1
|
Wu Y, Lan Y, Ononiwu F, Poole A, Rasmussen K, Da Silva J, Shamil AW, Jao LE, Hehnly H. Specific Mitotic Events Drive Cytoskeletal Remodeling Required for Left-Right Organizer Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593765. [PMID: 38798489 PMCID: PMC11118341 DOI: 10.1101/2024.05.12.593765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cellular proliferation is vital for tissue development, including the Left-Right Organizer (LRO), a transient organ critical for establishing the vertebrate LR body plan. This study investigates cell redistribution and the role of specific progenitor cells in LRO formation, focusing on cell lineage and behavior. Using zebrafish as a model, we mapped all mitotic events in Kupffer's Vesicle (KV), revealing an FGF-dependent, anteriorly enriched mitotic pattern. With a KV-specific fluorescent microtubule (MT) line, we observed that mitotic spindles align along the KV's longest axis until the rosette stage, spindles that form after spin, and are excluded from KV. Early aligned spindles assemble cytokinetic bridges that point MT bundles toward a tight junction where a rosette will initially form. Post-abscission, repurposed MT bundles remain targeted at the rosette center, facilitating actin recruitment. Additional cells, both cytokinetic and non-cytokinetic, are incorporated into the rosette, repurposing or assembling MT bundles before actin recruitment. These findings show that initial divisions are crucial for rosette assembly, MT patterning, and actin remodeling during KV development.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| | - Yiling Lan
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| | - Favour Ononiwu
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| | - Abigail Poole
- Worcester Polytechnic Institute, Worcester, 01609 MA
| | | | - Jonah Da Silva
- Department of Biology, Syracuse University, Syracuse, 13244 USA
| | | | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, 95817 USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, 13244 USA
- BioInspired Institute, Syracuse University, Syracuse, 13244 USA
| |
Collapse
|
2
|
Deng Z, Ran Q, Chang W, Li C, Li B, Huang S, Huang J, Zhang K, Li Y, Liu X, Liang Y, Guo Z, Huang S. Cdon is essential for organ left-right patterning by regulating dorsal forerunner cells clustering and Kupffer's vesicle morphogenesis. Front Cell Dev Biol 2024; 12:1429782. [PMID: 39239564 PMCID: PMC11374761 DOI: 10.3389/fcell.2024.1429782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Cdon and boc are members of the cell adhesion molecule subfamily III Ig/fibronectin. Although they have been reported to be involved in muscle and neural development at late developmental stage, their early roles in embryonic development remain unknown. Here, we discovered that in zebrafish, cdon, but not boc, is expressed in dorsal forerunner cells (DFCs) and the epithelium of Kupffer's vesicle (KV), suggesting a potential role for cdon in organ left-right (LR) patterning. Further data showed that liver and heart LR patterning were disrupted in cdon morphants and cdon mutants. Mechanistically, we found that loss of cdon function led to defect in DFCs clustering, reduced KV lumen, and defective cilia, resulting in randomized Nodal/spaw signaling and subsequent organ LR patterning defects. Additionally, predominant distribution of a cdon morpholino (MO) in DFCs caused defects in DFC clustering, KV morphogenesis, cilia number/length, Nodal/spaw signaling, and organ LR asymmetry, similar to those observed in cdon morphants and cdon -/- embryos, indicating a cell-autonomous role for cdon in regulating KV formation during LR patterning. In conclusion, our data demonstrate that during gastrulation and early somitogenesis, cdon is essential for proper DFC clustering, KV formation, and normal cilia, thereby playing a critical role in establishing organ LR asymmetry.
Collapse
Affiliation(s)
- Zhilin Deng
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Ultrasound, Luzhou People's Hospital, Luzhou, China
| | - Qin Ran
- Department of Cardiology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Wenqi Chang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Chengni Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Botong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shuying Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingtong Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ke Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xingdong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zhenhua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
3
|
Tiberio F, Coda ARD, Tosi DD, Luzi D, Polito L, Liso A, Lattanzi W. Mechanobiology and Primary Cilium in the Pathophysiology of Bone Marrow Myeloproliferative Diseases. Int J Mol Sci 2024; 25:8860. [PMID: 39201546 PMCID: PMC11354938 DOI: 10.3390/ijms25168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Federica Tiberio
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Domiziano Dario Tosi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Debora Luzi
- S.C. Oncoematologia, Azienda Ospedaliera di Terni, 05100 Terni, Italy;
| | - Luca Polito
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Arcangelo Liso
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
5
|
Niehrs C, Da Silva F, Seidl C. Cilia as Wnt signaling organelles. Trends Cell Biol 2024:S0962-8924(24)00071-0. [PMID: 38697898 DOI: 10.1016/j.tcb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Cilia and Wnt signaling have a complex relationship, wherein Wnt regulates cilia and, conversely, cilia may affect Wnt signaling. Recently, it was shown that Wnt receptors are present in flagella, primary cilia, and multicilia, where they transmit an intraciliary signal that is independent of β-catenin. Intraciliary Wnt signaling promotes ciliogenesis, affecting male fertility, adipogenesis, and mucociliary clearance. Wnt also stimulates the beating of motile cilia, highlighting that these nanomotors, too, are chemosensory. Intraciliary Wnt signaling employs a Wnt-protein phosphatase 1 (PP1) signaling axis, involving the canonical Wnt pathway's inhibition of glycogen synthase kinase 3 (GSK3) to repress PP1 activity. Collectively, these findings support that cilia are Wnt signaling organelles, with implications for ciliopathies and cancer.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Vilà-González M, Pinte L, Fradique R, Causa E, Kool H, Rodrat M, Morell CM, Al-Thani M, Porter L, Guo W, Maeshima R, Hart SL, McCaughan F, Granata A, Sheppard DN, Floto RA, Rawlins EL, Cicuta P, Vallier L. In vitro platform to model the function of ionocytes in the human airway epithelium. Respir Res 2024; 25:180. [PMID: 38664797 PMCID: PMC11045446 DOI: 10.1186/s12931-024-02800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.
Collapse
Affiliation(s)
- Marta Vilà-González
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cell Therapy and Tissue Engineering Group, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma, 07122, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain.
| | - Laetitia Pinte
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ricardo Fradique
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Erika Causa
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Heleen Kool
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Carola Maria Morell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Maha Al-Thani
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Linsey Porter
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Wenrui Guo
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Ruhina Maeshima
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stephen L Hart
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Frank McCaughan
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Foundation Trust, Cambridge, CB2 0AY, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Pietro Cicuta
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité, Augustenburger Platz 1, 13353, Berlin, DE, Germany.
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany.
| |
Collapse
|
7
|
Feng Y, Zhang J, Li Y, Chen G, Zhang X, Ning G, Wu S. Inhibition of Pi4kb activity causes malformation of vestibular apparatus in zebrafish by downregulating hey1. Gene 2024; 898:148105. [PMID: 38135256 DOI: 10.1016/j.gene.2023.148105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Phosphatidylinositol 4 kinase-β (PI4KB) plays critical roles in human genetic diseases. In zebrafish, Pi4kb is strongly expressed in hair cells (HCs), which are necessary for detecting sound vibrations, head movements, and water motion. However, the role of PI4KB in HC or semicircular canal development is unclear. Herein, we report that pi4kb morphants exhibit insensitivity to sound stimulation and abnormal morphological vestibular organs, including cilium loss in HCs of the cristae and semicircular canal malformation. As bone morphogenetic protein (BMP) signaling is associated with HC and semicircular canal development, we analyzed the expression of BMP-related genes; the phosphorylated Smad1/5/9 (p-Smad1/5/9) expression was markedly reduced in otic HCs. RNA-sequencing data indicated that the transcriptional levels of BMP membrane receptor 2 (bmpr2a and bmpr2b) and hes-related family of bHLH transcription factors with YRPW motif 1 (hey1), a direct downstream target gene of p-Smad, were significantly reduced in the pi4kb morphants, as verified using quantitative reverse transcription-polymerase chain reaction and in situ hybridization. Co-injection of hey1 mRNA and pi4kb morpholino notably recovered vestibular apparatus development, including the number and length of cilia in HCs of the cristae and semicircular canal formation. Collectively, these results suggest that Pi4kb is involved in vestibular apparatus development in zebrafish by regulating BMP membrane receptor 2 and p-Smad1/5/9 levels, thereby affecting the transcriptional activation of the target gene hey1. This study sheds light on the interaction between Pi4kb and the BMP-Hey1 signaling axis, which is critical for HC and semicircular canal formation.
Collapse
Affiliation(s)
- Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jiaqi Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, HeilongJiang, China
| | - Yuzhen Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Gengrong Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Xiaoting Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Guozhu Ning
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shuilong Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
8
|
Gilbert E, Craggs J, Modepalli V. Gene Regulatory Network that Shaped the Evolution of Larval Apical Organ in Cnidaria. Mol Biol Evol 2024; 41:msad285. [PMID: 38152864 PMCID: PMC10781443 DOI: 10.1093/molbev/msad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jamie Craggs
- Horniman Museum and Gardens, London SE23 3PQ, UK
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
9
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
10
|
Bastin BR, Meha SM, Khindurangala L, Schneider SQ. Cooption of regulatory modules for tektin paralogs during ciliary band formation in a marine annelid larva. Dev Biol 2023; 503:95-110. [PMID: 37557946 DOI: 10.1016/j.ydbio.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Tektins are a highly conserved family of coiled-coil domain containing proteins known to play a role in structure, stability and function of cilia and flagella. Tektin proteins are thought to form filaments which run the length of the axoneme along the inner surface of the A tubule of each microtubule doublet. Phylogenetic analyses suggest that the tektin family arose via duplications from a single tektin gene in a unicellular organism giving rise to four and five tektin genes in bilaterians and in spiralians, respectively. Although tektins are found in most metazoans, little is known about their expression and function outside of a handful of model species. Here we present the first comprehensive study of tektin family gene expression in any animal system, in the spiralian annelid Platynereis dumerilii. This indirect developing species retains a full ancient spiralian complement of five tektin genes. We show that all five tektins are expressed almost exclusively in known ciliary structures following the expression of the motile cilia master regulator foxJ1. The three older bilaterian tektin-1, tektin-2, and tektin-4 genes, show a high degree of spatial and temporal co-regulation, while the spiralian specific tektin-3/5A and tektin-3/5B show a delay in onset of expression in every ciliary structure. In addition, tektin-3/5B transcripts show a restricted subcellular localization to the most apical region near the multiciliary arrays. The exact recapitulation of the sequence of expression and localization of the five tektins at different times during larval development indicates the cooption of a fixed regulatory and cellular program during the formation of each ciliary band and multiciliated cell type in this spiralian.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Steffanie M Meha
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Lalith Khindurangala
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Vuong LT, Mlodzik M. The complex relationship of Wnt-signaling pathways and cilia. Curr Top Dev Biol 2023; 155:95-125. [PMID: 38043953 PMCID: PMC11287783 DOI: 10.1016/bs.ctdb.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Wnt family proteins are secreted glycolipoproteins that signal through multitude of signal transduction pathways. The Wnt-pathways are conserved and critical in all metazoans. They are essential for embryonic development, organogenesis and homeostasis, and associated with many diseases when defective or deregulated. Wnt signaling pathways comprise the canonical Wnt pathway, best known for its stabilization of β-catenin and associated nuclear β-catenin activity in gene regulation, and several non-canonical signaling branches. Wnt-Planar Cell Polarity (PCP) signaling has received the most attention among the non-canonical Wnt pathways. The relationship of cilia to Wnt-signaling is complex. While it was suggested that canonical Wnt signaling requires cilia this notion was always challenged by results suggesting the opposite. Recent developments provide insight and clarification to the relationship of Wnt signaling pathways and cilia. First, it has been now demonstrated that while ciliary proteins, in particular the IFT-A complex, are required for canonical Wnt/β-catenin signaling, the cilium as a structure is not. In contrast, recent work has defined a diverged canonical signaling branch (not affecting β-catenin) to be required for ciliary biogenesis and cilia function. Furthermore, the non-canonical Wnt-PCP pathway does not affect cilia biogenesis per se, but it regulates the position of cilia within cells in many cell types, possibly in all cells where it is active, with cilia being placed near the side of the cell that has the Frizzled-Dishevelled complex. This Wnt/PCP feature is conserved with both centrioles and basal bodies/cilia being positioned accordingly, and it is also used to align mitotic spindles within the Wnt-PCP polarization axis. It also coordinates the alignment of cilia in multiciliated cells. This article addresses these new insights and different links and relationships between cilia and Wnt signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
12
|
Nabhan AN, Webster JD, Adams JJ, Blazer L, Everrett C, Eidenschenk C, Arlantico A, Fleming I, Brightbill HD, Wolters PJ, Modrusan Z, Seshagiri S, Angers S, Sidhu SS, Newton K, Arron JR, Dixit VM. Targeted alveolar regeneration with Frizzled-specific agonists. Cell 2023; 186:2995-3012.e15. [PMID: 37321220 DOI: 10.1016/j.cell.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Collapse
Affiliation(s)
- Ahmad N Nabhan
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jarret J Adams
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Levi Blazer
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Christine Everrett
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Celine Eidenschenk
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Isabel Fleming
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | | | - Stephane Angers
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 1A2, Canada; Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sachdev S Sidhu
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joseph R Arron
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
13
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
14
|
Seidl C, Da Silva F, Zhang K, Wohlgemuth K, Omran H, Niehrs C. Mucociliary Wnt signaling promotes cilia biogenesis and beating. Nat Commun 2023; 14:1259. [PMID: 36878953 PMCID: PMC9988884 DOI: 10.1038/s41467-023-36743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
It is widely thought that Wnt/Lrp6 signaling proceeds through the cytoplasm and that motile cilia are signaling-inert nanomotors. Contrasting both views, we here show in the mucociliary epidermis of X. tropicalis embryos that motile cilia transduce a ciliary Wnt signal that is distinct from canonical β-catenin signaling. Instead, it engages a Wnt-Gsk3-Ppp1r11-Pp1 signaling axis. Mucociliary Wnt signaling is essential for ciliogenesis and it engages Lrp6 co-receptors that localize to cilia via a VxP ciliary targeting sequence. Live-cell imaging using a ciliary Gsk3 biosensor reveals an immediate response of motile cilia to Wnt ligand. Wnt treatment stimulates ciliary beating in X. tropicalis embryos and primary human airway mucociliary epithelia. Moreover, Wnt treatment improves ciliary function in X. tropicalis ciliopathy models of male infertility and primary ciliary dyskinesia (ccdc108, gas2l2). We conclude that X. tropicalis motile cilia are Wnt signaling organelles that transduce a distinct Wnt-Pp1 response.
Collapse
Affiliation(s)
- Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kai Wohlgemuth
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Heymut Omran
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany. .,Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
15
|
Janečková E, Feng J, Guo T, Han X, Ghobadi A, Araujo-Villalba A, Rahman MS, Ziaei H, Ho TV, Pareek S, Alvarez J, Chai Y. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis. Development 2023; 150:dev201189. [PMID: 36825984 PMCID: PMC10108707 DOI: 10.1242/dev.201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;β-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;β-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Aileen Ghobadi
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Angelita Araujo-Villalba
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Heliya Ziaei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jasmine Alvarez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Ringers C, Bialonski S, Ege M, Solovev A, Hansen JN, Jeong I, Friedrich BM, Jurisch-Yaksi N. Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife 2023; 12:77701. [PMID: 36700548 PMCID: PMC9940908 DOI: 10.7554/elife.77701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.
Collapse
Affiliation(s)
- Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Stephan Bialonski
- Institute for Data-Driven Technologies, Aachen University of Applied SciencesJülichGermany
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anton Solovev
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Jan Niklas Hansen
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Benjamin M Friedrich
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
17
|
Zhang K, Da Silva F, Seidl C, Wilsch-Bräuninger M, Herbst J, Huttner WB, Niehrs C. Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Dev Cell 2023; 58:139-154.e8. [PMID: 36693320 DOI: 10.1016/j.devcel.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023]
Abstract
WNT signaling is important in development, stem cell maintenance, and disease. WNT ligands typically signal via receptor activation across the plasma membrane to induce β-catenin-dependent gene activation. Here, we show that in mammalian primary cilia, WNT receptors relay a WNT/GSK3 signal that β-catenin-independently promotes ciliogenesis. Characterization of a LRP6 ciliary targeting sequence and monitoring of acute WNT co-receptor activation (phospho-LRP6) support this conclusion. Ciliary WNT signaling inhibits protein phosphatase 1 (PP1) activity, a negative regulator of ciliogenesis, by preventing GSK3-mediated phosphorylation of the PP1 regulatory inhibitor subunit PPP1R2. Concordantly, deficiency of WNT/GSK3 signaling by depletion of cyclin Y and cyclin-Y-like protein 1 induces primary cilia defects in mouse embryonic neuronal precursors, kidney proximal tubules, and adult mice preadipocytes.
Collapse
Affiliation(s)
- Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
18
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
19
|
Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in Understanding the Genetic Mechanisms of Zebrafish Renal Multiciliated Cell Development. J Dev Biol 2022; 11:1. [PMID: 36648903 PMCID: PMC9844391 DOI: 10.3390/jdb11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
20
|
Ikeda T, Inamori K, Kawanishi T, Takeda H. Reemployment of Kupffer's vesicle cells into axial and paraxial mesoderm via transdifferentiation. Dev Growth Differ 2022; 64:163-177. [PMID: 35129208 DOI: 10.1111/dgd.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer and degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments in zebrafish embryos indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after the collapse of KV. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of dand5, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells undergo epithelial-mesenchymal transition upon KV collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete their initial role in KV.
Collapse
Affiliation(s)
- Takafumi Ikeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiichi Inamori
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Walentek P. Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs 2022; 211:736-753. [PMID: 33902038 PMCID: PMC8546001 DOI: 10.1159/000514579] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Mucociliary epithelia are composed of multiciliated, secretory, and stem cells and line various organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary clearance relies on the correct composition of cell types, that is, the proper balance of ciliated and secretory cells. A failure to generate and to maintain correct cell type composition and function results in impaired clearance and high risk to infections, such as in congenital diseases (e.g., ciliopathies) as well as in acquired diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). While it remains incompletely resolved how precisely cell types are specified and maintained in development and disease, many studies have revealed important mechanisms regarding the signaling control in mucociliary cell types in various species. Those studies not only provided insights into the signaling contribution to organ development and regeneration but also highlighted the remarkable plasticity of cell identity encountered in mucociliary maintenance, including frequent trans-differentiation events during homeostasis and specifically in disease. This review will summarize major findings and provide perspectives regarding the future of mucociliary research and the treatment of chronic airway diseases associated with tissue remodeling.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Sheng X, Gao S, Sheng Y, Xie X, Wang J, He Y. Vangl2 participates in the primary ciliary assembly under low fluid shear stress in hUVECs. Cell Tissue Res 2021; 387:95-109. [PMID: 34738156 DOI: 10.1007/s00441-021-03546-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
The pattern of blood fluid shear stress (FSS) is considered the main factor that affects ciliogenesis in human umbilical vein endothelial cells (hUVECs), the underlying mechanism is unclear. Microfluidic chamber experiments were carried out to load hUVECs with low fluid shear stress (LSS, 0.1 dynes/cm2) or high fluid shear stress (HSS, 15 dynes/cm2). Van Gogh2 (Vangl2), a core protein in the planar cell polarity (PCP) pathway, was silenced and overexpressed in hUVECs. Immunofluorescence analysis showed that primary cilia assemble under LSS while disassembling under HSS. Vangl2 expression was consistent with cilia assembly, and its localization showed a polar distribution under LSS. Furthermore, the average number of ciliated cells and primary cilia length were increased in the Vangl2 overexpressing cell lines (the OE group) but decreased in the Vangl2 silenced cell lines (the SH group). When these cells were loaded with different FSS, more ciliated cells with longest primary cilia were observed in the LSS loaded OE group compared with those in the other groups. Immunoprecipitation showed that the interaction between Bardet-Biedl syndrome 8 (BBS8) and Vangl2 was enhanced following LSS loading compared to that under HSS. However, the interactions between phosphorylated dishevelled segment polarity protein 2 (pDvl2), kinesin family member 2a (Kif2a), and polo-like kinase 1 (Plk1) and Vangl2 were restrained following LSS loading. Overall, the results indicated that Vangl2 played a significant role during LSS-induced primary cilia assembly by recruiting BBS to promote the apical docking of basal bodies and by restraining Dvl2 phosphorylation from reducing primary cilia disassembly.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| | - Shuanglin Gao
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yan Sheng
- Laboratory of Basic Medical Morphology, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Xiadan Xie
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Junhua Wang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yan He
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| |
Collapse
|
23
|
Koch S. Regulation of Wnt Signaling by FOX Transcription Factors in Cancer. Cancers (Basel) 2021; 13:cancers13143446. [PMID: 34298659 PMCID: PMC8307807 DOI: 10.3390/cancers13143446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Cancer is caused by a breakdown of cell-to-cell communication, which results in the unrestricted expansion of cells within a tissue. In many cases, tumor growth is maintained by the continuous activation of cell signaling programs that normally drive embryonic development and wound repair. In this review article, I discuss how one of the largest human protein families, namely FOX proteins, controls the activity of the Wnt pathway, a major regulatory signaling cascade in developing organisms and adult stem cells. Evidence suggests that there is considerable crosstalk between FOX proteins and the Wnt pathway, which contributes to cancer initiation and progression. A better understanding of FOX biology may therefore lead to the development of new targeted treatments for many types of cancer. Abstract Aberrant activation of the oncogenic Wnt signaling pathway is a hallmark of numerous types of cancer. However, in many cases, it is unclear how a chronically high Wnt signaling tone is maintained in the absence of activating pathway mutations. Forkhead box (FOX) family transcription factors are key regulators of embryonic development and tissue homeostasis, and there is mounting evidence that they act in part by fine-tuning the Wnt signaling output in a tissue-specific and context-dependent manner. Here, I review the diverse ways in which FOX transcription factors interact with the Wnt pathway, and how the ectopic reactivation of FOX proteins may affect Wnt signaling activity in various types of cancer. Many FOX transcription factors are partially functionally redundant and exhibit a highly restricted expression pattern, especially in adults. Thus, precision targeting of individual FOX proteins may lead to safe treatment options for Wnt-dependent cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, 58185 Linköping, Sweden; ; Tel.: +46-132-829-69
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
24
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
25
|
Smith KA, Uribe V. Getting to the Heart of Left-Right Asymmetry: Contributions from the Zebrafish Model. J Cardiovasc Dev Dis 2021; 8:64. [PMID: 34199828 PMCID: PMC8230053 DOI: 10.3390/jcdd8060064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
The heart is laterally asymmetric. Not only is it positioned on the left side of the body but the organ itself is asymmetric. This patterning occurs across scales: at the organism level, through left-right axis patterning; at the organ level, where the heart itself exhibits left-right asymmetry; at the cellular level, where gene expression, deposition of matrix and proteins and cell behaviour are asymmetric; and at the molecular level, with chirality of molecules. Defective left-right patterning has dire consequences on multiple organs; however, mortality and morbidity arising from disrupted laterality is usually attributed to complex cardiac defects, bringing into focus the particulars of left-right patterning of the heart. Laterality defects impact how the heart integrates and connects with neighbouring organs, but the anatomy of the heart is also affected because of its asymmetry. Genetic studies have demonstrated that cardiac asymmetry is influenced by left-right axis patterning and yet the heart also possesses intrinsic laterality, reinforcing the patterning of this organ. These inputs into cardiac patterning are established at the very onset of left-right patterning (formation of the left-right organiser) and continue through propagation of left-right signals across animal axes, asymmetric differentiation of the cardiac fields, lateralised tube formation and asymmetric looping morphogenesis. In this review, we will discuss how left-right asymmetry is established and how that influences subsequent asymmetric development of the early embryonic heart. In keeping with the theme of this issue, we will focus on advancements made through studies using the zebrafish model and describe how its use has contributed considerable knowledge to our understanding of the patterning of the heart.
Collapse
Affiliation(s)
- Kelly A. Smith
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
26
|
Jacinto R, Sampaio P, Roxo-Rosa M, Pestana S, Lopes SS. Pkd2 Affects Cilia Length and Impacts LR Flow Dynamics and Dand5. Front Cell Dev Biol 2021; 9:624531. [PMID: 33869175 PMCID: PMC8047213 DOI: 10.3389/fcell.2021.624531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
The left-right (LR) field recognizes the importance of the mechanism involving the calcium permeable channel Polycystin-2. However, whether the early LR symmetry breaking mechanism is exclusively via Polycystin-2 has not been tested. For that purpose, we need to be able to isolate the effects of decreasing the levels of Pkd2 protein from any eventual effects on flow dynamics. Here we demonstrate that curly-up (cup) homozygous mutants have abnormal flow dynamics. In addition, we performed one cell stage Pkd2 knockdowns and LR organizer specific Pkd2 knockdowns and observed that both techniques resulted in shorter cilia length and abnormal flow dynamics. We conclude that Pkd2 reduction leads to LR defects that cannot be assigned exclusively to its putative role in mediating mechanosensation because indirectly, by modifying cell shape or decreasing cilia length, Pkd2 deficit affects LR flow dynamics.
Collapse
Affiliation(s)
- Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Pedro Sampaio
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Susana S Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
27
|
Zhu P, Qiu Q, Harris PC, Xu X, Lin X. mtor Haploinsufficiency Ameliorates Renal Cysts and Cilia Abnormality in Adult Zebrafish tmem67 Mutants. J Am Soc Nephrol 2021; 32:822-836. [PMID: 33574160 PMCID: PMC8017545 DOI: 10.1681/asn.2020070991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although zebrafish embryos have been used to study ciliogenesis and model polycystic kidney disease (PKD), adult zebrafish remain unexplored. METHODS Transcription activator-like effector nucleases (TALEN) technology was used to generate mutant for tmem67, the homolog of the mammalian causative gene for Meckel syndrome type 3 (MKS3). Classic 2D and optical-clearing 3D imaging of an isolated adult zebrafish kidney were used to examine cystic and ciliary phenotypes. A hypomorphic mtor strain or rapamycin was used to inhibit mTOR activity. RESULTS Adult tmem67 zebrafish developed progressive mesonephric cysts that share conserved features of mammalian cystogenesis, including a switch of cyst origin with age and an increase in proliferation of cyst-lining epithelial cells. The mutants had shorter and fewer distal single cilia and greater numbers of multiciliated cells (MCCs). Absence of a single cilium preceded cystogenesis, and expansion of MCCs occurred after pronephric cyst formation and was inversely correlated with the severity of renal cysts in young adult zebrafish, suggesting a primary defect and an adaptive action, respectively. Finally, the mutants exhibited hyperactive mTOR signaling. mTOR inhibition ameliorated renal cysts in both the embryonic and adult zebrafish models; however, it only rescued ciliary abnormalities in the adult mutants. CONCLUSIONS Adult zebrafish tmem67 mutants offer a new vertebrate model for renal cystic diseases, in which cilia morphology can be analyzed at a single-nephron resolution and mTOR inhibition proves to be a candidate therapeutic strategy.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Qi Qiu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Peter C. Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Brücker L, Kretschmer V, May-Simera HL. The entangled relationship between cilia and actin. Int J Biochem Cell Biol 2020; 129:105877. [PMID: 33166678 DOI: 10.1016/j.biocel.2020.105877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.
Collapse
Affiliation(s)
- Lena Brücker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Viola Kretschmer
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Helen Louise May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
29
|
Zhou F, Rayamajhi D, Ravi V, Narasimhan V, Chong YL, Lu H, Venkatesh B, Roy S. Conservation as well as divergence in Mcidas function underlies the differentiation of multiciliated cells in vertebrates. Dev Biol 2020; 465:168-177. [PMID: 32735790 DOI: 10.1016/j.ydbio.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Multiciliated cells (MCCs) differentiate hundreds of motile cilia that beat to drive fluid movement over various kinds of epithelia. In Xenopus, mice and human, the coiled-coil containing protein Mcidas (Mci) has been shown to be a key transcriptional regulator of MCC differentiation. We have examined Mci function in the zebrafish, another model organism that is widely used to study ciliary biology. We show that zebrafish mci is expressed specifically in the developing MCCs of the kidney tubules, but surprisingly, not in those of the nasal placodes. Mci proteins lack a DNA binding domain and associate with the cell-cycle transcription factors E2f4/5 for regulating MCC-specific gene expression. We found that while the zebrafish Mci protein can complex with the E2f family members, its sequence as well as the requirement and sufficiency for MCC differentiation has diverged significantly from Mci homologues of the tetrapods. We also provide evidence that compared to Gmnc, another related coiled-coil protein that has recently been shown to regulate MCC development upstream of Mci, the Mci protein originated later within the vertebrate lineage. Based on these data, we argue that in contrast to Gmnc, which has a vital role in the genetic circuitry that drives MCC formation, the requirement of Mci, at least in the zebrafish, is not obligatory.
Collapse
Affiliation(s)
- Feng Zhou
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Dheeraj Rayamajhi
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Vijay Narasimhan
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yan Ling Chong
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore; Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
30
|
Aros CJ, Vijayaraj P, Pantoja CJ, Bisht B, Meneses LK, Sandlin JM, Tse JA, Chen MW, Purkayastha A, Shia DW, Sucre JMS, Rickabaugh TM, Vladar EK, Paul MK, Gomperts BN. Distinct Spatiotemporally Dynamic Wnt-Secreting Niches Regulate Proximal Airway Regeneration and Aging. Cell Stem Cell 2020; 27:413-429.e4. [PMID: 32721381 PMCID: PMC7484054 DOI: 10.1016/j.stem.2020.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Our understanding of dynamic interactions between airway basal stem cells (ABSCs) and their signaling niches in homeostasis, injury, and aging remains elusive. Using transgenic mice and pharmacologic studies, we found that Wnt/β-catenin within ABSCs was essential for proliferation post-injury in vivo. ABSC-derived Wnt ligand production was dispensable for epithelial proliferation. Instead, the PDGFRα+ lineage in the intercartilaginous zone (ICZ) niche transiently secreted Wnt ligand necessary for ABSC proliferation. Strikingly, ABSC-derived Wnt ligand later drove early progenitor differentiation to ciliated cells. We discovered additional changes in aging, as glandular-like epithelial invaginations (GLEIs) derived from ABSCs emerged exclusively in the ICZ of aged mice and contributed to airway homeostasis and repair. Further, ABSC Wnt ligand secretion was necessary for GLEI formation, and constitutive activation of β-catenin in young mice induced their formation in vivo. Collectively, these data underscore multiple spatiotemporally dynamic Wnt-secreting niches that regulate functionally distinct phases of airway regeneration and aging.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Bharti Bisht
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Luisa K Meneses
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jenna M Sandlin
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan A Tse
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Michelle W Chen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arunima Purkayastha
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - David W Shia
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jennifer M S Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
| | - Tammy M Rickabaugh
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Eszter K Vladar
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Manash K Paul
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
32
|
Sheng X, Sheng Y, Gao S, Fan F, Wang J. Low fluid shear stress promoted ciliogenesis via Dvl2 in hUVECs. Histochem Cell Biol 2020; 154:639-654. [PMID: 32776193 DOI: 10.1007/s00418-020-01908-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 01/30/2023]
Abstract
This study aims to explore the mechanism of fluid shear stress in regulating the primary cilia assembly or disassembly in human umbilical vein endothelial cells (hUVECs) using microfluidic chamber experiments. Immunofluorescence analysis showed that primary cilia assembled under disturbed fluid shear stress (DF) of 1 dyne/cm2, while disassembled under unidirectional shear stress (USS) of 15 dynes/cm2. Disheveled (Dvl2) in Wnt signaling pathway was effectively co-immunoprecipitated with Bardet-Biedl syndrome proteins 8 (Bbs8) and γ-tubulin. Compared with those in the control group, the percentages of ciliated cells with Dvl2 overexpression were found to be 67% and 59.667%, respectively, under USS and DF (an increment of 21-38.7%); while, those with Dvl2 silencing were 16% and 32.667%, respectively, under USS and DF (a decrement of 23-30%). Further, the expression of Bbs8 and γ-tubulin was decreased by RNA interference of Dvl2 but increased with Dvl2 overexpression. The results indicated that Dvl2 played a pivotal role during DF-induced primary cilia assembly, and was important for apical docking of basal bodies through Bbs8 and γ-tubulin.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| | - Yan Sheng
- Laboratory of Basic Medical Morphology, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Shuanglin Gao
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Fang Fan
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Junhua Wang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| |
Collapse
|
33
|
Miletto Petrazzini ME, Sovrano VA, Vallortigara G, Messina A. Brain and Behavioral Asymmetry: A Lesson From Fish. Front Neuroanat 2020; 14:11. [PMID: 32273841 PMCID: PMC7113390 DOI: 10.3389/fnana.2020.00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 11/27/2022] Open
Abstract
It is widely acknowledged that the left and right hemispheres of human brains display both anatomical and functional asymmetries. For more than a century, brain and behavioral lateralization have been considered a uniquely human feature linked to language and handedness. However, over the past decades this idea has been challenged by an increasing number of studies describing structural asymmetries and lateralized behaviors in non-human species extending from primates to fish. Evidence suggesting that a similar pattern of brain lateralization occurs in all vertebrates, humans included, has allowed the emergence of different model systems to investigate the development of brain asymmetries and their impact on behavior. Among animal models, fish have contributed much to the research on lateralization as several fish species exhibit lateralized behaviors. For instance, behavioral studies have shown that the advantages of having an asymmetric brain, such as the ability of simultaneously processing different information and perform parallel tasks compensate the potential costs associated with poor integration of information between the two hemispheres thus helping to better understand the possible evolutionary significance of lateralization. However, these studies inferred how the two sides of the brains are differentially specialized by measuring the differences in the behavioral responses but did not allow to directly investigate the relation between anatomical and functional asymmetries. With respect to this issue, in recent years zebrafish has become a powerful model to address lateralization at different level of complexity, from genes to neural circuitry and behavior. The possibility of combining genetic manipulation of brain asymmetries with cutting-edge in vivo imaging technique and behavioral tests makes the zebrafish a valuable model to investigate the phylogeny and ontogeny of brain lateralization and its relevance for normal brain function and behavior.
Collapse
Affiliation(s)
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | | | - Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
34
|
Aros CJ, Paul MK, Pantoja CJ, Bisht B, Meneses LK, Vijayaraj P, Sandlin JM, France B, Tse JA, Chen MW, Shia DW, Rickabaugh TM, Damoiseaux R, Gomperts BN. High-Throughput Drug Screening Identifies a Potent Wnt Inhibitor that Promotes Airway Basal Stem Cell Homeostasis. Cell Rep 2020; 30:2055-2064.e5. [PMID: 32075752 PMCID: PMC7050206 DOI: 10.1016/j.celrep.2020.01.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/14/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that β-catenin phosphorylated at Y489 (p-β-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/β-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/β-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-β-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-β-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/β-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Bharti Bisht
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Luisa K Meneses
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Jenna M Sandlin
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Bryan France
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan A Tse
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Michelle W Chen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - David W Shia
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Tammy M Rickabaugh
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; UCLA Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Brigitte N Gomperts
- UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Abstract
The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
36
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
37
|
Haas M, Gómez Vázquez JL, Sun DI, Tran HT, Brislinger M, Tasca A, Shomroni O, Vleminckx K, Walentek P. ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia. Cell Rep 2019; 28:3338-3352.e6. [PMID: 31553905 PMCID: PMC6935018 DOI: 10.1016/j.celrep.2019.08.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Mucociliary epithelia provide a first line of defense against pathogens. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/β-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive, and studies yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway Basal cells, we characterize the evolutionarily conserved roles of Wnt/β-catenin signaling in vertebrates. In multiciliated cells, Wnt is required for cilia formation during differentiation. In Basal cells, Wnt prevents specification of epithelial cell types by activating ΔN-TP63, a master transcription factor, which is necessary and sufficient to mediate the Wnt-induced inhibition of specification and is required to retain Basal cells during development. Chronic Wnt activation leads to remodeling and Basal cell hyperplasia, which are reversible in vivo and in vitro, suggesting Wnt inhibition as a treatment option in chronic lung diseases. Our work provides important insights into mucociliary signaling, development, and disease.
Collapse
Affiliation(s)
- Maximilian Haas
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - José Luis Gómez Vázquez
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dingyuan Iris Sun
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Magdalena Brislinger
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexia Tasca
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Orr Shomroni
- Transcriptome and Genome Core Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA; CIBSS - Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
38
|
Liu J, Zhu C, Ning G, Yang L, Cao Y, Huang S, Wang Q. Chemokine signaling links cell-cycle progression and cilia formation for left-right symmetry breaking. PLoS Biol 2019; 17:e3000203. [PMID: 31430272 PMCID: PMC6716676 DOI: 10.1371/journal.pbio.3000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/30/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022] Open
Abstract
Zebrafish dorsal forerunner cells (DFCs) undergo vigorous proliferation during epiboly and then exit the cell cycle to generate Kupffer's vesicle (KV), a ciliated organ necessary for establishing left-right (L-R) asymmetry. DFC proliferation defects are often accompanied by impaired cilia elongation in KV, but the functional and molecular interaction between cell-cycle progression and cilia formation remains unknown. Here, we show that chemokine receptor Cxcr4a is required for L-R laterality by controlling DFC proliferation and KV ciliogenesis. Functional analysis revealed that Cxcr4a accelerates G1/S transition in DFCs and stabilizes forkhead box j1a (Foxj1a), a master regulator of motile cilia, by stimulating Cyclin D1 expression through extracellular regulated MAP kinase (ERK) 1/2 signaling. Mechanistically, Cyclin D1-cyclin-dependent kinase (CDK) 4/6 drives G1/S transition during DFC proliferation and phosphorylates Foxj1a, thereby disrupting its association with proteasome 26S subunit, non-ATPase 4b (Psmd4b), a 19S regulatory subunit. This prevents the ubiquitin (Ub)-independent proteasomal degradation of Foxj1a. Our study uncovers a role for Cxcr4 signaling in L-R patterning and provides fundamental insights into the molecular linkage between cell-cycle progression and ciliogenesis.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengke Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, College of Animal Science in Rongchang Campus, Southwest University, Chongqing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liping Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
- * E-mail: (SH); (QW)
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SH); (QW)
| |
Collapse
|
39
|
Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling. Dev Biol 2019; 456:1-7. [PMID: 31398317 DOI: 10.1016/j.ydbio.2019.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Abstract
Congenital heart disease (CHD) is a major cause of morbidity in the pediatric population yet its genetic and molecular causes remain poorly defined. Previously, we identified AGMO as a candidate heterotaxy disease gene, a disorder of left-right (LR) patterning that can have a profound effect on cardiac function. AGMO is the only known alkylglycerol monooxygenase, an orphan tetrahydrobiopterin dependent enzyme that cleaves the ether linkage in alkylglycerols. However, whether AGMO plays a role in LR patterning was unexplored. Here we reveal that Agmo is required for correct development of the embryonic LR axis in Xenopus embryos recapitulating the patient's heterotaxy phenotype. Mechanistically, we demonstrate that Agmo is a regulator of canonical Wnt signaling, required during gastrulation for normal formation of the left - right organizer. Mutational analysis demonstrates that this function is dependent on Agmo's alkylglycerol monooxygenase activity. Together, our findings identify Agmo as a regulator of canonical Wnt signaling, demonstrate a role for Agmo in embryonic axis formation, and provide insight into the poorly understood developmental requirements for ether lipid cleavage.
Collapse
|
40
|
Zhu C, Guo Z, Zhang Y, Liu M, Chen B, Cao K, Wu Y, Yang M, Yin W, Zhao H, Tai H, Ou Y, Yu X, Liu C, Li S, Su B, Feng Y, Huang S. Aplnra/b Sequentially Regulate Organ Left-Right Patterning via Distinct Mechanisms. Int J Biol Sci 2019; 15:1225-1239. [PMID: 31223282 PMCID: PMC6567806 DOI: 10.7150/ijbs.30100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G protein-coupled receptor APJ/Aplnr has been widely reported to be involved in heart and vascular development and disease, but whether it contributes to organ left-right patterning is largely unknown. Here, we show that in zebrafish, aplnra/b coordinates organ LR patterning in an apela/apln ligand-dependent manner using distinct mechanisms at different stages. During gastrulation and early somitogenesis, aplnra/b loss of function results in heart and liver LR asymmetry defects, accompanied by disturbed KV/cilia morphogenesis and disrupted left-sided Nodal/spaw expression in the LPM. In this process, only aplnra loss of function results in KV/cilia morphogenesis defect. In addition, only apela works as the early endogenous ligand to regulate KV morphogenesis, which then contributes to left-sided Nodal/spaw expression and subsequent organ LR patterning. The aplnra-apela cascade regulates KV morphogenesis by enhancing the expression of foxj1a, but not fgf8 or dnh9, during KV development. At the late somite stage, both aplnra and aplnrb contribute to the expression of lft1 in the trunk midline but do not regulate KV formation, and this role is possibly mediated by both endogenous ligands, apela and apln. In conclusion, our study is the first to identify a role for aplnra/b and their endogenous ligands apela/apln in LR patterning, and it clarifies the distinct roles of aplnra-apela and aplnra/b-apela/apln in orchestrating organ LR patterning.
Collapse
Affiliation(s)
- Chengke Zhu
- College of Animal Science in Rongchang Campus, Southwest University, Key Laboratary of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 402460, China.,UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Zhenghua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Yu Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Min Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Bingyu Chen
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Kang Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yongmei Wu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Min Yang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Wenqing Yin
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts. USA
| | - Haixia Zhao
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Haoran Tai
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yu Ou
- School of Public Health, Chengdu Medical College , Chengdu 610500, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College , Chengdu 610500, China
| | - Chi Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Shurong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Bingyin Su
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| | - Yi Feng
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
41
|
Schneider I, Kreis J, Schweickert A, Blum M, Vick P. A dual function of FGF signaling in Xenopus left-right axis formation. Development 2019; 146:dev.173575. [PMID: 31036544 DOI: 10.1242/dev.173575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 11/20/2022]
Abstract
Organ left-right (LR) asymmetry is a conserved vertebrate feature, which is regulated by left-sided activation of Nodal signaling. Nodal asymmetry is established by a leftward fluid-flow generated at the ciliated LR organizer (LRO). Although the role of fibroblast growth factor (FGF) signaling pathways during mesoderm development is conserved, diverging results from different model organisms suggest a non-conserved function in LR asymmetry. Here, we demonstrate that FGF is required during gastrulation in a dual function at consecutive stages of Xenopus embryonic development. In the early gastrula, FGF is necessary for LRO precursor induction, acting in parallel with FGF-mediated mesoderm induction. During late gastrulation, the FGF/Ca2+-branch is required for specification of the flow-sensing lateral LRO cells, a function related to FGF-mediated mesoderm morphogenesis. This second function in addition requires input from the calcium channel Polycystin-2. Thus, analogous to mesoderm development, FGF activity is required in a dual role for laterality specification; namely, for generating and sensing leftward flow. Moreover, our findings in Xenopus demonstrate that FGF functions in LR development share more conserved features across vertebrate species than previously anticipated.
Collapse
Affiliation(s)
| | - Jennifer Kreis
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Philipp Vick
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
42
|
Pruski M, Lang B. Primary Cilia-An Underexplored Topic in Major Mental Illness. Front Psychiatry 2019; 10:104. [PMID: 30886591 PMCID: PMC6409319 DOI: 10.3389/fpsyt.2019.00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Though much progress has been made in recent years towards understanding the function and physiology of primary cilia, they remain a somewhat elusive organelle. Some studies have explored the role of primary cilia in the developing nervous system, and their dysfunction has been linked with several neurosensory deficits. Yet, very little has been written on their potential role in psychiatric disorders. This article provides an overview of some of the functions of primary cilia in signalling pathways, and demonstrates that they are a worthy candidate in psychiatric research. The links between primary cilia and major mental illness have been demonstrated to exist at several levels, spanning genetics, signalling pathways, and pharmacology as well as cell division and migration. The primary focus of this review is on the sensory role of the primary cilium and the neurodevelopmental hypothesis of psychiatric disease. As such, the primary cilium is demonstrated to be a key link between the cellular environment and cell behaviour, and hence of key importance in the considerations of the nature and nurture debate in psychiatric research.
Collapse
Affiliation(s)
- Michal Pruski
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Critical Care Laboratory, Critical Care Directorate, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
43
|
Mukherjee I, Roy S, Chakrabarti S. Identification of Important Effector Proteins in the FOXJ1 Transcriptional Network Associated With Ciliogenesis and Ciliary Function. Front Genet 2019; 10:23. [PMID: 30881373 PMCID: PMC6405523 DOI: 10.3389/fgene.2019.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Developmental defects in motile cilia, arising from genetic abnormalities in one or more ciliary genes, can lead to a common ciliopathy known as primary ciliary dyskinesia (PCD). Functional studies in model organisms undertaken to understand PCD or cilia biogenesis have identified 100s of genes regulated by Foxj1, the master regulator of motile ciliogenesis. However, limited systems based studies have been performed to elucidate proteins or network/s crucial to the motile ciliary interactome, although this approach holds promise for identification of multiple cilia-associated genes, which, in turn, could be utilized for screening and early diagnosis of the disease. Here, based on the assumption that FOXJ1-mediated regulatory and signaling networks are representative of the motile cilia interactome, we have constructed and analyzed the gene regulatory and protein–protein interaction network (PPIN) mediated by FOXJ1. The predicted FOXJ1 regulatory network comprises of 424 directly and 148 indirectly regulated genes. Additionally, based on gene ontology analysis, we have associated 17 directly and 6 indirectly regulated genes with possible ciliary roles. Topological and perturbation analyses of the PPIN (6927 proteins, 40,608 interactions) identified 121 proteins expressed in ciliated cells, which interact with multiple proteins encoded by FoxJ1 induced genes (FIG) as important interacting proteins (IIP). However, it is plausible that IIP transcriptionally regulated by FOXJ1 and/or differentially expressed in PCD are likely to have crucial roles in motile cilia. We have found 20 de-regulated topologically important effector proteins in the FOXJ1 regulatory network, among which some (PLSCR1, SSX2IP, ACTN2, CDC42, HSP90AA1, PIAS4) have previously reported ciliary roles. Furthermore, based on pathway enrichment of these proteins and their primary interactors, we have rationalized their possible roles in the ciliary interactome. For instance, 5 among these novel proteins that are involved in cilia associated signaling pathways (like Notch, Wnt, Hedgehog, Toll-like receptor etc.) could be ‘topologically important signaling proteins.’ Therefore, based on this FOXJ1 network study we have predicted important effectors in the motile cilia interactome, which are possibly associated with ciliary biology and/or function and are likely to further our understanding of the pathophysiology in ciliopathies like PCD.
Collapse
Affiliation(s)
- Ishita Mukherjee
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata, India
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Saikat Chakrabarti
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
44
|
Olstad EW, Ringers C, Hansen JN, Wens A, Brandt C, Wachten D, Yaksi E, Jurisch-Yaksi N. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development. Curr Biol 2019; 29:229-241.e6. [PMID: 30612902 PMCID: PMC6345627 DOI: 10.1016/j.cub.2018.11.059] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Motile cilia are miniature, propeller-like extensions, emanating from many cell types across the body. Their coordinated beating generates a directional fluid flow, which is essential for various biological processes, from respiration to reproduction. In the nervous system, ependymal cells extend their motile cilia into the brain ventricles and contribute to cerebrospinal fluid (CSF) flow. Although motile cilia are not the only contributors to CSF flow, their functioning is crucial, as patients with motile cilia defects develop clinical features, like hydrocephalus and scoliosis. CSF flow was suggested to primarily deliver nutrients and remove waste, but recent studies emphasized its role in brain development and function. Nevertheless, it remains poorly understood how ciliary beating generates and organizes CSF flow to fulfill these roles. Here, we study motile cilia and CSF flow in the brain ventricles of larval zebrafish. We identified that different populations of motile ciliated cells are spatially organized and generate a directional CSF flow powered by ciliary beating. Our investigations revealed that CSF flow is confined within individual ventricular cavities, with little exchange of fluid between ventricles, despite a pulsatile CSF displacement caused by the heartbeat. Interestingly, our results showed that the ventricular boundaries supporting this compartmentalized CSF flow are abolished during bodily movement, highlighting that multiple physiological processes regulate the hydrodynamics of CSF flow. Finally, we showed that perturbing cilia reduces hydrodynamic coupling between the brain ventricles and disrupts ventricular development. We propose that motile-cilia-generated flow is crucial in regulating the distribution of CSF within and across brain ventricles. Spatially organized motile cilia with rotational beats create directional CSF flow Ciliary beating, heartbeat, and locomotion generate distinct components of CSF flow Joint action of these components balances CSF compartmentalization and dispersion Disruption of ciliary beating leads to ventricular defects during brain development
Collapse
Affiliation(s)
- Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Jan N Hansen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Adinda Wens
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Cecilia Brandt
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| |
Collapse
|
45
|
Sempou E, Lakhani OA, Amalraj S, Khokha MK. Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left-Right Organizer in Xenopus. Front Physiol 2018; 9:1705. [PMID: 30564136 PMCID: PMC6288790 DOI: 10.3389/fphys.2018.01705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect, yet its genetic causes continue to be obscure. Fibroblast growth factor receptor 4 (FGFR4) recently emerged in a large patient exome sequencing study as a candidate disease gene for CHD and specifically heterotaxy. In heterotaxy, patterning of the left-right (LR) body axis is compromised, frequently leading to defects in the heart's LR architecture and severe CHD. FGF ligands like FGF8 and FGF4 have been previously implicated in LR development with roles ranging from formation of the laterality organ [LR organizer (LRO)] to the transfer of asymmetry from the embryonic midline to the lateral plate mesoderm (LPM). However, much less is known about which FGF receptors (FGFRs) play a role in laterality. Here, we show that the candidate heterotaxy gene FGFR4 is essential for proper organ situs in Xenopus and that frogs depleted of fgfr4 display inverted cardiac and gut looping. Fgfr4 knockdown causes mispatterning of the LRO even before cilia on its surface initiate symmetry-breaking fluid flow, indicating a role in the earliest stages of LR development. Specifically, fgfr4 acts during gastrulation to pattern the paraxial mesoderm, which gives rise to the lateral pre-somitic portion of the LRO. Upon fgfr4 knockdown, the paraxial mesoderm is mispatterned in the gastrula and LRO, and crucial genes for symmetry breakage, like coco, xnr1, and gdf3 are subsequently absent from the lateral portions of the organizer. In summary, our data indicate that FGF signaling in mesodermal LRO progenitors defines cell fates essential for subsequent LR patterning.
Collapse
Affiliation(s)
- Emily Sempou
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | | | | | | |
Collapse
|
46
|
Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:99-106. [DOI: 10.1016/j.cbd.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023]
|
47
|
Warga RM, Kane DA. Probing Cadherin Interactions in Zebrafish with E- and N-Cadherin Missense Mutants. Genetics 2018; 210:1391-1409. [PMID: 30361324 PMCID: PMC6283153 DOI: 10.1534/genetics.118.301692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Cadherins are cell adhesion molecules that regulate numerous adhesive interactions during embryonic development and adult life. Consistent with these functions, when their expression goes astray cells lose their normal adhesive properties resulting in defective morphogenesis, disease, and even metastatic cancer. In general, classical cadherins exert their effect by homophilic interactions via their five characteristic extracellular (EC) repeats. The EC1 repeat provides the mechanism for cadherins to dimerize with each other whereas the EC2 repeat may facilitate dimerization. Less is known about the other EC repeats. Here, we show that a zebrafish missense mutation in the EC5 repeat of N-cadherin is a dominant gain-of-function mutation and demonstrate that this mutation alters cell adhesion almost to the same degree as a zebrafish missense mutation in the EC1 repeat of N-cadherin. We also show that zebrafish E- and N-cadherin dominant gain-of-function missense mutations genetically interact. Perturbation of cell adhesion in embryos that are heterozygous mutant at both loci is similar to that observed in single homozygous mutants. Introducing an E-cadherin EC5 missense allele into the homozygous N-cadherin EC1 missense mutant more radically affects morphogenesis, causing synergistic phenotypes consistent with interdependent functions being disrupted. Our studies indicate that a functional EC5 repeat is critical for cadherin-mediated cell affinity, suggesting that its role may be more important than previously thought. These results also suggest the possibility that E- and N-cadherin have heterophilic interactions during early morphogenesis of the embryo; interactions that might help balance the variety of cell affinities needed during embryonic development.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| | - Donald A Kane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| |
Collapse
|
48
|
Sampilo NF, Stepicheva NA, Zaidi SAM, Wang L, Wu W, Wikramanayake A, Song JL. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway-associated developmental defects in sea urchin. Development 2018; 145:dev167130. [PMID: 30389855 PMCID: PMC6288383 DOI: 10.1242/dev.167130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expressions by binding to the 3' untranslated region of target mRNAs thereby silencing translation. Some miRNAs are key regulators of the Wnt signaling pathways, which impact developmental processes. This study investigates miRNA regulation of different isoforms of Dishevelled (Dvl/Dsh), which encode a key component in the Wnt signaling pathway. The sea urchin Dvl mRNA isoforms have similar spatial distribution in early development, but one isoform is distinctively expressed in the larval ciliary band. We demonstrated that Dvl isoforms are directly suppressed by miRNAs. By blocking miRNA suppression of Dvl isoforms, we observed dose-dependent defects in spicule length, patterning of the primary mesenchyme cells, gut morphology, and cilia. These defects likely result from increased Dvl protein levels, leading to perturbation of Wnt-dependent signaling pathways and additional Dvl-mediated processes. We further demonstrated that overexpression of Dvl isoforms recapitulated some of the Dvl miRNATP-induced phenotypes. Overall, our results indicate that miRNA suppression of Dvl isoforms plays an important role in ensuring proper development and function of primary mesenchyme cells and cilia.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Wei Wu
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | | | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
49
|
Li J, Gao F, Zhao Y, He L, Huang Y, Yang X, Zhou Y, Yu L, Zhao Q, Dong X. Zebrafish
znfl1s
regulate left‐right asymmetry patterning through controlling the expression of
fgfr1a. J Cell Physiol 2018; 234:1987-1995. [PMID: 30317609 DOI: 10.1002/jcp.27564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/14/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyun Li
- Maternal and Child Health Medical InstituteWomen’s Hospital of Nanjing Medical University
| | - Feng Gao
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Yingmin Zhao
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Luqingqing He
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing China
| | - Yun Huang
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Xiaojing Yang
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Yahui Zhou
- Maternal and Child Health Medical InstituteWomen’s Hospital of Nanjing Medical University
| | - Lingling Yu
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Qingshun Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing China
| | - Xiaohua Dong
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| |
Collapse
|
50
|
Sun DI, Tasca A, Haas M, Baltazar G, Harland RM, Finkbeiner WE, Walentek P. Na+/H+ Exchangers Are Required for the Development and Function of Vertebrate Mucociliary Epithelia. Cells Tissues Organs 2018; 205:279-292. [PMID: 30300884 DOI: 10.1159/000492973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchangers (NHEs) represent a highly conserved family of ion transporters that regulate pH homeostasis. NHEs as well as other proton transporters were previously linked to the regulation of the Wnt signaling pathway, cell polarity signaling, and mucociliary function. Furthermore, mutations in the gene SLC9A3 (encoding NHE3) were detected as additional risk factors for airway infections in cystic fibrosis patients. Here, we used the Xenopus embryonic mucociliary epidermis as well as human airway epithelial cells (HAECs) as models to investigate the functional roles of NHEs in mucociliary development and regeneration. In Xenopus embryos, NHEs 1-3 were expressed during epidermal development, and loss of NHE function impaired mucociliary clearance in tadpoles. Clearance defects were caused by reduced cilia formation, disrupted alignment of basal bodies in multiciliated cells (MCCs), and dysregulated mucociliary gene expression. These data also suggested that NHEs may contribute to the activation of Wnt signaling in mucociliary epithelia. In HAECs, pharmacological inhibition of NHE function also caused defective ciliation and regeneration in airway MCCs. Collectively, our data revealed a requirement for NHEs in vertebrate mucociliary epithelia and linked NHE activity to cilia formation and function in differentiating MCCs. Our results provide an entry point for the understanding of the contribution of NHEs to signaling, development, and pathogenesis in the human respiratory tract.
Collapse
Affiliation(s)
- Dingyuan I Sun
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Department of Pathology, University of California, San Francisco, California, USA
| | - Alexia Tasca
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany
| | - Maximilian Haas
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Grober Baltazar
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Richard M Harland
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, California, USA
| | - Peter Walentek
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, .,Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, .,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg,
| |
Collapse
|