1
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. Development 2024; 151:dev202968. [PMID: 39114943 PMCID: PMC11441980 DOI: 10.1242/dev.202968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583753. [PMID: 38559144 PMCID: PMC10979880 DOI: 10.1101/2024.03.06.583753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is only expressed in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. While in vertebrates Myogenic Regulatory Factors (MRFs) like MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF/MyoD and Early B-Cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Pickett CJ, Gruner HN, Davidson B. Lhx3/4 initiates a cardiopharyngeal-specific transcriptional program in response to widespread FGF signaling. PLoS Biol 2024; 22:e3002169. [PMID: 38271304 PMCID: PMC10810493 DOI: 10.1371/journal.pbio.3002169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Individual signaling pathways, such as fibroblast growth factors (FGFs), can regulate a plethora of inductive events. According to current paradigms, signal-dependent transcription factors (TFs), such as FGF/MapK-activated Ets family factors, partner with lineage-determining factors to achieve regulatory specificity. However, many aspects of this model have not been rigorously investigated. One key question relates to whether lineage-determining factors dictate lineage-specific responses to inductive signals or facilitate these responses in collaboration with other inputs. We utilize the chordate model Ciona robusta to investigate mechanisms generating lineage-specific induction. Previous studies in C. robusta have shown that cardiopharyngeal progenitor cells are specified through the combined activity of FGF-activated Ets1/2.b and an inferred ATTA-binding transcriptional cofactor. Here, we show that the homeobox TF Lhx3/4 serves as the lineage-determining TF that dictates cardiopharyngeal-specific transcription in response to pleiotropic FGF signaling. Targeted knockdown of Lhx3/4 leads to loss of cardiopharyngeal gene expression. Strikingly, ectopic expression of Lhx3/4 in a neuroectodermal lineage subject to FGF-dependent specification leads to ectopic cardiopharyngeal gene expression in this lineage. Furthermore, ectopic Lhx3/4 expression disrupts neural plate morphogenesis, generating aberrant cell behaviors associated with execution of incompatible morphogenetic programs. Based on these findings, we propose that combinatorial regulation by signal-dependent and lineage-determinant factors represents a generalizable, previously uncategorized regulatory subcircuit we term "cofactor-dependent induction." Integration of this subcircuit into theoretical models will facilitate accurate predictions regarding the impact of gene regulatory network rewiring on evolutionary diversification and disease ontogeny.
Collapse
Affiliation(s)
- C. J. Pickett
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Hannah N. Gruner
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| |
Collapse
|
4
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)-phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation. eLife 2023; 12:e85930. [PMID: 37921445 PMCID: PMC10651176 DOI: 10.7554/elife.85930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023] Open
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move toward the midline (cardiac fusion) to form the primitive heart tube. Extrinsic influences such as the adjacent anterior endoderm are known to be required for cardiac fusion. We previously showed however, that the platelet-derived growth factor receptor alpha (Pdgfra) is also required for cardiac fusion (Bloomekatz et al., 2017). Nevertheless, an intrinsic mechanism that regulates myocardial movement has not been elucidated. Here, we show that the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway has an essential intrinsic role in the myocardium directing movement toward the midline. In vivo imaging further reveals midline-oriented dynamic myocardial membrane protrusions that become unpolarized in PI3K-inhibited zebrafish embryos where myocardial movements are misdirected and slower. Moreover, we find that PI3K activity is dependent on and interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of MississippiUniversityUnited States
| | - Tess McCann
- Department of Biology, University of MississippiUniversityUnited States
| | - Harini Saravanan
- Department of Biology, University of MississippiUniversityUnited States
| | - Jaret Lieberth
- Department of Biology, University of MississippiUniversityUnited States
| | - Prashanna Koirala
- Department of Biology, University of MississippiUniversityUnited States
| | - Joshua Bloomekatz
- Department of Biology, University of MississippiUniversityUnited States
| |
Collapse
|
5
|
Vitrinel B, Vogel C, Christiaen L. Ring Finger 149-Related Is an FGF/MAPK-Independent Regulator of Pharyngeal Muscle Fate Specification. Int J Mol Sci 2023; 24:8865. [PMID: 37240211 PMCID: PMC10219245 DOI: 10.3390/ijms24108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, cell-fate specification gives rise to dedicated lineages that underlie tissue formation. In olfactores, which comprise tunicates and vertebrates, the cardiopharyngeal field is formed by multipotent progenitors of both cardiac and branchiomeric muscles. The ascidian Ciona is a powerful model to study cardiopharyngeal fate specification with cellular resolution, as only two bilateral pairs of multipotent cardiopharyngeal progenitors give rise to the heart and to the pharyngeal muscles (also known as atrial siphon muscles, ASM). These progenitors are multilineage primed, in as much as they express a combination of early ASM- and heart-specific transcripts that become restricted to their corresponding precursors, following oriented and asymmetric divisions. Here, we identify the primed gene ring finger 149 related (Rnf149-r), which later becomes restricted to the heart progenitors, but appears to regulate pharyngeal muscle fate specification in the cardiopharyngeal lineage. CRISPR/Cas9-mediated loss of Rnf149-r function impairs atrial siphon muscle morphogenesis, and downregulates Tbx1/10 and Ebf, two key determinants of pharyngeal muscle fate, while upregulating heart-specific gene expression. These phenotypes are reminiscent of the loss of FGF/MAPK signaling in the cardiopharyngeal lineage, and an integrated analysis of lineage-specific bulk RNA-seq profiling of loss-of-function perturbations has identified a significant overlap between candidate FGF/MAPK and Rnf149-r target genes. However, functional interaction assays suggest that Rnf149-r does not directly modulate the activity of the FGF/MAPK/Ets1/2 pathway. Instead, we propose that Rnf149-r acts both in parallel to the FGF/MAPK signaling on shared targets, as well as on FGF/MAPK-independent targets through (a) separate pathway(s).
Collapse
Affiliation(s)
- Burcu Vitrinel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
- Michael Sars Centre, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| |
Collapse
|
6
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes Pdgfra-PI3K signaling to steer towards the midline during heart tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522612. [PMID: 36712046 PMCID: PMC9881939 DOI: 10.1101/2023.01.03.522612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move towards the midline (cardiac fusion) to form the primitive heart tube. Along with extrinsic influences such as the adjacent anterior endoderm which are known to be required for cardiac fusion, we previously showed that the platelet-derived growth factor receptor alpha (Pdgfra) is also required. However, an intrinsic mechanism that regulates myocardial movement remains to be elucidated. Here, we uncover an essential intrinsic role in the myocardium for the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway in directing myocardial movement towards the midline. In vivo imaging reveals that in PI3K-inhibited zebrafish embryos myocardial movements are misdirected and slower, while midline-oriented dynamic myocardial membrane protrusions become unpolarized. Moreover, PI3K activity is dependent on and genetically interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, University, MS 38677
| | - Tess McCann
- Department of Biology, University of Mississippi, University, MS 38677
| | - Harini Saravanan
- Department of Biology, University of Mississippi, University, MS 38677
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, University, MS 38677
| | - Prashanna Koirala
- Department of Biology, University of Mississippi, University, MS 38677
| | - Joshua Bloomekatz
- Department of Biology, University of Mississippi, University, MS 38677
| |
Collapse
|
7
|
Grossfeld P. ETS1 and HLHS: Implications for the Role of the Endocardium. J Cardiovasc Dev Dis 2022; 9:jcdd9070219. [PMID: 35877581 PMCID: PMC9319889 DOI: 10.3390/jcdd9070219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/16/2022] Open
Abstract
We have identified the ETS1 gene as the cause of congenital heart defects, including an unprecedented high frequency of HLHS, in the chromosomal disorder Jacobsen syndrome. Studies in Ciona intestinalis demonstrated a critical role for ETS1 in heart cell fate determination and cell migration, suggesting that the impairment of one or both processes can underlie the pathogenesis of HLHS. Our studies determined that ETS1 is expressed in the cardiac neural crest and endocardium in the developing murine heart, implicating one or both lineages in the development of HLHS. Studies in Drosophila and Xenopus demonstrated a critical role for ETS1 in regulating cardiac cell fate determination, and results in Xenopus provided further evidence for the role of the endocardium in the evolution of the “hypoplastic” HLHS LV. Paradoxically, these studies suggest that the loss of ETS1 may cause a cell fate switch resulting in the loss of endocardial cells and a relative abundance of cardiac myocytes. These studies implicate an “HLHS transcriptional network” of genes conserved across species that are essential for early heart development. Finally, the evidence suggests that in a subset of HLHS patients, the HLHS LV cardiac myocytes are, intrinsically, developmentally and functionally normal, which has important implications for potential future therapies.
Collapse
Affiliation(s)
- Paul Grossfeld
- Department of Pediatrics, Division of Cardiology, UCSD School of Medicine, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
9
|
Ferrández-Roldán A, Fabregà-Torrus M, Sánchez-Serna G, Duran-Bello E, Joaquín-Lluís M, Bujosa P, Plana-Carmona M, Garcia-Fernàndez J, Albalat R, Cañestro C. Cardiopharyngeal deconstruction and ancestral tunicate sessility. Nature 2021; 599:431-435. [PMID: 34789899 DOI: 10.1038/s41586-021-04041-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022]
Abstract
A central question in chordate evolution is the origin of sessility in adult ascidians, and whether the appendicularian complete free-living style represents a primitive or derived condition among tunicates1. According to the 'a new heart for a new head' hypothesis, the evolution of the cardiopharyngeal gene regulatory network appears as a pivotal aspect to understand the evolution of the lifestyles of chordates2-4. Here we show that appendicularians experienced massive ancestral losses of cardiopharyngeal genes and subfunctions, leading to the 'deconstruction' of two ancestral modules of the tunicate cardiopharyngeal gene regulatory network. In ascidians, these modules are related to early and late multipotency, which is involved in lineage cell-fate determination towards the first and second heart fields and siphon muscles. Our work shows that the deconstruction of the cardiopharyngeal gene regulatory network involved the regressive loss of the siphon muscle, supporting an evolutionary scenario in which ancestral tunicates had a sessile ascidian-like adult lifestyle. In agreement with this scenario, our findings also suggest that this deconstruction contributed to the acceleration of cardiogenesis and the redesign of the heart into an open-wide laminar structure in appendicularians as evolutionary adaptations during their transition to a complete pelagic free-living style upon the innovation of the food-filtering house5.
Collapse
Affiliation(s)
- Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Enya Duran-Bello
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Martí Joaquín-Lluís
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Marcos Plana-Carmona
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain. .,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
11
|
The pericardium of Oikopleura dioica (Tunicata, Appendicularia) contains two distinct cell types and is rotated by 90 degrees to the left. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe planktonic Oikopleura dioica belongs to Tunicata, the probable sister taxon to Craniota, and might show plesiomorphic characters, conserved from the common lineage of Tunicata and Craniota. In O. dioica a pericardium in a position similar to other chordates but also to the heart and pericardium of craniates is found. Surprisingly, little is known about the ultrastructure of the pericardium in O. dioica. Here, we show based on electron microscopy that the pericardium is completely lined by a single layer of 16 epithelial cells: 6 epithelial myocardial cells on the left side of the pericardium and 10 peritoneal cells constituting the right side. One of the peritoneal cells, situated at the ventral border between peritoneal cells and myocardial cells has an extension that anchors the pericardium to the basal lamina beneath the latero-ventral epidermis. The primary body cavity of O. dioica appears quite uniformly clear in electron microscopic aspect but several sheets, resembling the basal lamina of the pericardium cross the larger spaces of the body cavity and connect to the pericardial basal lamina. This is the first detailed description of two distinct cell types in the epithelial lining of the pericardium of O. dioica. In comparison with other chordates, we conclude that two cell types can be reconstructed for the last common ancestor of Chordata at least. The position of the pericardium at the intersection of trunk and tail in combination with the basal-lamina like sheets spanning the hemocoel is probably of importance for the function of the circulation of the hemocoelic fluid. Similar to the tail, the axis of the pericardium is shifted through 90 degrees to the left as compared to the main body axis of the trunk and we infer that this shift is an apomorphic character of Appendicularia.
Collapse
|
12
|
Cyclin-dependent Kinase 1 and Aurora Kinase choreograph mitotic storage and redistribution of a growth factor receptor. PLoS Biol 2021; 19:e3001029. [PMID: 33395410 PMCID: PMC7808676 DOI: 10.1371/journal.pbio.3001029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/14/2021] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Endosomal trafficking of receptors and associated proteins plays a critical role in signal processing. Until recently, it was thought that trafficking was shut down during cell division. Thus, remarkably, the regulation of trafficking during division remains poorly characterized. Here we delineate the role of mitotic kinases in receptor trafficking during asymmetric division. Targeted perturbations reveal that Cyclin-dependent Kinase 1 (CDK1) and Aurora Kinase promote storage of Fibroblast Growth Factor Receptors (FGFRs) by suppressing endosomal degradation and recycling pathways. As cells progress through metaphase, loss of CDK1 activity permits differential degradation and targeted recycling of stored receptors, leading to asymmetric induction. Mitotic receptor storage, as delineated in this study, may facilitate rapid reestablishment of signaling competence in nascent daughter cells. However, mutations that limit or enhance the release of stored signaling components could alter daughter cell fate or behavior thereby promoting oncogenesis. This study provides fundamental insights into the crosstalk between cell division and signaling, with implications for cancer. High-resolution in vivo analysis reveals that dividing cells sequester signal receptor proteins into internal compartments; stored receptors are then redistributed as cells complete division.
Collapse
|
13
|
Coppola U, Kamal AK, Stolfi A, Ristoratore F. The Cis-Regulatory Code for Kelch-like 21/30 Specific Expression in Ciona robusta Sensory Organs. Front Cell Dev Biol 2020; 8:569601. [PMID: 33043001 PMCID: PMC7517041 DOI: 10.3389/fcell.2020.569601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The tunicate Ciona robusta is an emerging model system to study the evolution of the nervous system. Due to their small embryos and compact genomes, tunicates, like Ciona robusta, have great potential to comprehend genetic circuitry underlying cell specific gene repertoire, among different neuronal cells. Their simple larvae possess a sensory vesicle comprising two pigmented sensory organs, the ocellus and the otolith. We focused here on Klhl21/30, a gene belonging to Kelch family, that, in Ciona robusta, starts to be expressed in pigmented cell precursors, becoming specifically maintained in the otolith precursor during embryogenesis. Evolutionary analyses demonstrated the conservation of Klhl21/30 in all the chordates. Cis-regulatory analyses and CRISPR/Cas9 mutagenesis of potential upstream factors, revealed that Klhl21/30 expression is controlled by the combined action of three transcription factors, Mitf, Dmrt, and Msx, which are downstream of FGF signaling. The central role of Mitf is consistent with its function as a fundamental regulator of vertebrate pigment cell development. Moreover, our results unraveled a new function for Dmrt and Msx as transcriptional co-activators in the context of the Ciona otolith.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ashwani Kumar Kamal
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
14
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
15
|
Racioppi C, Wiechecki KA, Christiaen L. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices. eLife 2019; 8:49921. [PMID: 31746740 PMCID: PMC6952182 DOI: 10.7554/elife.49921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these 'combined enhancers' foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.
Collapse
Affiliation(s)
- Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Keira A Wiechecki
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
16
|
Colgan W, Leanza A, Hwang A, DeBiasse MB, Llosa I, Rodrigues D, Adhikari H, Barreto Corona G, Bock S, Carillo-Perez A, Currie M, Darkoa-Larbi S, Dellal D, Gutow H, Hokama P, Kibby E, Linhart N, Moody S, Naganuma A, Nguyen D, Stanton R, Stark S, Tumey C, Velleca A, Ryan JF, Davidson B. Variable levels of drift in tunicate cardiopharyngeal gene regulatory elements. EvoDevo 2019; 10:24. [PMID: 31632631 PMCID: PMC6790052 DOI: 10.1186/s13227-019-0137-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mutations in gene regulatory networks often lead to genetic divergence without impacting gene expression or developmental patterning. The rules governing this process of developmental systems drift, including the variable impact of selective constraints on different nodes in a gene regulatory network, remain poorly delineated. RESULTS Here we examine developmental systems drift within the cardiopharyngeal gene regulatory networks of two tunicate species, Corella inflata and Ciona robusta. Cross-species analysis of regulatory elements suggests that trans-regulatory architecture is largely conserved between these highly divergent species. In contrast, cis-regulatory elements within this network exhibit distinct levels of conservation. In particular, while most of the regulatory elements we analyzed showed extensive rearrangements of functional binding sites, the enhancer for the cardiopharyngeal transcription factor FoxF is remarkably well-conserved. Even minor alterations in spacing between binding sites lead to loss of FoxF enhancer function, suggesting that bound trans-factors form position-dependent complexes. CONCLUSIONS Our findings reveal heterogeneous levels of divergence across cardiopharyngeal cis-regulatory elements. These distinct levels of divergence presumably reflect constraints that are not clearly associated with gene function or position within the regulatory network. Thus, levels of cis-regulatory divergence or drift appear to be governed by distinct structural constraints that will be difficult to predict based on network architecture.
Collapse
Affiliation(s)
| | - Alexis Leanza
- Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, USA
| | - Ariel Hwang
- University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | | | | | | | | | | - Daniel Dellal
- Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Emily Kibby
- University of Colorado Boulder, Boulder, USA
| | | | | | | | | | | | - Sierra Stark
- University of California San Francisco, San Francisco, USA
| | | | | | - Joseph F. Ryan
- Whitney Laboratory for Marine Bioscience, St. Augustine, USA
| | | |
Collapse
|
17
|
Wei L, Al Oustah A, Blader P, Roussigné M. Notch signaling restricts FGF pathway activation in parapineal cells to promote their collective migration. eLife 2019; 8:46275. [PMID: 31498774 PMCID: PMC6733574 DOI: 10.7554/elife.46275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Coordinated migration of cell collectives is important during embryonic development and relies on cells integrating multiple mechanical and chemical cues. Recently, we described that focal activation of the FGF pathway promotes the migration of the parapineal in the zebrafish epithalamus. How FGF activity is restricted to leading cells in this system is, however, unclear. Here, we address the role of Notch signaling in modulating FGF activity within the parapineal. While Notch loss-of-function results in an increased number of parapineal cells activating the FGF pathway, global activation of Notch signaling decreases it; both contexts result in defects in parapineal migration and specification. Decreasing or increasing FGF signaling in a Notch loss-of-function context respectively rescues or aggravates parapineal migration defects without affecting parapineal cells specification. We propose that Notch signaling controls the migration of the parapineal through its capacity to restrict FGF pathway activation to a few leading cells.
Collapse
Affiliation(s)
- Lu Wei
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Amir Al Oustah
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Patrick Blader
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Myriam Roussigné
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| |
Collapse
|
18
|
Prummel KD, Hess C, Nieuwenhuize S, Parker HJ, Rogers KW, Kozmikova I, Racioppi C, Brombacher EC, Czarkwiani A, Knapp D, Burger S, Chiavacci E, Shah G, Burger A, Huisken J, Yun MH, Christiaen L, Kozmik Z, Müller P, Bronner M, Krumlauf R, Mosimann C. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat Commun 2019; 10:3857. [PMID: 31451684 PMCID: PMC6710290 DOI: 10.1038/s41467-019-11561-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo. Numerous tissues are derived from the lateral plate mesoderm (LPM) but how this is specified is unclear. Here, the authors identify a pan-LPM reporter activity found in the zebrafish draculin (drl) gene that also shows transgenic activity in LPM-corresponding territories of several chordates, including chicken, axolotl, lamprey, Ciona, and amphioxus.
Collapse
Affiliation(s)
- Karin D Prummel
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Christopher Hess
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Susan Nieuwenhuize
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Hugo J Parker
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Eline C Brombacher
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Anna Czarkwiani
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Dunja Knapp
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Maximina H Yun
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
19
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
20
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Bernadskaya YY, Brahmbhatt S, Gline SE, Wang W, Christiaen L. Discoidin-domain receptor coordinates cell-matrix adhesion and collective polarity in migratory cardiopharyngeal progenitors. Nat Commun 2019; 10:57. [PMID: 30610187 PMCID: PMC6320373 DOI: 10.1038/s41467-018-07976-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
Integrated analyses of regulated effector genes, cellular processes, and extrinsic signals are required to understand how transcriptional networks coordinate fate specification and cell behavior during embryogenesis. Ciona cardiopharyngeal progenitors, the trunk ventral cells (TVCs), polarize as leader and trailer cells that migrate between the ventral epidermis and trunk endoderm. We show that the TVC-specific collagen-binding Discoidin-domain receptor (Ddr) cooperates with Integrin-β1 to promote cell-matrix adhesion. We find that endodermal cells secrete a collagen, Col9-a1, that is deposited in the basal epidermal matrix and promotes Ddr activation at the ventral membrane of migrating TVCs. A functional antagonism between Ddr/Intβ1-mediated cell-matrix adhesion and Vegfr signaling appears to modulate the position of cardiopharyngeal progenitors between the endoderm and epidermis. We show that Ddr promotes leader-trailer-polarized BMP-Smad signaling independently of its role in cell-matrix adhesion. We propose that dual functions of Ddr integrate transcriptional inputs to coordinate subcellular processes underlying collective polarity and migration.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Saahil Brahmbhatt
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Stephanie E Gline
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Wei Wang
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA.
| |
Collapse
|
22
|
Razy-Krajka F, Gravez B, Kaplan N, Racioppi C, Wang W, Christiaen L. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time. eLife 2018; 7:e29656. [PMID: 29431097 PMCID: PMC5809146 DOI: 10.7554/elife.29656] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Basile Gravez
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Nicole Kaplan
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Wei Wang
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| |
Collapse
|
23
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Wang W, Racioppi C, Gravez B, Christiaen L. Purification of Fluorescent Labeled Cells from Dissociated Ciona Embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542083 PMCID: PMC6020031 DOI: 10.1007/978-981-10-7545-2_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genome-wide studies in Ciona often require highly purified cell populations. In this methods chapter, we introduce multi-channel combinatorial fluorescence activated cells sorting (FACS) and magnetic-activated cell sorting (MACS) as two sensitive and efficient tools for isolating lineage-specific cell populations from dissociated Ciona embryos and larvae. We present isolation of trunk ventral cell (TVC) progeny as the test case most commonly used in our laboratory. These approaches may also be applied to purify other cell populations with the proper combination of tissue-specific reporters.
Collapse
|
25
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
26
|
McFaul CMJ, Fernandez-Gonzalez R. Shape of my heart: Cell-cell adhesion and cytoskeletal dynamics during Drosophila cardiac morphogenesis. Exp Cell Res 2017; 358:65-70. [PMID: 28389210 DOI: 10.1016/j.yexcr.2017.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022]
Abstract
The fruit fly Drosophila melanogaster has recently emerged as an excellent system to investigate the genetics of cardiovascular development and disease. Drosophila provides an inexpensive and genetically-tractable in vivo system with a large number of conserved features. In addition, the Drosophila embryo is transparent, and thus amenable to time-lapse fluorescence microscopy, as well as biophysical and pharmacological manipulations. One of the conserved aspects of heart development from Drosophila to humans is the initial assembly of a tube. Here, we review the cellular behaviours and molecular dynamics important for the initial steps of heart morphogenesis in Drosophila, with particular emphasis on the cell-cell adhesion and cytoskeletal networks that cardiac precursors use to move, coordinate their migration, interact with other tissues and eventually sculpt a beating heart.
Collapse
Affiliation(s)
- Christopher M J McFaul
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
27
|
Segade F, Cota C, Famiglietti A, Cha A, Davidson B. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo 2016; 7:21. [PMID: 27583126 PMCID: PMC5006582 DOI: 10.1186/s13227-016-0056-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genomic analysis has upended chordate phylogeny, placing the tunicates as the sister group to the vertebrates. This taxonomic rearrangement raises questions about the emergence of a tunicate/vertebrate ancestor. RESULTS Characterization of developmental genes uniquely shared by tunicates and vertebrates is one promising approach for deciphering developmental shifts underlying acquisition of novel, ancestral traits. The matrix glycoprotein Fibronectin (FN) has long been considered a vertebrate-specific gene, playing a major instructive role in vertebrate embryonic development. However, the recent computational prediction of an orthologous "vertebrate-like" Fn gene in the genome of a tunicate, Ciona savignyi, challenges this viewpoint suggesting that Fn may have arisen in the shared tunicate/vertebrate ancestor. Here we verify the presence of a tunicate Fn ortholog. Transgenic reporter analysis was used to characterize a Ciona Fn enhancer driving expression in the notochord. Targeted knockdown in the notochord lineage indicates that FN is required for proper convergent extension. CONCLUSIONS These findings suggest that acquisition of Fn was associated with altered notochord morphogenesis in the vertebrate/tunicate ancestor.
Collapse
Affiliation(s)
- Fernando Segade
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104 USA
| | - Christina Cota
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Amber Famiglietti
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anna Cha
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| |
Collapse
|
28
|
Mespaa can potently induce cardiac fates in zebrafish. Dev Biol 2016; 418:17-27. [PMID: 27554166 DOI: 10.1016/j.ydbio.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/12/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023]
Abstract
The Mesp family of transcription factors have been implicated in the early formation and migration of the cardiac lineage, although the precise molecular mechanisms underlying this process remain unknown. In this study we examine the function of Mesp family members in zebrafish cardiac development and find that Mespaa is remarkably efficient at promoting cardiac fates in normally non-cardiogenic cells. However, Mespaa is dispensable for normal cardiac formation. Despite no overt defects in cardiovascular specification, we find a consistent defect in cardiac laterality in mespaa null embryos. This is further exacerbated by the depletion of other mesp paralogues, highlighting a conserved role for the mesp family in left-right asymmetry, distinct from a function in cardiac specification. Despite an early requirement for mespaa to promote cardiogenesis, cells over-expressing mespaa are found to both exhibit unique cellular behaviors and activate the transcription of gata5 only after the completion of gastrulation. We propose that while mespaa remains capable of driving cardiac progenitor formation in zebrafish, it may not play an essential role in the cardiac regulatory network. Furthermore, the late activation of migration and cardiac gene transcription in mespaa over-expressing cells challenges previous studies on the timing of these events and provides intriguing questions for future study.
Collapse
|
29
|
Abstract
Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates. Comparison of the Ciona model system to heart development in other Chordates presents great potential for dissecting the genetic mechanisms that underlie congenital heart defects and disease at the cellular level and might provide additional insight into potential pathways for therapeutic cardiac regeneration.
Collapse
|
30
|
Stach T, Anselmi C. High-precision morphology: bifocal 4D-microscopy enables the comparison of detailed cell lineages of two chordate species separated for more than 525 million years. BMC Biol 2015; 13:113. [PMID: 26700477 PMCID: PMC4690324 DOI: 10.1186/s12915-015-0218-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Understanding the evolution of divergent developmental trajectories requires detailed comparisons of embryologies at appropriate levels. Cell lineages, the accurate visualization of cleavage patterns, tissue fate restrictions, and morphogenetic movements that occur during the development of individual embryos are currently available for few disparate animal taxa, encumbering evolutionarily meaningful comparisons. Tunicates, considered to be close relatives of vertebrates, are marine invertebrates whose fossil record dates back to 525 million years ago. Life-history strategies across this subphylum are radically different, and include biphasic ascidians with free swimming larvae and a sessile adult stage, and the holoplanktonic larvaceans. Despite considerable progress, notably on the molecular level, the exact extent of evolutionary conservation and innovation during embryology remain obscure. RESULTS Here, using the innovative technique of bifocal 4D-microscopy, we demonstrate exactly which characteristics in the cell lineages of the ascidian Phallusia mammillata and the larvacean Oikopleura dioica were conserved and which were altered during evolution. Our accurate cell lineage trees in combination with detailed three-dimensional representations clearly identify conserved correspondence in relative cell position, cell identity, and fate restriction in several lines from all prospective larval tissues. At the same time, we precisely pinpoint differences observable at all levels of development. These differences comprise fate restrictions, tissue types, complex morphogenetic movement patterns, numerous cases of heterochronous acceleration in the larvacean embryo, and differences in bilateral symmetry. CONCLUSIONS Our results demonstrate in extraordinary detail the multitude of developmental levels amenable to evolutionary innovation, including subtle changes in the timing of fate restrictions as well as dramatic alterations in complex morphogenetic movements. We anticipate that the precise spatial and temporal cell lineage data will moreover serve as a high-precision guide to devise experimental investigations of other levels, such as molecular interactions between cells or changes in gene expression underlying the documented structural evolutionary changes. Finally, the quantitative amount of digital high-precision morphological data will enable and necessitate software-based similarity assessments as the basis of homology hypotheses.
Collapse
Affiliation(s)
- Thomas Stach
- Institut für Biologie, Kompetenzzentrum Elektronenmikroskopie, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 14, 10115, Berlin, Germany.
| | - Chiara Anselmi
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
31
|
Cota CD, Davidson B. Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage. Dev Cell 2015; 34:505-19. [PMID: 26300448 DOI: 10.1016/j.devcel.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/14/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
In response to microenvironmental cues, embryonic cells form adhesive signaling compartments that influence survival and patterning. Dividing cells detach from the surrounding matrix and initiate extensive membrane remodeling, but the in vivo impact of mitosis on adhesion-dependent signaling remains poorly characterized. We investigate in vivo signaling dynamics using the invertebrate chordate, Ciona intestinalis. In Ciona, matrix adhesion polarizes fibroblast growth factor (FGF)-dependent heart progenitor induction. Here, we show that adhesion inhibits mitotic FGF receptor internalization, leading to receptor enrichment along adherent membranes. Targeted disruption of matrix adhesion promotes uniform FGF receptor internalization and degradation while enhanced adhesion suppresses degradation. Chimeric analysis indicates that integrin β chain-specific impacts on induction are dictated by distinct internalization motifs. We also found that matrix adhesion impacts receptor enrichment through Caveolin-rich membrane domains. These results redefine the relationship between cell division and adhesive signaling, revealing how mitotic membrane turnover orchestrates adhesion-dependent signal polarization.
Collapse
Affiliation(s)
- Christina D Cota
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA.
| |
Collapse
|
32
|
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520:466-73. [PMID: 25903628 DOI: 10.1038/nature14435] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
Collapse
|
33
|
Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr Opin Genet Dev 2015; 32:119-28. [PMID: 25819888 DOI: 10.1016/j.gde.2015.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
The vertebrate heart arises from distinct first and second heart fields. The latter also share a common origin with branchiomeric muscles in the pharyngeal mesoderm and transcription regulators, such as Nkx2-5, Tbx1 and Islet1. Despite significant progress, the complexity of vertebrate embryos has hindered the identification of multipotent cardiopharyngeal progenitors. Here, we summarize recent insights in cardiopharyngeal development gained from ascidian models, among the closest relatives to vertebrates. In a simplified cellular context, progressive fate specification of the ascidian cardiopharyngeal precursors presents striking similarities with their vertebrate counterparts. Multipotent cardiopharyngeal progenitors are primed to activate both the early cardiac and pharyngeal muscles programs, which segregate following asymmetric cells divisions as a result of regulatory cross-antagonisms involving Tbx1 and Nkx2-5 homologs. Activation of Ebf in pharyngeal muscle founder cells triggers both Myogenic Regulatory Factor-associated differentiation and Notch-mediated maintenance of an undifferentiated state in distinct precursors. Cross-species comparisons revealed the deep conservation of the cardiopharyngeal developmental sequence in spite of extreme genome sequence divergence, gene network rewiring and specific morphogenetic differences. Finally, analyses are beginning to uncover the influence of surrounding tissues in determining cardiopharyngeal cell identity and behavior. Thus, ascidian embryos offer a unique opportunity to study gene regulation and cell behaviors at the cellular level throughout cardiopharyngeal morphogenesis and evolution.
Collapse
|
34
|
Gline S, Kaplan N, Bernadskaya Y, Abdu Y, Christiaen L. Surrounding tissues canalize motile cardiopharyngeal progenitors towards collective polarity and directed migration. Development 2015; 142:544-54. [PMID: 25564651 DOI: 10.1242/dev.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collectively migrating cells maintain group polarity and interpret external cues to reach their destination. The cardiogenic progenitors (also known as trunk ventral cells, TVCs) of the ascidian Ciona intestinalis provide a simple chordate model with which to study collective migration. Bilateral pairs of associated TVCs undergo a stereotyped polarized migration away from the tail towards the ventral trunk, arguably constituting the simplest possible example of directed collective migration. To identify tissues contributing to TVC polarity and migration, we quantified the contact between TVCs and surrounding tissues, and blocked the secretory pathway in a tissue-specific manner. Even though TVCs normally migrate as an invariably determined leader-trailer polarized pair of adherent cells, they are capable of migrating individually, albeit a shorter distance and with altered morphology. The mesenchyme contacts newborn TVCs and contributes to robust specification of the trailer but appears to have only minor effects on directed migration. The notochord does not contact the TVCs but contributes to the onset of migration. The trunk endoderm first contacts the leader TVC, then 'encases' both migrating cells and provides the inputs maintaining leader-trailer polarity. Migrating TVCs adhere to the epidermis and need this contact for their cohesion. These phenomenological studies reveal that inherently motile cardiopharyngeal progenitors are channeled into stereotyped behaviors by interactions with surrounding tissues.
Collapse
Affiliation(s)
- Stephanie Gline
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Nicole Kaplan
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yelena Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yusuff Abdu
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| |
Collapse
|
35
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
36
|
Stolfi A, Gandhi S, Salek F, Christiaen L. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 2014; 141:4115-20. [PMID: 25336740 DOI: 10.1242/dev.114488] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas9 system has ushered in a new era of targeted genetic manipulations. Here, we report the use of CRISPR/Cas9 to induce double-stranded breaks in the genome of the sea squirt Ciona intestinalis. We use electroporation to deliver CRISPR/Cas9 components for tissue-specific disruption of the Ebf (Collier/Olf/EBF) gene in hundreds of synchronized Ciona embryos. Phenotyping of transfected embryos in the 'F0' generation revealed that endogenous Ebf function is required for specification of Islet-expressing motor ganglion neurons and atrial siphon muscles. We demonstrate that CRISPR/Cas9 is sufficiently effective and specific to generate large numbers of embryos carrying mutations in a targeted gene of interest, which should allow for rapid screening of gene function in Ciona.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Shashank Gandhi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Farhana Salek
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
37
|
Haack T, Schneider M, Schwendele B, Renault AD. Drosophila heart cell movement to the midline occurs through both cell autonomous migration and dorsal closure. Dev Biol 2014; 396:169-82. [PMID: 25224224 DOI: 10.1016/j.ydbio.2014.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/07/2014] [Accepted: 08/30/2014] [Indexed: 11/16/2022]
Abstract
The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype.
Collapse
Affiliation(s)
- Timm Haack
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany
| | - Matthias Schneider
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany
| | - Bernd Schwendele
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany
| | - Andrew D Renault
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany.
| |
Collapse
|
38
|
Stolfi A, Lowe EK, Racioppi C, Ristoratore F, Brown CT, Swalla BJ, Christiaen L. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife 2014; 3:e03728. [PMID: 25209999 PMCID: PMC4356046 DOI: 10.7554/elife.03728] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/05/2014] [Indexed: 12/13/2022] Open
Abstract
Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or ‘unintelligibility’, of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis. DOI:http://dx.doi.org/10.7554/eLife.03728.001 When two species have features that look similar, this may be because the features arise by the same processes during development. Other features may look similar yet develop by different mechanisms. ‘Developmental system drift’ refers to the process where a physical feature remains unaltered during evolution, but the underlying pathway that controls its development is changed. However, to date, there have been only a few experimental studies that support this idea. Ascidians—also commonly known as sea squirts—are vase-like marine creatures, which start off as tadpole-like larvae that swim around until they find a place to settle down and attach themselves. Once attached, the sea squirts lose the ability to swim and start feeding, typically by filtering material out of the seawater. Sea squirts and their close relatives are the invertebrates (animals without backbones) that are most closely related to all vertebrates (animals with backbones), including humans. Furthermore, although different species of sea squirt have almost identical embryos, their genomes are very different. Stolfi et al. have now studied whether developmental system drift may have occurred during the evolution of ascidians, by analyzing different species of sea squirt named Molgula and Ciona. Stolfi et al. compared the genomes of Molgula and Ciona and studied the expression of genes in the cells that give rise to the heart and the muscles of the head. As an embryo develops, specific genes are switched on or off, and these patterns of gene activation were broadly identical in the two species of sea squirt examined. Enhancers are sequences of DNA that control when and how a gene is switched on. Given the similarities between the development of heart and head muscle cells in the different sea squirts, Stolfi et al. looked to see if the mechanisms of gene expression, and therefore the enhancers, were also conserved. Unexpectedly, this was not the case. When enhancers from Molgula were introduced into Ciona (and vice versa), these sequences were unable to switch on gene expression—thus enhancers from one sea squirt species could not function in the other. Stolfi et al. conclude that the developmental systems may have drifted considerably during evolution of the sea squirts, in spite of their nearly identical embryos. This reinforces the view that different paths can lead to the formation of similar physical features. DOI:http://dx.doi.org/10.7554/eLife.03728.002
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Elijah K Lowe
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Claudia Racioppi
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - C Titus Brown
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Billie J Swalla
- Department of Biology, University of Washington, Seattle, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
39
|
Razy-Krajka F, Lam K, Wang W, Stolfi A, Joly M, Bonneau R, Christiaen L. Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell 2014; 29:263-76. [PMID: 24794633 DOI: 10.1016/j.devcel.2014.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Abstract
In vertebrates, pluripotent pharyngeal mesoderm progenitors produce the cardiac precursors of the second heart field as well as the branchiomeric head muscles and associated stem cells. However, the mechanisms underlying the transition from multipotent progenitors to distinct muscle precursors remain obscured by the complexity of vertebrate embryos. Using Ciona intestinalis as a simple chordate model, we show that bipotent cardiopharyngeal progenitors are primed to activate both heart and pharyngeal muscle transcriptional programs, which progressively become restricted to corresponding precursors. The transcription factor COE (Collier/OLF/EBF) orchestrates the transition to pharyngeal muscle fate both by promoting an MRF-associated myogenic program in myoblasts and by maintaining an undifferentiated state in their sister cells through Notch-mediated lateral inhibition. The latter are stem cell-like muscle precursors that form most of the juvenile pharyngeal muscles. We discuss the implications of our findings for the development and evolution of the chordate cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Karen Lam
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Wei Wang
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Marine Joly
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
40
|
Wang W, Razy-Krajka F, Siu E, Ketcham A, Christiaen L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol 2013; 11:e1001725. [PMID: 24311985 PMCID: PMC3849182 DOI: 10.1371/journal.pbio.1001725] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022] Open
Abstract
Cross inhibition between NK4 and TBX1 transcription factors specifies heart versus pharyngeal muscle fates by promoting the activation of tissue-specific regulators in distinct precursors within the cardiopharyngeal lineage of the ascidian, Ciona intestinalis. The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates. Mutations in the regulatory genes encoding the transcription factors NKX2-5 and TBX1, which govern heart and head muscle development, cause prevalent congenital defects. Recent studies using vertebrate models have shown that the heart and pharyngeal head muscle cells derive from common progenitors in the early embryo. To better understand the genetic mechanisms by which these progenitors select one of the two developmental trajectories, we studied the activity of these transcription factors in a simple invertebrate chordate model, the sea squirt Ciona intestinalis. We show that the sea squirt homolog of NKX2-5 promotes early heart specification by inhibiting the formation of pharyngeal muscles. Conversely, the TBX1 homolog determines pharyngeal muscle fate by inhibiting GATAa and thereby the heart program it instructs, as well as promoting the pharyngeal muscle program through activation of COE (Collier/Olf-1/EBF), a recently identified regulator of skeletal muscle differentiation. Finally, we show that the NKX2-5 homolog protein directly binds to the COE gene to repress its activity. Notably, these antagonistic interactions occur in heart and pharyngeal precursors immediately following the division of their pluripotent mother cells, thus contributing to their respective fate choice. These mechanistic insights into the process of early heart versus head muscle specification in this simple chordate provide the grounds for establishing the etiology of human congenital cardio-craniofacial defects.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biology, New York University, New York, New York, United States of America
| | - Florian Razy-Krajka
- Department of Biology, New York University, New York, New York, United States of America
| | - Eric Siu
- Department of Biology, New York University, New York, New York, United States of America
| | - Alexandra Ketcham
- Department of Biology, New York University, New York, New York, United States of America
| | - Lionel Christiaen
- Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Cota CD, Segade F, Davidson B. Heart genetics in a small package, exploiting the condensed genome of Ciona intestinalis. Brief Funct Genomics 2013; 13:3-14. [PMID: 24005910 DOI: 10.1093/bfgp/elt034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Defects in the initial establishment of cardiogenic cell fate are likely to contribute to pervasive human congenital cardiac abnormalities. However, the molecular underpinnings of nascent cardiac fate induction have proven difficult to decipher. In this review we explore the participation of extracellular, cellular and nuclear factors in comprehensive specification networks. At each level, we elaborate on insights gained through the study of cardiogenesis in the invertebrate chordate Ciona intestinalis and propose productive lines of future research. In-depth discussion of pre-cardiac induction is intended to serve as a paradigm, illustrating the potential use of Ciona to elucidate comprehensive networks underlying additional aspects of chordate cardiogenesis, including directed migration and subspecification of cardiac and pharyngeal lineages.
Collapse
|
42
|
Norton J, Cooley J, Islam AFMT, Cota CD, Davidson B. Matrix adhesion polarizes heart progenitor induction in the invertebrate chordate Ciona intestinalis. Development 2013; 140:1301-11. [PMID: 23444358 DOI: 10.1242/dev.085548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
43
|
Liu Y, Schwartz RJ. Transient Mesp1 expression: a driver of cardiac cell fate determination. Transcription 2013; 4:92-6. [PMID: 23584093 DOI: 10.4161/trns.24588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesp1 sits on the tip of the cardiac regulatory hierarchy, recent evidences support that it is regulated by stem cell factor Oct4, early gastrulation signal canonical Wnts and a couple of T-box factors, T and Eomes. With other transcription factors, Mesp1 programs/reprograms human cells toward cardiomyocytes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry; University of Houston; Houston, TX USA
| | | |
Collapse
|
44
|
David R, Schwarz F, Rimmbach C, Nathan P, Jung J, Brenner C, Jarsch V, Stieber J, Franz WM. Selection of a common multipotent cardiovascular stem cell using the 3.4-kb MesP1 promoter fragment. Basic Res Cardiol 2012. [DOI: 10.1007/s00395-012-0312-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Abstract
The heart as a functional organ first appeared in bilaterians as a single peristaltic pump and evolved through arthropods, fish, amphibians, and finally mammals into a four-chambered engine controlling blood-flow within the body. The acquisition of cardiac complexity in the evolving heart was a product of gene duplication events and the co-option of novel signaling pathways to an ancestral cardiac-specific gene network. T-box factors belong to an evolutionary conserved family of transcriptional regulators with diverse roles in development. Their regulatory functions are integral in the initiation and potentiation of heart development, and mutations in these genes are associated with congenital heart defects. In this review we will discuss the evolutionary conserved cardiac regulatory functions of this family as well as their implication in disease in an aim to facilitate future gene-targeted and regenerative therapeutic remedies.
Collapse
Affiliation(s)
- Fadi Hariri
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale, Centre-ville Montréal, Quebec, H3C3J7, Canada
| | | | | |
Collapse
|
46
|
Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 2012; 368:127-39. [PMID: 22595514 DOI: 10.1016/j.ydbio.2012.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022]
Abstract
The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification.
Collapse
Affiliation(s)
- Arielle Woznica
- Department of Molecular and Cellular Biology, Molecular Cardiovascular Research Program, University of Arizona, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Esposito R, D'Aniello S, Squarzoni P, Pezzotti MR, Ristoratore F, Spagnuolo A. New insights into the evolution of metazoan tyrosinase gene family. PLoS One 2012; 7:e35731. [PMID: 22536431 PMCID: PMC3334994 DOI: 10.1371/journal.pone.0035731] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/24/2012] [Indexed: 11/19/2022] Open
Abstract
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonietta Spagnuolo
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| |
Collapse
|
48
|
Optimized conditions for transgenesis of the ascidian Ciona using square wave electroporation. Dev Genes Evol 2012; 222:55-61. [DOI: 10.1007/s00427-011-0386-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
49
|
|
50
|
Abstract
The study of cis-regulatory DNAs that control developmental gene expression is integral to the modeling of comprehensive genomic regulatory networks for embryogenesis. Ascidian embryos provide a unique opportunity for the analysis of cis-regulatory DNAs with cellular resolution in the context of a simple but typical chordate body plan. Here, we review landmark studies that have laid the foundations for the study of transcriptional enhancers, among other cis-regulatory DNAs, and their roles in ascidian development. The studies using ascidians of the Ciona genus have capitalized on a unique electroporation technique that permits the simultaneous transfection of hundreds of fertilized eggs, which develop rapidly and express transgenes with little mosaicism. Current studies using the ascidian embryo benefit from extensively annotated genomic resources to characterize transcript models in silico. The search for functional noncoding sequences can be guided by bioinformatic analyses combining evolutionary conservation, gene coexpression, and combinations of overrepresented short-sequence motifs. The power of the transient transfection assays has allowed thorough dissection of numerous cis-regulatory modules, which provided insights into the functional constraints that shape enhancer architecture and diversification. Future studies will benefit from pioneering stable transgenic lines and the analysis of chromatin states. Whole genome expression, functional and DNA binding data are being integrated into comprehensive genomic regulatory network models of early ascidian cell specification with a single-cell resolution that is unique among chordate model systems.
Collapse
|