1
|
Minorsky PV. The "plant neurobiology" revolution. PLANT SIGNALING & BEHAVIOR 2024; 19:2345413. [PMID: 38709727 PMCID: PMC11085955 DOI: 10.1080/15592324.2024.2345413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
The 21st-century "plant neurobiology" movement is an amalgam of scholars interested in how "neural processes", broadly defined, lead to changes in plant behavior. Integral to the movement (now called plant behavioral biology) is a triad of historically marginalized subdisciplines, namely plant ethology, whole plant electrophysiology and plant comparative psychology, that set plant neurobiology apart from the mainstream. A central tenet held by these "triad disciplines" is that plants are exquisitely sensitive to environmental perturbations and that destructive experimental manipulations rapidly and profoundly affect plant function. Since destructive measurements have been the norm in plant physiology, much of our "textbook knowledge" concerning plant physiology is unrelated to normal plant function. As such, scientists in the triad disciplines favor a more natural and holistic approach toward understanding plant function. By examining the history, philosophy, sociology and psychology of the triad disciplines, this paper refutes in eight ways the criticism that plant neurobiology presents nothing new, and that the topics of plant neurobiology fall squarely under the purview of mainstream plant physiology. It is argued that although the triad disciplines and mainstream plant physiology share the common goal of understanding plant function, they are distinct in having their own intellectual histories and epistemologies.
Collapse
Affiliation(s)
- Peter V. Minorsky
- Department of Natural Sciences, Mercy University, Dobbs Ferry, NY, USA
| |
Collapse
|
2
|
Moreira D, Kaur D, Fourbert-Mendes S, Showalter AM, Coimbra S, Pereira AM. Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112231. [PMID: 39154893 DOI: 10.1016/j.plantsci.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sara Fourbert-Mendes
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sílvia Coimbra
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Ana Marta Pereira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
3
|
Xu YJ, Luo T, Zhou PM, Wang WQ, Yang WC, Li HJ. Pollen-expressed RLCKs control pollen tube burst. PLANT COMMUNICATIONS 2024; 5:100934. [PMID: 38689493 PMCID: PMC11369774 DOI: 10.1016/j.xplc.2024.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
In angiosperms, the pollen tube enters the receptive synergid cell, where it ruptures to release its cytoplasm along with two sperm cells. This interaction is complex, and the exact signal transducers that trigger the bursting of pollen tubes are not well understood. In this study, we identify three homologous receptor-like cytoplasmic kinases (RLCKs) expressed in pollen tubes of Arabidopsis, Delayed Burst 1/2/3 (DEB1/2/3), which play a crucial role in this process. These genes produce proteins localized on the plasma membrane, and their knockout causes delayed pollen tube burst and entrance of additional pollen tubes into the embryo sac due to fertilization recovery. We show that DEBs interact with the Ca2+ pump ACA9, influencing the dynamics of cytoplasmic Ca2+ in pollen tubes through phosphorylation. These results highlight the importance of DEBs as key signal transducers and the critical function of the DEB-ACA9 axis in timely pollen tube burst in synergids.
Collapse
Affiliation(s)
- Yin-Jiao Xu
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Luo
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Min Zhou
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Qi Wang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Cheung AY. FERONIA: A Receptor Kinase at the Core of a Global Signaling Network. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:345-375. [PMID: 38424067 DOI: 10.1146/annurev-arplant-102820-103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Initially identified as a key regulator of female fertility in Arabidopsis, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
6
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Rafińska K, Niedojadło K, Świdziński M, Bednarska-Kozakiewicz E. Distribution of exchangeable Ca 2+ during the process of Larix decidua Mill. pollination and germination. Sci Rep 2024; 14:5639. [PMID: 38454044 PMCID: PMC10920793 DOI: 10.1038/s41598-024-54903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
8
|
Baillie AL, Sloan J, Qu LJ, Smith LM. Signalling between the sexes during pollen tube reception. TRENDS IN PLANT SCIENCE 2024; 29:343-354. [PMID: 37640641 DOI: 10.1016/j.tplants.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Plant reproduction is a complex, highly-coordinated process in which a single, male germ cell grows through the maternal reproductive tissues to reach and fertilise the egg cell. Focussing on Arabidopsis thaliana, we review signalling between male and female partners which is important throughout the pollen tube journey, especially during pollen tube reception at the ovule. Numerous receptor kinases and their coreceptors are implicated in signal perception in both the pollen tube and synergid cells at the ovule entrance, and several specific peptide and carbohydrate ligands for these receptors have recently been identified. Clarifying the interplay between these signals and the downstream responses they instigate presents a challenge for future research and may help to illuminate broader principles of plant cell-cell communication.
Collapse
Affiliation(s)
- Alice L Baillie
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jen Sloan
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa M Smith
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
9
|
Ponvert N, Johnson MA. Synergid cell calcium oscillations refine understanding of FERONIA/LORELEI signaling during interspecific hybridization. PLANT REPRODUCTION 2024; 37:57-68. [PMID: 37934279 PMCID: PMC10879309 DOI: 10.1007/s00497-023-00483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
KEY MESSAGE Pollen tubes from closely related species and mutants lacking pollen tube MYB transcription factors are able to initiate FER/LRE-dependent synergid cell calcium oscillations. Reproductive isolation leads to the evolution of new species; however, the molecular mechanisms that maintain reproductive barriers between sympatric species are not well defined. In flowering plants, sperm cells are immotile and are delivered to female gametes by the pollen grain. After landing on the stigmatic surface, the pollen grain germinates a polarized extension, the pollen tube, into floral tissue. After growing via polar extension to the female gametes and shuttling its cargo of sperm cells through its cytoplasm, the pollen tube signals its arrival and identity to synergid cells that flank the egg. If signaling is successful, the pollen tube and receptive synergid cell burst, and sperm cells are released for fusion with female gametes. To better understand cell-cell recognition during reproduction and how reproductive barriers are maintained between closely related species, pollen tube-initiated synergid cell calcium ion dynamics were examined during interspecific crosses. It was observed that interspecific pollen tubes successfully trigger synergid cell calcium oscillations-a hallmark of reproductive success-but signaling fails downstream of key signaling genes and sperm are not released. This work further defines pollen tube-synergid cell signaling as a critical block to interspecific hybridization and suggests that the FERONIA/LORELEI signaling mechanism plays multiple parallel roles during pollen tube reception.
Collapse
Affiliation(s)
- Nathaniel Ponvert
- Department of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
10
|
Ogawa ST, Kessler SA. Update on signaling pathways regulating polarized intercellular communication in Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 193:1732-1744. [PMID: 37453128 DOI: 10.1093/plphys/kiad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Sienna T Ogawa
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| | - Sharon A Kessler
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| |
Collapse
|
11
|
Moreira D, Kaur D, Pereira AM, Held MA, Showalter AM, Coimbra S. Type II arabinogalactans initiated by hydroxyproline-O-galactosyltransferases play important roles in pollen-pistil interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:371-389. [PMID: 36775989 DOI: 10.1111/tpj.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
12
|
Sugi N, Izumi R, Tomomi S, Susaki D, Kinoshita T, Maruyama D. Removal of the endoplasma membrane upon sperm cell activation after pollen tube discharge. FRONTIERS IN PLANT SCIENCE 2023; 14:1116289. [PMID: 36778680 PMCID: PMC9909283 DOI: 10.3389/fpls.2023.1116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
In pollen and pollen tubes, immotile sperm cells are enclosed by an inner vegetative plasma membrane (IVPM), a single endomembrane originating from the vegetative-cell plasma membrane. It is widely believed that sperm cells must be removed from the IVPM prior to gamete associations and fusions; however, details of the timing and morphological changes upon IVPM dissociation remain elusive. Here, we report a rapid IVPM breakdown immediately before double fertilization in Arabidopsis thaliana. The IVPM was stably observed in coiling pollen tubes when pollen tube discharge was prevented using lorelei mutant ovules. In contrast, a semi-in vivo fertilization assay in wild-type ovules demonstrated fragmented IVPM around sperm nuclei 1 min after pollen tube discharge. These observations revealed the dynamic alteration of released sperm cells and provided new insights into double fertilization in flowering plants. With a summary of recent findings on IVPM lipid composition, we discussed the possible physiological signals controlling IVPM breakdown.
Collapse
|
13
|
Gao S, Li C. CrRLK1L receptor kinases-regulated pollen-pistil interactions. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Zhou Y, Fang W, Pang Z, Chen LY, Cai H, Ain NU, Chang MC, Ming R. AP1G2 Affects Mitotic Cycles of Female and Male Gametophytes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:924417. [PMID: 35873977 PMCID: PMC9301471 DOI: 10.3389/fpls.2022.924417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
During sexual reproduction in flowering plants, haploid spores are formed from meiosis of spore mother cells. The spores then undergo mitosis, develop into female and male gametophytes, and give rise to seeds after fertilization. We identified a female sterile mutant ap1g2-4 from EMS mutagenesis, and analyses of two T-DNA insertion mutants, ap1g2-1 +/- and ap1g2-3 -/-, and detected a partial female and male sterility. The ap1g2 mutant gametophyte development was arrested at one nuclear stage. A complementation test using a genomic sequence of AP1G2 with its native promoter restored the function in the three ap1g2 mutant lines. Transcriptome profiling of ap1g2 ovules revealed that four genes encoding clathrin assembly proteins PICALM5A/B and PICALM9A/B, which were involved in endocytosis, were downregulated, which were confirmed to interact with AP1G2 through yeast two-hybrid assays and BIFC analysis. Our result also demonstrated that RALFL4-8-15-19-26 CML16 and several calcium-dependent protein kinases, including CPK14-16-17, were all downregulated in the ovules of ap1g2-1 +/-. Moreover, Ca2+ concentration was low in impaired gametophytes. Therefore, we proposed that through interaction with PICALM5A/B and PICALM9A/B, AP1G2 may mediate gametogenesis accompanied by Ca2+ signaling in Arabidopsis. Our findings revealed a crucial role of AP1G2 in female and male gametogenesis in Arabidopsis and enhanced our understanding of the molecular mechanisms underpinning sexual reproduction in flowering plants.
Collapse
Affiliation(s)
- Yongmei Zhou
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenqin Fang
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziqin Pang
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Yu Chen
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Noor-Ul- Ain
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
15
|
Damineli DSC, Portes MT, Feijó JA. Electrifying rhythms in plant cells. Curr Opin Cell Biol 2022; 77:102113. [PMID: 35809387 DOI: 10.1016/j.ceb.2022.102113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Physiological oscillations (or rhythms) pervade all spatiotemporal scales of biological organization, either because they perform critical functions or simply because they can arise spontaneously and may be difficult to prevent. Regardless of the case, they reflect regulatory relationships between control points of a given system and offer insights as read-outs of the concerted regulation of a myriad of biological processes. Here we review recent advances in understanding ultradian oscillations (period < 24h) in plant cells, with a special focus on single-cell oscillations. Ion channels are at the center stage due to their involvement in electrical/excitabile phenomena associated with oscillations and cell-cell communication. We highlight the importance of quantitative approaches to measure oscillations in appropriate physiological conditions, which are essential strategies to deal with the complexity of biological rhythms. Future development of optogenetics techniques in plants will further boost research on the role of membrane potential in oscillations and waves across multiple cell types.
Collapse
Affiliation(s)
- Daniel S C Damineli
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP 05508-090, Brazil.
| | - Maria Teresa Portes
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090, Brazil
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| |
Collapse
|
16
|
A receptor-channel trio conducts Ca 2+ signalling for pollen tube reception. Nature 2022; 607:534-539. [PMID: 35794475 DOI: 10.1038/s41586-022-04923-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Precise signalling between pollen tubes and synergid cells in the ovule initiates fertilization in flowering plants1. Contact of the pollen tube with the ovule triggers calcium spiking in the synergids2,3 that induces pollen tube rupture and sperm release. This process, termed pollen tube reception, entails the action of three synergid-expressed proteins in Arabidopsis: FERONIA (FER), a receptor-like kinase; LORELEI (LRE), a glycosylphosphatidylinositol-anchored protein; and NORTIA (NTA), a transmembrane protein of unknown function4-6. Genetic analyses have placed these three proteins in the same pathway; however, it remains unknown how they work together to enable synergid-pollen tube communication. Here we identify two pollen-tube-derived small peptides7 that belong to the rapid alkalinization factor (RALF) family8 as ligands for the FER-LRE co-receptor, which in turn recruits NTA to the plasma membrane. NTA functions as a calmodulin-gated calcium channel required for calcium spiking in the synergid. We also reconstitute the biochemical pathway in which FER-LRE perceives pollen-tube-derived peptides to activate the NTA calcium channel and initiate calcium spiking, a second messenger for pollen tube reception. The FER-LRE-NTA trio therefore forms a previously unanticipated receptor-channel complex in the female cell to recognize male signals and trigger the fertilization process.
Collapse
|
17
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
18
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
19
|
Nagae TT, Takeuchi H, Higashiyama T. Quantification of Species-Preferential Micropylar Chemoattraction in Arabidopsis by Fluorescein Diacetate Staining of Pollen Tubes. Int J Mol Sci 2022; 23:ijms23052722. [PMID: 35269862 PMCID: PMC8910611 DOI: 10.3390/ijms23052722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
Sexual reproduction between males and females of the same species is essential for species maintenance. Ovular micropylar guidance, the last step of pollen tube guidance in angiosperms, contributes to species-preferential reproduction. Previous studies using semi-in vivo attraction assays showed that species-preferential attractant peptides are secreted from the ovule through its micropyle. However, conventional semi-in vivo assays usually depend on transgenic pollen tubes expressing a fluorescent protein to determine whether the tubes are attracted to the ovule to precisely penetrate the micropyle. Here, we found that fluorescein diacetate (FDA) staining was suitable for evaluating the micropylar guidance rate of non-transgenic pollen tubes in semi-in vivo conditions. Micropylar guidance was quantified for ovules and pollen tubes of Arabidopsis thaliana and Arabidopsis lyrata by combining FDA staining with modified semi-in vivo assays. Our results using the simple staining method showed that the ovules of each species secrete species-preferential attractants, and that pollen tubes respond more strongly to attractants of their own species compared with those of closely related species. LURE-type CRP810 attractant peptides were shown to be responsible for micropylar attraction of A. thaliana in the semi-in vivo assay. The POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 6 (PRK6) receptor for LURE1, as well as an unidentified receptor for other LURE-type attractants, are involved in the species-preferential response of these two Arabidopsis species.
Collapse
Affiliation(s)
- Takuya T. Nagae
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan;
| | - Hidenori Takeuchi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan;
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence:
| |
Collapse
|
20
|
|
21
|
Kumarswamyreddy N, Reddy DN, Robkis DM, Kamiya N, Tsukamoto R, Kanaoka MM, Higashiyama T, Oishi S, Bode JW. Chemical Synthesis of Torenia Plant Pollen Tube Attractant Proteins by KAHA Ligation. RSC Chem Biol 2022; 3:721-727. [PMID: 35755195 PMCID: PMC9175099 DOI: 10.1039/d2cb00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of secreted cysteine-rich proteins (CRPs) is a long-standing challenge due to protein aggregation and premature formation of inter- and intramolecular disulfide bonds. Chemical synthesis provides reduced CRPs with a higher purity, which is advantageous for folding and isolation. Herein, we report the chemical synthesis of pollen tube attractant CRPs Torenia fournieri LURE (TfLURE) and Torenia concolor LURE (TcLURE) and their chimeric analogues via α-ketoacid-hydroxylamine (KAHA) ligation. The bioactivity of chemically synthesized TfLURE protein was shown to be comparable to E. coli expressed recombinant protein through in vitro assay. The convergent protein synthesis approach is beneficial for preparing these small protein variants efficiently. A convergent chemical synthesis was established for Torenia plant pollen tube attractant proteins, LUREs and their chimeric analogues by KAHA ligation. The synthetic TfLURE showed comparable bioactivity with E.coli expressed recombinant protein.![]()
Collapse
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Department of Chemistry, Indian Institute of Technology Tirupati Tirupati Andhra Pradesh 517506 India
| | - Damodara N Reddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - D Miklos Robkis
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Nao Kamiya
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Ryoko Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Masahiro M Kanaoka
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo Tokyo 113-0033 Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Jeffrey W Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
22
|
Rodriguez-Furlan C, Van Norman JM. Girl power: NORTIA polarization seals pollen tube fate. Dev Cell 2021; 56:2923-2925. [PMID: 34752745 DOI: 10.1016/j.devcel.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How protein dynamics contribute to developmental processes is a critical biological question. In this issue of Developmental Cell, Ju et al. show that subcellular localization of NORTIA in the female gametophyte is required for pollen reception. NORTIA redistribution boosts cues that drive pollen tube bursting, thus promoting male gamete release and fertilization.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California-Riverside, Riverside, CA, USA
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California-Riverside, Riverside, CA, USA.
| |
Collapse
|
23
|
Ju Y, Yuan J, Jones DS, Zhang W, Staiger CJ, Kessler SA. Polarized NORTIA accumulation in response to pollen tube arrival at synergids promotes fertilization. Dev Cell 2021; 56:2938-2951.e6. [PMID: 34672969 DOI: 10.1016/j.devcel.2021.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Signal-mediated regulation of protein trafficking is an elegant mechanism for controlling the delivery of molecules to a precise location for critical signaling events that occur over short time frames. During plant reproduction, the FERONIA receptor complex is critical for intercellular communication that leads to gamete delivery; however, the impact of the FERONIA signal transduction cascade on protein trafficking in synergid cells remains unknown. Live imaging of pollen tube reception has revealed that a key outcome of FERONIA signaling is polar accumulation of the MLO protein NORTIA at the filiform apparatus in response to signals from an arriving pollen tube. Artificial delivery of NORTIA to the filiform apparatus is sufficient to bypass the FERONIA signaling pathway and to promote interspecific pollen tube reception. We propose that polar accumulation of NORTIA leads to the production of a secondary booster signal to ensure that pollen tubes burst to deliver the sperm cells for double fertilization.
Collapse
Affiliation(s)
- Yan Ju
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Jing Yuan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel S Jones
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Weiwei Zhang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sharon A Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Sadoine M, Ishikawa Y, Kleist TJ, Wudick MM, Nakamura M, Grossmann G, Frommer WB, Ho CH. Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology. PLANT PHYSIOLOGY 2021; 187:485-503. [PMID: 35237822 PMCID: PMC8491070 DOI: 10.1093/plphys/kiab353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 05/03/2023]
Abstract
The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters, and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. The cellular distribution of receptors, ligands, and activation state must be integrated with information about the cellular distribution of metabolites in relation to metabolic fluxes and signaling dynamics in order to achieve the promise of in vivo biochemistry. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension. First steps have been taken to monitor the activity of transporters in vivo. Advancements in imaging technologies and specimen handling and stimulation have enabled researchers in plant sciences to implement sensor technologies in intact plants. Here, we provide a brief history of the development of genetically encoded sensors and an overview of the types of sensors available for quantifying and visualizing ion and metabolite distribution and dynamics. We further discuss the pros and cons of specific sensor designs, imaging systems, and sample manipulations, provide advice on the choice of technology, and give an outlook into future developments.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Yuuma Ishikawa
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Thomas J. Kleist
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael M. Wudick
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Guido Grossmann
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B. Frommer
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Cheng-Hsun Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Author for communication:
| |
Collapse
|
25
|
Moser M, Kirkpatrick A, Groves NR, Meier I. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus 2020; 11:149-163. [PMID: 32631106 PMCID: PMC7529407 DOI: 10.1080/19491034.2020.1783783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Andrew Kirkpatrick
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA.,Center for RNA Biology, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
26
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
27
|
Barranco-Guzmán AM, González-Gutiérrez AG, Rout NP, Verdín J, Rodríguez-Garay B. Cytosolic calcium localization and dynamics during early endosperm development in the genus Agave (Asparagales, Asparagaceae). PROTOPLASMA 2019; 256:1079-1092. [PMID: 30923921 DOI: 10.1007/s00709-019-01366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Calcium is a secondary messenger that regulates and coordinates the cellular responses to environmental cues. Despite calcium being a key player during fertilization in plants, little is known about its role during the development of the endosperm. For this reason, the distribution, abundance, and dynamics of cytosolic calcium during the first stages of endosperm development of Agave tequilana and Agave salmiana were analyzed. Cytosolic calcium and actin filaments detected in the embryo sacs of Agave tequilana and A. salmiana revealed that they play an important role during the division and nuclear migration of the endosperm. After fertilization, a relatively high concentration of cytosolic calcium was located in the primary nucleus of the endosperm, as well as around migrating nuclei during the development of the endosperm. Cytosolic calcium participates actively during the first mitosis of the endosperm mother cell and interacts with the actin filaments that generate the motor forces during the migration of the nuclei through the large cytoplasm of the central cell.
Collapse
Affiliation(s)
- Angel Martín Barranco-Guzmán
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Alejandra G González-Gutiérrez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Nutan Prasad Rout
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Jorge Verdín
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Benjamín Rodríguez-Garay
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico.
| |
Collapse
|
28
|
Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S. Insights into secrets along the pollen tube pathway in need to be discovered. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2979-2992. [PMID: 30820535 DOI: 10.1093/jxb/erz087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed-the ultimate aim of the process-will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen-pistil interactions that give rise to the new seed.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute - BioISI, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Maria João Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Marta Pereira
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| |
Collapse
|
29
|
Johnson MA, Harper JF, Palanivelu R. A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:809-837. [PMID: 30822112 DOI: 10.1146/annurev-arplant-050718-100133] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In flowering plants, pollen tubes undergo tip growth to deliver two nonmotile sperm to the ovule where they fuse with an egg and central cell to achieve double fertilization. This extended journey involves rapid growth and changes in gene activity that manage compatible interactions with at least seven different cell types. Nearly half of the genome is expressed in haploid pollen, which facilitates genetic analysis, even of essential genes. These unique attributes make pollen an ideal system with which to study plant cell-cell interactions, tip growth, cell migration, the modulation of cell wall integrity, and gene expression networks. We highlight the signaling systems required for pollen tube navigation and the potential roles of Ca2+ signals. The dynamics of pollen development make sexual reproduction highly sensitive to heat stress. Understanding this vulnerability may generate strategies to improve seed crop yields that are under threat from climate change.
Collapse
Affiliation(s)
- Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA;
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | | |
Collapse
|
30
|
Zheng RH, Su SD, Xiao H, Tian HQ. Calcium: A Critical Factor in Pollen Germination and Tube Elongation. Int J Mol Sci 2019; 20:E420. [PMID: 30669423 PMCID: PMC6358865 DOI: 10.3390/ijms20020420] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
Pollen is the male gametophyte of higher plants. Its major function is to deliver sperm cells to the ovule to ensure successful fertilization. During this process, many interactions occur among pollen tubes and pistil cells and tissues, and calcium ion (Ca2+) dynamics mediate these interactions among cells to ensure that pollen reaches the embryo sac. Although the precise functions of Ca2+ dynamics in the cells are unknown, we can speculate about its roles on the basis of its spatial and temporal characteristics during these interactions. The results of many studies indicate that calcium is a critical element that is strongly related to pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Ren Hua Zheng
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Shun De Su
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Hui Xiao
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Hui Qiao Tian
- School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
31
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
32
|
Abstract
SummaryFertilization in higher plants induces many structural and physiological changes in the fertilized egg, and represents the transition from the haploid female gamete to the diploid zygote, the first cell of a sporophyte. Some changes are induced extremely rapidly following fusion with sperm cells and are the preclusions of egg activation. This review focuses on the early changes that occur in the egg after fusion with sperm cells, but before nuclear fusion. Reported changes include cell shrinkage, cell wall formation, polarity change, oscillation in Ca2+ concentration, and DNA synthesis. In addition, the current understanding of egg activation is summarized and the possible functional relevance of the changes is explored.
Collapse
|
33
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
34
|
Walia A, Waadt R, Jones AM. Genetically Encoded Biosensors in Plants: Pathways to Discovery. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:497-524. [PMID: 29719164 DOI: 10.1146/annurev-arplant-042817-040104] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| | - Rainer Waadt
- Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander M Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| |
Collapse
|
35
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Wasąg P, Suwińska A, Zakrzewski P, Walczewski J, Lenartowski R, Lenartowska M. Calreticulin localizes to plant intra/extracellular peripheries of highly specialized cells involved in pollen-pistil interactions. PROTOPLASMA 2018; 255:57-67. [PMID: 28620697 PMCID: PMC5756280 DOI: 10.1007/s00709-017-1134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/05/2017] [Indexed: 05/11/2023]
Abstract
Calcium (Ca2+) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca2+ storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca2+ stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca2+-buffering protein, is able to bind Ca2+ reversibly, it can serve as a mobile store of easily releasable Ca2+ (so called an exchangeable Ca2+) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca2+ storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca2+ are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca2+ storage and mobilization during sexual reproduction of angiosperms.
Collapse
Affiliation(s)
- Piotr Wasąg
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Przemysław Zakrzewski
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Jakub Walczewski
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
37
|
Gu LL, Gao QF, Wang YF. Cyclic nucleotide-gated channel 18 functions as an essential Ca 2+ channel for pollen germination and pollen tube growth in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1197999. [PMID: 27322818 PMCID: PMC5703252 DOI: 10.1080/15592324.2016.1197999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We recently revealed that cyclic nucleotide-gated channel 18 (CNGC18) functioned as the main Ca2+ channel in pollen tube tips for pollen tube guidance to ovules by regulating external Ca2+ influx in Arabidopsis. In this study, we found that the reduction of external Ca2+ concentration ([Ca2+]ext) from 10 mM to 5 mM, and further to 2 mM, led to the decreases of pollen germination percentages, but led to the increases of the percentages of ruptured pollen grains and tubes, and branched pollen tubes in vitro in cngc18-17 compared with wild type. The second point mutant allele cngc18-22 showed similar phenotypes, including reduced pollen germination percentages, increased percentages of ruptured pollen tubes, but did not show obvious different percentages of ruptured pollen grains and branched pollen tubes compared with wild type. These data demonstrate that CNGC18 plays essential roles in pollen germination and tube growth as a Ca2+ channel in Arabidopsis.
Collapse
Affiliation(s)
- Li-Li Gu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Qi-Fei Gao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- CONTACT Yong-Fei Wang National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Ndinyanka Fabrice T, Kaech A, Barmettler G, Eichenberger C, Knox JP, Grossniklaus U, Ringli C. Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation. BMC PLANT BIOLOGY 2017; 17:176. [PMID: 29078752 PMCID: PMC5658917 DOI: 10.1186/s12870-017-1136-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/18/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND The pollen tube (PT) serves as a model system for investigating plant cell growth and morphogenesis. Ultrastructural studies are indispensable to complement data from physiological and genetic analyses, yet an effective method is lacking for PTs of the model plant Arabidopsis thaliana. METHODS Here, we present reliable approaches for ultrastructural studies of Arabidopsis PTs, as well as an efficient technique for immunogold detection of cell wall epitopes. Using different fixation and embedding strategies, we show the amount of PT ultrastructural details that can be obtained by the different methods. RESULTS Dozens of cross-sections can be obtained simultaneously by the approach, which facilitates and shortens the time for evaluation. In addition to in vitro-grown PTs, our study follows the route of PTs from germination, growth along the pistil, to the penetration of the dense stylar tissue, which requires considerable mechanical forces. To this end, PTs have different strategies from growing between cells but also between the protoplast and the cell wall and even within each other, where they share a partly common cell wall. The separation of PT cell walls in an outer and an inner layer reported for many plant species is less clear in Arabidopsis PTs, where these cell wall substructures are connected by a distinct transition zone. CONCLUSIONS The major advancement of this method is the effective production of a large number of longitudinal and cross-sections that permits obtaining a detailed and representative picture of pollen tube structures in an unprecedented way. This is particularly important when comparing PTs of wild type and mutants to identify even subtle alterations in cytoarchitecture. Arabidopsis is an excellent plant for genetic manipulation, yet the PTs, several-times smaller compared to tobacco or lily, represent a technical challenge. This study reveals a method to overcome this problem and make Arabidopsis PTs more amenable to a combination of genetic and ultrastructural analyses.
Collapse
Affiliation(s)
- Tohnyui Ndinyanka Fabrice
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, 8057 Zurich, Switzerland
| | - Gery Barmettler
- Center for Microscopy and Image Analysis, University of Zurich, 8057 Zurich, Switzerland
| | - Christof Eichenberger
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - J. Paul Knox
- University of Leeds, Center for Plant Sciences, Leeds, LS2 9JT UK
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christoph Ringli
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
39
|
Li DX, Hu HY, Li G, Ru ZG, Tian HQ. Calcium controls the formation of vacuoles from mitochondria to regulate microspore development in wheat. PLANT REPRODUCTION 2017; 30:131-139. [PMID: 28900728 DOI: 10.1007/s00497-017-0309-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Potassium antimonite was used to investigate the localisation of calcium in developing wheat anthers to examine the relationship between Ca2+ and pollen development. During anther development, calcium precipitate formation increased in anther wall cells prior to microspore mother cell meiosis and appeared in microspores, suggesting the presence of a calcium influx from anther wall cells into the locule. Initially, the precipitates in microspore cytoplasm primarily accumulated in the mitochondria and destroyed their inner membranes (cisterns) to become small vacuoles, which expanded and fused, ultimately becoming a large vacuole during microspore vacuolisation. After microspore division and large vacuole decomposition, many calcium precipitates again accumulated in the small vacuoles, indicating that calcium from the large vacuole moved back into the cytoplasm of bicellular pollen.
Collapse
Affiliation(s)
- Dong Xiao Li
- Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Hai Yan Hu
- Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Gan Li
- Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Zhen Gang Ru
- Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Hui Qiao Tian
- School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
40
|
Plant cell wall signalling and receptor-like kinases. Biochem J 2017; 474:471-492. [PMID: 28159895 DOI: 10.1042/bcj20160238] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed.
Collapse
|
41
|
Damineli DSC, Portes MT, Feijó JA. Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3267-3281. [PMID: 28369603 PMCID: PMC5853864 DOI: 10.1093/jxb/erx032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
Oscillations in pollen tubes have been reported for many cellular processes, including growth, extracellular ion fluxes, and cytosolic ion concentrations. However, there is a shortage of quantitative methods to measure and characterize the different dynamic regimes observed. Herein, a suite of open-source computational methods and original algorithms were integrated into an automated analysis pipeline that we employed to characterize specific oscillatory signatures in pollen tubes of Arabidopsis thaliana (Col-0). Importantly, it enabled us to detect and quantify a Ca2+ spiking behaviour upon growth arrest and synchronized oscillations involving growth, extracellular H+ fluxes, and cytosolic Ca2+, providing the basis for novel hypotheses. Our computational approach includes a new tip detection method with subpixel resolution using linear regression, showing improved ability to detect oscillations when compared to currently available methods. We named this data analysis pipeline 'Computational Heuristics for Understanding Kymographs and aNalysis of Oscillations Relying on Regression and Improved Statistics', or CHUKNORRIS. It can integrate diverse data types (imaging, electrophysiology), extract quantitative and time-explicit estimates of oscillatory characteristics from isolated time series (period and amplitude) or pairs (phase relationships and delays), and evaluate their synchronization state. Here, its performance is tested with ratiometric and single channel kymographs, ion flux data, and growth rate analysis.
Collapse
Affiliation(s)
- Daniel S C Damineli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Maria Teresa Portes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
42
|
Yamato KT, Kuchitsu K. "Fusion" in fertilization: interdisciplinary collaboration among plant and animal scientists. JOURNAL OF PLANT RESEARCH 2017; 130:419-421. [PMID: 28396963 DOI: 10.1007/s10265-017-0937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan.
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
43
|
Di Fino LM, D'Ambrosio JM, Tejos R, van Wijk R, Lamattina L, Munnik T, Pagnussat GC, Laxalt AM. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. PLANTA 2017; 245:717-728. [PMID: 27999988 DOI: 10.1007/s00425-016-2634-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 05/20/2023]
Abstract
AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis. Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.
Collapse
Affiliation(s)
- Luciano M Di Fino
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Juan Martín D'Ambrosio
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Ricardo Tejos
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093, Iquique, Chile
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, Section Plant Cell Biology, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas IIB-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.
| |
Collapse
|
44
|
Susaki D, Maruyama D, Yelagandula R, Berger F, Kawashima T. Live-Cell Imaging of F-Actin Dynamics During Fertilization in Arabidopsis thaliana. Methods Mol Biol 2017; 1669:47-54. [PMID: 28936648 DOI: 10.1007/978-1-4939-7286-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Fertilization comprises a complex series of cellular processes leading to the fusion of a male and female gamete. Many studies have been carried out to investigate each step of fertilization in plants; however, our comprehensive understanding of all the sequential events during fertilization is still limited. This is largely due to difficulty in investigating events in the female gametophyte, which is deeply embedded in the maternal tissue. Recent advances in confocal microcopy assisted by fluorescent marker lines have contributed to visualizing subcellular dynamics in real time during fertilization in vivo. In this chapter, we describe a method focusing on the investigation of F-actin dynamics in the central cell during male gamete nuclear migration. This method also allows the study of a wide range of early sexual reproduction events, from pollen tube guidance to the early stage of seed development.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Ramesh Yelagandula
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
- Department of Plant and Soil Sciences, University of Kentucky, 321 Plant Science Building, 1405 Veterans Dr., Lexington, KY, 40546, USA.
| |
Collapse
|
45
|
Schoenaers S, Balcerowicz D, Costa A, Vissenberg K. The Kinase ERULUS Controls Pollen Tube Targeting and Growth in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1942. [PMID: 29184563 PMCID: PMC5694544 DOI: 10.3389/fpls.2017.01942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/27/2017] [Indexed: 05/09/2023]
Abstract
In this paper, we describe the role of the receptor-like kinase ERULUS (ERU) in PT growth of Arabidopsis thaliana. In silico analysis and transcriptional reporter lines revealed that ERU is only expressed in pollen and root hairs (RHs), making it a tip growth-specific kinase. Deviations from Mendelian inheritance were observed in the offspring of self-pollinated heterozygous eru plants. We found that in vivo eru PT targeting was disturbed, providing a possible explanation for the observed decrease in eru fertilization competitiveness. Extracellular calcium perception and intracellular calcium dynamics lie at the basis of in vivo pollen tube (PT) tip growth and guidance. In vitro, ERU loss-of-function lines displayed no obvious PT phenotype, unless grown on low extracellular calcium ([Ca2+]ext) medium. When grown at 12 the normal [Ca2+]ext, eru PTs grew 37% slower relative to WT PTs. Visualization of cytoplasmic [Ca2+]cyt oscillations using the Yellow Cameleon 3.6 (YC3.6) calcium sensor showed that, unlike in WT PTs, eru apical [Ca2+]cyt oscillations occur at a lower frequency when grown at lower [Ca2+]ext, consistent with the observed reduced growth velocity. Our results show that the tip growth-specific kinase ERULUS is involved in regulating Ca2+-dependent PT growth, and most importantly, fertilization efficiency through successful PT targeting to the ovules.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Technological Educational Institute of Crete: University of Applied Sciences, Crete, Greece
- *Correspondence: Kris Vissenberg,
| |
Collapse
|
46
|
Pereira AM, Lopes AL, Coimbra S. Arabinogalactan Proteins as Interactors along the Crosstalk between the Pollen Tube and the Female Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:1895. [PMID: 28018417 PMCID: PMC5159419 DOI: 10.3389/fpls.2016.01895] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs) have long been considered to be implicated in several steps of the reproductive process of flowering plants. Pollen tube growth along the pistil tissues requires a multiplicity of signaling pathways to be activated and turned off precisely, at crucial timepoints, to guarantee successful fertilization and seed production. In the recent years, an outstanding effort has been made by the plant reproduction scientific community in order to better understand this process. This resulted in the discovery of a fairly substantial number of new players essential for reproduction, as well as their modes of action and interactions. Besides all the indications of AGPs involvement in reproduction, there were no convincing evidences about it. Recently, several studies came out to prove what had long been suggested about this complex family of glycoproteins. AGPs consist of a large family of hydroxyproline-rich proteins, predicted to be anchored to the plasma membrane and extremely rich in sugars. These two last characteristics always made them perfect candidates to be involved in signaling mechanisms, in several plant developmental processes. New findings finally relate AGPs to concrete functions in plant reproduction. In this review, it is intended not only to describe how different molecules and signaling pathways are functioning to achieve fertilization, but also to integrate the recent discoveries about AGPs along this process.
Collapse
Affiliation(s)
- Ana M. Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Ana L. Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| |
Collapse
|
47
|
Abstract
Compared with the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells, they interact and fuse with two dimorphic female gametes (the egg and the central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here, we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion, as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca(2+) is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes, including mammals.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany.
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
48
|
RLKs orchestrate the signaling in plant male-female interaction. SCIENCE CHINA-LIFE SCIENCES 2016; 59:867-77. [DOI: 10.1007/s11427-016-0118-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
|
49
|
Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K, Soumpourou E, Thouin J, Véry AA, Sanders D, Morris RJ, Oldroyd GED. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 2016; 352:1102-5. [PMID: 27230377 DOI: 10.1126/science.aae0109] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Nuclear-associated Ca(2+) oscillations mediate plant responses to beneficial microbial partners--namely, nitrogen-fixing rhizobial bacteria that colonize roots of legumes and arbuscular mycorrhizal fungi that colonize roots of the majority of plant species. A potassium-permeable channel is known to be required for symbiotic Ca(2+) oscillations, but the calcium channels themselves have been unknown until now. We show that three cyclic nucleotide-gated channels in Medicago truncatula are required for nuclear Ca(2+) oscillations and subsequent symbiotic responses. These cyclic nucleotide-gated channels are located at the nuclear envelope and are permeable to Ca(2+) We demonstrate that the cyclic nucleotide-gated channels form a complex with the postassium-permeable channel, which modulates nuclear Ca(2+) release. These channels, like their counterparts in animal cells, might regulate multiple nuclear Ca(2+) responses to developmental and environmental conditions.
Collapse
Affiliation(s)
- Myriam Charpentier
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jongho Sun
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Guru V Radhakrishnan
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim Findlay
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eleni Soumpourou
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julien Thouin
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS-386 INRA (French National Institute for Agricultural Research)-SupAgro-M-Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier, France
| | - Anne-Aliénor Véry
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS-386 INRA (French National Institute for Agricultural Research)-SupAgro-M-Université Montpellier, Campus SupAgro-INRA, 34060 Montpellier, France
| | - Dale Sanders
- Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Giles E D Oldroyd
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
50
|
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and Regulation of Programmed Cell Death in Plant Development. Annu Rev Cell Dev Biol 2016; 32:441-468. [PMID: 27298090 DOI: 10.1146/annurev-cellbio-111315-124915] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.
Collapse
Affiliation(s)
- Anna Daneva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhen Gao
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|