1
|
Zhang B, Wu Y, Zhou C, Xie J, Zhang Y, Yang X, Xiao J, Wang DW, Shan C, Zhou X, Xiang Y, Yang B. Hyperactivation of ATF4/TGF-β1 signaling contributes to the progressive cardiac fibrosis in Arrhythmogenic cardiomyopathy caused by DSG2 Variant. BMC Med 2024; 22:361. [PMID: 39227800 PMCID: PMC11373413 DOI: 10.1186/s12916-024-03593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized with progressive cardiac fibrosis and heart failure. However, the exact mechanism driving the progression of cardiac fibrosis and heart failure in ACM remains elusive. This study aims to investigate the underlying mechanisms of progressive cardiac fibrosis in ACM caused by newly identified Desmoglein-2 (DSG2) variation. METHODS We identified homozygous DSG2F531C variant in a family with 8 ACM patients using whole-exome sequencing and generated Dsg2F536C knock-in mice. Neonatal and adult mouse ventricular myocytes isolated from Dsg2F536C knock-in mice were used. We performed functional, transcriptomic and mass spectrometry analyses to evaluate the mechanisms of ACM caused by DSG2F531C variant. RESULTS All eight patients with ACM were homozygous for DSG2F531C variant. Dsg2F536C/F536C mice displayed cardiac enlargement, dysfunction, and progressive cardiac fibrosis in both ventricles. Mechanistic investigations revealed that the variant DSG2-F536C protein underwent misfolding, leading to its recognition by BiP within the endoplasmic reticulum, which triggered endoplasmic reticulum stress, activated the PERK-ATF4 signaling pathway and increased ATF4 levels in cardiomyocytes. Increased ATF4 facilitated the expression of TGF-β1 in cardiomyocytes, thereby activating cardiac fibroblasts through paracrine signaling and ultimately promoting cardiac fibrosis in Dsg2F536C/F536C mice. Notably, inhibition of the PERK-ATF4 signaling attenuated progressive cardiac fibrosis and cardiac systolic dysfunction in Dsg2F536C/F536C mice. CONCLUSIONS Hyperactivation of the ATF4/TGF-β1 signaling in cardiomyocytes emerges as a novel mechanism underlying progressive cardiac fibrosis in ACM. Targeting the ATF4/TGF-β1 signaling may be a novel therapeutic target for managing ACM.
Collapse
Affiliation(s)
- Baowei Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Yizhang Wu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Chunjiang Zhou
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Jiaxi Xie
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P.R. China
| | - Youming Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Xingbo Yang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Jing Xiao
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Dao Wu Wang
- State Key Laboratory of Reproductive Medicine, the Centre for Clinical Reproductive Medicine, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P.R. China
| | - Congjia Shan
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiujuan Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P.R. China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China.
| | - Bing Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China.
| |
Collapse
|
2
|
Zhou W, Ghersi JJ, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, Sessa WC, Nicoli S. Akt is a mediator of artery specification during zebrafish development. Development 2024; 151:dev202727. [PMID: 39101673 PMCID: PMC11441982 DOI: 10.1242/dev.202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.
Collapse
Affiliation(s)
- Wenping Zhou
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joey J Ghersi
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Pathologies Foetomaternelles et Néonatales, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Emma Ristori
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Semanchik
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew Prendergast
- Department of Comparative Medicine, Yale zebrafish Research Core, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhang
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paola Carneiro
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William C Sessa
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefania Nicoli
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
4
|
Kadry MO, Abdel-Megeed RM. CRISPR-Cas9 genome and long non-coding RNAs as a novel diagnostic index for prostate cancer therapy via liposomal-coated compounds. PLoS One 2024; 19:e0302264. [PMID: 38723038 PMCID: PMC11081254 DOI: 10.1371/journal.pone.0302264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/31/2024] [Indexed: 05/13/2024] Open
Abstract
CRISPR/Cas9 is a recently discovered genomic editing technique that altered scientist's sight in studying genes function. Cas9 is controlled via guide (g) RNAs, which match the DNA targeted in cleavage to modify the respective gene. The development in prostate cancer (PC) modeling directed not only to novel resources for recognizing the signaling pathways overriding prostate cell carcinoma, but it has also created a vast reservoir for complementary tools to examine therapies counteracting this type of cancer. Various cultured somatic rat models for prostate cancer have been developed that nearly mimic human prostate cancer. Nano-medicine can passively target cancer cells via increasing bioavailability and conjugation via specific legend, contributing to reduced systemic side-effects and increased efficacy. This article highlights liposomal loaded Nano-medicine as a potential treatment for prostate cancer and clarifies the CRISPR/Cas9 variation accompanied with prostate cancer. PC is induced experimentally in western rat model via ethinyl estradiol for 4 weeks and SC. dose of 3, 2'- dimethyl-4-aminobiphenyl estradiol (DAE) (50mg/kg) followed by treatment via targeted liposomal-coated compounds such as liposomal dexamethasone (DXM), liposomal doxorubicin (DOX) and liposomal Turmeric (TUR) (3mg/kg IP) for four weeks in a comparative study to their non-targeted analogue dexamethasone, doxorubicin and Turmeric. 3, 2'- dimethyl-4-aminobiphenylestradiol elicit prostate cancer in western rats within 5 months. Simultaneous supplementations with these liposomal compounds influence on prostate cancer; tumor markers were investigated via prostate-specific antigen (PSA), Nitric oxide (NOX) and CRISPR/Cas9 gene editing. Several long non-coding RNAs were reported to be deregulated in prostate cell carcinoma, including MALAT1. On the other hand, gene expression of apoptotic biomarkers focal adhesion kinase (AKT-1), phosphatidylinistol kinase (PI3K) and glycogen synthase kinase-3 (GSK-3) was also investigated and further confirming these results via histopathological examination. Liposomal loaded dexamethasone; doxorubicin and Turmeric can be considered as promising therapeutic agents for prostate cancer via modulating CRISPR/Cas9 gene editing and long non coding gene MALAT1.
Collapse
Affiliation(s)
- Mai O. Kadry
- Therapeutic Chemistry Department, National Research Center, Al Bhoouth Street, Cairo, Egypt
| | - Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, National Research Center, Al Bhoouth Street, Cairo, Egypt
| |
Collapse
|
5
|
Yang L, Liao J, Huang H, Lee TL, Qi H. Stage-specific regulation of undifferentiated spermatogonia by AKT1S1-mediated AKT-mTORC1 signaling during mouse spermatogenesis. Dev Biol 2024; 509:11-27. [PMID: 38311163 DOI: 10.1016/j.ydbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4+ spermatogonia decreased significantly, whereas self-renewing GFRα1+ and proliferating PLZF+ spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1-/- mice. Further analyses suggest that OCT4+ spermatogonia in Akt1s1-/- mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.
Collapse
Affiliation(s)
- Lele Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyue Liao
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hongying Huang
- The Experimental Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tin Lap Lee
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Huayu Qi
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
6
|
Palma MS, Perez SR, Husain A, Bhandari D. Substrate preference of protein kinase B isoforms can vary depending on the cell line. PLoS One 2024; 19:e0298322. [PMID: 38502658 PMCID: PMC10950239 DOI: 10.1371/journal.pone.0298322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Many proteins in higher eukaryotes, especially those with crucial functions, have multiple isoforms with redundant roles providing protection against potential functional deficiencies in one isoform. However, these isoforms can also have some unique roles. Protein kinase B, also known as Akt, is one such protein that has three isoforms encoded on different genes. Due to high sequence similarity and the general lack of specific reagents, most studies on Akt generalize their findings and do not distinguish between the isoforms. Using an established chemical genetic strategy and a set of known Akt substrates, this work explores substrate specificity of Akt isoforms under steady state conditions in two commonly used cell lines. This strategy can be applied to study any Akt isoform-specific substrates of interest in any cell line of choice as long as the cell line can be transfected.
Collapse
Affiliation(s)
- Miguel S. Palma
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Samantha R. Perez
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Aida Husain
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| |
Collapse
|
7
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
8
|
Yang C, Hardy P. The Multifunctional Nature of the MicroRNA/AKT3 Regulatory Axis in Human Cancers. Cells 2023; 12:2594. [PMID: 37998329 PMCID: PMC10670075 DOI: 10.3390/cells12222594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Serine/threonine kinase (AKT) signaling regulates diverse cellular processes and is one of the most important aberrant cell survival mechanisms associated with tumorigenesis, metastasis, and chemoresistance. Targeting AKT has become an effective therapeutic strategy for the treatment of many cancers. AKT3 (PKBγ), the least studied isoform of the AKT family, has emerged as a major contributor to malignancy. AKT3 is frequently overexpressed in human cancers, and many regulatory oncogenic or tumor suppressor small non-coding RNAs (ncRNAs), including microRNAs (miRNAs), have recently been identified to be involved in regulating AKT3 expression. Therefore, a better understanding of regulatory miRNA/AKT3 networks may reveal novel biomarkers for the diagnosis of patients with cancer and may provide invaluable information for developing more effective therapeutic strategies. The aim of this review was to summarize current research progress in the isoform-specific functions of AKT3 in human cancers and the roles of dysregulated miRNA/AKT3 in specific types of human cancers.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Montreal, QC H3T 1C5, Canada;
- Department of Pharmacology and Physiology, Department of Pediatrics, University of Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
9
|
Wu Y, Zhao J, Zhao X, He H, Cui C, Zhang Y, Zhu Q, Yin H, Han S. CircLRRFIP1 promotes the proliferation and differentiation of chicken skeletal muscle satellite cells by sponging the miR-15 family via activating AKT3-mTOR/p70S6K signaling pathway. Poult Sci 2023; 102:103050. [PMID: 37683450 PMCID: PMC10498000 DOI: 10.1016/j.psj.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Skeletal muscle is important for animal meat production, regulating movements, and maintaining homeostasis. Circular RNAs (circRNAs) have been founded to play vital role in myogenesis. However, the effects of the numerous circRNAs on growth and development of the skeletal muscle are yet to be uncovered. Herein, we identified circLRRFIP1, which is a novel circular RNA that is preferentially expressed in the skeletal muscle. To study the role of circLRRFIP1 in the skeletal muscle, the skeletal muscle satellite cells (SMSCs) was used to silenced or overexpressed circLRRFIP1. The results obtained in this study showed that circLRRFIP1 play a positive role in the proliferation and differentiation of SMSCs. The SMSCs were generated with stable knockdown and overexpression of circLRRFIP1, and the results showed that circLRRFIP1 exerts a stimulatory effect on the proliferation and differentiation of SMSCs. We further generated SMSCs with stable knockdown and overexpression of circLRRFIP1, and the results revealed that circLRRFIP1 exerts a stimulatory effect on the proliferation and differentiation of SMSCs. Mechanistically, circLRRFIP1 targets the myogenic inhibitory factor-miR-15 family to release the suppression of the miR-15 family to AKT3. The knockdown of AKT inhibits SMSC differentiation through the mTOR/p70S6K pathway. Taken together, the results obtained in this present study revealed the important role and the regulatory mechanisms of circLRRFIP1 in the development of chicken skeletal muscle. Therefore, this study provides an attractive target for molecular breeding to enhance meat production in the chicken industry.
Collapse
Affiliation(s)
- Yamei Wu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jing Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haorong He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Can Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shunshun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
10
|
Yan K, Bormuth I, Bormuth O, Tutukova S, Renner A, Bessa P, Schaub T, Rosário M, Tarabykin V. TrkB-dependent EphrinA reverse signaling regulates callosal axon fasciculate growth downstream of Neurod2/6. Cereb Cortex 2023; 33:1752-1767. [PMID: 35462405 DOI: 10.1093/cercor/bhac170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/14/2022] Open
Abstract
Abnormal development of corpus callosum is relatively common and causes a broad spectrum of cognitive impairments in humans. We use acallosal Neurod2/6-deficient mice to study callosal axon guidance within the ipsilateral cerebral cortex. Initial callosal tracts form but fail to traverse the ipsilateral cingulum and are not attracted towards the midline in the absence of Neurod2/6. We show that the restoration of Ephrin-A4 (EfnA4) expression in the embryonic neocortex of Neurod2/6-deficient embryos is sufficient to partially rescue targeted callosal axon growth towards the midline. EfnA4 cannot directly mediate reverse signaling within outgrowing axons, but it forms co-receptor complexes with TrkB (Ntrk2). The ability of EfnA4 to rescue the guided growth of a subset of callosal axons in Neurod2/6-deficient mice is abolished by the co-expression of dominant negative TrkBK571N (kinase-dead) or TrkBY515F (SHC-binding deficient) variants, but not by TrkBY816F (PLCγ1-binding deficient). Additionally, EphA4 is repulsive to EfnA4-positive medially projecting axons in organotypic brain slice culture. Collectively, we suggest that EfnA4-mediated reverse signaling acts via TrkB-SHC and is required for ipsilateral callosal axon growth accuracy towards the midline downstream of Neurod family factors.
Collapse
Affiliation(s)
- Kuo Yan
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Ingo Bormuth
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Olga Bormuth
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany.,Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia
| | - Svetlana Tutukova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia.,Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Ana Renner
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Paraskevi Bessa
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany.,Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia.,Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| |
Collapse
|
11
|
Paccosi E, Balzerano A, Proietti-De-Santis L. Interfering with the Ubiquitin-Mediated Regulation of Akt as a Strategy for Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032809. [PMID: 36769122 PMCID: PMC9917864 DOI: 10.3390/ijms24032809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The serine/threonine kinase Akt modulates the functions of numerous substrates, many of them being involved in cell proliferation and growth, metabolism, angiogenesis, resistance to hypoxia and migration. Akt is frequently deregulated in many types of human cancers, its overexpression or abnormal activation being associated with the increased proliferation and survival of cancer cells. A promising avenue for turning off the functionality of Akt is to either interfere with the K63-linked ubiquitination that is necessary for Akt membrane recruitment and activation or increase the K48-linked polyubiquitination that aims to target Akt to the proteasome for its degradation. Recent evidence indicates that targeting the ubiquitin proteasome system is effective for certain cancer treatments. In this review, the functions and roles of Akt in human cancer will be discussed, with a main focus on molecules and compounds that target various elements of the ubiquitination processes that regulate the activation and inactivation of Akt. Moreover, their possible and attractive implications for cancer therapy will be discussed.
Collapse
|
12
|
Wainstein E, Maik-Rachline G, Blenis J, Seger R. AKTs do not translocate to the nucleus upon stimulation but AKT3 can constitutively signal from the nuclear envelope. Cell Rep 2022; 41:111733. [PMID: 36476861 DOI: 10.1016/j.celrep.2022.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
AKT is a central signaling protein kinase that plays a role in the regulation of cellular survival metabolism and cell growth, as well as in pathologies such as diabetes and cancer. Human AKT consists of three isoforms (AKT1-3) that may fulfill different functions. Here, we report that distinct subcellular localization of the isoforms directly influences their activity and function. AKT1 is localized primarily in the cytoplasm, AKT2 in the nucleus, and AKT3 in the nucleus or nuclear envelope. None of the isoforms actively translocates into the nucleus upon stimulation. Interestingly, AKT3 at the nuclear envelope is constitutively phosphorylated, enabling a constant phosphorylation of TSC2 at this location. Knockdown of AKT3 induces moderate attenuation of cell proliferation of breast cancer cells. We suggest that in addition to the stimulation-induced activation of the lysosomal/cytoplasmic AKT1-TSC2 pathway, a subpopulation of TSC2 is constitutively inactivated by AKT3 at the nuclear envelope of transformed cells.
Collapse
Affiliation(s)
- Ehud Wainstein
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Galia Maik-Rachline
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
13
|
Liu H, Stepicheva NA, Ghosh S, Shang P, Chowdhury O, Daley RA, Yazdankhah M, Gupta U, Hose SL, Valapala M, Fitting CS, Strizhakova A, Shan Y, Feenstra D, Sahel JA, Jayagopal A, Handa JT, Zigler JS, Fort PE, Sodhi A, Sinha D. Reducing Akt2 in retinal pigment epithelial cells causes a compensatory increase in Akt1 and attenuates diabetic retinopathy. Nat Commun 2022; 13:6045. [PMID: 36229454 PMCID: PMC9561713 DOI: 10.1038/s41467-022-33773-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/03/2022] [Indexed: 01/14/2023] Open
Abstract
The retinal pigment epithelium (RPE) plays an important role in the development of diabetic retinopathy (DR), a leading cause of blindness worldwide. Here we set out to explore the role of Akt2 signaling-integral to both RPE homeostasis and glucose metabolism-to DR. Using human tissue and genetically manipulated mice (including RPE-specific conditional knockout (cKO) and knock-in (KI) mice), we investigate whether Akts in the RPE influences DR in models of diabetic eye disease. We found that Akt1 and Akt2 activities were reciprocally regulated in the RPE of DR donor tissue and diabetic mice. Akt2 cKO attenuated diabetes-induced retinal abnormalities through a compensatory upregulation of phospho-Akt1 leading to an inhibition of vascular injury, inflammatory cytokine release, and infiltration of immune cells mediated by the GSK3β/NF-κB signaling pathway; overexpression of Akt2 has no effect. We propose that targeting Akt1 activity in the RPE may be a novel therapy for treating DR.
Collapse
Affiliation(s)
- Haitao Liu
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Nadezda A. Stepicheva
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sayan Ghosh
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Peng Shang
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.280881.b0000 0001 0097 5623Present Address: Doheny Eye Institute, Pasadena, CA USA
| | - Olivia Chowdhury
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Rachel A. Daley
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Meysam Yazdankhah
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.443945.b0000 0004 0566 7998Present Address: Neural Stem Cell Institute, Rensselaer, NY USA
| | - Urvi Gupta
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Stacey L. Hose
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Mallika Valapala
- grid.411377.70000 0001 0790 959XSchool of Optometry, Indiana University, Bloomington, IN USA
| | - Christopher Scott Fitting
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Anastasia Strizhakova
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Yang Shan
- grid.214458.e0000000086837370Kellogg Eye Center, University of Michigan School of Medicine, Ann Arbor, MI USA
| | - Derrick Feenstra
- grid.417570.00000 0004 0374 1269Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - José-Alain Sahel
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.462844.80000 0001 2308 1657Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | | | - James T. Handa
- grid.21107.350000 0001 2171 9311The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - J. Samuel Zigler
- grid.21107.350000 0001 2171 9311The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Patrice E. Fort
- grid.214458.e0000000086837370Kellogg Eye Center, University of Michigan School of Medicine, Ann Arbor, MI USA
| | - Akrit Sodhi
- grid.21107.350000 0001 2171 9311The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Urasaki Y, Le TT. Cinnamaldehyde and Curcumin Prime Akt2 for Insulin-Stimulated Activation. Nutrients 2022; 14:nu14163301. [PMID: 36014807 PMCID: PMC9416494 DOI: 10.3390/nu14163301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, the effects of cinnamaldehyde and curcumin on Akt2, a serine/threonine protein kinase central to the insulin signaling pathway, were examined in preadipocytes. Cinnamaldehyde or curcumin treatment increased Akt2 phosphorylation at multiple sites including T450 and Y475, but had no effect on Akt2 phosphorylation at S474, which is critical for Akt2 activation. Surprisingly, insulin treatment with cinnamaldehyde or curcumin increased p-Akt2 (S474) by 3.5-fold versus insulin treatment alone. Furthermore, combined cinnamaldehyde, curcumin, and insulin treatment increased p-Akt2 (S474) by 7-fold versus insulin treatment alone. Interestingly, cinnamaldehyde and curcumin inhibited both serine/threonine phosphatase 2A (PP2A) and protein tyrosine phosphatase 1B (PTP1B). Akt2 activation is a multistep process that requires phosphorylation at T450 for proper folding and maturation, and phosphorylation of both Y475 and S474 for stabilization of the catalytic domain. It is plausible that by inhibiting PP2A and PTP1B, cinnamaldehyde and curcumin increase phosphorylation at T450 and Y475, and prime Akt2 for insulin-stimulated phosphorylation at S474. Notably, the combination of a PP2A inhibitor, okadaic acid, and a PTP1B inhibitor increased p-Akt2 (S474), even in the absence of insulin. Future combinations of PP2A and PTP1B inhibitors provide a rational platform to engineer new therapeutics for insulin resistance syndrome.
Collapse
|
15
|
Percival CJ, Devine J, Hassan CR, Vidal‐Garcia M, O'Connor‐Coates CJ, Zaffarini E, Roseman C, Katz D, Hallgrimsson B. The genetic basis of neurocranial size and shape across varied lab mouse populations. J Anat 2022; 241:211-229. [PMID: 35357006 PMCID: PMC9296060 DOI: 10.1111/joa.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
Brain and skull tissues interact through molecular signalling and mechanical forces during head development, leading to a strong correlation between the neurocranium and the external brain surface. Therefore, when brain tissue is unavailable, neurocranial endocasts are often used to approximate brain size and shape. Evolutionary changes in brain morphology may have resulted in secondary changes to neurocranial morphology, but the developmental and genetic processes underlying this relationship are not well understood. Using automated phenotyping methods, we quantified the genetic basis of endocast variation across large genetically varied populations of laboratory mice in two ways: (1) to determine the contributions of various genetic factors to neurocranial form and (2) to help clarify whether a neurocranial variation is based on genetic variation that primarily impacts bone development or on genetic variation that primarily impacts brain development, leading to secondary changes in bone morphology. Our results indicate that endocast size is highly heritable and is primarily determined by additive genetic factors. In addition, a non-additive inbreeding effect led to founder strains with lower neurocranial size, but relatively large brains compared to skull size; suggesting stronger canalization of brain size and/or a general allometric effect. Within an outbred sample of mice, we identified a locus on mouse chromosome 1 that is significantly associated with variation in several positively correlated endocast size measures. Because the protein-coding genes at this locus have been previously associated with brain development and not with bone development, we propose that genetic variation at this locus leads primarily to variation in brain volume that secondarily leads to changes in neurocranial globularity. We identify a strain-specific missense mutation within Akt3 that is a strong causal candidate for this genetic effect. Whilst it is not appropriate to generalize our hypothesis for this single locus to all other loci that also contribute to the complex trait of neurocranial skull morphology, our results further reveal the genetic basis of neurocranial variation and highlight the importance of the mechanical influence of brain growth in determining skull morphology.
Collapse
Affiliation(s)
| | - Jay Devine
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | | | - Marta Vidal‐Garcia
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | | | - Eva Zaffarini
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | - Charles Roseman
- Department of Evolution, Ecology, and BehaviorUniversity of IllinoisUrbanaIllinoisUSA
| | - David Katz
- Cell Biology and AnatomyUniversity of Calgary Cumming School of MedicineCalgaryCanada
| | - Benedikt Hallgrimsson
- Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| |
Collapse
|
16
|
Investigation of the function of the PI3-Kinase / AKT signaling pathway for leukemogenesis and therapy of acute childhood lymphoblastic leukemia (ALL). Cell Signal 2022; 93:110301. [DOI: 10.1016/j.cellsig.2022.110301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
|
17
|
Marosi M, Nenov MN, Di Re J, Dvorak NM, Alshammari M, Laezza F. Inhibition of the Akt/PKB Kinase Increases Na v1.6-Mediated Currents and Neuronal Excitability in CA1 Hippocampal Pyramidal Neurons. Int J Mol Sci 2022; 23:ijms23031700. [PMID: 35163623 PMCID: PMC8836202 DOI: 10.3390/ijms23031700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
In neurons, changes in Akt activity have been detected in response to the stimulation of transmembrane receptors. However, the mechanisms that lead to changes in neuronal function upon Akt inhibition are still poorly understood. In the present study, we interrogate how Akt inhibition could affect the activity of the neuronal Nav channels with while impacting intrinsic excitability. To that end, we employed voltage-clamp electrophysiological recordings in heterologous cells expressing the Nav1.6 channel isoform and in hippocampal CA1 pyramidal neurons in the presence of triciribine, an inhibitor of Akt. We showed that in both systems, Akt inhibition resulted in a potentiation of peak transient Na+ current (INa) density. Akt inhibition correspondingly led to an increase in the action potential firing of the CA1 pyramidal neurons that was accompanied by a decrease in the action potential current threshold. Complementary confocal analysis in the CA1 pyramidal neurons showed that the inhibition of Akt is associated with the lengthening of Nav1.6 fluorescent intensity along the axonal initial segment (AIS), providing a mechanism for augmented neuronal excitability. Taken together, these findings provide evidence that Akt-mediated signal transduction might affect neuronal excitability in a Nav1.6-dependent manner.
Collapse
Affiliation(s)
- Mate Marosi
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Miroslav N. Nenov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Nolan M. Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Musaad Alshammari
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Center for Addiction Research, Center for Biomedical Engineering and Mitchell, Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-(409)-772-9672; Fax: +1-(409)-772-9642
| |
Collapse
|
18
|
Yoo JY, Sniffen S, McGill Percy KC, Pallaval VB, Chidipi B. Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms 2022; 10:108. [PMID: 35056557 PMCID: PMC8780459 DOI: 10.3390/microorganisms10010108] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease and mortality worldwide. Alterations in the gut microbiota composition, known as gut dysbiosis, have been shown to contribute to atherosclerotic cardiovascular disease (ACVD) development through several pathways. Disruptions in gut homeostasis are associated with activation of immune processes and systemic inflammation. The gut microbiota produces several metabolic products, such as trimethylamine (TMA), which is used to produce the proatherogenic metabolite trimethylamine-N-oxide (TMAO). Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, and certain bile acids (BAs) produced by the gut microbiota lead to inflammation resolution and decrease atherogenesis. Chronic low-grade inflammation is associated with common risk factors for atherosclerosis, including metabolic syndrome, type 2 diabetes mellitus (T2DM), and obesity. Novel strategies for reducing ACVD include the use of nutraceuticals such as resveratrol, modification of glucagon-like peptide 1 (GLP-1) levels, supplementation with probiotics, and administration of prebiotic SCFAs and BAs. Investigation into the relationship between the gut microbiota, and its metabolites, and the host immune system could reveal promising insights into ACVD development, prognostic factors, and treatments.
Collapse
Affiliation(s)
- Ji Youn Yoo
- College of Nursing, University of Tennessee, 1200 Volunteer Blvd, Knoxville, TN 37996, USA
| | - Sarah Sniffen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kyle Craig McGill Percy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Bojjibabu Chidipi
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. The INPP4B paradox: Like PTEN, but different. Adv Biol Regul 2021; 82:100817. [PMID: 34216856 DOI: 10.1016/j.jbior.2021.100817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer is a complex and heterogeneous disease marked by the dysregulation of cancer driver genes historically classified as oncogenes or tumour suppressors according to their ability to promote or inhibit tumour development and growth, respectively. Certain genes display both oncogenic and tumour suppressor functions depending on the biological context, and as such have been termed dual-role cancer driver genes. However, because of their context-dependent behaviour, the tumourigenic mechanism of many dual-role genes is elusive and remains a significant knowledge gap in our effort to understand and treat cancer. Inositol polyphosphate 4-phosphatase type II (INPP4B) is an emerging dual-role cancer driver gene, primarily known for its role as a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway. In response to growth factor stimulation, class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane. PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate 5-phosphatases to generate PtdIns(3,4)P2, which, together with PtdIns(3,4,5)P3, facilitates the activation of AKT to promote cell proliferation, survival, migration, and metabolism. Phosphatase and tensin homology on chromosome 10 (PTEN) and INPP4B are dual-specificity phosphatases that hydrolyse PtdIns(3,4,5)P3 and PtdIns(3,4)P2, respectively, and thus negatively regulate PI3K/AKT signalling. PTEN is a bona fide tumour suppressor that is frequently lost in human tumours. INPP4B was initially characterised as a tumour suppressor akin to PTEN, and has been implicated as such in a number of cancers, including prostate, thyroid, and basal-like breast cancers. However, evidence has since emerged revealing INPP4B as a paradoxical oncogene in several malignancies, with increased INPP4B expression reported in AML, melanoma and colon cancers among others. Although the tumour suppressive function of INPP4B has been mostly ascribed to its ability to negatively regulate PI3K/AKT signalling, its oncogenic function remains less clear, with proposed mechanisms including promotion of PtdIns(3)P-dependent SGK3 signalling, inhibition of PTEN-dependent AKT activation, and enhancing DNA repair mechanisms to confer chemoresistance. Nevertheless, research is ongoing to identify the factors that dictate the tumourigenic output of INPP4B in different human cancers. In this review we discuss the dualistic role that INPP4B plays in the context of cancer development, progression and treatment, drawing comparisons to PTEN to explore how their similarities and, importantly, their differences may account for their diverging roles in tumourigenesis.
Collapse
Affiliation(s)
- Sabryn A Hamila
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
20
|
Sharma M, Dey CS. Role of Akt isoforms in neuronal insulin signaling and resistance. Cell Mol Life Sci 2021; 78:7873-7898. [PMID: 34724097 PMCID: PMC11073101 DOI: 10.1007/s00018-021-03993-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to determine the role of Akt isoforms in insulin signaling and resistance in neuronal cells. By silencing Akt isoforms individually and in pairs, in Neuro-2a and HT22 cells we observed that, in insulin-sensitive condition, Akt isoforms differentially reduced activation of AS160 and glucose uptake with Akt2 playing the major role. Under insulin-resistant condition, phosphorylation of all isoforms and glucose uptake were severely affected. Over-expression of individual isoforms in insulin-sensitive and resistant cells differentially reversed AS160 phosphorylation with concomitant reversal in glucose uptake indicating a compensatory role of Akt isoforms in controlling neuronal insulin signaling. Post-insulin stimulation Akt2 translocated to the membrane the most followed by Akt3 and Akt1, decreasing glucose uptake in the similar order in insulin-sensitive cells. None of the Akt isoforms translocated in insulin-resistant cells or high-fat-diet mediated diabetic mice brain cells. Based on our data, insulin-dependent differential translocation of Akt isoforms to the plasma membrane turns out to be the key factor in determining Akt isoform specificity. Thus, isoforms play parallel with predominant role by Akt2, and compensatory yet novel role by Akt1 and Akt3 to regulate neuronal insulin signaling, glucose uptake, and insulin-resistance.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
21
|
Abstract
The Akt isoforms-AS160-GLUT4 axis is the primary axis that governs glucose homeostasis in the body. The first step on the path to insulin resistance is deregulated Akt isoforms. This could be Akt isoform expression, its phosphorylation, or improper isoform-specific redistribution to the plasma membrane in a specific tissue system. The second step is deregulated AS160 expression, its phosphorylation, improper dissociation from glucose transporter storage vesicles (GSVs), or its inability to bind to 14-3-3 proteins, thus not allowing it to execute its function. The final step is improper GLUT4 translocation and aberrant glucose uptake. These processes lead to insulin resistance in a tissue-specific way affecting the whole-body glucose homeostasis, eventually progressing to an overt diabetic phenotype. Thus, the relationship between these three key proteins and their proper regulation comes out as the defining axis of insulin signaling and -resistance. This review summarizes the role of this central axis in insulin resistance and disease in a new light.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
22
|
The Effects of Flavonoid Apigenin on Male Reproductive Health: Inhibition of Spermatogonial Proliferation through Downregulation of Prmt7/ Akt3 Pathway. Int J Mol Sci 2021; 22:ijms222212209. [PMID: 34830091 PMCID: PMC8621337 DOI: 10.3390/ijms222212209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Apigenin, a common dietary flavonoid abundantly present in a variety of fruits and vegetables, has promising anticancer properties. As an effector of apigenin in myoblasts, protein arginine methyltransferase 7 (Prmt7) is required for male germ cell development. However, whether apigenin may influence male reproductive health through Prmt7 is still unclear. To this end, mouse spermatogonia were treated with different concentrations (2.5 to 50 μM) of apigenin for 48 h, which showed that apigenin could cause reduced cell proliferation in conjunction with longer S phase and G2/M phase (with concentrations of 10 and 20 μM, respectively), and increased apoptosis of spermatogonia (with concentration of 20 μM). Reduced Prmt7 expression was found in 20 μM apigenin-treated spermatogonia. Moreover, siRNA-induced Prmt7 knockdown exhibited similar influence on spermatogonia as that of apigenin treatment. In mechanistic terms, transcriptome analysis revealed 287 differentially expressed genes between Prmt7-downregulated and control spermatogonia. Furthermore, rescue experiments suggested that the effects of apigenin on spermatogonia might be mediated through the Prmt7/Akt3 pathway. Overall, our study supports that apigenin can interfere with mouse spermatogonial proliferation by way of the downregulated Prmt7/Akt3 pathway, which demonstrates that the concentration should be taken into account in future applications of apigenin for cancer therapy of men.
Collapse
|
23
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
24
|
Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021; 12:genes12111746. [PMID: 34828352 PMCID: PMC8624393 DOI: 10.3390/genes12111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.
Collapse
Affiliation(s)
- Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
| | - Mattson S. O. Jones
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Lisa S. Knaus
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Andreas G. Chiocchetti
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-80658
| |
Collapse
|
25
|
Gao X, Yu M, Sun W, Han Y, Yang J, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces autophagy in primary cultured rat cortical neurons through Akt/mTOR and AMPK/mTOR signaling pathways. Food Chem Toxicol 2021; 158:112632. [PMID: 34688703 DOI: 10.1016/j.fct.2021.112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Autophagy is a lysosome dependent degradation pathway occurring in eukaryotic cells. Autophagy ensures balance and survival mechanism of cells during harmful stress. Excessive or weak autophagy leads to abnormal function and death in some cases. Lanthanum (La), a rare earth element (REE), damages the central nervous system (CNS) and promotes learning and memory dysfunction. However, underlying mechanism has not been fully elucidated. La induces oxidative stress, inhibits Nrf2/ARE and Akt/mTOR signaling pathways, and activates JNK/c-Jun and JNK/Foxo signaling pathways, resulting in abnormal induction of autophagy in rat hippocampus. In addition, La activates PINK1- Parkin signaling pathway and induces mitochondrial autophagy. However, the relationship between La and autophagy in rat neurons at the cellular level has not been explored previously. The aim of this study was to explore adverse effects of La. Primary culture of rat neurons were exposed to 0 mmol/L, 0.025 mmol/L, 0.05 mmol/L and 0.1 mmol/L lanthanum chloride (LaCl3). The results showed that La upregulates p-AMPK, inhibits levels of p-Akt and p-mTOR, increases levels of autophagy related proteins (Beclin1 and LC3B-II), and downregulates expression of p-Bcl-2 and p62. Upstream and downstream intervention agents of autophagy were used to detect autophagy flux to verify accuracy of our results. Electron microscopy results showed significant increase in the number of autophagosomes in LaCl3 exposed groups. These findings imply that LaCl3 inhibits Akt/mTOR signaling pathway and activates AMPK/mTOR signaling pathway, resulting in abnormal autophagy in primary cultured rat cortical neurons. In addition, LaCl3 induces neuronal damage through excessive autophagy.
Collapse
Affiliation(s)
- Xiang Gao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China; Department of Biostatistics, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| | - Miao Yu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yarao Han
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
26
|
Cellular model system to dissect the isoform-selectivity of Akt inhibitors. Nat Commun 2021; 12:5297. [PMID: 34489430 PMCID: PMC8421423 DOI: 10.1038/s41467-021-25512-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
The protein kinase Akt plays a pivotal role in cellular processes. However, its isoforms' distinct functions have not been resolved to date, mainly due to the lack of suitable biochemical and cellular tools. Against this background, we present the development of an isoform-dependent Ba/F3 model system to translate biochemical results on isoform specificity to the cellular level. Our cellular model system complemented by protein X-ray crystallography and structure-based ligand design results in covalent-allosteric Akt inhibitors with unique selectivity profiles. In a first proof-of-concept, the developed molecules allow studies on isoform-selective effects of Akt inhibition in cancer cells. Thus, this study will pave the way to resolve isoform-selective roles in health and disease and foster the development of next-generation therapeutics with superior on-target properties.
Collapse
|
27
|
TWEAKing the Hippocampus: The Effects of TWEAK on the Genomic Fabric of the Hippocampus in a Neuropsychiatric Lupus Mouse Model. Genes (Basel) 2021; 12:genes12081172. [PMID: 34440346 PMCID: PMC8392718 DOI: 10.3390/genes12081172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric manifestations of systemic lupus erythematosus (SLE), specifically cognitive dysfunction and mood disorders, are widely prevalent in SLE patients, and yet poorly understood. TNF-like weak inducer of apoptosis (TWEAK) has previously been implicated in the pathogenesis of neuropsychiatric lupus (NPSLE), and we have recently shown its effects on the transcriptome of the cortex of the lupus-prone mice model MRL/lpr. As the hippocampus is thought to be an important focus of NPSLE processes, we explored the TWEAK-induced transcriptional changes that occur in the hippocampus, and isolated several genes (Dnajc28, Syne2, transthyretin) and pathways (PI3K-AKT, as well as chemokine-signaling and neurotransmission pathways) that are most differentially affected by TWEAK activation. While the functional roles of these genes and pathways within NPSLE need to be further investigated, an interesting link between neuroinflammation and neurodegeneration appears to emerge, which may prove to be a promising novel direction in NPSLE research.
Collapse
|
28
|
Liang XX, Wang RY, Guo YZ, Cheng Z, Lv DY, Luo MH, He A, Luo SX, Xia Y. Phosphorylation of Akt at Thr308 regulates p-eNOS Ser1177 during physiological conditions. FEBS Open Bio 2021; 11:1953-1964. [PMID: 33993653 PMCID: PMC8255840 DOI: 10.1002/2211-5463.13194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS)‐derived nitric oxide (NO) plays a crucial role in maintaining vascular homeostasis. As a hallmark of eNOS activation, phosphorylation of eNOS at Ser1177 induced by activated protein kinase B (PKB/Akt) is pivotal for NO production. The complete activation of Akt requires its phosphorylation of both Thr308 and Ser473. However, which site plays the main role in regulating phosphorylation of eNOS Ser1177 is still controversial. The purpose of the present study is to explore the specific regulatory mechanism of phosphorylated Akt in eNOS activation. Inhibition of Akt Thr308 phosphorylation by a specific inhibitor or by siRNA in vitro led to a decrease in eNOS phosphorylation at Ser1177 and to lower NO concentration in the cell culture medium of HUVECs. However, inhibiting p‐Akt Ser473 had no effect on eNOS phosphorylation at Ser1177. Next, we administered mice with inhibitors to downregulate p‐Akt Ser473 or Thr308 activity. Along with the inhibition of p‐Akt Thr308, vascular p‐eNOS Ser1177 protein was simultaneously downregulated in parallel with a decrease in plasma NO concentration. Additionally, we cultured HUVECs at various temperature conditions (37, 22, and 4 °C). The results showed that p‐Akt Ser473 was gradually decreased in line with the reduction in temperature, accompanied by increased levels of p‐Akt Thr308 and p‐eNOS Ser1177. Taken together, our study indicates that the phosphorylation of Akt at Thr308, but not at Ser473, plays a more significant role in regulating p‐eNOS Ser1177 levels under physiological conditions.
Collapse
Affiliation(s)
- Xiao-Xue Liang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Rui-Yu Wang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Yong-Zheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Zhe Cheng
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Ding-Yi Lv
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Ming-Hao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Su-Xin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| |
Collapse
|
29
|
Zhang T, Ding H, Wang Y, Yuan Z, Zhang Y, Chen G, Xu Y, Chen L. Akt3-mTOR regulates hippocampal neurogenesis in adult mouse. J Neurochem 2021; 159:498-511. [PMID: 34077553 DOI: 10.1111/jnc.15441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023]
Abstract
Akt signaling has been associated with adult neurogenesis in the hippocampal dentate gyrus (DG). We reported cognitive dysfunction in Akt3 knockout (Akt3-KO) mice with the down-regulation of mTOR activation. However, little is known about the effects of Akt3 signaling on hippocampal neurogenesis. Herein, we show that progenitor cells, neuroblasts, and mature newborn neurons in hippocampal DG expressed Akt3 protein. The Akt3 phosphorylation in hippocampal DG was increased after voluntary wheel running for 7 days in wild-type mice (running WT mice), but not in Akt3-KO mice (running Akt3-KO mice). Subsequently, we observed that the proliferation of progenitor cells was suppressed in Akt3-KO mice and the mTOR inhibitor rapamycin-treated mice, whereas enhanced in running WT mice rather than running Akt3-KO mice. Neurite growth of neuroblasts was impaired in Akt3-KO mice and rapamycin-treated mice. In contrast, neither differentiation of progenitor cells nor migrating of newly generated neurons was altered in Akt3-KO mice or running WT mice. The levels of p70S6K and 4EBP1 phosphorylation were declined in Akt3-KO mice and elevated in running WT mice depending on mTOR activation. Furthermore, telomerase activity, telomere length, and expression of telomerase reverse transcriptase (TERT) were decreased in Akt3-KO mice but increased in running WT mice rather than running Akt3-KO mice, which required the mTOR activation. The study provides in vivo evidence that Akt3-mTOR signaling plays an important role in the proliferation of progenitor cells and neurite growth through positive regulated TERT expression and activation of p70S6K and 4EBP1.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hong Ding
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zihao Yuan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer CA. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun 2021; 2:tgab036. [PMID: 34296180 PMCID: PMC8223503 DOI: 10.1093/texcom/tgab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level. In this study, we use a combination of histology, immunostaining, and genetics to characterize cell-type-specific expression of AKT isoforms in human and mouse brains. In mice, we find that AKT1 is the most broadly expressed isoform, with expression in excitatory neurons and the sole detectable AKT isoform in gamma-aminobutyric acid ergic interneurons and microglia. By contrast, we find that AKT2 is the sole isoform expressed in astroglia and is not detected in other neural cell types. We find that AKT3 is expressed in excitatory neurons with AKT1 but shows greater expression levels in dendritic compartments than AKT1. We extend our analysis to human brain tissues and find similar results. Using genetic deletion approaches, we also find that the cellular determinants restricting AKT isoform expression to specific cell types remain intact under Akt deficiency conditions. Because AKT signaling is linked to numerous neurological disorders, a greater understanding of cell-specific isoform expression could improve treatment strategies involving AKT.
Collapse
Affiliation(s)
- Josien Levenga
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA.,Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Degan SE, Gelman IH. Emerging Roles for AKT Isoform Preference in Cancer Progression Pathways. Mol Cancer Res 2021; 19:1251-1257. [PMID: 33931488 DOI: 10.1158/1541-7786.mcr-20-1066] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The phosphoinositol-3 kinase (PI3K)-AKT pathway is one of the most mutated in human cancers, predominantly associated with the loss of the signaling antagonist, PTEN, and to lesser extents, with gain-of-function mutations in PIK3CA (encoding PI3K-p110α) and AKT1. In addition, most oncogenic driver pathways activate PI3K/AKT signaling. Nonetheless, drugs targeting PI3K or AKT have fared poorly against solid tumors in clinical trials as monotherapies, yet some have shown efficacy when combined with inhibitors of other oncogenic drivers, such as receptor tyrosine kinases or nuclear hormone receptors. There is growing evidence that AKT isoforms, AKT1, AKT2, and AKT3, have different, often distinct roles in either promoting or suppressing specific parameters of oncogenic progression, yet few if any isoform-preferred substrates have been characterized. This review will describe recent data showing that the differential activation of AKT isoforms is mediated by complex interplays between PTEN, PI3K isoforms and upstream tyrosine kinases, and that the efficacy of PI3K/AKT inhibitors will likely depend on the successful targeting of specific AKT isoforms and their preferred pathways.
Collapse
Affiliation(s)
- Seamus E Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
32
|
Li Y, Zhang X, Ma A, Kang Y. Rational Application of β-Hydroxybutyrate Attenuates Ischemic Stroke by Suppressing Oxidative Stress and Mitochondrial-Dependent Apoptosis via Activation of the Erk/CREB/eNOS Pathway. ACS Chem Neurosci 2021; 12:1219-1227. [PMID: 33739811 DOI: 10.1021/acschemneuro.1c00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stroke is one of the leading causes of disability and death. Increasing evidence indicates that β-hydroxybutyrate (BHB) exerts beneficial effects in treating stroke, but the underlying mechanism remains largely unknown. In this study, we injected different doses of BHB into the lateral ventricle in middle cerebral artery occlusion (MCAO) model rats and neuronal cells were treated with different doses of BHB followed by oxygen-glucose deprivation (OGD). We found that a moderate dose of BHB enhanced mitochondrial complex I respiratory chain complex I activity, reduced oxidative stress, inhibited mitochondrial apoptosis, improved neurological scores, and reduced infarct volume after ischemia. We further showed that the effects of BHB were achieved by upregulating the dedicated BHB transporter SMCT1 and activating the Erk/CREB/eNOS pathway. These results provide us with a foundation for a novel understanding of the neuroprotective effects of BHB in stroke.
Collapse
Affiliation(s)
- Yang Li
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Xuepeng Zhang
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Aijia Ma
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yan Kang
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
33
|
Hinz N, Baranowsky A, Horn M, Kriegs M, Sibbertsen F, Smit DJ, Clezardin P, Lange T, Schinke T, Jücker M. Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis. Cells 2021; 10:cells10020430. [PMID: 33670586 PMCID: PMC7922044 DOI: 10.3390/cells10020430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone metastases frequently occur in breast cancer patients and lack appropriate treatment options. Hence, understanding the molecular mechanisms involved in the multistep process of breast cancer bone metastasis and tumor-induced osteolysis is of paramount interest. The serine/threonine kinase AKT plays a crucial role in breast cancer bone metastasis but the effect of individual AKT isoforms remains unclear. Therefore, AKT isoform-specific knockdowns were generated on the bone-seeking MDA-MB-231 BO subline and the effect on proliferation, migration, invasion, and chemotaxis was analyzed by live-cell imaging. Kinome profiling and Western blot analysis of the TGFβ/CTGF axis were conducted and metastasis was evaluated by intracardiac inoculation of tumor cells into NOD scid gamma (NSG) mice. MDA-MB-231 BO cells exhibited an elevated AKT3 kinase activity in vitro and responded to combined treatment with AKT- and mTOR-inhibitors. Knockdown of AKT3 significantly increased migration, invasion, and chemotaxis in vitro and metastasis to bone but did not significantly enhance osteolysis. Furthermore, knockdown of AKT3 increased the activity and phosphorylation of pro-metastatic HER2 and DDR1/2 but lowered protein levels of CTGF after TGFβ-stimulation, an axis involved in tumor-induced osteolysis. We demonstrated that AKT3 plays a crucial role in bone-seeking breast cancer cells by promoting metastatic potential without facilitating tumor-induced osteolysis.
Collapse
Affiliation(s)
- Nico Hinz
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Anke Baranowsky
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Horn
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- UCCH Kinomics Core Facility, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Freya Sibbertsen
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Daniel J. Smit
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Philippe Clezardin
- INSERM, Research Unit UMR S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, 69372 Lyon, France;
| | - Tobias Lange
- Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Thorsten Schinke
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
34
|
AKT3 Expression in Mesenchymal Colorectal Cancer Cells Drives Growth and Is Associated with Epithelial-Mesenchymal Transition. Cancers (Basel) 2021; 13:cancers13040801. [PMID: 33673003 PMCID: PMC7918753 DOI: 10.3390/cancers13040801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer can be subdivided into four distinct subtypes that are characterised by different clinical features and responses to therapies currently used in the clinic to treat this disease. One of those subtypes, called CMS4, is associated with a worse prognosis and poor response to therapies compared to other subtypes. We therefore set out to explore what proteins are differentially expressed and used in CMS4 to find potential new targets for therapy. We found that protein AKT3 is highly expressed in CMS4, and that active AKT3 inhibits a protein that stalls growth of cancer cells (p27KIP1). We can target AKT3 with inhibitors which leads to strongly reduced growth of cancer cell lines that are categorised as CMS4. Furthermore, our data suggests that high AKT3 expression in tumour cells may be used to identify poor prognosis colorectal cancer patients. Future research should point out if high AKT3 expression can be used to select colorectal cancer patients that have a poor prognosis but that could benefit from AKT3-targeted treatment. Abstract Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.
Collapse
|
35
|
Palumbo S, Paterson C, Yang F, Hood VL, Law AJ. PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol Psychiatry 2021; 26:411-428. [PMID: 33328589 PMCID: PMC7854513 DOI: 10.1038/s41380-020-00964-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase v-AKT homologs (AKTs), are implicated in typical and atypical neurodevelopment. Akt isoforms Akt1, Akt2, and Akt3 have been extensively studied outside the brain where their actions have been found to be complementary, non-overlapping and often divergent. While the neurological functions of Akt1 and Akt3 isoforms have been investigated, the role for Akt2 remains underinvestigated. Neurobehavioral, electrophysiological, morphological and biochemical assessment of Akt2 heterozygous and knockout genetic deletion in mouse, reveals a novel role for Akt2 in axonal development, dendritic patterning and cell-intrinsic and neural circuit physiology of the hippocampus and prefrontal cortex. Akt2 loss-of-function increased anxiety-like phenotypes, impaired fear conditioned learning, social behaviors and discrimination memory. Reduced sensitivity to amphetamine was observed, supporting a role for Akt2 in regulating dopaminergic tone. Biochemical analyses revealed dysregulated brain mTOR and GSK3β signaling, consistent with observed learning and memory impairments. Rescue of cognitive impairments was achieved through pharmacological enhancement of PI3K/AKT signaling and PIK3CD inhibition. Together these data highlight a novel role for Akt2 in neurodevelopment, learning and memory and show that Akt2 is a critical and non-redundant regulator of mTOR activity in brain.
Collapse
Affiliation(s)
- Sara Palumbo
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy (current)
| | - Clare Paterson
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Feng Yang
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Division of Neurodegenerative Diseases and Translational Sciences Tiantan Hospital & Advanced Innovation Center for Human Brain Protection. Capital Medical University, Beijing, China (current)
| | - Veronica L. Hood
- Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Amanda J. Law
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045.,To whom correspondence should be addressed:
| |
Collapse
|
36
|
Csolle MP, Ooms LM, Papa A, Mitchell CA. PTEN and Other PtdIns(3,4,5)P 3 Lipid Phosphatases in Breast Cancer. Int J Mol Sci 2020; 21:ijms21239189. [PMID: 33276499 PMCID: PMC7730566 DOI: 10.3390/ijms21239189] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway is hyperactivated in ~70% of breast cancers. Class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane in response to growth factor stimulation, leading to AKT activation to drive cell proliferation, survival and migration. PTEN negatively regulates PI3K/AKT signalling by dephosphorylating PtdIns(3,4,5)P3 to form PtdIns(4,5)P2. PtdIns(3,4,5)P3 can also be hydrolysed by the inositol polyphosphate 5-phosphatases (5-phosphatases) to produce PtdIns(3,4)P2. Interestingly, while PTEN is a bona fide tumour suppressor and is frequently mutated/lost in breast cancer, 5-phosphatases such as PIPP, SHIP2 and SYNJ2, have demonstrated more diverse roles in regulating mammary tumourigenesis. Reduced PIPP expression is associated with triple negative breast cancers and reduced relapse-free and overall survival. Although PIPP depletion enhances AKT phosphorylation and supports tumour growth, this also inhibits cell migration and metastasis in vivo, in a breast cancer oncogene-driven murine model. Paradoxically, SHIP2 and SYNJ2 are increased in primary breast tumours, which correlates with invasive disease and reduced survival. SHIP2 or SYNJ2 overexpression promotes breast tumourigenesis via AKT-dependent and independent mechanisms. This review will discuss how PTEN, PIPP, SHIP2 and SYNJ2 distinctly regulate multiple functional targets, and the mechanisms by which dysregulation of these distinct phosphoinositide phosphatases differentially affect breast cancer progression.
Collapse
|
37
|
Scalia P, Giordano A, Martini C, Williams SJ. Isoform- and Paralog-Switching in IR-Signaling: When Diabetes Opens the Gates to Cancer. Biomolecules 2020; 10:biom10121617. [PMID: 33266015 PMCID: PMC7761347 DOI: 10.3390/biom10121617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (IR) and IR-related signaling defects have been shown to trigger insulin-resistance in insulin-dependent cells and ultimately to give rise to type 2 diabetes in mammalian organisms. IR expression is ubiquitous in mammalian tissues, and its over-expression is also a common finding in cancerous cells. This latter finding has been shown to associate with both a relative and absolute increase in IR isoform-A (IR-A) expression, missing 12 aa in its EC subunit corresponding to exon 11. Since IR-A is a high-affinity transducer of Insulin-like Growth Factor-II (IGF-II) signals, a growth factor is often secreted by cancer cells; such event offers a direct molecular link between IR-A/IR-B increased ratio in insulin resistance states (obesity and type 2 diabetes) and the malignant advantage provided by IGF-II to solid tumors. Nonetheless, recent findings on the biological role of isoforms for cellular signaling components suggest that the preferential expression of IR isoform-A may be part of a wider contextual isoform-expression switch in downstream regulatory factors, potentially enhancing IR-dependent oncogenic effects. The present review focuses on the role of isoform- and paralog-dependent variability in the IR and downstream cellular components playing a potential role in the modulation of the IR-A signaling related to the changes induced by insulin-resistance-linked conditions as well as to their relationship with the benign versus malignant transition in underlying solid tumors.
Collapse
Affiliation(s)
- Pierluigi Scalia
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- ISOPROG-Somatolink EPFP Network, Functional Research Unit, Philadelphia, PA 19104, USA and 93100 Caltanissetta, Italy
- Correspondence:
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- Department of Medical Biotechnologies, University of Siena, 52100 Siena, Italy
| | - Caroline Martini
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
| | - Stephen J. Williams
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- ISOPROG-Somatolink EPFP Network, Functional Research Unit, Philadelphia, PA 19104, USA and 93100 Caltanissetta, Italy
| |
Collapse
|
38
|
Jansen PR, Nagel M, Watanabe K, Wei Y, Savage JE, de Leeuw CA, van den Heuvel MP, van der Sluis S, Posthuma D. Genome-wide meta-analysis of brain volume identifies genomic loci and genes shared with intelligence. Nat Commun 2020; 11:5606. [PMID: 33154357 PMCID: PMC7644755 DOI: 10.1038/s41467-020-19378-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The phenotypic correlation between human intelligence and brain volume (BV) is considerable (r ≈ 0.40), and has been shown to be due to shared genetic factors. To further examine specific genetic factors driving this correlation, we present genomic analyses of the genetic overlap between intelligence and BV using genome-wide association study (GWAS) results. First, we conduct a large BV GWAS meta-analysis (N = 47,316 individuals), followed by functional annotation and gene-mapping. We identify 18 genomic loci (14 not previously associated), implicating 343 genes (270 not previously associated) and 18 biological pathways for BV. Second, we use an existing GWAS for intelligence (N = 269,867 individuals), and estimate the genetic correlation (rg) between BV and intelligence to be 0.24. We show that the rg is partly attributable to physical overlap of GWAS hits in 5 genomic loci. We identify 92 shared genes between BV and intelligence, which are mainly involved in signaling pathways regulating cell growth. Out of these 92, we prioritize 32 that are most likely to have functional impact. These results provide information on the genetics of BV and provide biological insight into BV's shared genetic etiology with intelligence.
Collapse
Affiliation(s)
- Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mats Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yongbin Wei
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Saji M, Kim CS, Wang C, Zhang X, Khanal T, Coombes K, La Perle K, Cheng SY, Tsichlis PN, Ringel MD. Akt isoform-specific effects on thyroid cancer development and progression in a murine thyroid cancer model. Sci Rep 2020; 10:18316. [PMID: 33110146 PMCID: PMC7591514 DOI: 10.1038/s41598-020-75529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Akt family is comprised of three unique homologous proteins with isoform-specific effects, but isoform-specific in vivo data are limited in follicular thyroid cancer (FTC), a PI3 kinase-driven tumor. Prior studies demonstrated that PI3K/Akt signaling is important in thyroid hormone receptor βPV/PV knock-in (PV) mice that develop metastatic thyroid cancer that most closely resembles FTC. To determine the roles of Akt isoforms in this model we crossed Akt1-/-, Akt2-/-, and Akt3-/- mice with PV mice. Over 12 months, thyroid size was reduced for the Akt null crosses (p < 0.001). Thyroid cancer development and local invasion were delayed in only the PVPV-Akt1 knock out (KO) mice in association with increased apoptosis with no change in proliferation. Primary-cultured PVPV-Akt1KO thyrocytes uniquely displayed a reduced cell motility. In contrast, loss of any Akt isoform reduced lung metastasis while vascular invasion was reduced with Akt1 or 3 loss. Microarray of thyroid RNA displayed incomplete overlap between the Akt KO models. The most upregulated gene was the dendritic cell (DC) marker CD209a only in PVPV-Akt1KO thyroids. Immunohistochemistry demonstrated an increase in CD209a-expressing cells in the PVPV-Akt1KO thyroids. In summary, Akt isoforms exhibit common and differential functions that regulate local and metastatic progression in this model of thyroid cancer.
Collapse
Affiliation(s)
- Motoyasu Saji
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Caroline S Kim
- Division of Endocrinology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chaojie Wang
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Tilak Khanal
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Kevin Coombes
- Center for Biostatistics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
- Department of Biostatistics and Bionformatics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Krista La Perle
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheue-Yann Cheng
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
40
|
Specific Akt Family Members Impair Stress-Mediated Transactivation of Viral Promoters and Enhance Neuronal Differentiation: Important Functions for Maintaining Latency. J Virol 2020; 94:JVI.00901-20. [PMID: 32796067 DOI: 10.1128/jvi.00901-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Neurotropic Alphaherpesvirinae subfamily members such as bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain lifelong latent infections in neurons. Following infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia (TG) are an important site for latency. Certain external stressors can trigger reactivation from latency, in part because activation of the glucocorticoid receptor (GR) stimulates productive infection and promoters that drive expression of key viral transcriptional regulators. The Akt serine/threonine protein kinase family is linked to maintaining latency. For example, Akt3 is detected in more TG neurons during BoHV-1 latency than in reactivation and uninfected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in neuronal cell lines. Consequently, we hypothesized that viral and/or cellular factors impair stress-induced transcription and reduce the incidence of reactivation triggered by low levels of stress. New studies demonstrate that Akt1 and Akt2, but not Akt3, significantly reduced GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, the HSV-1 infected cell protein 0 (ICP0) promoter, and the mouse mammary tumor virus long terminal repeat (MMTV-LTR). Akt3, but not Akt1 or Akt2, significantly enhanced neurite formation in mouse neuroblastoma cells, which correlates with repairing damaged neurons. These studies suggest that unique biological properties of the three Akt family members promote the maintenance of latency in differentiated neurons.IMPORTANCE External stressful stimuli are known to increase the incidence of reactivation of Alphaherpesvirinae subfamily members. Activation of the glucocorticoid receptor (GR) by the synthetic corticosteroid dexamethasone (DEX) stimulates bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Furthermore, GR and dexamethasone stimulate productive infection and promoters that drive expression of viral transcriptional regulators. These observations lead us to predict that stress-induced transcription is impaired by factors abundantly expressed during latency. Interestingly, activation of the Akt family of serine/threonine protein kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2, but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly, Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma cells, a requirement for neurogenesis. These studies provide insight into how Akt family members may promote the maintenance of lifelong latency.
Collapse
|
41
|
Kirsch JM, Mlera L, Offerdahl DK, VanSickle M, Bloom ME. Tick-Borne Flaviviruses Depress AKT Activity during Acute Infection by Modulating AKT1/2. Viruses 2020; 12:v12101059. [PMID: 32977414 PMCID: PMC7598186 DOI: 10.3390/v12101059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly understood. Previously, we showed that Langat virus (LGTV)-infected HEK 293T cells undergo a lytic crisis with a few surviving cells that become persistently infected. We also observed that AKT2 mRNA is upregulated in cells persistently infected with TBFV. Here, we investigated the virus-induced effects on AKT expression over the course of acute LGTV infection and found that total phosphorylated AKT (pAKT), AKT1, and AKT2 decrease over time, but AKT3 increases dramatically. Furthermore, cells lacking AKT1 or AKT2 were more resistant to LGTV-induced cell death than wild-type cells because they expressed higher levels of pAKT and antiapoptotic proteins, such as XIAP and survivin. The differential modulation of AKT by LGTV may be a mechanism by which viral persistence is initiated, and our results demonstrate a complicated manipulation of host pathways by TBFVs.
Collapse
|
42
|
Szalai R, Melegh BI, Till A, Ripszam R, Csabi G, Acharya A, Schrauwen I, Leal SM, Komoly S, Kosztolanyi G, Hadzsiev K. Maternal mosaicism underlies the inheritance of a rare germline AKT3 variant which is responsible for megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome in two Roma half-siblings. Exp Mol Pathol 2020; 115:104471. [DOI: 10.1016/j.yexmp.2020.104471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
43
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
44
|
Expression and functional analysis of the Akt gene from Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110462. [PMID: 32540280 DOI: 10.1016/j.cbpb.2020.110462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/26/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022]
Abstract
Daphnia pulex is a nutrient-rich freshwater crustacean with two different reproduction methods. Akt is a serine/threonine protein kinase that plays an important role in cell growth, survival, and lifespan regulation. To explore the function of Akt in the growth and aging process of Daphnia pulex, we cloned the cDNA sequence of the open reading frame (ORF) of the akt gene based on the bioinformatic analysis of the transcriptome data of D. pulex, and analyzed the structural features of the Akt protein. Gene silencing was performed using RNA interference (RNAi), and the expression of the Akt gene and protein before and after interference were analyzed using qPCR and western blotting. The results showed that the expression of akt in D. pulex at different ages showed a "W" pattern, being significantly higher at 20 days than at 10 days and 15 days (P < .05). The expression trend of Akt protein and mRNA were similar, with lower expression at a younger age (1-5 day), after which expression gradually increased from 10 days age, and showed no significant change after 25 days, which might be caused by a lag of protein translation. RNAi reduced the expression of the Akt gene and protein by at least 76%, and the survival rate and reproductive capacity of D. pulex were significantly lower in the RNAi group compared with those in the control group. This study provides a better understanding of the function of the akt gene in D. pulex.
Collapse
|
45
|
Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet 2020; 16:e1008653. [PMID: 32324743 PMCID: PMC7179833 DOI: 10.1371/journal.pgen.1008653] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the nervous system. Most NSCs in mammalian adult brains are quiescent, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new neurons. The delicate balance between NSC quiescence and activation is important for adult neurogenesis and NSC maintenance. However, how NSCs transit between quiescence and activation remains largely elusive. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent advances on signaling pathways originated from the NSC niche and their crosstalk in regulating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactivation in Drosophila and mammalian systems. We also discuss emerging evidence on modeling human neurodevelopmental disorders using NSCs.
Collapse
|
46
|
Urasaki Y, Beaumont C, Talbot JN, Hill DK, Le TT. Akt3 Regulates the Tissue-Specific Response to Copaiba Essential Oil. Int J Mol Sci 2020; 21:ijms21082851. [PMID: 32325885 PMCID: PMC7216139 DOI: 10.3390/ijms21082851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
This study reports a relationship between Akt3 expression and tissue-specific regulation of the pI3K/Akt/mTOR signaling pathway by copaiba essential oil. Akt3, a protein kinase B isoform important for the regulation of neuronal development, exhibited differential expression levels in cells of various origins. In neuronal and microglial cells, where Akt3 is present, copaiba essential oil positively regulated the pI3K/Akt/mTOR signaling pathway. In contrast, in liver cells and T lymphocytes, where Akt3 is absent, copaiba essential oil negatively regulated the pI3K/Akt/mTOR signaling pathway. The expression of Akt3 via plasmid DNA in liver cells led to positive regulatory effects by copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. In contrast, inhibition of Akt3 expression in neuronal cells via small interfering RNA molecules targeting Akt3 transcripts abrogated the regulatory effects of copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. Interestingly, Akt3 expression did not impact the regulatory effects of copaiba essential oil on other signaling pathways. For example, copaiba essential oil consistently upregulated the MAPK and JAK/STAT signaling pathways in all evaluated cell types, independent of the Akt3 expression level. Collectively, the data indicated that Akt3 expression was required for the positive regulatory effects of copaiba essential oil, specifically on the pI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - Cody Beaumont
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (D.K.H.)
| | - Jeffery N. Talbot
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - David K. Hill
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (D.K.H.)
| | - Thuc T. Le
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
- Correspondence: ; Tel.: +1-702-802-2820
| |
Collapse
|
47
|
Zhang S, Zhang Y, Dong Y, Guo L, Zhang Z, Shao B, Qi J, Zhou H, Zhu W, Yan X, Hong G, Zhang L, Zhang X, Tang M, Zhao C, Gao X, Chai R. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cell Mol Life Sci 2020; 77:1401-1419. [PMID: 31485717 PMCID: PMC7113235 DOI: 10.1007/s00018-019-03291-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Foxg1 is one of the forkhead box genes that are involved in morphogenesis, cell fate determination, and proliferation, and Foxg1 was previously reported to be required for morphogenesis of the mammalian inner ear. However, Foxg1 knock-out mice die at birth, and thus the role of Foxg1 in regulating hair cell (HC) regeneration after birth remains unclear. Here we used Sox2CreER/+ Foxg1loxp/loxp mice and Lgr5-EGFPCreER/+ Foxg1loxp/loxp mice to conditionally knock down Foxg1 specifically in Sox2+ SCs and Lgr5+ progenitors, respectively, in neonatal mice. We found that Foxg1 conditional knockdown (cKD) in Sox2+ SCs and Lgr5+ progenitors at postnatal day (P)1 both led to large numbers of extra HCs, especially extra inner HCs (IHCs) at P7, and these extra IHCs with normal hair bundles and synapses could survive at least to P30. The EdU assay failed to detect any EdU+ SCs, while the SC number was significantly decreased in Foxg1 cKD mice, and lineage tracing data showed that much more tdTomato+ HCs originated from Sox2+ SCs in Foxg1 cKD mice compared to the control mice. Moreover, the sphere-forming assay showed that Foxg1 cKD in Lgr5+ progenitors did not significantly change their sphere-forming ability. All these results suggest that Foxg1 cKD promotes HC regeneration and leads to large numbers of extra HCs probably by inducing direct trans-differentiation of SCs and progenitors to HCs. Real-time qPCR showed that cell cycle and Notch signaling pathways were significantly down-regulated in Foxg1 cKD mice cochlear SCs. Together, this study provides new evidence for the role of Foxg1 in regulating HC regeneration from SCs and progenitors in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Ying Dong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Weijie Zhu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Guodong Hong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Liyan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Chunjie Zhao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China.
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
48
|
Howell KR, Law AJ. Neurodevelopmental concepts of schizophrenia in the genome-wide association era: AKT/mTOR signaling as a pathological mediator of genetic and environmental programming during development. Schizophr Res 2020; 217:95-104. [PMID: 31522868 PMCID: PMC7065975 DOI: 10.1016/j.schres.2019.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022]
Abstract
Normative brain development is contingent on the complex interplay between genes and environment. Schizophrenia (SCZ) is considered a highly polygenic, neurodevelopmental disorder associated with impaired neural circuit development, neurocognitive function and variations in neurotransmitter signaling systems, including dopamine. Significant evidence, accumulated over the last 30 years indicates a role for the in utero environment in SCZ pathophysiology. Emerging data suggests that changes in placental programming and function may mediate the link between genetic risk, early life complications (ELC) and adverse neurodevelopmental outcomes, with risk highlighted in key developmental drivers that converge on AKT/mTOR signaling. In this article we overview select risk genes identified through recent genome-wide association studies of SCZ including AKT3, miR-137, DRD2, and AKT1 itself. We propose that through convergence on AKT/mTOR signaling, these genes are critical factors directing both placentation and neurodevelopment, influencing risk for SCZ through dysregulation of placental function, metabolism and early brain development. We discuss association of risk genes in the context of their known roles in neurodevelopment, placental expression and their possible mechanistic links to SCZ in the broad context of the 'developmental origins of adult disease' construct. Understanding how common genetic variation impacts early fetal programming may advance our knowledge of disease etiology and identify early critical developmental windows for prevention and intervention.
Collapse
Affiliation(s)
| | - Amanda J. Law
- Corresponding Author: Amanda J. Law, PhD, Professor of Psychiatry, Medicine and Cell and Developmental Biology, Nancy L. Gary Endowed Chair in Children’s Mental Disorders Research, University of Colorado, School of Medicine, , Phone: 303-724-4418, Fax: 303-724-4425, 12700 E. 19th Ave., MS 8619, Aurora, CO 80045
| |
Collapse
|
49
|
Pataky MW, Arias EB, Wang H, Zheng X, Cartee GD. Exercise effects on γ3-AMPK activity, phosphorylation of Akt2 and AS160, and insulin-stimulated glucose uptake in insulin-resistant rat skeletal muscle. J Appl Physiol (1985) 2020; 128:410-421. [PMID: 31944891 DOI: 10.1152/japplphysiol.00428.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Prior research on healthy muscle suggests that enhanced postexercise ISGU depends on elevated γ3-AMPK activity leading to greater phosphorylation of Akt substrate of 160 kDa (pAS160) on an AMPK-phosphomotif (Ser704). Phosphorylation of AS160Ser704, in turn, may favor greater insulin-stimulated pAS160 on an Akt-phosphomotif (Thr642) that regulates ISGU. Accordingly, we tested if exercise-induced increases in γ3-AMPK activity and pAS160 on key regulatory sites accompany improved ISGU at 3 h postexercise (3hPEX) in insulin-resistant muscle. Rats fed a high-fat diet (HFD; 2-wk) that induces insulin resistance either performed acute swim-exercise (2 h) or were sedentary (SED). SED rats fed a low-fat diet (LFD; 2 wk) served as healthy controls. Isolated epitrochlearis muscles from 3hPEX and SED rats were analyzed for ISGU, pAS160, pAkt2 (Akt-isoform that phosphorylates pAS160Thr642), and γ1-AMPK and γ3-AMPK activity. ISGU was lower in HFD-SED muscles versus LFD-SED, but this decrement was eliminated in the HFD-3hPEX group. γ3-AMPK activity, but not γ1-AMPK activity, was elevated in HFD-3hPEX muscles versus both SED controls. Furthermore, insulin-stimulated pAS160Thr642, pAS160Ser704, and pAkt2Ser474 in HFD-3hPEX muscles were elevated above HFD-SED and equal to values in LFD-SED muscles, but insulin-independent pAS160Ser704 was unaltered at 3hPEX. These results demonstrated, for the first time in an insulin-resistant model, that the postexercise increase in ISGU was accompanied by sustained enhancement of γ3-AMPK activation and greater pAkt2Ser474. Our working hypothesis is that these changes along with enhanced insulin-stimulated pAS160 increase ISGU of insulin-resistant muscles to values equaling insulin-sensitive sedentary controls.NEW & NOTEWORTHY Earlier research focusing on signaling events linked to increased insulin sensitivity in muscle has rarely evaluated insulin resistant muscle after exercise. We assessed insulin resistant muscle after an exercise protocol that improved insulin-stimulated glucose uptake. Prior exercise also amplified several signaling steps expected to favor enhanced insulin-stimulated glucose uptake: increased γ3-AMP-activated protein kinase activity, greater insulin-stimulated Akt2 phosphorylation on Ser474, and elevated insulin-stimulated Akt substrate of 160 kDa phosphorylation on Ser588, Thr642, and Ser704.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Tu T, Chen J, Chen L, Stiles BL. Dual-Specific Protein and Lipid Phosphatase PTEN and Its Biological Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036301. [PMID: 31548229 DOI: 10.1101/cshperspect.a036301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) encodes a 403-amino acid protein with an amino-terminal domain that shares sequence homology with the actin-binding protein tensin and the putative tyrosine-protein phosphatase auxilin. Crystal structure analysis of PTEN has revealed a C2 domain that binds to phospholipids in membranes and a phosphatase domain that displays dual-specific activity toward both tyrosine (Y), serine (S)/threonine (T), as well as lipid substrates in vitro. Characterized primarily as a lipid phosphatase, PTEN plays important roles in multiple cellular processes including cell growth/survival as well as metabolism.
Collapse
Affiliation(s)
- Taojian Tu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | - Jingyu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | - Lulu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | - Bangyan L Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|