurihara
- Juntendo University Graduate School of Medicine 4 Department of Anatomy and Life Structure , , Tokyo 113-8421 , Japan
- Department of Physical Therapy, Faculty of Health Science, Aino University 5 , Osaka 567-0012 , Japan
| | - Hiromi Kazama
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| | - Chiho Kusaka
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| | - Tetsuo Noda
- Cancer Institute 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Japanese Foundation for Cancer Research 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Director's Room, Cancer Institute, Japanese Foundation for Cancer Research 6 , Tokyo 135-8550 , Japan
| | - Hidehisa Takahashi
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| | - Shigeo Ohno
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| |
Collapse
|
27
|
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, Dobolyi D, Dobie R, Henderson BEP, Henderson NC, Chan WK, Daw MI, Mason JO, Price DJ. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol 2022; 20:e3001563. [PMID: 36067211 PMCID: PMC9481180 DOI: 10.1371/journal.pbio.3001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6. We used bulk and single-cell RNAseq to show that conditional cortex-specific Pax6 deletion from the onset of cortical neurogenesis allowed some progenitors to generate abnormal lineages resembling those normally found outside the cortex. Analysis of selected gene expression showed that the changes occurred in specific spatiotemporal patterns. We then compared the responses of control and Pax6-deleted cortical cells to in vivo and in vitro manipulations of extracellular signals. We found that Pax6 loss increased cortical progenitors' competence to generate inappropriate lineages in response to extracellular factors normally present in developing cortex, including the morphogens Shh and Bmp4. Regional variation in the levels of these factors could explain spatiotemporal patterns of fate change following Pax6 deletion in vivo. We propose that Pax6's main role in developing cortical cells is to minimize the risk of their development being derailed by the potential side effects of morphogens engaged contemporaneously in other essential functions.
Collapse
Affiliation(s)
- Martine Manuel
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Boon Tan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Molinek
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiago Sena Marcos
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Maizatul Fazilah Abd Razak
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Dániel Dobolyi
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Beth E. P. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Wai Kit Chan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael I. Daw
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, People’s Republic of China
| | - John O. Mason
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Price
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Zhang SF, Dai SK, Du HZ, Wang H, Li XG, Tang Y, Liu CM. The epigenetic state of EED-Gli3-Gli1 regulatory axis controls embryonic cortical neurogenesis. Stem Cell Reports 2022; 17:2064-2080. [PMID: 35931079 PMCID: PMC9481917 DOI: 10.1016/j.stemcr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the embryonic ectoderm development (EED) cause Weaver syndrome, but whether and how EED affects embryonic brain development remains elusive. Here, we generated a mouse model in which Eed was deleted in the forebrain to investigate the role of EED. We found that deletion of Eed decreased the number of upper-layer neurons but not deeper-layer neurons starting at E16.5. Transcriptomic and genomic occupancy analyses revealed that the epigenetic states of a group of cortical neurogenesis-related genes were altered in Eed knockout forebrains, followed by a decrease of H3K27me3 and an increase of H3K27ac marks within the promoter regions. The switching of H3K27me3 to H3K27ac modification promoted the recruitment of RNA-Pol2, thereby enhancing its expression level. The small molecule activator SAG or Ptch1 knockout for activating Hedgehog signaling can partially rescue aberrant cortical neurogenesis. Taken together, we proposed a novel EED-Gli3-Gli1 regulatory axis that is critical for embryonic brain development.
Collapse
Affiliation(s)
- Shuang-Feng Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
29
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
31
|
Gingrich EC, Case K, Garcia ADR. A subpopulation of astrocyte progenitors defined by Sonic hedgehog signaling. Neural Dev 2022; 17:2. [PMID: 35027088 PMCID: PMC8759290 DOI: 10.1186/s13064-021-00158-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The molecular signaling pathway, Sonic hedgehog (Shh), is critical for the proper development of the central nervous system. The requirement for Shh signaling in neuronal and oligodendrocyte development in the developing embryo are well established. However, Shh activity is found in discrete subpopulations of astrocytes in the postnatal and adult brain. Whether Shh signaling plays a role in astrocyte development is not well understood. METHODS Here, we use a genetic inducible fate mapping approach to mark and follow a population of glial progenitor cells expressing the Shh target gene, Gli1, in the neonatal and postnatal brain. RESULTS In the neonatal brain, Gli1-expressing cells are found in the dorsolateral corner of the subventricular zone (SVZ), a germinal zone harboring astrocyte progenitor cells. Our data show that these cells give rise to half of the cortical astrocyte population, demonstrating their substantial contribution to the cellular composition of the cortex. Further, these data suggest that the cortex harbors astrocytes from different lineages. Gli1 lineage astrocytes are distributed across all cortical layers, positioning them for broad influence over cortical circuits. Finally, we show that Shh activity recurs in mature astrocytes in a lineage-independent manner, suggesting cell-type dependent roles of the pathway in driving astrocyte development and function. CONCLUSION These data identify a novel role for Shh signaling in cortical astrocyte development and support a growing body of evidence pointing to astrocyte heterogeneity.
Collapse
Affiliation(s)
- Ellen C Gingrich
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Drexel University, 3245 Chestnut St. PISB 422, Philadelphia, PA, 19104, USA
| | - Kendra Case
- Drexel University, 3245 Chestnut St. PISB 422, Philadelphia, PA, 19104, USA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - A Denise R Garcia
- Drexel University, 3245 Chestnut St. PISB 422, Philadelphia, PA, 19104, USA.
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
32
|
Hamze M, Medina I, Delmotte Q, Porcher C. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain. Front Physiol 2021; 12:798066. [PMID: 34955901 PMCID: PMC8703190 DOI: 10.3389/fphys.2021.798066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
In the early stages of the central nervous system growth and development, γ-aminobutyric acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, synaptogenesis, and network formation. These actions are associated with increased concentration of chloride ions in immature neurons [(Cl−)i] that determines the depolarizing strength of ion currents mediated by GABAA receptors, a ligand-gated Cl− permeable ion channel. During neuron maturation the (Cl−)i progressively decreases leading to weakening of GABA induced depolarization and enforcing GABA function as principal inhibitory neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key molecule governing Cl− extrusion and determining the resting level of (Cl−)i in developing and mature mammalian neurons. Among factors controlling the functioning of KCC2 and the maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network activity during postnatal development.
Collapse
Affiliation(s)
- Mira Hamze
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Igor Medina
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Quentin Delmotte
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
33
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
34
|
Hou S, Ho WL, Wang L, Kuo B, Park JY, Han YG. Biphasic Roles of Hedgehog Signaling in the Production and Self-Renewal of Outer Radial Glia in the Ferret Cerebral Cortex. Cereb Cortex 2021; 31:4730-4741. [PMID: 34002221 DOI: 10.1093/cercor/bhab119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neocortex, the center for higher brain function, emerged in mammals and expanded in the course of evolution. The expansion of outer radial glia (oRGs) and intermediate progenitor cells (IPCs) plays key roles in the expansion and consequential folding of the neocortex. Therefore, understanding the mechanisms of oRG and IPC expansion is important for understanding neocortical development and evolution. By using mice and human cerebral organoids, we previously revealed that hedgehog (HH) signaling expands oRGs and IPCs. Nevertheless, it remained to be determined whether HH signaling expanded oRGs and IPCs in vivo in gyrencephalic species, in which oRGs and IPCs are naturally expanded. Here, we show that HH signaling is necessary and sufficient to expand oRGs and IPCs in ferrets, a gyrencephalic species, through conserved cellular mechanisms. HH signaling increases oRG-producing division modes of ventricular radial glia (vRGs), oRG self-renewal, and IPC proliferation. Notably, HH signaling affects vRG division modes only in an early restricted phase before superficial-layer neuron production peaks. Beyond this restricted phase, HH signaling promotes oRG self-renewal. Thus, HH signaling expands oRGs and IPCs in two distinct but continuous phases during cortical development.
Collapse
Affiliation(s)
- Shirui Hou
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wan-Ling Ho
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Lei Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bryan Kuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun Young Park
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
35
|
Herron JM, Tomita H, White CC, Kavanagh TJ, Xu L. Benzalkonium Chloride Disinfectants Induce Apoptosis, Inhibit Proliferation, and Activate the Integrated Stress Response in a 3-D in Vitro Model of Neurodevelopment. Chem Res Toxicol 2021; 34:1265-1274. [PMID: 33472002 PMCID: PMC8131244 DOI: 10.1021/acs.chemrestox.0c00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously found that the widely used disinfectants, benzalkonium chlorides (BACs), alter cholesterol and lipid homeostasis in neuronal cell lines and in neonatal mouse brains. Here, we investigate the effects of BACs on neurospheres, an in vitro three-dimensional model of neurodevelopment. Neurospheres cultured from mouse embryonic neural progenitor cells (NPCs) were exposed to increasing concentrations (from 1 to 100 nM) of a short-chain BAC (BAC C12), a long-chain BAC (BAC C16), and AY9944 (a known DHCR7 inhibitor). We found that the sizes of neurospheres were decreased by both BACs but not by AY9944. Furthermore, we observed potent inhibition of cholesterol biosynthesis at the step of DHCR7 by BAC C12 but not by BAC C16, suggesting that cholesterol biosynthesis inhibition is not responsible for the observed reduction in neurosphere growth. By using immunostaining and cell cycle analysis, we found that both BACs induced apoptosis and decreased proliferation of NPCs. To explore the mechanisms underlying their effect on neurosphere growth, we carried out RNA sequencing on neurospheres exposed to each BAC at 50 nM for 24 h, which revealed the activation of the integrated stress response by both BACs. Overall, these results suggest that BACs affect neurodevelopment by inducing the integrated stress response in a manner independent of their effects on cholesterol biosynthesis.
Collapse
Affiliation(s)
- Josi M. Herron
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Hideaki Tomita
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Collin C. White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Libin Xu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| |
Collapse
|
36
|
Cederquist GY, Tchieu J, Callahan SJ, Ramnarine K, Ryan S, Zhang C, Rittenhouse C, Zeltner N, Chung SY, Zhou T, Chen S, Betel D, White RM, Tomishima M, Studer L. A Multiplex Human Pluripotent Stem Cell Platform Defines Molecular and Functional Subclasses of Autism-Related Genes. Cell Stem Cell 2021; 27:35-49.e6. [PMID: 32619517 DOI: 10.1016/j.stem.2020.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
Autism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism. We define subgroups of autism mutations that perturb PFC neurogenesis and are correlated to abnormal WNT/βcatenin responses. Class 1 mutations (8 of 27) inhibit while class 2 mutations (5 of 27) enhance PFC neurogenesis. Remarkably, autism patient data reveal that individuals carrying subclass-specific mutations differ clinically in their corresponding language acquisition profiles. Our study provides a framework to disentangle genetic heterogeneity associated with autism and points toward converging molecular and developmental pathways of diverse autism-associated mutations.
Collapse
Affiliation(s)
- Gustav Y Cederquist
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill-Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jason Tchieu
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Scott J Callahan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Gerstner Graduate School of Biomedical Sciences, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Kiran Ramnarine
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Sean Ryan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chelsea Rittenhouse
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nadja Zeltner
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Center for Molecular Medicine, Department of Cellular Biology, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Mark Tomishima
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA.
| |
Collapse
|
37
|
Shqirat M, Kinoshita A, Kageyama R, Ohtsuka T. Sonic hedgehog expands neural stem cells in the neocortical region leading to an expanded and wrinkled neocortical surface. Genes Cells 2021; 26:399-410. [PMID: 33811429 DOI: 10.1111/gtc.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023]
Abstract
An expanded and folded neocortex is characteristic of higher mammals, including humans and other primates. The neocortical surface area was dramatically enlarged during the course of mammalian brain evolution from lissencephalic to gyrencephalic mammals, and this bestowed higher cognitive functions especially to primates, including humans. In this study, we generated transgenic (Tg) mice in which the expression of Sonic hedgehog (Shh) could be controlled in neural stem cells (NSCs) and neural progenitors by using the Tet-on system. Shh overexpression during embryogenesis promoted the symmetric proliferative division of NSCs in the neocortical region, leading to the expansion of lateral ventricles and tangential extension of the ventricular zone. Moreover, Shh-overexpressing Tg mice showed dramatic expansion of the neocortical surface area and exhibited a wrinkled brain when overexpression was commenced at early stages of neural development. These results indicate that Shh is able to increase the neocortical NSCs and contribute to expansion of the neocortex.
Collapse
Affiliation(s)
- Mohammed Shqirat
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kinoshita
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan.,RIKEN Center for Brain Science, Wako, Japan
| | - Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
RNA Localization and Local Translation in Glia in Neurological and Neurodegenerative Diseases: Lessons from Neurons. Cells 2021; 10:cells10030632. [PMID: 33809142 PMCID: PMC8000831 DOI: 10.3390/cells10030632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cell polarity is crucial for almost every cell in our body to establish distinct structural and functional domains. Polarized cells have an asymmetrical morphology and therefore their proteins need to be asymmetrically distributed to support their function. Subcellular protein distribution is typically achieved by localization peptides within the protein sequence. However, protein delivery to distinct cellular compartments can rely, not only on the transport of the protein itself but also on the transport of the mRNA that is then translated at target sites. This phenomenon is known as local protein synthesis. Local protein synthesis relies on the transport of mRNAs to subcellular domains and their translation to proteins at target sites by the also localized translation machinery. Neurons and glia specially depend upon the accurate subcellular distribution of their proteome to fulfil their polarized functions. In this sense, local protein synthesis has revealed itself as a crucial mechanism that regulates proper protein homeostasis in subcellular compartments. Thus, deregulation of mRNA transport and/or of localized translation can lead to neurological and neurodegenerative diseases. Local translation has been more extensively studied in neurons than in glia. In this review article, we will summarize the state-of-the art research on local protein synthesis in neuronal function and dysfunction, and we will discuss the possibility that local translation in glia and deregulation thereof contributes to neurological and neurodegenerative diseases.
Collapse
|
39
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Willsey HR, Exner CRT, Xu Y, Everitt A, Sun N, Wang B, Dea J, Schmunk G, Zaltsman Y, Teerikorpi N, Kim A, Anderson AS, Shin D, Seyler M, Nowakowski TJ, Harland RM, Willsey AJ, State MW. Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 2021; 109:788-804.e8. [PMID: 33497602 DOI: 10.1016/j.neuron.2021.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amanda Everitt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Galina Schmunk
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yefim Zaltsman
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Albert Kim
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aoife S Anderson
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Shin
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Meghan Seyler
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
42
|
Komada M, Nagao T, Kagawa N. Prenatal and postnatal bisphenol A exposure inhibits postnatal neurogenesis in the hippocampal dentate gyrus. J Toxicol Sci 2020; 45:639-650. [PMID: 33012732 DOI: 10.2131/jts.45.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA), an endocrine disruptor with estrogenic effects, is widely used as a raw material for manufacturing polycarbonate plastic and epoxy resins. Prenatal and postnatal exposure to BPA affects brain morphogenesis. However, the effects of prenatal and postnatal BPA exposure on postnatal neurogenesis in mice are poorly understood. In this study, we developed a mouse model of prenatal and postnatal BPA exposure and analyzed its effects on hippocampal neurogenesis. The hippocampal dentate gyrus is vulnerable to chemical exposure, as neurogenesis continues in this region even after birth. Our results showed that in mice, prenatal and postnatal BPA exposure decreased the number of type-1, 2a, 2b, and 3 neural progenitor cells, as well as in granule cells, in the hippocampal dentate gyrus on postnatal days 16 and 70. The effect of prenatal and postnatal BPA exposure on neural progenitors were affected at all differentiation stages. In addition, prenatal and postnatal BPA exposure affects the maintenance of long-term memory on postnatal day 70. Our results suggest that neurodevelopmental toxicity due to prenatal and postnatal BPA exposure might affect postnatal morphogenesis and functional development of the hippocampal dentate gyrus.
Collapse
Affiliation(s)
| | | | - Nao Kagawa
- Department of Life Science, Kindai University
| |
Collapse
|
43
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
44
|
The Neocortical Progenitor Specification Program Is Established through Combined Modulation of SHH and FGF Signaling. J Neurosci 2020; 40:6872-6887. [PMID: 32737167 DOI: 10.1523/jneurosci.2888-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/22/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
Neuronal progenitors in the developing forebrain undergo dynamic competence states to ensure timely generation of specific excitatory and inhibitory neuronal subtypes from distinct neurogenic niches of the dorsal and ventral forebrain, respectively. Here we show evidence of progenitor plasticity when Sonic hedgehog (SHH) signaling is left unmodulated in the embryonic neocortex of the mammalian dorsal forebrain. We found that, at early stages of corticogenesis, loss of Suppressor of Fused (Sufu), a potent inhibitor of SHH signaling, in neocortical progenitors, altered the transcriptomic landscape of male mouse embryos. Ectopic activation of SHH signaling occurred, via degradation of Gli3R, resulting in significant upregulation of fibroblast growth factor 15 (FGF15) gene expression in all E12.5 Sufu-cKO neocortex regardless of sex. Consequently, activation of FGF signaling, and its downstream effector the MAPK signaling, facilitated expression of genes characteristic of ventral forebrain progenitors. Our studies identify the importance of modulating extrinsic niche signals such as SHH and FGF15, to maintain the competency and specification program of neocortical progenitors throughout corticogenesis.SIGNIFICANCE STATEMENT Low levels of FGF15 control progenitor proliferation and differentiation during neocortical development, but little is known on how FGF15 expression is maintained. Our studies identified SHH signaling as a critical activator of FGF15 expression during corticogenesis. We found that Sufu, via Gli3R, ensured low levels of FGF15 was expressed to prevent abnormal specification of neocortical progenitors. These studies advance our knowledge on the molecular mechanisms guiding the generation of specific neocortical neuronal lineages, their implications in neurodevelopmental diseases, and may guide future studies on how progenitor cells may be used for brain repair.
Collapse
|
45
|
Komada M, Nagao T, Kagawa N. Postnatal di-2-ethylhexyl phthalate exposure affects hippocampal dentate gyrus morphogenesis. J Appl Toxicol 2020; 40:1673-1682. [PMID: 32633424 DOI: 10.1002/jat.4027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is the most commonly used phthalate for the production of flexible polyvinyl chloride. Recent studies in humans reported a widespread DEHP exposure, raising concerns in infants whose metabolic and excretory systems are immature. DEHP is a potential endocrine-disrupting chemical, but the effects of postnatal DEHP exposure on neuronal development are unclear. The dentate gyrus (DG) is critical in the consolidation of information from short- to long-term memory, as well as spatial learning. We evaluated neurodevelopmental toxicity due to neonatal DEHP exposure by assessing neurogenesis in the DG. Newborn mice were orally administered DEHP from postnatal day (PND) 12 to 25. We performed immunostaining using neuronal markers at different stages to assess whether DEHP exposure affects neurons at specific differentiation stages at PND 26 and PND 110. We found that in mice, postnatal DEHP exposure led to a decrease in the number of Type-1, -2a, -2b, and -3 neural progenitor cells, as well as granule cells in the hippocampal DG at PND 26. Further, the results showed that neural progenitor cell proliferation and differentiation were also reduced in the hippocampal DG of the DEHP-exposed mice. However, no effect on memory and learning was observed. Overall, our results suggest that neurodevelopmental toxicity due to postnatal DEHP exposure might affect postnatal DG morphogenesis.
Collapse
Affiliation(s)
- Munekazu Komada
- Department of Life Science, Kindai University, Higashiosaka, Osaka, Japan
| | - Tetsuji Nagao
- Department of Life Science, Kindai University, Higashiosaka, Osaka, Japan
| | - Nao Kagawa
- Department of Life Science, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
46
|
Cárdenas A, Borrell V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol Life Sci 2020; 77:1435-1460. [PMID: 31563997 PMCID: PMC11104948 DOI: 10.1007/s00018-019-03315-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The cerebral cortex varies dramatically in size and complexity between amniotes due to differences in neuron number and composition. These differences emerge during embryonic development as a result of variations in neurogenesis, which are thought to recapitulate modifications occurred during evolution that culminated in the human neocortex. Here, we review work from the last few decades leading to our current understanding of the evolution of neurogenesis and size of the cerebral cortex. Focused on specific examples across vertebrate and amniote phylogeny, we discuss developmental mechanisms regulating the emergence, lineage, complexification and fate of cortical germinal layers and progenitor cell types. At the cellular level, we discuss the fundamental impact of basal progenitor cells and the advent of indirect neurogenesis on the increased number and diversity of cortical neurons and layers in mammals, and on cortex folding. Finally, we discuss recent work that unveils genetic and molecular mechanisms underlying this progressive expansion and increased complexity of the amniote cerebral cortex during evolution, with a particular focus on those leading to human-specific features. Whereas new genes important in human brain development emerged the recent hominid lineage, regulation of the patterns and levels of activity of highly conserved signaling pathways are beginning to emerge as mechanisms of central importance in the evolutionary increase in cortical size and complexity across amniotes.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
47
|
Fatima M, Ahmad MH, Srivastav S, Rizvi MA, Mondal AC. A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats. Neurochem Int 2020; 136:104730. [PMID: 32201282 DOI: 10.1016/j.neuint.2020.104730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/16/2023]
Abstract
Prenatal stress (PNS) has its negative impact on both the infant hippocampal neurogenesis and pregnancy outcomes in the neonates that serves as a risk factor for postnatal depression in adult offsprings. Therefore, main objectives of the present study were to evaluate the effect of maternal chronic unpredictable mild stress (CUMS) on behavioural changes, levels of oxidative stress, changes in selective developmental signaling genes and neurogenesis in the adult brain of Wistar rats and its reversal through a selective non-ergoline D2 type dopamine receptor (D2R) agonist Ropinirole (ROPI). Effects of ROPI treatment on CUMS induced adult rats offspring were measured by assessment of behavioural tests (sucrose preference test and forced swim test), biomarkers of oxidative stress, protein expression of tyrosine hydroxylase (TH), mRNA expression of SHH, GSK-3β, β-catenin, Notch, brain-derived neurotrophic factor (BDNF), Dopamine receptor 2 (Drd2) and bromodeoxyuridine (BrdU) cell proliferation assay. The oxidative stress, protein and mRNA expression were determined in the hippocampus and prefrontal cortex while the BrdU cell proliferation was observed in the hippocampus of rat brain. PNS induced changes resulted in depression validated by the depression-like behaviours, increased oxidative stress, decreased TH expression, altered expression of selective developmental genes, along with the reduced hippocampal neurogenesis and BDNF expression in the brain of adult offsprings. Chronic ROPI treatment reversed those effects and was equally effective like Imipramine (IMI) treatment. So, the present study suggested that ROPI can be used as an antidepressant drug for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Mahino Fatima
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saurabh Srivastav
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - A C Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
48
|
|
49
|
The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen. J Neurosci 2019; 38:9338-9345. [PMID: 30381425 DOI: 10.1523/jneurosci.1662-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS. Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the establishment of wiring specificity. Here, we review these novel and unexpected functions and the unanswered questions regarding the role of SHH and its signaling pathway members in these cases.
Collapse
|
50
|
Locker M, Perron M. In Vivo Assessment of Neural Precursor Cell Cycle Kinetics in the Amphibian Retina. Cold Spring Harb Protoc 2019; 2019:pdb.prot105536. [PMID: 31147394 DOI: 10.1101/pdb.prot105536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell cycle progression is intimately linked to cell fate commitment during development. In addition, adult stem cells show specific proliferative behaviors compared to progenitors. Exploring cell cycle dynamics and regulation is therefore of utmost importance, but constitutes a great challenge in vivo. Here we provide a protocol for evaluating in vivo the length of all cell cycle phases of neural stem and progenitor cells in the post-embryonic Xenopus retina. These cells are localized in the ciliary marginal zone (CMZ), a peripheral region of the retina that sustains continuous neurogenesis throughout the animal's life. The CMZ bears two tremendous advantages for cell cycle kinetics analyses. First, this region, where proliferative cells are sequestered, can be easily delineated. Second, the spatial organization of the CMZ mirrors the temporal sequence of retinal development, allowing for topological distinction between retinal stem cells (residing in the most peripheral margin), and amplifying progenitors (located more centrally). We describe herein how to determine CMZ cell cycle parameters using a combination of (i) a cumulative labeling assay, (ii) the percentage of labeled mitosis calculation, and (iii) the mitotic index measurement. Taken together, these techniques allow us to estimate total cell cycle length (TC) as well as the duration of all cell cycle phases (TS/G2/M/G1). Although the method presented here was adapted to the particular system of the CMZ, it should be applicable to other tissues and developmental stages as well.
Collapse
Affiliation(s)
- Morgane Locker
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Univ Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Univ Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|