1
|
Hassan A, Blakeley G, McGregor AP, Zancolli G. Venom gland organogenesis in the common house spider. Sci Rep 2024; 14:15379. [PMID: 38965282 PMCID: PMC11224297 DOI: 10.1038/s41598-024-65336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Venom is a remarkable innovation found across the animal kingdom, yet the evolutionary origins of venom systems in various groups, including spiders, remain enigmatic. Here, we investigated the organogenesis of the venom apparatus in the common house spider, Parasteatoda tepidariorum. The venom apparatus consists of a pair of secretory glands, each connected to an opening at the fang tip by a duct that runs through the chelicerae. We performed bulk RNA-seq to identify venom gland-specific markers and assayed their expression using RNA in situ hybridisation experiments on whole-mount time-series. These revealed that the gland primordium emerges during embryonic stage 13 at the chelicera tip, progresses proximally by the end of embryonic development and extends into the prosoma post-eclosion. The initiation of expression of an important toxin component in late postembryos marks the activation of venom-secreting cells. Our selected markers also exhibited distinct expression patterns in adult venom glands: sage and the toxin marker were expressed in the secretory epithelium, forkhead and sum-1 in the surrounding muscle layer, while Distal-less was predominantly expressed at the gland extremities. Our study provides the first comprehensive analysis of venom gland morphogenesis in spiders, offering key insights into their evolution and development.
Collapse
Affiliation(s)
- Afrah Hassan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| |
Collapse
|
2
|
Peng D, Jackson D, Palicha B, Kernfeld E, Laughner N, Shoemaker A, Celniker SE, Loganathan R, Cahan P, Andrew DJ. Organogenetic transcriptomes of the Drosophila embryo at single cell resolution. Development 2024; 151:dev202097. [PMID: 38174902 PMCID: PMC10820837 DOI: 10.1242/dev.202097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
To gain insight into the transcription programs activated during the formation of Drosophila larval structures, we carried out single cell RNA sequencing during two periods of Drosophila embryogenesis: stages 10-12, when most organs are first specified and initiate morphological and physiological specialization; and stages 13-16, when organs achieve their final mature architectures and begin to function. Our data confirm previous findings with regards to functional specialization of some organs - the salivary gland and trachea - and clarify the embryonic functions of another - the plasmatocytes. We also identify two early developmental trajectories in germ cells and uncover a potential role for proteolysis during germline stem cell specialization. We identify the likely cell type of origin for key components of the Drosophila matrisome and several commonly used Drosophila embryonic cell culture lines. Finally, we compare our findings with other recent related studies and with other modalities for identifying tissue-specific gene expression patterns. These data provide a useful community resource for identifying many new players in tissue-specific morphogenesis and functional specialization of developing organs.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorian Jackson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bianca Palicha
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Kernfeld
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathaniel Laughner
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashleigh Shoemaker
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rajprasad Loganathan
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J. Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Levic DS, Bagnat M. Polarized transport of membrane and secreted proteins during lumen morphogenesis. Semin Cell Dev Biol 2023; 133:65-73. [PMID: 35307284 PMCID: PMC9481742 DOI: 10.1016/j.semcdb.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
A ubiquitous feature of animal development is the formation of fluid-filled cavities or lumina, which transport gases and fluids across tissues and organs. Among different species, lumina vary drastically in size, scale, and complexity. However, all lumen formation processes share key morphogenetic principles that underly their development. Fundamentally, a lumen simply consists of epithelial cells that encapsulate a continuous internal space, and a common way of building a lumen is via opening and enlarging by filling it with fluid and/or macromolecules. Here, we discuss how polarized targeting of membrane and secreted proteins regulates lumen formation, mainly focusing on ion transporters in vertebrate model systems. We also discuss mechanistic differences observed among invertebrates and vertebrates and describe how the unique properties of the Na+/K+-ATPase and junctional proteins can promote polarization of immature epithelia to build lumina de novo in developing organs.
Collapse
Affiliation(s)
- Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Loganathan R, Levings DC, Kim JH, Wells MB, Chiu H, Wu Y, Slattery M, Andrew DJ. Ribbon boosts ribosomal protein gene expression to coordinate organ form and function. J Cell Biol 2022; 221:213030. [PMID: 35195669 PMCID: PMC9237840 DOI: 10.1083/jcb.202110073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cell growth is well defined for late (postembryonic) stages of development, but evidence for early (embryonic) cell growth during postmitotic morphogenesis is limited. Here, we report early cell growth as a key characteristic of tubulogenesis in the Drosophila embryonic salivary gland (SG) and trachea. A BTB/POZ domain nuclear factor, Ribbon (Rib), mediates this early cell growth. Rib binds the transcription start site of nearly every SG-expressed ribosomal protein gene (RPG) and is required for full expression of all RPGs tested. Rib binding to RPG promoters in vitro is weak and not sequence specific, suggesting that specificity is achieved through cofactor interactions. Accordingly, we demonstrate Rib’s ability to physically interact with each of the three known regulators of RPG transcription. Surprisingly, Rib-dependent early cell growth in another tubular organ, the embryonic trachea, is not mediated by direct RPG transcription. These findings support a model of early cell growth customized by transcriptional regulatory networks to coordinate organ form and function.
Collapse
Affiliation(s)
| | - Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Ji Hoon Kim
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Hannah Chiu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Yifan Wu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Hombría JCG, García-Ferrés M, Sánchez-Higueras C. Anterior Hox Genes and the Process of Cephalization. Front Cell Dev Biol 2021; 9:718175. [PMID: 34422836 PMCID: PMC8374599 DOI: 10.3389/fcell.2021.718175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, bilateral animals have experienced a progressive process of cephalization with the anterior concentration of nervous tissue, sensory organs and the appearance of dedicated feeding structures surrounding the mouth. Cephalization has been achieved by the specialization of the unsegmented anterior end of the body (the acron) and the sequential recruitment to the head of adjacent anterior segments. Here we review the key developmental contribution of Hox1-5 genes to the formation of cephalic structures in vertebrates and arthropods and discuss how this evolved. The appearance of Hox cephalic genes preceded the evolution of a highly specialized head in both groups, indicating that Hox gene involvement in the control of cephalic structures was acquired independently during the evolution of vertebrates and invertebrates to regulate the genes required for head innovation.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Carlos Sánchez-Higueras
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| |
Collapse
|
6
|
Loganathan R, Kim JH, Wells MB, Andrew DJ. Secrets of secretion-How studies of the Drosophila salivary gland have informed our understanding of the cellular networks underlying secretory organ form and function. Curr Top Dev Biol 2020; 143:1-36. [PMID: 33820619 DOI: 10.1016/bs.ctdb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretory organs are critical for organismal survival. Yet, the transcriptional regulatory mechanisms governing their development and maintenance remain unclear for most model secretory organs. The Drosophila embryonic salivary gland (SG) remedies this deficiency as one of the few organs wherein direct connections from the expression of the early patterning genes to cell specification to organ architecture and functional specialization can be made. Few other models of secretion can be accorded this distinction. Studies from the past three decades have made enormous strides in parsing out the roles of distinct transcription factors (TFs) that direct major steps in furnishing this secretory organ. In the first step of specifying the salivary gland, the activity of the Hox factors Sex combs reduced, Extradenticle, and Homothorax activate expression of fork head (fkh), sage, and CrebA, which code for the major suite of TFs that carry forward the task of organ building and maintenance. Then, in the second key step of building the SG, the program for cell fate maintenance and morphogenesis is deployed. Fkh maintains the secretory cell fate by regulating its own expression and that of sage and CrebA. Fkh and Sage maintain secretory cell viability by actively blocking apoptotic cell death. Fkh, along with two other TFs, Hkb and Rib, also coordinates organ morphogenesis, transforming two plates of precursor cells on the embryo surface into elongated internalized epithelial tubes. Acquisition of functional specialization, the third key step, is mediated by CrebA and Fkh working in concert with Sage and yet another TF, Sens. CrebA directly upregulates expression of all of the components of the secretory machinery as well as other genes (e.g., Xbp1) necessary for managing the physiological stress that inexorably accompanies high secretory load. Secretory cargo specificity is controlled by Sage and Sens in collaboration with Fkh. Investigations have also uncovered roles for various signaling pathways, e.g., Dpp signaling, EGF signaling, GPCR signaling, and cytoskeletal signaling, and their interactions within the gene regulatory networks that specify, build, and specialize the SG. Collectively, studies of the SG have expanded our knowledge of secretory dynamics, cell polarity, and cytoskeletal mechanics in the context of organ development and function. Notably, the embryonic SG has made the singular contribution as a model system that revealed the core function of CrebA in scaling up secretory capacity, thus, serving as the pioneer system in which the conserved roles of the mammalian Creb3/3L-family orthologues were first discovered.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael B Wells
- Idaho College of Osteopathic Medicine, Meridian, ID, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
7
|
Loganathan R, Little CD, Rongish BJ. Extracellular matrix dynamics in tubulogenesis. Cell Signal 2020; 72:109619. [PMID: 32247774 DOI: 10.1016/j.cellsig.2020.109619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination-processes central to metazoans-hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics-the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels-from morphological through molecular-in model tubular organs.
Collapse
Affiliation(s)
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
8
|
Hou S, Sun Y, Wu Y, Cheng T, Liu C. Bmsage is involved in the determination of cell number in the silk gland of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103205. [PMID: 31421207 DOI: 10.1016/j.ibmb.2019.103205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The number of cells in tissues is under strict genetic control, and research on the determination of cell number is of great importance to understand the growth and development of organs. Bmsage, a bHLH transcription factor, is involved in the development of the silk gland during the embryonic stage in Bombyx mori. However, the mechanism by which it influences silk gland development is unclear. In the present study, we determined via immunofluorescence staining during the embryonic stage of Bombyx mori that Bmsage is expressed in silk gland cells from the beginning of development of the silk gland until its complete formation. By comparing different silkworm strains, we found that Bmsage expression is positively correlated with the number of silk gland cells. Bmsage knockdown by RNAi resulted in shorter silk glands and lower cell numbers, especially in the posterior silk gland. The silk gland lumen also shriveled, and the silk protein content was significantly lower than that in the control. Further investigation revealed that all cyclins decreased after knock down of Bmsage, and cyclin B and cyclin 3 were significantly down-regulated. Bmsage may be involved in the regulation of the cyclin pathway to control silk gland development. Taken together, it can be concluded from our results that Bmsage is involved in the determination of cell number in silk glands. Our results help clarify the process of cell number determination in silk gland and identify a potential target for silkworm breeding.
Collapse
Affiliation(s)
- Sihan Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Yan Sun
- Biotechnology College, Southwest University, Chongqing, 400716, China
| | - Yangchun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, 212018, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
9
|
Johnson DM, Andrew DJ. Role of tbc1 in Drosophila embryonic salivary glands. BMC Mol Cell Biol 2019; 20:19. [PMID: 31242864 PMCID: PMC6595604 DOI: 10.1186/s12860-019-0198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND CG4552/tbc1 was identified as a downstream target of Fork head (Fkh), the single Drosophila member of the FoxA family of transcription factors and a major player in salivary gland formation and homeostasis. Tbc1 and its orthologues have been implicated in phagocytosis, the innate immune response, border cell migration, cancer and an autosomal recessive form of non-degenerative Pontocerebellar hypoplasia. Recently, the mammalian Tbc1 orthologue, Tbc1d23, has been shown to bind both the conserved N-terminal domains of two Golgins (Golgin-97 and Golgin-245) and the WASH complex on endosome vesicles. Through this activity, Tbc1d23 has been proposed to link endosomally-derived vesicles to their appropriate target membrane in the trans Golgi (TGN). RESULTS In this paper, we provide an initial characterization of Drosophila orthologue, we call tbc1. We show that, like its mammalian orthologue, Tbc1 localizes to the trans Golgi. We show that it also colocalizes with a subset of Rabs associated with both early and recycling endosomes. Animals completely missing tbc1 survive, but females have fertility defects. Consistent with the human disease, loss of tbc1 reduces optic lobe size and increases response time to mechanical perturbation. Loss and overexpression of tbc1 in the embryonic salivary glands leads to secretion defects and apical membrane irregularities. CONCLUSIONS These findings support a role for tbc1 in endocytic/membrane trafficking, consistent with its activities in other systems.
Collapse
Affiliation(s)
- Dorothy M Johnson
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Liu L, Wang Y, Li Y, Guo P, Liu C, Li Z, Wang F, Zhao P, Xia Q, He H. Insights into the repression of fibroin modulator binding protein-1 on the transcription of fibroin H-chain during molting in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:39-49. [PMID: 30543984 DOI: 10.1016/j.ibmb.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Fibroin modulator binding protein-1 (FMBP-1) is a novel DNA-binding protein containing a conserved score and three amino acid peptide repeat (STPR) domain. The roles of factors containing STPR domain are less known. Although multiple transcription factors are involved in the transcriptional regulation of silk protein genes during the development of silkworm, the mechanism of transcriptional repression of silk protein genes during molting remains unclear. Here, we found that FMBP-1 expression was contrary to that of fibroin heavy chain (fib-H) during the fourth molting period of Bombyx mori. FMBP-1 repressed fib-H promoter activity by directly binding to the -130 element in the fib-H promoter region. We also identified two proteins, Bmsage and Bmdimm, that interacted with FMBP-1 in the posterior silk gland of silkworm larvae, and further verified these interactions by far western blotting and microscale thermophoresis in vitro, as well as co-immunoprecipitation and bimolecular fluorescence complementation at the cellular level. The luciferase reporter assay showed that the interaction between FMBP-1 and Bmdimm antagonized the activation of Bmdimm on fib-H transcription, but did not affect FMBP-1-mediated transcriptional repression on fib-H gene. Therefore, we proposed the following mechanism of fib-H transcriptional repression by FMBP-1 during the molting of silkworm larvae: 1) FMBP-1 directly binds to the -130 element in the fib-H promoter to repress fib-H transcription; 2) FMBP-1 interacts with Bmdimm to antagonize the activation of Bmdimm on fib-H transcription. Our findings promote a better understanding of fib-H transcriptional regulation and provide novel insights into the transcriptional repression of fib-H by FMBP-1 and basic helix-loop-helix factors Bmdimm during the molting of silkworm larvae. Our study also provides valuable information regarding the biological function of factors containing STPR domain.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
11
|
Hu Q, Zhu Z, Zhao D, Zeng B, Zheng S, Song Q, Deng H, Feng Q. Bombyx mori transcription factors FoxA and SAGE divergently regulate the expression of wing cuticle protein gene 4 during metamorphosis. J Biol Chem 2018; 294:632-643. [PMID: 30429222 DOI: 10.1074/jbc.ra118.004395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
Stage-specific gene expression governs metamorphosis of the silkworm, Bombyx mori. B. mori wing cuticle protein gene 4 (BmWCP4) is an essential gene for wing disc development expressed specifically during pupation. BmWCP4 transcription is suppressed at the larval stage by unknown mechanisms, which we sought to elucidate here. Bioinformatics analysis predicted seven potential Forkhead box (Fox) cis-regulatory elements (CREs) in the BmWCP4 promoter region, and we found that Fox CRE6 contributes to suppression of BmWCP4 expression. Electrophoretic mobility shift (EMSA) and DNA pull-down assays revealed that BmFoxA suppressed activity at the BmWCP4 promoter by specifically binding to the Fox CRE6. The expression level of BmFoxA in the wing discs was higher during the larval stage than at the pupal stage. In contrast, expression of another transcription factor, BmSAGE, increased over the course of development. Of note, the hormone 20-hydroxyecdysone (20E), which governs molting in insects, suppressed BmFoxA expression in the wing discs and up-regulated that of BmSage EMSA and cell co-transfection assays indicated that BmSAGE interacted with BmFoxA and suppressed its binding to the Fox CRE6, thereby releasing BmFoxA-mediated suppression of BmWCP4 In summary, higher BmFoxA expression during the larval stage suppresses BmWCP4 expression by binding to the Fox CRE6 on the BmWCP4 promoter. During metamorphosis, BmSAGE forms a complex with BmFoxA to relieve this repression, initiating BmWCP4 expression. Taken together, this study reveals a switchlike role for BmFoxA in regulating BmWCP4 expression and provides new insights into the regulatory regulation of wing disc development in insects.
Collapse
Affiliation(s)
- Qihao Hu
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Zidan Zhu
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Danhui Zhao
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Baojuan Zeng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Sichun Zheng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Qisheng Song
- the Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Huimin Deng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Qili Feng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| |
Collapse
|
12
|
Liu ZY, Yu Q, Yang CH, Meng M, Ren CJ, Mu ZM, Cui WZ, Liu QX. Transcription factor SGF1 is critical for the neurodevelopment in the silkworm, Bombyx mori. Gene 2016; 587:70-5. [PMID: 27106119 DOI: 10.1016/j.gene.2016.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
FoxA transcription factors play vital roles in regulating the expression of organ-specific genes. BmSGF1, the sole FoxA family member in Bombyx mori, is required for development of the silk gland. However, the function of BmSGF1 in development of the nervous system in the silkworm remains unknown. Here, we show that the amino acids sequence of BmSGF1 is evolutionarily conserved in its middle region from Trichoplax adhaerens to human and diverged from the homologues in most other species in its N-terminal region. BmSGF1 expresses in the nervous system at the embryonic stage. Knockdown of Bmsgf1 by RNA interference (RNAi) results in abnormal development of axons. Therefore, our results demonstrate that BmSGF1 is an indispensable regulator for neurodevelopment.
Collapse
Affiliation(s)
- Zhao-Yang Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qi Yu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Hong Yang
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Miao Meng
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Jiu Ren
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhi-Mei Mu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei-Zheng Cui
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qing-Xin Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
13
|
Cheng YL, Andrew DJ. Extracellular Mipp1 Activity Confers Migratory Advantage to Epithelial Cells during Collective Migration. Cell Rep 2015; 13:2174-88. [PMID: 26628373 DOI: 10.1016/j.celrep.2015.10.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/12/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple inositol polyphosphate phosphatase (Mipp), a highly conserved but poorly understood histidine phosphatase, dephosphorylates higher-order IPs (IP4-IP6) to IP3. To gain insight into the biological roles of these enzymes, we have characterized Drosophila mipp1. mipp1 is dynamically expressed in the embryonic trachea, specifically in the leading cells of migrating branches at late stages, where Mipp1 localizes to the plasma membrane and filopodia. FGF signaling activates mipp1 expression in these cells, where extensive filopodia form to drive migration and elongation by cell intercalation. We show that Mipp1 facilitates formation and/or stabilization of filopodia in leading cells through its extracellular activity. mipp1 loss decreases filopodia number, whereas mipp1 overexpression increases filopodia number in a phosphatase-activity-dependent manner. Importantly, expression of Mipp1 gives cells a migratory advantage for the lead position in elongating tracheal branches. Altogether, these findings suggest that extracellular pools of inositol polyphosphates affect cell behavior during development.
Collapse
Affiliation(s)
- Yim Ling Cheng
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Loganathan R, Lee JS, Wells MB, Grevengoed E, Slattery M, Andrew DJ. Ribbon regulates morphogenesis of the Drosophila embryonic salivary gland through transcriptional activation and repression. Dev Biol 2015; 409:234-250. [PMID: 26477561 DOI: 10.1016/j.ydbio.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
Transcription factors affect spatiotemporal patterns of gene expression often regulating multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape/volume increases during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis. Moreover, the changes in cell shape/volume in rib mutants occurred without compromising epithelial-specific morphological attributes such as apicobasal polarity and junctional integrity. To identify the genes regulated by Rib, we performed ChIP-seq analysis in embryos driving expression of GFP-tagged Rib specifically in the SGs. To learn if the Rib binding sites identified in the ChIP-seq analysis were linked to changes in gene expression, we performed microarray analysis comparing RNA samples from age-matched wild-type and rib null embryos. From the superposed ChIP-seq and microarray gene expression data, we identified 60 genomic sites bound by Rib likely to regulate SG-specific gene expression. We confirmed several of the identified Rib targets by qRT-pCR and/or in situ hybridization. Our results indicate that Rib regulates cell growth and tissue shape in the Drosophila salivary gland via a diverse array of targets through both transcriptional activation and repression. Furthermore, our results suggest that autoregulation of rib expression may be a key component of the SG morphogenetic gene network.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Joslynn S Lee
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Elizabeth Grevengoed
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
15
|
Xin HH, Zhang DP, Chen RT, Cai ZZ, Lu Y, Liang S, Miao YG. TRANSCRIPTION FACTOR Bmsage PLAYS A CRUCIAL ROLE IN SILK GLAND GENERATION IN SILKWORM, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:59-69. [PMID: 25917878 DOI: 10.1002/arch.21244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Salivary gland secretion is altered in Drosophila embryos with loss of function of the sage gene. Saliva has a reduced volume and an increased electron density according to transmission electron microscopy, resulting in regions of tube dilation and constriction with intermittent tube closure. However, the precise functions of Bmsage in silkworm (Bombyx mori) are unknown, although its sequence had been deposited in SilkDB. From this, Bmsage is inferred to be a transcription factor that regulates the synthesis of silk fibroin and interacts with another silk gland-specific transcription factor, namely, silk gland factor-1. In this study, we introduced a germline mutation of Bmsage using the Cas9/sgRNA system, a genome-editing technology, resulting in deletion of Bmsage from the genome of B. mori. Of the 15 tested samples, seven displayed alterations at the target site. The mutagenesis efficiency was about 46.7% and there were no obvious off-target effects. In the screened homozygous mutants, silk glands developed poorly and the middle and posterior silk glands (MSG and PSG) were absent, which was significantly different from the wild type. The offspring of G0 mosaic silkworms had indel mutations causing 2- or 9-bp deletions at the target site, but exhibited the same abnormal silk gland structure. Mutant larvae containing different open-reading frames of Bmsage had the same silk gland phenotype. This illustrated that the mutant phenotype was due to Bmsage knockout. We conclude that Bmsage participates in embryonic development of the silk gland.
Collapse
Affiliation(s)
- Hu-hu Xin
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Deng-pan Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Rui-ting Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zi-zheng Cai
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuang Liang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun-gen Miao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Ziraldo R, Link N, Abrams J, Ma L. Towards automatic image analysis and assessment of the multicellular apoptosis process. IET IMAGE PROCESSING 2015; 9:424-433. [PMID: 26500693 PMCID: PMC4613781 DOI: 10.1049/iet-ipr.2014.0531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Apoptotic programmed cell death (PCD) is a fundamental aspect of developmental maturation. However, the authors' understanding of apoptosis, especially in the multi-cell regime, is incomplete because of the difficulty of identifying dying cells by conventional strategies. Real-time in vivo microscopy of Drosophila, an excellent model system for studying the PCD during development, has been used to uncover plausible collective apoptosis at the tissue level, although the dynamic regulation of the process remains to be deciphered. In this work, the authors have developed an image-analysis program that can quantitatively analyse time-lapse microscopy of live tissues undergoing apoptosis with a fluorescent nuclear marker, and subsequently extract the spatiotemporal patterns of multicellular response. The program can process a large number of cells (>103) automatically tracked across sets of image frames. It is applied to characterise the apoptosis of Drosophila wing epithelium at eclosion. Using the natural anatomic structures as reference, the authors identify dynamic patterns in the progression of PCD within the Drosophila tissues. The results not only confirm the previously observed collective multi-cell behaviour from a quantitative perspective, but also reveal a plausible role played by the anatomic structures, such as the wing veins, in the PCD propagation across the Drosophila wing.
Collapse
Affiliation(s)
- Riccardo Ziraldo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX USA
| | - Nichole Link
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - John Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lan Ma
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
17
|
Zhao XM, Liu C, Jiang LJ, Li QY, Zhou MT, Cheng TC, Mita K, Xia QY. A juvenile hormone transcription factor Bmdimm-fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori. J Biol Chem 2015; 290:972-86. [PMID: 25371208 PMCID: PMC4294524 DOI: 10.1074/jbc.m114.606921] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Indexed: 01/16/2023] Open
Abstract
The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and the Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chun Liu
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Li-Jun Jiang
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Qiong-Yan Li
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Meng-Ting Zhou
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Ting-Cai Cheng
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Kazuei Mita
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Qing-You Xia
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| |
Collapse
|
18
|
Chung S, Hanlon CD, Andrew DJ. Building and specializing epithelial tubular organs: the Drosophila salivary gland as a model system for revealing how epithelial organs are specified, form and specialize. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:281-300. [PMID: 25208491 DOI: 10.1002/wdev.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
The past two decades have witnessed incredible progress toward understanding the genetic and cellular mechanisms of organogenesis. Among the organs that have provided key insight into how patterning information is integrated to specify and build functional body parts is the Drosophila salivary gland, a relatively simple epithelial organ specialized for the synthesis and secretion of high levels of protein. Here, we discuss what the past couple of decades of research have revealed about organ specification, development, specialization, and death, and what general principles emerge from these studies.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Zhao XM, Liu C, Li QY, Hu WB, Zhou MT, Nie HY, Zhang YX, Peng ZC, Zhao P, Xia QY. Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori. PLoS One 2014; 9:e94091. [PMID: 24740008 PMCID: PMC3989216 DOI: 10.1371/journal.pone.0094091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/11/2014] [Indexed: 11/25/2022] Open
Abstract
Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Qiong-Yan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Wen-Bo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Meng-Ting Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Hong-Yi Nie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Yin-Xia Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Zhang-Chuan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Luschnig S, Uv A. Luminal matrices: An inside view on organ morphogenesis. Exp Cell Res 2014; 321:64-70. [DOI: 10.1016/j.yexcr.2013.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/15/2022]
|
21
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
Abrams EW, Cheng YL, Andrew DJ. Drosophila KDEL receptor function in the embryonic salivary gland and epidermis. PLoS One 2013; 8:e77618. [PMID: 24204897 PMCID: PMC3799842 DOI: 10.1371/journal.pone.0077618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Core components of the secretory pathway have largely been identified and studied in single cell systems such as the budding yeast S. cerevisiae or in mammalian tissue culture. These studies provide details on the molecular functions of the secretory machinery; they fail, however, to provide insight into the role of these proteins in the context of specialized organs of higher eukaryotes. Here, we identify and characterize the first loss-of-function mutations in a KDEL receptor gene from higher eukaryotes. Transcripts from the Drosophila KDEL receptor gene KdelR - formerly known as dmErd2 - are provided maternally and, at later stages, are at elevated levels in several embryonic cell types, including the salivary gland secretory cells, the fat body and the epidermis. We show that, unlike Saccharomyces cerevisiae Erd2 mutants, which are viable, KdelR mutations are early larval lethal, with homozygous mutant animals dying as first instar larvae. KdelR mutants have larval cuticle defects similar to those observed with loss-of-function mutations in other core secretory pathway genes and with mutations in CrebA, which encodes a bZip transcription factor that coordinately upregulates secretory pathway component genes in specialized secretory cell types. Using the salivary gland, we demonstrate a requirement for KdelR in maintaining the ER pool of a subset of soluble resident ER proteins. These studies underscore the utility of the Drosophila salivary gland as a unique system for studying the molecular machinery of the secretory pathway in vivo in a complex eukaryote.
Collapse
Affiliation(s)
- Elliott W. Abrams
- Department of Cell Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yim Ling Cheng
- Department of Cell Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah J. Andrew
- Department of Cell Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
Iyer SC, Ramachandran Iyer EP, Meduri R, Rubaharan M, Kuntimaddi A, Karamsetty M, Cox DN. Cut, via CrebA, transcriptionally regulates the COPII secretory pathway to direct dendrite development in Drosophila. J Cell Sci 2013; 126:4732-45. [PMID: 23902691 DOI: 10.1242/jcs.131144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dendrite development is crucial in the formation of functional neural networks. Recent studies have provided insights into the involvement of secretory transport in dendritogenesis, raising the question of how the secretory pathway is controlled to direct dendritic elaboration. Here, we identify a functional link between transcriptional regulatory programs and the COPII secretory machinery in driving dendrite morphogenesis in Drosophila dendritic arborization (da) sensory neurons. MARCM analyses and gain-of-function studies reveal cell-autonomous requirements for the COPII coat protein Sec31 in mediating da neuron dendritic homeostasis. We demonstrate that the homeodomain protein Cut transcriptionally regulates Sec31 in addition to other components of COPII secretory transport, to promote dendrite elaboration, accompanied by increased satellite secretory endoplasmic reticulum (ER) and Golgi outposts primarily localized to dendritic branch points. We further establish a novel functional role for the transcription factor CrebA in regulating dendrite development and show that Cut initiates a gene expression cascade through CrebA that coordinately affects the COPII machinery to mediate dendritic morphology.
Collapse
|
24
|
Fox RM, Vaishnavi A, Maruyama R, Andrew DJ. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA. Development 2013; 140:2160-71. [PMID: 23578928 DOI: 10.1242/dev.092924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | | | |
Collapse
|
25
|
Ismat A, Cheshire AM, Andrew DJ. The secreted AdamTS-A metalloprotease is required for collective cell migration. Development 2013; 140:1981-93. [PMID: 23536567 DOI: 10.1242/dev.087908] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the ADAMTS family of secreted metalloproteases play crucial roles in modulating the extracellular matrix (ECM) in development and disease. Here, we show that ADAMTS-A, the Drosophila ortholog of human ADAMTS 9 and ADAMTS 20, and of C. elegans GON-1, is required for cell migration during embryogenesis. AdamTS-A is expressed in multiple migratory cell types, including hemocytes, caudal visceral mesoderm (CVM), the visceral branch of the trachea (VBs) and the secretory portion of the salivary gland (SG). Loss of AdamTS-A causes defects in germ cell, CVM and VB migration and, depending on the tissue, AdamTS-A functions both autonomously and non-autonomously. In the highly polarized collective of the SG epithelium, loss of AdamTS-A causes apical surface irregularities and cell elongation defects. We provide evidence that ADAMTS-A is secreted into the SG lumen where it functions to release cells from the apical ECM, consistent with the defects observed in AdamTS-A mutant SGs. We show that loss of the apically localized protocadherin Cad99C rescues the SG defects, suggesting that Cad99C serves as a link between the SG apical membrane and the secreted apical ECM component(s) cleaved by ADAMTS-A. Our analysis of AdamTS-A function in the SG suggests a novel role for ADAMTS proteins in detaching cells from the apical ECM, facilitating tube elongation during collective cell migration.
Collapse
Affiliation(s)
- Afshan Ismat
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
26
|
Wang S, Meyer H, Ochoa-Espinosa A, Buchwald U, Onel S, Altenhein B, Heinisch JJ, Affolter M, Paululat A. GBF1 (Gartenzwerg)-dependent secretion is required for Drosophila tubulogenesis. J Cell Sci 2012; 125:461-72. [PMID: 22302994 DOI: 10.1242/jcs.092551] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here we report on the generation and in vivo analysis of a series of loss-of-function mutants for the Drosophila ArfGEF, Gartenzwerg. The Drosophila gene gartenzwerg (garz) encodes the orthologue of mammalian GBF1. garz is expressed ubiquitously in embryos with substantially higher abundance in cells forming diverse tubular structures such as salivary glands, trachea, proventriculus or hindgut. In the absence of functional Garz protein, the integrity of the Golgi complex is impaired. As a result, both vesicle transport of cargo proteins and directed apical membrane delivery are severely disrupted. Dysfunction of the Arf1-COPI machinery caused by a loss of Garz leads to perturbations in establishing a polarized epithelial architecture of tubular organs. Furthermore, insufficient apical transport of proteins and other membrane components causes incomplete luminal diameter expansion and deficiencies in extracellular matrix assembly. The fact that homologues of Garz are present in every annotated metazoan genome indicates that secretion processes mediated by the GBF-type ArfGEFs play a universal role in animal development.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Department of Biology, University of Osnabrück, Zoology/Developmental Biology, Barbarastraße 11, D-49069 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn 2011; 241:119-35. [PMID: 22083894 DOI: 10.1002/dvdy.22775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.
Collapse
Affiliation(s)
- Rika Maruyama
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
28
|
Maruyama R, Grevengoed E, Stempniewicz P, Andrew DJ. Genome-wide analysis reveals a major role in cell fate maintenance and an unexpected role in endoreduplication for the Drosophila FoxA gene Fork head. PLoS One 2011; 6:e20901. [PMID: 21698206 PMCID: PMC3116861 DOI: 10.1371/journal.pone.0020901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/12/2011] [Indexed: 12/19/2022] Open
Abstract
Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis.
Collapse
Affiliation(s)
- Rika Maruyama
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Grevengoed
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peter Stempniewicz
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah J. Andrew
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Burgess J, Jauregui M, Tan J, Rollins J, Lallet S, Leventis PA, Boulianne GL, Chang HC, Le Borgne R, Krämer H, Brill JA. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. Mol Biol Cell 2011; 22:2094-105. [PMID: 21490149 PMCID: PMC3113773 DOI: 10.1091/mbc.e11-01-0054] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.
Collapse
Affiliation(s)
- Jason Burgess
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Alves-Silva J, Ribeiro JMC, Van Den Abbeele J, Attardo G, Hao Z, Haines LR, Soares MB, Berriman M, Aksoy S, Lehane MJ. An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 2010; 11:213. [PMID: 20353571 PMCID: PMC2853526 DOI: 10.1186/1471-2164-11-213] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/30/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae. RESULTS As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken. CONCLUSIONS The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure.
Collapse
|
31
|
Frise E, Hammonds AS, Celniker SE. Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape. Mol Syst Biol 2010; 6:345. [PMID: 20087342 PMCID: PMC2824522 DOI: 10.1038/msb.2009.102] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/21/2009] [Indexed: 11/09/2022] Open
Abstract
Discovery of temporal and spatial patterns of gene expression is essential for understanding the regulatory networks and development in multicellular organisms. We analyzed the images from our large-scale spatial expression data set of early Drosophila embryonic development and present a comprehensive computational image analysis of the expression landscape. For this study, we created an innovative virtual representation of embryonic expression patterns using an elliptically shaped mesh grid that allows us to make quantitative comparisons of gene expression using a common frame of reference. Demonstrating the power of our approach, we used gene co-expression to identify distinct expression domains in the early embryo; the result is surprisingly similar to the fate map determined using laser ablation. We also used a clustering strategy to find genes with similar patterns and developed new analysis tools to detect variation within consensus patterns, adjacent non-overlapping patterns, and anti-correlated patterns. Of the 1800 genes investigated, only half had previously assigned functions. The known genes suggest developmental roles for the clusters, and identification of related patterns predicts requirements for co-occurring biological functions.
Collapse
Affiliation(s)
- Erwin Frise
- Department of Genome Dynamics, Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
32
|
Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu S, He N, Zhou Y, Liu H, Zhao J, Ye C, Du Z, Pan G, Zhao A, Shao H, Zeng W, Wu P, Li C, Pan M, Li J, Yin X, Li D, Wang J, Zheng H, Wang W, Zhang X, Li S, Yang H, Lu C, Nielsen R, Zhou Z, Wang J, Xiang Z, Wang J. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 2009; 326:433-6. [PMID: 19713493 PMCID: PMC3951477 DOI: 10.1126/science.1176620] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A single-base pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to approximately threefold coverage, representing 99.88% of the genome. We identified ~16 million single-nucleotide polymorphisms, many indels, and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing the use of silkworms as efficient bioreactors.
Collapse
Affiliation(s)
- Qingyou Xia
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
- Institute of Agronomy and Life Sciences, Chongqing University, Chongqing 400044, China
| | - Yiran Guo
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ze Zhang
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
- Institute of Agronomy and Life Sciences, Chongqing University, Chongqing 400044, China
| | - Dong Li
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Zhuo Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fangyin Dai
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | | | - Daojun Cheng
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Ruiqiang Li
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Kbh Ø, Denmark
| | - Tingcai Cheng
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
- Institute of Agronomy and Life Sciences, Chongqing University, Chongqing 400044, China
| | - Tao Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Celine Becquet
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chun Liu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xingfu Zha
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Wei Fan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Lin
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yihong Shen
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Lan Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jeffrey Jensen
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ines Hellmann
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Si Tang
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ping Zhao
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Chang Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Jun Li
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Shiping Liu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Ningjia He
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yan Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hui Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jing Zhao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chen Ye
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhouhe Du
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Aichun Zhao
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Haojing Shao
- BGI-Shenzhen, Shenzhen 518083, China
- Innovative Program for Undergraduate Students, South China University of Technology, Guangzhou 510006, China
| | - Wei Zeng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ping Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chunfeng Li
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Minhui Pan
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | | | | | - Dawei Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Juan Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Wen Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | - Cheng Lu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Rasmus Nielsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Kbh Ø, Denmark
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zeyang Zhou
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
- Chongqing Normal University, Chongqing 400047, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhonghuai Xiang
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Kbh Ø, Denmark
| |
Collapse
|
33
|
Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol 2009; 341:34-55. [PMID: 19778532 DOI: 10.1016/j.ydbio.2009.09.024] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
A targeted gain-of-function screen identifies genes affecting salivary gland morphogenesis/tubulogenesis in Drosophila. Genetics 2008; 181:543-65. [PMID: 19064711 DOI: 10.1534/genetics.108.094052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development individual cells in tissues undergo complex cell-shape changes to drive the morphogenetic movements required to form tissues. Cell shape is determined by the cytoskeleton and cell-shape changes critically depend on a tight spatial and temporal control of cytoskeletal behavior. We have used the formation of the salivary glands in the Drosophila embryo, a process of tubulogenesis, as an assay for identifying factors that impinge on cell shape and the cytoskeleton. To this end we have performed a gain-of-function screen in the salivary glands, using a collection of fly lines carrying EP-element insertions that allow the overexpression of downstream-located genes using the UAS-Gal4 system. We used a salivary-gland-specific fork head-Gal4 line to restrict expression to the salivary glands, in combination with reporters of cell shape and the cytoskeleton. We identified a number of genes known to affect salivary gland formation, confirming the effectiveness of the screen. In addition, we found many genes not implicated previously in this process, some having known functions in other tissues. We report the initial characterization of a subset of genes, including chickadee, rhomboid1, egalitarian, bitesize, and capricious, through comparison of gain- and loss-of-function phenotypes.
Collapse
|
35
|
Smit RB, Schnabel R, Gaudet J. The HLH-6 transcription factor regulates C. elegans pharyngeal gland development and function. PLoS Genet 2008; 4:e1000222. [PMID: 18927627 PMCID: PMC2563036 DOI: 10.1371/journal.pgen.1000222] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/11/2008] [Indexed: 12/22/2022] Open
Abstract
The Caenorhabditis elegans pharynx (or foregut) functions as a pump that draws in food (bacteria) from the environment. While the “organ identity factor” PHA-4 is critical for formation of the C. elegans pharynx as a whole, little is known about the specification of distinct cell types within the pharynx. Here, we use a combination of bioinformatics, molecular biology, and genetics to identify a helix-loop-helix transcription factor (HLH-6) as a critical regulator of pharyngeal gland development. HLH-6 is required for expression of a number of gland-specific genes, acting through a discrete cis-regulatory element named PGM1 (Pharyngeal Gland Motif 1). hlh-6 mutants exhibit a frequent loss of a subset of glands, while the remaining glands have impaired activity, indicating a role for hlh-6 in both gland development and function. Interestingly, hlh-6 mutants are also feeding defective, ascribing a biological function for the glands. Pharyngeal pumping in hlh-6 mutants is normal, but hlh-6 mutants lack expression of a class of mucin-related proteins that are normally secreted by pharyngeal glands and line the pharyngeal cuticle. An interesting possibility is that one function of pharyngeal glands is to secrete a pharyngeal lining that ensures efficient transport of food along the pharyngeal lumen. To make an organ, cells must be instructed to be part of a common structure yet must also be assigned specific roles or identities within that structure. For example, the stomach contains a variety of different kinds of cells, including muscles, nerves, and glands. This same complexity is seen even in relatively simple organs, like the pharynx (foregut) of the nematode C. elegans. The pharynx is a neuromuscular organ that pumps in food (bacteria) from the environment. This organ is relatively simple (containing only 80 cells) yet contains five distinct kinds of cells. How these different cells are specified is unclear but likely involves combinations of developmental regulators known as transcription factors. Here, we examine one cell type, the pharyngeal glands, and identify a key regulator of their development, the transcription factor HLH-6. Interestingly, HLH-6 is closely related to a mammalian transcription factor, Sgn1, which is involved in development of mammalian salivary glands, suggesting that C. elegans pharyngeal glands are evolutionarily related to mammalian salivary glands. A further connection is that the pharyngeal glands of C. elegans appear to be required for efficient feeding, possibly by secreting mucin-like proteins that ensure the smooth passage of food along the digestive tract.
Collapse
Affiliation(s)
- Ryan B. Smit
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeb Gaudet
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
36
|
Syed ZA, Härd T, Uv A, van Dijk-Härd IF. A potential role for Drosophila mucins in development and physiology. PLoS One 2008; 3:e3041. [PMID: 18725942 PMCID: PMC2515642 DOI: 10.1371/journal.pone.0003041] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/01/2008] [Indexed: 11/18/2022] Open
Abstract
Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated threonines and serines (PTS). We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST content, more than 30 mucin-like proteins were identified, ranging from 300–23000 amino acids in length. We find that Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus revealing new potential functions for mucins as apical matrix components during organ morphogenesis.
Collapse
Affiliation(s)
- Zulfeqhar A. Syed
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Torleif Härd
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Anne Uv
- Department of Medical Genetics, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Iris F. van Dijk-Härd
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
37
|
Kerman BE, Cheshire AM, Myat MM, Andrew DJ. Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev Biol 2008; 320:278-88. [PMID: 18585700 PMCID: PMC2562552 DOI: 10.1016/j.ydbio.2008.05.541] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 01/23/2023]
Abstract
Although the formation and maintenance of epithelial tubes are essential for the viability of multicellular organisms, our understanding of the molecular and cellular events coordinating tubulogenesis is relatively limited. Here, we focus on the activities of Ribbon, a novel BTB-domain containing nuclear protein, in the elongation of two epithelial tubes: the Drosophila salivary gland and trachea. We show that Ribbon interacts with Lola Like, another BTB-domain containing protein required for robust nuclear localization of Ribbon, to upregulate crumbs expression and downregulate Moesin activity. Our ultrastructural analysis of ribbon null salivary glands by TEM reveals a diminished pool of subapical vesicles and an increase in microvillar structure, cellular changes consistent with the known role of Crumbs in apical membrane generation and of Moesin in the cross-linking of the apical membrane to the subapical cytoskeleton. Furthermore, the subapical localization of Rab11, a small GTPase associated with apical membrane delivery and rearrangement, is significantly diminished in ribbon mutant salivary glands and tracheae. These findings suggest that Ribbon and Lola Like function as a novel transcriptional cassette coordinating molecular changes at the apical membrane of epithelial cells to facilitate tube elongation.
Collapse
Affiliation(s)
- Bilal E. Kerman
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan M. Cheshire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monn Monn Myat
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Deborah J. Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS One 2008; 3:e1964. [PMID: 18398480 PMCID: PMC2276865 DOI: 10.1371/journal.pone.0001964] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/01/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tube expansion defects like stenoses and atresias cause devastating human diseases. Luminal expansion during organogenesis begins to be elucidated in several systems but we still lack a mechanistic view of the process in many organs. The Drosophila tracheal respiratory system provides an amenable model to study tube size regulation. In the trachea, COPII anterograde transport of luminal proteins is required for extracellular matrix assembly and the concurrent tube expansion. PRINCIPAL FINDINGS We identified and analyzed Drosophila COPI retrograde transport mutants with narrow tracheal tubes. gammaCOP mutants fail to efficiently secrete luminal components and assemble the luminal chitinous matrix during tracheal tube expansion. Likewise, tube extension is defective in salivary glands, where it also coincides with a failure in the luminal deposition and assembly of a distinct, transient intraluminal matrix. Drosophila gammaCOP colocalizes with cis-Golgi markers and in gammaCOP mutant embryos the ER and Golgi structures are severely disrupted. Analysis of gammaCOP and Sar1 double mutants suggests that bidirectional ER-Golgi traffic maintains the ER and Golgi compartments and is required for secretion and assembly of luminal matrixes during tube expansion. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the function of COPI components in organ morphogenesis and highlight the common role of apical secretion and assembly of transient organotypic matrices in tube expansion. Intraluminal matrices have been detected in the notochord of ascidians and zebrafish COPI mutants show defects in notochord expansion. Thus, the programmed deposition and growth of distinct luminal molds may provide distending forces during tube expansion in diverse organs.
Collapse
|
39
|
Liu Y, Lehmann M. Genes and biological processes controlled by the Drosophila FOXA orthologue Fork head. INSECT MOLECULAR BIOLOGY 2008; 17:91-101. [PMID: 18353099 DOI: 10.1111/j.1365-2583.2007.00785.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The larval salivary glands of Drosophila express the FOXA transcription factor Fork head (Fkh) before, but not after, puparium formation. Forced expression of Fkh in late prepupae prevents the programmed destruction of the tissue, which normally occurs in the early pupa. Using Affymetrix GeneChips, we analysed changes in gene expression brought about by Fkh when expressed shortly before the normal time of salivary gland death. Genes identified as responsive to Fkh include not only cell death genes, but also genes involved in autophagy, phospholipid metabolism and hormone-controlled signalling pathways. In addition, Fkh changed the expression of genes involved in glucose and fatty acid metabolism that are known to be target genes of the FOXAs in vertebrates. Premature loss of fkh induced by RNAi and gain of Fkh by ectopic expression at earlier times of development confirmed that genes identified in the microarray study are under normal developmental control by Fkh. These genes include Eip63F-1, which is expressed in both salivary glands and Malpighian tubules, suggesting that Fkh controls common aspects of the secretory function of the two organs. Eip63F-1 is one of many genes controlled by the steroid hormone 20-hydroxyecdysone that appear to be co-regulated by Fkh.
Collapse
Affiliation(s)
- Y Liu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-1201, USA
| | | |
Collapse
|
40
|
Keskiaho K, Kukkola L, Page AP, Winter AD, Vuoristo J, Sormunen R, Nissi R, Riihimaa P, Myllyharju J. Characterization of a novel Caenorhabditis elegans prolyl 4-hydroxylase with a unique substrate specificity and restricted expression in the pharynx and excretory duct. J Biol Chem 2008; 283:10679-89. [PMID: 18276589 DOI: 10.1074/jbc.m800972200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen prolyl 4-hydroxylases (C-P4Hs) have a critical role in collagen synthesis, since 4-hydroxyproline residues are necessary for folding of the triple-helical molecules. Vertebrate C-P4Hs are alpha(2)beta(2) tetramers in which the beta subunit is identical to protein-disulfide isomerase (PDI). Three isoforms of the catalytic alpha subunit, PHY-1, PHY-2, and PHY-3, have been characterized from Caenorhabditis elegans, PHY-1 and PHY-2 being responsible for the hydroxylation of cuticle collagens, whereas PHY-3 is predicted to be involved in collagen synthesis in early embryos. We have characterized transcripts of two additional C. elegans alpha subunit-like genes, Y43F8B.4 and C14E2.4. Three transcripts were generated from Y43F8B.4, and a polypeptide encoded by one of them, named PHY-4.1, assembled into active (PHY-4.1)(2)/(PDI-2)(2) tetramers and PHY-4.1/PDI-2 dimers when coexpressed with C. elegans PDI-2 in insect cells. The C14E2.4 transcript was found to have a frameshift leading to the absence of codons for two residues critical for P4H catalytic activity. Thus, C. elegans has altogether four functional C-P4H alpha subunits, PHY-1, PHY-2, PHY-3, and PHY-4.1. The tetramers and dimers containing recombinant PHY-4.1 had a distinct substrate specificity from the other C-P4Hs in that they hydroxylated poly(l-proline) and certain other proline-rich peptides, including ones that are expressed in the pharynx, in addition to collagen-like peptides. These data and the observed restricted expression of the phy-4.1 transcript and PHY-4.1 polypeptide in the pharyngeal gland cells and the excretory duct suggest that in addition to collagens, PHY-4.1 may hydroxylate additional proline-rich proteins in vivo.
Collapse
Affiliation(s)
- Katriina Keskiaho
- Collagen Research Unit, Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Myllyharju J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med 2008; 40:402-17. [PMID: 19160570 DOI: 10.1080/07853890801986594] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have central roles in the synthesis of collagens and the regulation of oxygen homeostasis. The 4-hydroxyproline residues generated by the endoplasmic reticulum (ER) luminal collagen P4Hs (C-P4Hs) are essential for the stability of the collagen triple helix. Vertebrate C-P4Hs are alpha2beta2 tetramers with three isoenzymes differing in their catalytic alpha subunits. Another P4H family, the HIF-P4Hs, hydroxylates specific prolines in the alpha subunit of the hypoxia-inducible transcription factor (HIF), a master regulator of hypoxia-inducible genes, and controls its stability in an oxygen-dependent manner. The HIF-P4Hs are cytoplasmic and nuclear enzymes, likewise with three isoenzymes in vertebrates. A third vertebrate P4H type is an ER transmembrane protein that can act on HIF-alpha but not on collagens. All P4Hs require Fe2+, 2-oxoglutarate, O2, and ascorbate. C-P4Hs are regarded as attractive targets for pharmacological inhibition to control excessive collagen accumulation in fibrotic diseases and severe scarring, while HIF-P4H inhibitors are believed to have beneficial effects in the treatment of diseases such as myocardial infarction, stroke, peripheral vascular disease, diabetes, and severe anemias. Studies with P4H inhibitors in various animal models of fibrosis, anemia, and ischemia and ongoing clinical trials with HIF-P4H inhibitors support this hypothesis by demonstrating efficacy in many applications.
Collapse
|
42
|
Tsarouhas V, Senti KA, Jayaram SA, Tiklová K, Hemphälä J, Adler J, Samakovlis C. Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev Cell 2007; 13:214-25. [PMID: 17681133 DOI: 10.1016/j.devcel.2007.06.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 11/18/2022]
Abstract
The development of air-filled respiratory organs is crucial for survival at birth. We used a combination of live imaging and genetic analysis to dissect respiratory organ maturation in the embryonic Drosophila trachea. We found that tracheal tube maturation entails three precise epithelial transitions. Initially, a secretion burst deposits proteins into the lumen. Solid luminal material is then rapidly cleared from the tubes, and shortly thereafter liquid is removed. To elucidate the cellular mechanisms behind these transitions, we identified gas-filling-deficient mutants showing narrow or protein-clogged tubes. These mutations either disrupt endoplasmatic reticulum-to-Golgi vesicle transport or endocytosis. First, Sar1 is required for protein secretion, luminal matrix assembly, and diametric tube expansion. Subsequently, a sharp pulse of Rab5-dependent endocytic activity rapidly internalizes and clears luminal contents. The coordination of luminal matrix secretion and endocytosis may be a general mechanism in tubular organ morphogenesis and maturation.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Wenner-Gren Institute, Stockholm University, Department of Developmental Biology, Svante Arrheniusväg 16, Arrheniuslab E3, S-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Cao C, Liu Y, Lehmann M. Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death. ACTA ACUST UNITED AC 2007; 176:843-52. [PMID: 17339378 PMCID: PMC2064058 DOI: 10.1083/jcb.200611155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death.
Collapse
Affiliation(s)
- Chike Cao
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
44
|
Kerman BE, Cheshire AM, Andrew DJ. From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis. Differentiation 2006; 74:326-48. [PMID: 16916373 PMCID: PMC2827874 DOI: 10.1111/j.1432-0436.2006.00095.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tube formation is a ubiquitous process required to sustain life in multicellular organisms. The tubular organs of adult mammals include the lungs, vasculature, digestive and excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, and mammary glands. Other tissues, including the embryonic heart and neural tube, have requisite stages of tubular organization early in development. To learn the molecular and cellular basis of how epithelial cells are organized into tubular organs of various shapes and sizes, investigators have focused on the Drosophila trachea and salivary gland as model genetic systems for branched and unbranched tubes, respectively. Both organs begin as polarized epithelial placodes, which through coordinated cell shape changes, cell rearrangement, and cell migration form elongated tubes. Here, we discuss what has been discovered regarding the details of cell fate specification and tube formation in the two organs; these discoveries reveal significant conservation in the cellular and molecular events of tubulogenesis.
Collapse
Affiliation(s)
- Bilal E Kerman
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
45
|
Vining MS, Bradley PL, Comeaux CA, Andrew DJ. Organ positioning in Drosophila requires complex tissue-tissue interactions. Dev Biol 2005; 287:19-34. [PMID: 16171793 DOI: 10.1016/j.ydbio.2005.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/05/2005] [Accepted: 08/09/2005] [Indexed: 12/25/2022]
Abstract
Positioning an organ with respect to other tissues is a complex process necessary for proper anatomical development and organ function. The local environment surrounding an organ can serve both as a substrate for migration and as a source of guidance cues that direct migration. Little is known about the factors guiding Drosophila salivary gland movement or about the contacts the glands establish along their migratory path. Here, we provide a detailed description of the spatial and temporal interactions between the salivary glands and surrounding tissues during embryogenesis. The glands directly contact five other tissues: the visceral mesoderm, gastric caecae, somatic mesoderm, fat body, and central nervous system. Mutational analysis reveals that all of the tissues tested in this study are important for normal salivary gland positioning; proper differentiation of the visceral and somatic mesoderm is necessary for the glands to attain their final correct position. We also provide evidence that the segment-polarity gene, gooseberry (gsb), controls expression of signals from the developing fat body that direct posterior migration of the glands. These data further the understanding of how organ morphology and position are determined by three-dimensional constraints and guidance cues provided by neighboring tissues.
Collapse
Affiliation(s)
- Melissa S Vining
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|