1
|
Prill K, Windsor Reid P, Pilgrim D. Heart Morphogenesis Requires Smyd1b for Proper Incorporation of the Second Heart Field in Zebrafish. Genes (Basel) 2025; 16:52. [PMID: 39858599 PMCID: PMC11764850 DOI: 10.3390/genes16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. Smyd1, a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of Hand2 expression in mammals. This study examines the role of Smyd1b in zebrafish cardiac morphogenesis to elucidate its function and the mechanisms underlying congenital heart defects. Methods: Smyd1b (still heart) mutant embryos were analyzed for cardiac defects, and changes in gene expression related to heart development using live imaging, in situ hybridization, quantitative PCR and immunofluorescent comparisons and analysis. Results: Smyd1b mutants displayed severe cardiac defects, including failure to loop, severe edema, and an expansion of cardiac jelly linked to increased has2 expression. Additionally, the expression of key cardiac transcription factors, such as gata4, gata5, and nkx2.5, was notably reduced, indicating disrupted transcriptional regulation. The migration of cardiac progenitors was impaired and the absence of Islet-1-positive cells in the mutant hearts suggests a failed contribution of SHF progenitor cells. Conclusions: These findings underscore the essential role of Smyd1b in regulating cardiac morphogenesis and the development of the second heart field. This study highlights the potential of Smyd1b as a key factor in understanding the genetic and molecular mechanisms underlying congenital heart defects and cardiac development.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Pamela Windsor Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
- Department of Biological Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Dave Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
| |
Collapse
|
2
|
Derrick CJ, Eley L, Alqahtani A, Henderson DJ, Chaudhry B. Zebrafish arterial valve development occurs through direct differentiation of second heart field progenitors. Cardiovasc Res 2024:cvae230. [PMID: 39460530 DOI: 10.1093/cvr/cvae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS Bicuspid Aortic Valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and ultimately, whether functional testing of BAV variants could be carried out. METHODS AND RESULTS Using a combination of live imaging, immunohistochemistry and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. CONCLUSIONS Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, NE1 3BZ
| |
Collapse
|
3
|
Moran HR, Nyarko OO, O’Rourke R, Ching RCK, Riemslagh FW, Peña B, Burger A, Sucharov CC, Mosimann C. The pericardium forms as a distinct structure during heart formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613484. [PMID: 39345600 PMCID: PMC11429720 DOI: 10.1101/2024.09.18.613484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories of hand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to post-natal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/β-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
Collapse
Affiliation(s)
- Hannah R. Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Obed O. Nyarko
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ryenne-Christine K. Ching
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Frederike W. Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brisa Peña
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Institute, Division of Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Bioengineering Department, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Sam J, Torregroza I, Evans T. Gata6 functions in zebrafish endoderm to regulate late differentiating arterial pole cardiogenesis. Development 2024; 151:dev202895. [PMID: 39133135 PMCID: PMC11423812 DOI: 10.1242/dev.202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.
Collapse
Affiliation(s)
- Jessica Sam
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Noël ES. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol 2024; 156:121-156. [PMID: 38556421 DOI: 10.1016/bs.ctdb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Collapse
Affiliation(s)
- Emily S Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Zuo Y, Chen C, Liu F, Hu H, Wen C, Dong S, Liao X, Cao Z, Shi X, Zhong Z, Chen J, Lu H. Benzophenone induces cardiac developmental toxicity in zebrafish embryos by upregulating Wnt signaling. CHEMOSPHERE 2023; 344:140283. [PMID: 37775055 DOI: 10.1016/j.chemosphere.2023.140283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Benzophenone (BP) is found in many popular consumer products, such as cosmetics. BP potential toxicity to humans and aquatic organisms has emerged as an increased concern. In current study, we utilized a zebrafish model to assess BP-induced developmental cardiotoxicity. Following BP exposure, zebrafish embryos exhibited developmental toxicity, including increased mortality, reduced hatchability, delayed yolk sac absorption, and shortened body length. Besides, BP exposure induced cardiac defects in zebrafish embryos, comprising pericardial edema, reduced myocardial contractility and rhythm disturbances, and altered expression levels of cardiac developmental marker genes. Mechanistically, BP exposure disturbed the redox state and increased the level of apoptosis in zebrafish cardiomyocytes. Transcriptional expression levels of Wnt signaling genes, involving lef1, axin2, and β-catenin, were upregulated after BP treatment. Inhibition of Wnt signaling with IWR-1 could rescue the BP-induced cardiotoxicity in zebrafish. In summary, BP exposure causes cardiotoxicity via upregulation of the Wnt signaling pathway in zebrafish embryos.
Collapse
Affiliation(s)
- Yuhua Zuo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325003, Zhejiang, China
| | - Chao Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Fasheng Liu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Hongmei Hu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Chao Wen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Si Dong
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xiaoyun Shi
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Epidemiology, School of Public Health, School of Medicine, Tongji University, Shanghai, 200331, China.
| | - Huiqiang Lu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
7
|
Ma J, Jiang P, Huang Y, Lu C, Tian G, Xiao X, Meng Y, Xiong X, Cheng B, Wang D, Lu H. Oxidative stress contributes to flumioxazin-induced cardiotoxicity in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2737-2746. [PMID: 37712518 DOI: 10.1002/etc.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Flumioxazin is a widely applied herbicide for the control of broadleaf weeds, including aquatic plants. Current evidence suggests that flumioxazin could induce cardiac defects (ventricular septal defects) in vertebrates, but the underlining mechanisms remain unclear. Because of the inhibitory effect of flumioxazin on polyphenol oxidase, the assumption is made that flumioxazin-induced cardiotoxicity is caused by oxidative stress. To verify whether oxidative stress plays an important role in flumioxazin-induced cardiotoxicity, we compared the differences in heart phenotype, oxidative stress level, apoptosis, and gene expression between flumioxazin exposure and a normal environment, and we also tested whether cardiotoxicity could be rescued with astaxanthin. The results showed that flumioxazin induced both cardiac malformations and the abnormal gene expression associated with cardiac development. Cardiac malformations included pericardial edema, cardiac linearization, elongated heart, cardiomegaly, cardiac wall hypocellularity, myocardial cell atrophy with a granular appearance, and a significant gap between the myocardial intima and the adventitia. An increase in oxidative stress and apoptosis was observed in the cardiac region of zebrafish after exposure to flumioxazin. The antioxidant astaxanthin reversed the cardiac malformations, excessive production of reactive oxygen species (ROS), and expression of genes for cardiac developmental and apoptosis regulation induced by flumioxazin. In addition, flumioxazin also activated aryl hydrocarbon receptor (AhR) signaling pathway genes (aryl hydrocarbon receptor 2 [ahr2], cytochrome p450 family subfamily a [cyp1a1], and b [cyp1b1]) and increased the concentration of porphyrins. The results suggest that excessive ROS production, which could be mediated through AhR, led to apoptosis, contributing to the cardiotoxicity of flumioxazin in zebrafish embryos. Environ Toxicol Chem 2023;42:2737-2746. © 2023 SETAC.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of the Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Nudear Industry Ganzhou Geotechnech Investigation & Design Group Company Limited, Guangzhou, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Food College, Nanchang University, Nanchang, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoqiang Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Di Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of the Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| |
Collapse
|
8
|
DeMoya RA, Forman-Rubinsky RE, Fontaine D, Shin J, Watkins SC, Lo CW, Tsang M. Sin3a associated protein 130 kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. Front Cell Dev Biol 2023; 11:1197109. [PMID: 37711853 PMCID: PMC10498550 DOI: 10.3389/fcell.2023.1197109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a congenital heart disease where the left ventricle is reduced in size. A forward genetic screen in mice identified SIN3A associated protein 130 kDa (Sap130), part of the chromatin modifying SIN3A/HDAC complex, as a gene contributing to the etiology of HLHS. Here, we report the role of zebrafish sap130 genes in heart development. Loss of sap130a, one of two Sap130 orthologs, resulted in smaller ventricle size, a phenotype reminiscent to the hypoplastic left ventricle in mice. While cardiac progenitors were normal during somitogenesis, diminution of the ventricle size suggest the Second Heart Field (SHF) was the source of the defect. To explore the role of sap130a in gene regulation, transcriptome profiling was performed after the heart tube formation to identify candidate pathways and genes responsible for the small ventricle phenotype. Genes involved in cardiac differentiation and cardiac function were dysregulated in sap130a, but not in sap130b mutants. Confocal light sheet analysis measured deficits in cardiac output in MZsap130a supporting the notion that cardiomyocyte maturation was disrupted. Lineage tracing experiments revealed a significant reduction of SHF cells in the ventricle that resulted in increased outflow tract size. These data suggest that sap130a is involved in cardiogenesis via regulating the accretion of SHF cells to the growing ventricle and in their subsequent maturation for cardiac function. Further, genetic studies revealed an interaction between hdac1 and sap130a, in the incidence of small ventricles. These studies highlight the conserved role of Sap130a and Hdac1 in zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Ricardo A. DeMoya
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel E. Forman-Rubinsky
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Deon Fontaine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joseph Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
DeMoya RA, Forman-Rubinsky RE, Fontaine D, Shin J, Watkins SC, Lo C, Tsang M. Sin3a Associated Protein 130kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534737. [PMID: 37034673 PMCID: PMC10081270 DOI: 10.1101/2023.03.30.534737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hypoplastic left heart syndrome (HLHS) is a congenital heart disease where the left ventricle is reduced in size. A forward genetic screen in mice identified SIN3A associated protein 130kDa ( Sap130 ), a protein in the chromatin modifying SIN3A/HDAC1 complex, as a gene contributing to the digenic etiology of HLHS. Here, we report the role of zebrafish sap130 genes in heart development. Loss of sap130a, one of two Sap130 orthologs, resulted in smaller ventricle size, a phenotype reminiscent to the hypoplastic left ventricle in mice. While cardiac progenitors were normal during somitogenesis, diminution of the ventricle size suggest the Second Heart Field (SHF) was the source of the defect. To explore the role of sap130a in gene regulation, transcriptome profiling was performed after the heart tube formation to identify candidate pathways and genes responsible for the small ventricle phenotype. Genes involved in cardiac differentiation and cell communication were dysregulated in sap130a , but not in sap130b mutants. Confocal light sheet analysis measured deficits in cardiac output in MZsap130a supporting the notion that cardiomyocyte maturation was disrupted. Lineage tracing experiments revealed a significant reduction of SHF cells in the ventricle that resulted in increased outflow tract size. These data suggest that sap130a is involved in cardiogenesis via regulating the accretion of SHF cells to the growing ventricle and in their subsequent maturation for cardiac function. Further, genetic studies revealed an interaction between hdac1 and sap130a , in the incidence of small ventricles. These studies highlight the conserved role of Sap130a and Hdac1 in zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Ricardo A DeMoya
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Rachel E Forman-Rubinsky
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Deon Fontaine
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Joseph Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Simon C Watkins
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| |
Collapse
|
10
|
Yahya I, Brand-Saberi B, Morosan-Puopolo G. Chicken embryo as a model in second heart field development. Heliyon 2023; 9:e14230. [PMID: 36923876 PMCID: PMC10009738 DOI: 10.1016/j.heliyon.2023.e14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Previously, a single source of progenitor cells was thought to be responsible for the formation of the cardiac muscle. However, the second heart field has recently been identified as an additional source of myocardial progenitor cells. The chicken embryo, which develops in the egg, outside the mother can easily be manipulated in vivo and in vitro. Hence, it was an excellent model for establishing the concept of the second heart field. Here, our review will focus on the chicken model, specifically its role in understanding the second heart field. In addition to discussing historical aspects, we provide an overview of recent findings that have helped to define the chicken second heart field progenitor cells. A better understanding of the second heart field development will provide important insights into the congenital malformations affecting cardiac muscle formation and function.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, 11115, Sudan
- Corresponding author. Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801, Bochum, Germany
| | | |
Collapse
|
11
|
Akerberg AA, Trembley M, Butty V, Schwertner A, Zhao L, Beerens M, Liu X, Mahamdeh M, Yuan S, Boyer L, MacRae C, Nguyen C, Pu WT, Burns CE, Burns CG. RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circ Res 2022; 131:980-1000. [PMID: 36367103 PMCID: PMC9770155 DOI: 10.1161/circresaha.122.321728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.
Collapse
Affiliation(s)
- Alexander A. Akerberg
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Michael Trembley
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Vincent Butty
- BioMicroCenter, Department of Biology (V.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Asya Schwertner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Long Zhao
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Manu Beerens
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Xujie Liu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Laurie Boyer
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biological Engineering (L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Calum MacRae
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Christopher Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic‚ Cleveland‚ OH (C.N.)
| | - William T. Pu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - Caroline E. Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - C. Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| |
Collapse
|
12
|
Li W, Guo S, Miao N. Transcriptional responses of fluxapyroxad-induced dysfunctional heart in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90034-90045. [PMID: 35864390 DOI: 10.1007/s11356-022-21981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (FLU) is a succinate dehydrogenase inhibitor (SDHI) fungicide used in controlling crop diseases. Potential toxicity to aquatic organisms is not known. We exposed zebrafish to 1, 2, and 4 μM FLU for 3 days. The embryonic zebrafish showed developmental cardiac defects, including heart malformation, pericardial edema, and heart rate reduction. Compared with the controls, cardiac-specific transcription factors (nkx2.5, myh7, myl7, and myh6) exhibited dysregulated expression patterns after FLU treatment. We next used transcriptome and qRT-PCR analyses to explore the molecular mechanism of FLU cardiotoxicity. The transcriptome analysis and interaction network showed that the downregulated genes were enriched in calcium signaling pathways, adrenergic signaling in cardiomyocytes, and cardiac muscle contraction. FLU exposure repressed the cardio-related calcium signaling pathway, associated with apoptosis in the heart and other manifestations of cardiotoxicity. Thus, the findings provide valuable evidence that FLU exposure causes disruption of cardiac development in zebrafish embryos. Our findings will help to promote a better understanding of the toxicity mechanisms of FLU and act as a reference to explore the rational use and safety of FLU in agriculture.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Shanshan Guo
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
13
|
Halabi R, Cechmanek PB, Hehr CL, McFarlane S. Semaphorin3f as a cardiomyocyte derived regulator of heart chamber development. Cell Commun Signal 2022; 20:126. [PMID: 35986301 PMCID: PMC9389736 DOI: 10.1186/s12964-022-00874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Background During development a pool of precursors form a heart with atrial and ventricular chambers that exhibit distinct transcriptional and electrophysiological properties. Normal development of these chambers is essential for full term survival of the fetus, and deviations result in congenital heart defects. The large number of genes that may cause congenital heart defects when mutated, and the genetic variability and penetrance of the ensuing phenotypes, reveals a need to understand the molecular mechanisms that allow for the formation of chamber-specific cardiomyocyte differentiation. Methods We used in situ hybridization, immunohistochemistry and functional analyses to identify the consequences of the loss of the secreted semaphorin, Sema3fb, in the development of the zebrafish heart by using two sema3fb CRISPR mutant alleles. Results We find that in the developing zebrafish heart sema3fb mRNA is expressed by all cardiomyocytes, whereas mRNA for a known receptor Plexina3 (Plxna3) is expressed preferentially by ventricular cardiomyocytes. In sema3fb CRISPR zebrafish mutants, heart chamber development is impaired; the atria and ventricles of mutants are smaller in size than their wild type siblings, apparently because of differences in cell size and not cell numbers. Analysis of chamber differentiation indicates defects in chamber specific gene expression at the border between the ventricular and atrial chambers, with spillage of ventricular chamber genes into the atrium, and vice versa, and a failure to restrict specialized cardiomyocyte markers to the atrioventricular canal (AVC). The hypoplastic heart chambers are associated with decreased cardiac output and heart edema. Conclusions Based on our data we propose a model whereby cardiomyocytes secrete a Sema cue that, because of spatially restricted expression of the receptor, signals in a ventricular chamber-specific manner to establish a distinct border between atrial and ventricular chambers that is important to produce a fully functional heart. Video abstract
Supplementary information The online version contains supplementary material available at 10.1186/s12964-022-00874-8.
Collapse
|
14
|
Jia K, Chen G, Zeng J, Liu F, Liao X, Guo C, Luo J, Xiong G, Lu H. Low trifloxystrobin-tebuconazole concentrations induce cardiac and developmental toxicity in zebrafish by regulating notch mediated-oxidative stress generation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113752. [PMID: 35709675 DOI: 10.1016/j.ecoenv.2022.113752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Trifloxystrobin-tebuconazole (TFS-TBZ) is a novel, broad-spectrum fungicide that has been frequently detected in both the environment and agricultural products. However, its adverse effects on aquatic organisms remain unknown. In this study, the adverse effects of ecologically relevant TFS-TBZ concentrations (i.e., 75.0, 112.5, and 150.0 μg/L) on the heart and development of zebrafish were investigated. TFS-TBZ was found to substantially hinder development, inhibit growth, and cause significant abnormity at higher concentrations. Moreover, TFS-TBZ caused severe pericardial edema, heart loop failure, cardiac linearization, and ultra-slow heartbeat, implying that TFS-TBZ might induce congenital heart disease. TFS-TBZ inhibited Notch signaling and increased the intracellular generation of reactive oxygen species, resulting in decreased myocardial cell proliferation and increased apoptosis. The use of sodium valproate and Gadofullerene illustrated the relevance of the Notch signaling system and oxidative stress. Finally, TFS-TBZ exposure conveys severe developmental toxicity to the zebrafish heart. The underlying mechanism is regulation notch mediated-oxidative stress generation, implying that TFS-TBZ may be potentially hazardous to aquatic organisms in the environment.
Collapse
Affiliation(s)
- Kun Jia
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Junquan Zeng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Jiaqi Luo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
15
|
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress. TOXICS 2022; 10:toxics10060299. [PMID: 35736907 PMCID: PMC9231182 DOI: 10.3390/toxics10060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
Collapse
|
16
|
Abrial M, Basu S, Huang M, Butty V, Schwertner A, Jeffrey S, Jordan D, Burns CE, Burns CG. Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis Model Mech 2022; 15:dmm046979. [PMID: 35098309 PMCID: PMC8990920 DOI: 10.1242/dmm.046979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFβ) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFβ signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFβ signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFβ signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maryline Abrial
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep Basu
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mengmeng Huang
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vincent Butty
- BioMicroCenter, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asya Schwertner
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel Jordan
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Caroline E. Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C. Geoffrey Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
17
|
Chakraborty S, Allmon E, Sepúlveda MS, Vlachos PP. Haemodynamic dependence of mechano-genetic evolution of the cardiovascular system in Japanese medaka. J R Soc Interface 2021; 18:20210752. [PMID: 34699728 PMCID: PMC8548083 DOI: 10.1098/rsif.2021.0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
The progression of cardiac gene expression-wall shear stress (WSS) interplay is critical to identifying developmental defects during cardiovascular morphogenesis. However, mechano-genetics from the embryonic to larval stages are poorly understood in vertebrates. We quantified peak WSS in the heart and tail vessels of Japanese medaka from 3 days post fertilization (dpf) to 14 dpf using in vivo micro-particle image velocimetry flow measurements, and in parallel analysed the expression of five cardiac genes (fgf8, hoxb6b, bmp4, nkx2.5, smyd1). Here, we report that WSS in the atrioventricular canal (AVC), ventricular outflow tract (OFT), and the caudal vessels in medaka peak with inflection points at 6 dpf and 10-11 dpf instead of a monotonic trend. Retrograde flows are captured at the AVC and OFT of the medaka heart for the first time. In addition, all genes were upregulated at 3 dpf and 7 dpf, indicating a possible correlation between the two, with the cardiac gene upregulation preceding WSS increase in order to facilitate cardiac wall remodelling.
Collapse
Affiliation(s)
- Sreyashi Chakraborty
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Elizabeth Allmon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria S. Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Pavlos P. Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
18
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Smith KA, Uribe V. Getting to the Heart of Left-Right Asymmetry: Contributions from the Zebrafish Model. J Cardiovasc Dev Dis 2021; 8:64. [PMID: 34199828 PMCID: PMC8230053 DOI: 10.3390/jcdd8060064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
The heart is laterally asymmetric. Not only is it positioned on the left side of the body but the organ itself is asymmetric. This patterning occurs across scales: at the organism level, through left-right axis patterning; at the organ level, where the heart itself exhibits left-right asymmetry; at the cellular level, where gene expression, deposition of matrix and proteins and cell behaviour are asymmetric; and at the molecular level, with chirality of molecules. Defective left-right patterning has dire consequences on multiple organs; however, mortality and morbidity arising from disrupted laterality is usually attributed to complex cardiac defects, bringing into focus the particulars of left-right patterning of the heart. Laterality defects impact how the heart integrates and connects with neighbouring organs, but the anatomy of the heart is also affected because of its asymmetry. Genetic studies have demonstrated that cardiac asymmetry is influenced by left-right axis patterning and yet the heart also possesses intrinsic laterality, reinforcing the patterning of this organ. These inputs into cardiac patterning are established at the very onset of left-right patterning (formation of the left-right organiser) and continue through propagation of left-right signals across animal axes, asymmetric differentiation of the cardiac fields, lateralised tube formation and asymmetric looping morphogenesis. In this review, we will discuss how left-right asymmetry is established and how that influences subsequent asymmetric development of the early embryonic heart. In keeping with the theme of this issue, we will focus on advancements made through studies using the zebrafish model and describe how its use has contributed considerable knowledge to our understanding of the patterning of the heart.
Collapse
Affiliation(s)
- Kelly A. Smith
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
20
|
Persistent Ventricle Partitioning in the Adult Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8040041. [PMID: 33918756 PMCID: PMC8070482 DOI: 10.3390/jcdd8040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF), both emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers and subsequent chamber septation. The single ventricle-forming zebrafish heart also integrates FHF and SHF lineages during embryogenesis, yet the contributions of these two myocardial lineages to the adult zebrafish heart remain incompletely understood. Here, we characterize the myocardial labeling of FHF descendants in both the developing and adult zebrafish ventricle. Expanding previous findings, late gastrulation-stage labeling using drl-driven CreERT2 recombinase with a myocardium-specific, myl7-controlled, loxP reporter results in the predominant labeling of FHF-derived outer curvature and the right side of the embryonic ventricle. Raised to adulthood, such lineage-labeled hearts retain broad areas of FHF cardiomyocytes in a region of the ventricle that is positioned at the opposite side to the atrium and encompasses the apex. Our data add to the increasing evidence for a persisting cell-based compartmentalization of the adult zebrafish ventricle even in the absence of any physical boundary.
Collapse
|
21
|
Ma J, Huang Y, Peng Y, Xu Z, Wang Z, Chen X, Xie S, Jiang P, Zhong K, Lu H. Bifenazate exposure induces cardiotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116539. [PMID: 33549839 DOI: 10.1016/j.envpol.2021.116539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Bifenazate is a novel acaricide for selective foliar spraying and is widely used to control mites in agricultural production. However, its toxicity to aquatic organisms is unknown. Here, a zebrafish model was used to study bifenazate toxicity to aquatic organisms. Exposure to bifenazate was found to cause severe cardiotoxicity in zebrafish embryos, along with disorders in the gene expression related to heart development. Bifenazate also caused oxidative stress. Cardiotoxicity caused by bifenazate was partially rescued by astaxanthin (an antioxidant), accompanied by cardiac genes and oxidative stress-related indicators becoming normalized. Our results showed that exposure to bifenazate can significantly change the ATPase activity and gene expression levels of the calcium signaling pathway. These led to heart failure, in which the blood accumulated outside the heart without entering it, eventually leading to death. The results indicated that bifenazate exposure caused cardiotoxicity in zebrafish embryos through the induction of oxidative stress and inhibition of the calcium signaling pathway.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000 Jiangxi, China
| | - Yuyang Peng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zhaopeng Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
22
|
Duong TB, Holowiecki A, Waxman JS. Retinoic acid signaling restricts the size of the first heart field within the anterior lateral plate mesoderm. Dev Biol 2021; 473:119-129. [PMID: 33607112 DOI: 10.1016/j.ydbio.2021.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/27/2023]
Abstract
Retinoic acid (RA) signaling is required to restrict heart size through limiting the posterior boundary of the vertebrate cardiac progenitor field within the anterior lateral plate mesoderm (ALPM). However, we still do not fully understand how different cardiac progenitor populations that contribute to the developing heart, including earlier-differentiating first heart field (FHF), later-differentiating second heart field (SHF), and neural crest-derived progenitors, are each affected in RA-deficient embryos. Here, we quantified the number of cardiac progenitors and differentiating cardiomyocytes (CMs) in RA-deficient zebrafish embryos. While Nkx2.5+ cells were increased overall in the nascent hearts of RA-deficient embryos, unexpectedly, we found that the major effect within this population was a significant expansion in the number of differentiating FHF CMs. In contrast to the expansion of the FHF, there was a progressive decrease in SHF progenitors at the arterial pole as the heart tube elongated. Temporal differentiation assays and immunostaining in RA-deficient embryos showed that the outflow tracts (OFTs) of the hearts were significantly smaller, containing fewer differentiated SHF-derived ventricular CMs and a complete absence of SHF-derived smooth muscle at later stages. At the venous pole of the heart, pacemaker cells of the sinoatrial node also failed to differentiate in RA-deficient embryos. Interestingly, genetic lineage tracing showed that the number of neural-crest derived CMs was not altered within the enlarged hearts of RA-deficient zebrafish embryos. Altogether, our data show that the enlarged hearts in RA-deficient zebrafish embryos are comprised of an expansion in earlier differentiating FHF-derived CMs coupled with a progressive depletion of the SHF, suggesting RA signaling determines the relative ratios of earlier- and later-differentiation cardiac progenitors within an expanded cardiac progenitor pool.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Holowiecki
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
24
|
Warkala M, Chen D, Ramirez A, Jubran A, Schonning M, Wang X, Zhao H, Astrof S. Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development. Circ Res 2021; 128:e27-e44. [PMID: 33249995 PMCID: PMC7864893 DOI: 10.1161/circresaha.120.318200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Defects in the morphogenesis of the fourth pharyngeal arch arteries (PAAs) give rise to lethal birth defects. Understanding genes and mechanisms regulating PAA formation will provide important insights into the etiology and treatments for congenital heart disease. OBJECTIVE Cell-ECM (extracellular matrix) interactions play essential roles in the morphogenesis of PAAs and their derivatives, the aortic arch artery and its major branches; however, their specific functions are not well-understood. Previously, we demonstrated that integrin α5β1 and Fn1 (fibronectin) expressed in the Isl1 lineages regulate PAA formation. The objective of the current studies was to investigate cellular mechanisms by which integrin α5β1 and Fn1 regulate aortic arch artery morphogenesis. METHODS AND RESULTS Using temporal lineage tracing, whole-mount confocal imaging, and quantitative analysis of the second heart field (SHF) and endothelial cell (EC) dynamics, we show that the majority of PAA EC progenitors arise by E7.5 in the SHF and contribute to pharyngeal arch endothelium between E7.5 and E9.5. Consequently, SHF-derived ECs in the pharyngeal arches form a plexus of small blood vessels, which remodels into the PAAs by 35 somites. The remodeling of the vascular plexus is orchestrated by signals dependent on the pharyngeal ECM microenvironment, extrinsic to the endothelium. Conditional ablation of integrin α5β1 or Fn1 in the Isl1 lineages showed that signaling by the ECM regulates aortic arch artery morphogenesis at multiple steps: (1) accumulation of SHF-derived ECs in the pharyngeal arches, (2) remodeling of the EC plexus in the fourth arches into the PAAs, and (3) differentiation of neural crest-derived cells adjacent to the PAA endothelium into vascular smooth muscle cells. CONCLUSIONS PAA formation is a multistep process entailing dynamic contribution of SHF-derived ECs to pharyngeal arches, the remodeling of endothelial plexus into the PAAs, and the remodeling of the PAAs into the aortic arch artery and its major branches. Cell-ECM interactions regulated by integrin α5β1 and Fn1 play essential roles at each of these developmental stages.
Collapse
Affiliation(s)
- Michael Warkala
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Dongying Chen
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ali Jubran
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
25
|
Mao A, Zhang M, Li L, Liu J, Ning G, Cao Y, Wang Q. Pharyngeal pouches provide a niche microenvironment for arch artery progenitor specification. Development 2021; 148:dev.192658. [PMID: 33334861 PMCID: PMC7847271 DOI: 10.1242/dev.192658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022]
Abstract
The paired pharyngeal arch arteries (PAAs) are transient blood vessels connecting the heart with the dorsal aorta during embryogenesis. Although PAA malformations often occur along with pharyngeal pouch defects, the functional interaction between these adjacent tissues remains largely unclear. Here, we report that pharyngeal pouches are essential for PAA progenitor specification in zebrafish embryos. We reveal that the segmentation of pharyngeal pouches coincides spatiotemporally with the emergence of PAA progenitor clusters. These pouches physically associate with pharyngeal mesoderm in discrete regions and provide a niche microenvironment for PAA progenitor commitment by expressing BMP proteins. Specifically, pouch-derived BMP2a and BMP5 are the primary niche cues responsible for activating the BMP/Smad pathway in pharyngeal mesoderm, thereby promoting progenitor specification. In addition, BMP2a and BMP5 play an inductive function in the expression of the cloche gene npas4l in PAA progenitors. cloche mutants exhibit a striking failure to specify PAA progenitors and display ectopic expression of head muscle markers in the pharyngeal mesoderm. Therefore, our results support a crucial role for pharyngeal pouches in establishing a progenitor niche for PAA morphogenesis via BMP2a/5 expression.
Collapse
Affiliation(s)
- Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Linwei Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Mef2c factors are required for early but not late addition of cardiomyocytes to the ventricle. Dev Biol 2020; 470:95-107. [PMID: 33245870 PMCID: PMC7819464 DOI: 10.1016/j.ydbio.2020.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
During heart formation, the heart grows and undergoes dramatic morphogenesis to achieve efficient embryonic function. Both in fish and amniotes, much of the growth occurring after initial heart tube formation arises from second heart field (SHF)-derived progenitor cell addition to the arterial pole, allowing chamber formation. In zebrafish, this process has been extensively studied during embryonic life, but it is unclear how larval cardiac growth occurs beyond 3 days post-fertilisation (dpf). By quantifying zebrafish myocardial growth using live imaging of GFP-labelled myocardium we show that the heart grows extensively between 3 and 5 dpf. Using methods to assess cell division, cellular development timing assay and Kaede photoconversion, we demonstrate that proliferation, CM addition, and hypertrophy contribute to ventricle growth. Mechanistically, we show that reduction in Mef2c activity (mef2ca+/-;mef2cb-/-), downstream or in parallel with Nkx2.5 and upstream of Ltbp3, prevents some CM addition and differentiation, resulting in a significantly smaller ventricle by 3 dpf. After 3 dpf, however, CM addition in mef2ca+/-;mef2cb-/- mutants recovers to a normal pace, and the heart size gap between mutants and their siblings diminishes into adulthood. Thus, as in mice, there is an early time window when SHF contribution to the myocardium is particularly sensitive to loss of Mef2c activity.
Collapse
|
27
|
Huang Y, Ma J, Meng Y, Wei Y, Xie S, Jiang P, Wang Z, Chen X, Liu Z, Zhong K, Cao Z, Liao X, Xiao J, Lu H. Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114775. [PMID: 32504889 DOI: 10.1016/j.envpol.2020.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Oxadiazon-Butachlor (OB) is a widely used herbicide for controlling most annual weeds in rice fields. However, its potential toxicity in aquatic organisms has not been evaluated so far. We used the zebrafish embryo model to assess the toxicity of OB, and found that it affected early cardiac development and caused extensive cardiac damage. Mechanistically, OB significantly increased oxidative stress in the embryos by inhibiting antioxidant enzymes that resulted in excessive production of reactive oxygen species (ROS), eventually leading to cardiomyocyte apoptosis. In addition, OB also inhibited the WNT signaling pathway and downregulated its target genes includinglef1, axin2 and β-catenin. Reactivation of this pathway by the Wnt activator BML-284 and the antioxidant astaxanthin rescued the embryos form the cardiotoxic effects of OB, indicating that oxidative stress, and inhibition of WNT target genes are the mechanistic basis of OB-induced damage in zebrafish. Our study shows that OB exposure causes cardiotoxicity in zebrafish embryos and may be potentially toxic to other aquatic life and even humans.
Collapse
Affiliation(s)
- Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
28
|
Niu X, Subramanian A, Hwang TH, Schilling TF, Galloway JL. Tendon Cell Regeneration Is Mediated by Attachment Site-Resident Progenitors and BMP Signaling. Curr Biol 2020; 30:3277-3292.e5. [PMID: 32649909 PMCID: PMC7484193 DOI: 10.1016/j.cub.2020.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The musculoskeletal system is a striking example of how cell identity and position is coordinated across multiple tissues to ensure function. However, it is unclear upon tissue loss, such as complete loss of cells of a central musculoskeletal connecting tendon, whether neighboring tissues harbor progenitors capable of mediating regeneration. Here, using a zebrafish model, we genetically ablate all embryonic tendon cells and find complete regeneration of tendon structure and pattern. We identify two regenerative progenitor populations, sox10+ perichondrial cells surrounding cartilage and nkx2.5+ cells surrounding muscle. Surprisingly, laser ablation of sox10+ cells, but not nkx2.5+ cells, increases tendon progenitor number in the perichondrium, suggesting a mechanism to regulate attachment location. We find BMP signaling is active in regenerating progenitor cells and is necessary and sufficient for generating new scxa+ cells. Our work shows that muscle and cartilage connective tissues harbor progenitor cells capable of fully regenerating tendons, and this process is regulated by BMP signaling.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tyler H Hwang
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
BVES downregulation in non-syndromic tetralogy of fallot is associated with ventricular outflow tract stenosis. Sci Rep 2020; 10:14167. [PMID: 32843646 PMCID: PMC7447802 DOI: 10.1038/s41598-020-70806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
BVES is a transmembrane protein, our previous work demonstrated that single nucleotide mutations of BVES in tetralogy of fallot (TOF) patients cause a downregulation of BVES transcription. However, the relationship between BVES and the pathogenesis of TOF has not been determined. Here we reported our research results about the relationship between BVES and the right ventricular outflow tract (RVOT) stenosis. BVES expression was significantly downregulated in most TOF samples compared with controls. The expression of the second heart field (SHF) regulatory network genes, including NKX2.5, GATA4 and HAND2, was also decreased in the TOF samples. In zebrafish, bves knockdown resulted in looping defects and ventricular outflow tract (VOT) stenosis, which was mostly rescued by injecting bves mRNA. bves knockdown in zebrafish also decreased the expression of SHF genes, such as nkx2.5, gata4 and hand2, consistent with the TOF samples` results. The dual-fluorescence reporter system analysis showed that BVES positively regulated the transcriptional activity of GATA4, NKX2.5 and HAND2 promoters. In zebrafish, nkx2.5 mRNA partially rescued VOT stenosis caused by bves knockdown. These results indicate that BVES downregulation may be associated with RVOT stenosis of non-syndromic TOF, and bves is probably involved in the development of VOT in zebrafish.
Collapse
|
30
|
Sidhwani P, Leerberg DM, Boezio GLM, Capasso TL, Yang H, Chi NC, Roman BL, Stainier DYR, Yelon D. Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development 2020; 147:dev185900. [PMID: 32439760 PMCID: PMC7328156 DOI: 10.1242/dev.185900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/27/2020] [Indexed: 01/06/2023]
Abstract
Physical forces are important participants in the cellular dynamics that shape developing organs. During heart formation, for example, contractility and blood flow generate biomechanical cues that influence patterns of cell behavior. Here, we address the interplay between function and form during the assembly of the cardiac outflow tract (OFT), a crucial connection between the heart and vasculature that develops while circulation is under way. In zebrafish, we find that the OFT expands via accrual of both endocardial and myocardial cells. However, when cardiac function is disrupted, OFT endocardial growth ceases, accompanied by reduced proliferation and reduced addition of cells from adjacent vessels. The flow-responsive TGFβ receptor Acvrl1 is required for addition of endocardial cells, but not for their proliferation, indicating distinct modes of function-dependent regulation for each of these essential cell behaviors. Together, our results indicate that cardiac function modulates OFT morphogenesis by triggering endocardial cell accumulation that induces OFT lumen expansion and shapes OFT dimensions. Moreover, these morphogenetic mechanisms provide new perspectives regarding the potential causes of cardiac birth defects.
Collapse
Affiliation(s)
- Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dena M Leerberg
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia L M Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Teresa L Capasso
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hongbo Yang
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Beth L Roman
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020019. [PMID: 32456345 PMCID: PMC7344558 DOI: 10.3390/jcdd7020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor beta3 (TGFB3) gene mutations in patients of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD1) and Loeys-Dietz syndrome-5 (LDS5)/Rienhoff syndrome are associated with cardiomyopathy, cardiac arrhythmia, cardiac fibrosis, cleft palate, aortic aneurysms, and valvular heart disease. Although the developing heart of embryos express Tgfb3, its overarching role remains unclear in cardiovascular development and disease. We used histological, immunohistochemical, and molecular analyses of Tgfb3-/- fetuses and compared them to wildtype littermate controls. The cardiovascular phenotypes were diverse with approximately two thirds of the Tgfb3-/- fetuses having one or more cardiovascular malformations, including abnormal ventricular myocardium (particularly of the right ventricle), outflow tract septal and alignment defects, abnormal aortic and pulmonary trunk walls, and thickening of semilunar and/or atrioventricular valves. Ventricular septal defects (VSD) including the perimembranous VSDs were observed in Tgfb3-/- fetuses with myocardial defects often accompanied by the muscular type VSD. In vitro studies using TGFβ3-deficient fibroblasts in 3-D collagen lattice formation assays indicated that TGFβ3 was required for collagen matrix reorganization. Biochemical studies indicated the 'paradoxically' increased activation of canonical (SMAD-dependent) and noncanonical (MAP kinase-dependent) pathways. TGFβ3 is required for cardiovascular development to maintain a balance of canonical and noncanonical TGFβ signaling pathways.
Collapse
|
32
|
Holowiecki A, Linstrum K, Ravisankar P, Chetal K, Salomonis N, Waxman JS. Pbx4 limits heart size and fosters arch artery formation by partitioning second heart field progenitors and restricting proliferation. Development 2020; 147:dev185652. [PMID: 32094112 PMCID: PMC7063670 DOI: 10.1242/dev.185652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Vertebrate heart development requires the integration of temporally distinct differentiating progenitors. However, few signals are understood that restrict the size of the later-differentiating outflow tract (OFT). We show that improper specification and proliferation of second heart field (SHF) progenitors in zebrafish lazarus (lzr) mutants, which lack the transcription factor Pbx4, produces enlarged hearts owing to an increase in ventricular and smooth muscle cells. Specifically, Pbx4 initially promotes the partitioning of the SHF into anterior progenitors, which contribute to the OFT, and adjacent endothelial cell progenitors, which contribute to posterior pharyngeal arches. Subsequently, Pbx4 limits SHF progenitor (SHFP) proliferation. Single cell RNA sequencing of nkx2.5+ cells revealed previously unappreciated distinct differentiation states and progenitor subpopulations that normally reside within the SHF and arterial pole of the heart. Specifically, the transcriptional profiles of Pbx4-deficient nkx2.5+ SHFPs are less distinct and display characteristics of normally discrete proliferative progenitor and anterior, differentiated cardiomyocyte populations. Therefore, our data indicate that the generation of proper OFT size and arch arteries requires Pbx-dependent stratification of unique differentiation states to facilitate both homeotic-like transformations and limit progenitor production within the SHF.
Collapse
Affiliation(s)
- Andrew Holowiecki
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Kelsey Linstrum
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Bioinformatics Division, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Bioinformatics Division, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
33
|
Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Rep 2019; 24:1342-1354.e5. [PMID: 30067987 PMCID: PMC6261257 DOI: 10.1016/j.celrep.2018.06.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.
Collapse
|
34
|
Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 2019; 40:1410-1418. [PMID: 31399780 PMCID: PMC6786954 DOI: 10.1007/s00246-019-02180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115
| | - Caroline E. Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Harvard Stem Cell Institute, Cambridge, MA 02138,Authors for Correspondence: ()
| | - C. Geoffrey Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Authors for Correspondence: ()
| |
Collapse
|
35
|
Ren J, Han P, Ma X, Farah EN, Bloomekatz J, Zeng XXI, Zhang R, Swim MM, Witty AD, Knight HG, Deshpande R, Xu W, Yelon D, Chen S, Chi NC. Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. Dev Cell 2019; 50:729-743.e5. [PMID: 31402282 DOI: 10.1016/j.devcel.2019.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Pacemaker cardiomyocytes that create the sinoatrial node are essential for the initiation and maintenance of proper heart rhythm. However, illuminating developmental cues that direct their differentiation has remained particularly challenging due to the unclear cellular origins of these specialized cardiomyocytes. By discovering the origins of pacemaker cardiomyocytes, we reveal an evolutionarily conserved Wnt signaling mechanism that coordinates gene regulatory changes directing mesoderm cell fate decisions, which lead to the differentiation of pacemaker cardiomyocytes. We show that in zebrafish, pacemaker cardiomyocytes derive from a subset of Nkx2.5+ mesoderm that responds to canonical Wnt5b signaling to initiate the cardiac pacemaker program, including activation of pacemaker cell differentiation transcription factors Isl1 and Tbx18 and silencing of Nkx2.5. Moreover, applying these developmental findings to human pluripotent stem cells (hPSCs) notably results in the creation of hPSC-pacemaker cardiomyocytes, which successfully pace three-dimensional bioprinted hPSC-cardiomyocytes, thus providing potential strategies for biological cardiac pacemaker therapy.
Collapse
Affiliation(s)
- Jie Ren
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peidong Han
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Bloomekatz
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruilin Zhang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan M Swim
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alec D Witty
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hannah G Knight
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rima Deshpande
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weizhe Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
36
|
Shi Y, Li Y, Wang Y, Zhuang J, Wang H, Hu M, Mo X, Yue S, Chen Y, Fan X, Chen J, Cai W, Zhu X, Wan Y, Zhong Y, Ye X, Li F, Zhou Z, Dai G, Luo R, Ocorr K, Jiang Z, Li X, Zhu P, Wu X, Yuan W. The Functional Polymorphism R129W in the BVES Gene Is Associated with Sporadic Tetralogy of Fallot in the Han Chinese Population. Genet Test Mol Biomarkers 2019; 23:601-609. [PMID: 31386585 DOI: 10.1089/gtmb.2019.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Tetralogy of Fallot (TOF) accounts for ∼10% of congenital heart disease cases. The blood vessel epicardial substance (BVES) gene has been reported to play a role in the function of adult hearts. However, whether allelic variants in BVES contribute to the risk of TOF and its possible mechanism remains unknown. Methods: The open reading frame of the BVES gene was sequenced using samples from 146 TOF patients and 100 unrelated healthy controls. qRT-PCR and western blot assays were used to confirm the expression of mutated BVES variants in the TOF samples. The online software Polyphen2 and SIFT were used to predict the deleterious effects of the observed allelic variants. The effects of these allelic variants on the transcriptional activities of genes were examined using dual-fluorescence reporter assays. Results: We genotyped four single nucleotide polymorphisms (SNPs) in the BVES gene from each of the 146 TOF patients. Among them, the minor allelic frequencies of c.385C>T (p.R129W) were 0.035% in TOF, but ∼0.025% in 100 controls and the Chinese Millionome Database. This allelic variant was predicted to be a potentially harmful alteration by the Polyphen2 and SIFT softwares. qRT-PCR and western blot analyses indicated that the expression of BVES in the six right ventricular outflow tract samples with the c.385C>T allelic variant was significantly downregulated. A dual-fluorescence reporter system showed that the c.385C>T allelic variant significantly decreased the transcriptional activity of the BVES gene and also decreased transcription from the GATA4 and NKX2.5 promoters. Conclusions: c.385C>T (p.R129W) is a functional SNP of the BVES gene that reduces the transcriptional activity of BVES in vitro and in vivo in TOF tissues. This subsequently affects the transcriptional activities of GATA4 and NKX2.5 related to TOF. These findings suggest that c.385C>T may be associated with the risk of TOF in the Han Chinese population.
Collapse
Affiliation(s)
- Yan Shi
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Li
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuequn Wang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng Wang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Hu
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoyang Mo
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shusheng Yue
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiongwei Fan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wanwan Cai
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaolan Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongqi Wan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Zhong
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangli Ye
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fang Li
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guo Dai
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rong Luo
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Zhigang Jiang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoping Li
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiushan Wu
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wuzhou Yuan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
37
|
Ki S, Kwon SH, Eum J, Raslan AA, Kim KN, Hwang BJ, Kee Y. 3D light-sheet assay assessing novel valproate-associated cardiotoxicity and folic acid relief in zebrafish embryogenesis. CHEMOSPHERE 2019; 227:551-560. [PMID: 31004822 DOI: 10.1016/j.chemosphere.2019.04.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Precise in vivo toxicological assays to determine the cardiotoxicity of pharmaceuticals and their waste products are essential in order to evaluate their risks to humans and the environment following industrial release. In the present study, we aimed to develop the sensitive imaging-based cardiotoxicity assay and combined 3D light-sheet microscopy with a zebrafish model to identify hidden cardiovascular anomalies induced by valproic acid (VPA) exposure. The zebrafish model is advantageous for this assessment because its embryos remain transparent. The 3D spatial localization of fluorescence-labeled cardiac cells in and around the heart using light-sheet technology revealed dislocalization of the heart from the outflow tract in two-day-old zebrafish embryos treated with 50 μM and 100 μM VPA (P < 0.01) and those embryos exposed to 20 μM VPA presented hypoplastic distal ventricles (P < 0.01). These two observed phenotypes are second heart field-derived cardiac defects. Quantitative analysis of the light-sheet imaging demonstrated that folic acid (FA) supplementation significantly increased the numbers of endocardial and myocardial cells (P < 0.05) and the accretion of second heart field-derived cardiomyocytes to the arterial pole of the outflow tract. The heart rate increased in response to the cellular changes occurring in embryonic heart development (P < 0.05). The present study disclosed the cellular mechanism underlying the role of FA in spontaneous cellular changes in cardiogenesis and in VPA-associated cardiotoxicity. The 3D light-sheet assay may be the next-generation test to evaluate the risks of previously undetected pharmaceutical and environmental cardiotoxicities in both humans and animals.
Collapse
Affiliation(s)
- Seoyoung Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute Chuncheon Center, Chuncheon, South Korea
| | - Juneyong Eum
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Ahmed A Raslan
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Kil-Nam Kim
- Korea Basic Science Institute Chuncheon Center, Chuncheon, South Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea.
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
38
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
39
|
Pawlak M, Kedzierska KZ, Migdal M, Karim AN, Ramilowski JA, Bugajski L, Hashimoto K, Marconi A, Piwocka K, Carninci P, Winata CL. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res 2019; 29:506-519. [PMID: 30760547 PMCID: PMC6396412 DOI: 10.1101/gr.244491.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022]
Abstract
Organogenesis involves dynamic regulation of gene transcription and complex multipathway interactions. Despite our knowledge of key factors regulating various steps of heart morphogenesis, considerable challenges in understanding its mechanism still exist because little is known about their downstream targets and interactive regulatory network. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption in vivo, we performed time-series analyses of the transcriptome and genome-wide chromatin accessibility in isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at developmental stages corresponding to heart tube morphogenesis, looping, and maturation. We identified genetic regulatory modules driving crucial events of heart development that contained key cardiac TFs and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. Loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile, indicating their role in heart development. Among regions with differential chromatin accessibility in mutants were highly conserved noncoding elements that represent putative enhancers driving heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart tube morphogenesis and looping, and were associated with metabolic shift and hematopoietic/cardiac fate switch during CM maturation. Our results revealed the dynamic regulatory landscape throughout heart development and identified interactive molecular networks driving key events of heart morphogenesis.
Collapse
Affiliation(s)
- Michal Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Katarzyna Z Kedzierska
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Maciej Migdal
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Abu Nahia Karim
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | | | - Lukasz Bugajski
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Aleksandra Marconi
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
40
|
Dohn TE, Ravisankar P, Tirera FT, Martin KE, Gafranek JT, Duong TB, VanDyke TL, Touvron M, Barske LA, Crump JG, Waxman JS. Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors. PLoS Genet 2019; 15:e1007962. [PMID: 30721228 PMCID: PMC6377147 DOI: 10.1371/journal.pgen.1007962] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/15/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple syndromes share congenital heart and craniofacial muscle defects, indicating there is an intimate relationship between the adjacent cardiac and pharyngeal muscle (PM) progenitor fields. However, mechanisms that direct antagonistic lineage decisions of the cardiac and PM progenitors within the anterior mesoderm of vertebrates are not understood. Here, we identify that retinoic acid (RA) signaling directly promotes the expression of the transcription factor Nr2f1a within the anterior lateral plate mesoderm. Using zebrafish nr2f1a and nr2f2 mutants, we find that Nr2f1a and Nr2f2 have redundant requirements restricting ventricular cardiomyocyte (CM) number and promoting development of the posterior PMs. Cre-mediated genetic lineage tracing in nr2f1a; nr2f2 double mutants reveals that tcf21+ progenitor cells, which can give rise to ventricular CMs and PM, more frequently become ventricular CMs potentially at the expense of posterior PMs in nr2f1a; nr2f2 mutants. Our studies reveal insights into the molecular etiology that may underlie developmental syndromes that share heart, neck and facial defects as well as the phenotypic variability of congenital heart defects associated with NR2F mutations in humans.
Collapse
Affiliation(s)
- Tracy E. Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Fouley T. Tirera
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Master’s Program in Genetics, Department of Life Sciences, Université Paris Diderot, Paris, France
| | - Kendall E. Martin
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular Genetics and Human Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Jacob T. Gafranek
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Tiffany B. Duong
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Master’s Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Terri L. VanDyke
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Melissa Touvron
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lindsey A. Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - Joshua S. Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
41
|
Mukherjee K, Liao EC. Generation and characterization of a zebrafish muscle specific inducible Cre line. Transgenic Res 2018; 27:559-569. [PMID: 30353407 PMCID: PMC6364321 DOI: 10.1007/s11248-018-0098-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/01/2018] [Indexed: 01/18/2023]
Abstract
Zebrafish transgenic lines provide valuable insights into gene functions, cell lineages and cell behaviors during development. Spatiotemporal control over transgene expression is a critical need in many experimental approaches, with applications in loss- and gain-of-function expression, ectopic expression and lineage tracing experiments. The Cre/loxP recombination system is a powerful tool to provide this control and the demand for validated Cre and loxP zebrafish transgenics is high. One of the major challenges to widespread application of Cre/loxP technology in zebrafish is comparatively small numbers of established tissue-specific Cre or CreERT2 lines. We used Tol2-mediated transgenesis to generate Tg(CrymCherry;-1.9mylz2:CreERT2) which provides an inducible CreERT2 source driven by muscle-specific mylz2 promoter. The transgenic specifically labels the trunk and tail skeletal muscles. We assessed the temporal responsiveness of the transgenic by screening with a validated loxP reporter transgenic ubi:Switch. Further, we evaluated the recombination efficiency in the transgenic with varying concentrations of 4-OHT, for different induction time periods and at different stages of embryogenesis and observed that higher recombination efficiency is achieved when embryos are induced with 10 μM 4-OHT from 10-somites or 24 hpf till 48 or 72 hpf. The transgenic is an addition to currently available zebrafish transgenesis toolbox and a significant tool to advance muscle biology studies in zebrafish.
Collapse
Affiliation(s)
- Kusumika Mukherjee
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Gibb N, Lazic S, Yuan X, Deshwar AR, Leslie M, Wilson MD, Scott IC. Hey2 regulates the size of the cardiac progenitor pool during vertebrate heart development. Development 2018; 145:dev.167510. [PMID: 30355727 DOI: 10.1242/dev.167510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/13/2018] [Indexed: 01/04/2023]
Abstract
A key event in heart development is the timely addition of cardiac progenitor cells, defects in which can lead to congenital heart defects. However, how the balance and proportion of progenitor proliferation versus addition to the heart is regulated remains poorly understood. Here, we demonstrate that Hey2 functions to regulate the dynamics of cardiac progenitor addition to the zebrafish heart. We found that the previously noted increase in myocardial cell number found in the absence of Hey2 function was due to a pronounced expansion in the size of the cardiac progenitor pool. Expression analysis and lineage tracing of hey2-expressing cells showed that hey2 is active in cardiac progenitors. Hey2 acted to limit proliferation of cardiac progenitors, prior to heart tube formation. Use of a transplantation approach demonstrated a likely cell-autonomous (in cardiac progenitors) function for Hey2. Taken together, our data suggest a previously unappreciated role for Hey2 in controlling the proliferative capacity of cardiac progenitors, affecting the subsequent contribution of late-differentiating cardiac progenitors to the developing vertebrate heart.
Collapse
Affiliation(s)
- Natalie Gibb
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Savo Lazic
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ashish R Deshwar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada.,Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada.,Heart and Stroke Richard Lewar Centres of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
43
|
Fukui H, Miyazaki T, Chow RWY, Ishikawa H, Nakajima H, Vermot J, Mochizuki N. Hippo signaling determines the number of venous pole cells that originate from the anterior lateral plate mesoderm in zebrafish. eLife 2018; 7:29106. [PMID: 29809141 PMCID: PMC5995544 DOI: 10.7554/elife.29106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/26/2018] [Indexed: 12/11/2022] Open
Abstract
The differentiation of the lateral plate mesoderm cells into heart field cells constitutes a critical step in the development of cardiac tissue and the genesis of functional cardiomyocytes. Hippo signaling controls cardiomyocyte proliferation, but the role of Hippo signaling during early cardiogenesis remains unclear. Here, we show that Hippo signaling regulates atrial cell number by specifying the developmental potential of cells within the anterior lateral plate mesoderm (ALPM), which are incorporated into the venous pole of the heart tube and ultimately into the atrium of the heart. We demonstrate that Hippo signaling acts through large tumor suppressor kinase 1/2 to modulate BMP signaling and the expression of hand2, a key transcription factor that is involved in the differentiation of atrial cardiomyocytes. Collectively, these results demonstrate that Hippo signaling defines venous pole cardiomyocyte number by modulating both the number and the identity of the ALPM cells that will populate the atrium of the heart.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,AMED-Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
44
|
Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nat Commun 2018; 9:2001. [PMID: 29784942 PMCID: PMC5962599 DOI: 10.1038/s41467-018-04402-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear. Here, we track zebrafish heart development using transgenics based on the cardiopharyngeal gene tbx1. Live imaging uncovers a tbx1 reporter-expressing cell sheath that continuously disseminates from the lateral plate mesoderm towards the forming heart tube. High-speed imaging and optogenetic lineage tracing corroborates that the zebrafish ventricle forms through continuous addition from the undifferentiated progenitor sheath followed by late-phase accrual of the bulbus arteriosus (BA). FGF inhibition during sheath migration reduces ventricle size and abolishes BA formation, refining the window of FGF action during OFT formation. Our findings consolidate previous end-point analyses and establish zebrafish ventricle formation as a continuous process. Late-differentiating second heart field progenitors contribute to atrium, ventricle, and outflow tract in the zebrafish heart but how remains unclear. Here, the authors image heart formation in transgenics based on the cardiopharyngeal gene tbx1 and show that progenitors are continuously added.
Collapse
|
45
|
Guerra A, Germano RF, Stone O, Arnaout R, Guenther S, Ahuja S, Uribe V, Vanhollebeke B, Stainier DY, Reischauer S. Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish. eLife 2018; 7:32833. [PMID: 29762122 PMCID: PMC5953537 DOI: 10.7554/elife.32833] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
The ultimate formation of a four-chambered heart allowing the separation of the pulmonary and systemic circuits was key for the evolutionary success of tetrapods. Complex processes of cell diversification and tissue morphogenesis allow the left and right cardiac compartments to become distinct but remain poorly understood. Here, we describe an unexpected laterality in the single zebrafish atrium analogous to that of the two atria in amniotes, including mammals. This laterality appears to derive from an embryonic antero-posterior asymmetry revealed by the expression of the transcription factor gene meis2b. In adult zebrafish hearts, meis2b expression is restricted to the left side of the atrium where it controls the expression of pitx2c, a regulator of left atrial identity in mammals. Altogether, our studies suggest that the multi-chambered atrium in amniotes arose from a molecular blueprint present before the evolutionary emergence of cardiac septation and provide insights into the establishment of atrial asymmetry.
Collapse
Affiliation(s)
- Almary Guerra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Raoul Fv Germano
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Oliver Stone
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rima Arnaout
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Suchit Ahuja
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Verónica Uribe
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
46
|
Huang M, Jiao J, Wang J, Xia Z, Zhang Y. Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:656-666. [PMID: 29223822 DOI: 10.1016/j.envpol.2017.11.095] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Acrylamide (AA), an environmental pollutant, has been linked to neurotoxicity, genotoxicity and carcinogenicity. AA is widely used to synthesize polymers for industrial applications, is widely found in Western-style carbohydrate-rich foods and cigarette smoke, and can also be detected in human umbilical cord blood and breast milk. This is the first study that demonstrated the cardiac developmental toxicity of AA in zebrafish embryos. Post-fertilization exposure to AA caused a clearly deficient cardiovascular system with a shrunken heart and abortive morphogenesis and function. Disordered expression of the cardiac genes, myl7, vmhc, myh6, bmp4, tbx2b and notch1b, as well as reduced number of myocardial cells and endocardial cells, indicated the collapsed development of ventricle and atrium and failed differentiation of atrioventricular canal (AVC). Although cell apoptosis was not affected, the capacity of cardiomyocyte proliferation was significantly reduced by AA exposure after fertilization. Further investigation showed that treatment with AA specifically reduced the expressions of nkx2.5, myl7 and vmhc in the anterior lateral plate mesoderm (ALPM) during the early cardiogenesis. In addition, AA exposure disturbed the restricted expressions of bmp4, tbx2b and notch1b during atrioventricular (AV) valve development and cardiac chambers maturation. Our results showed that AA-induced cardiotoxicity was related to decreased cardiac progenitor genes expression, reduced myocardium growth, abnormal cardiac chambers morphogenesis and disordered AVC differentiation. Our study demonstrates that AA exposure during a time point analogous to the first trimester in humans has a detrimental effect on early heart development in zebrafish. A high ingestion rate of AA-containing products may be an underlying risk factor for cardiogenesis in fetuses.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhidan Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
47
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
48
|
Colombo S, de Sena-Tomás C, George V, Werdich AA, Kapur S, MacRae CA, Targoff KL. Nkx genes establish second heart field cardiomyocyte progenitors at the arterial pole and pattern the venous pole through Isl1 repression. Development 2018; 145:dev.161497. [PMID: 29361575 DOI: 10.1242/dev.161497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
NKX2-5 is the most commonly mutated gene associated with human congenital heart defects (CHDs), with a predilection for cardiac pole abnormalities. This homeodomain transcription factor is a central regulator of cardiac development and is expressed in both the first and second heart fields (FHF and SHF). We have previously revealed essential functions of nkx2.5 and nkx2.7, two Nkx2-5 homologs expressed in zebrafish cardiomyocytes, in maintaining ventricular identity. However, the differential roles of these genes in the specific subpopulations of the anterior (aSHF) and posterior (pSHF) SHFs have yet to be fully defined. Here, we show that Nkx genes regulate aSHF and pSHF progenitors through independent mechanisms. We demonstrate that Nkx genes restrict proliferation of aSHF progenitors in the outflow tract, delimit the number of pSHF progenitors at the venous pole and pattern the sinoatrial node acting through Isl1 repression. Moreover, optical mapping highlights the requirement for Nkx gene dose in establishing electrophysiological chamber identity and in integrating the physiological connectivity of FHF and SHF cardiomyocytes. Ultimately, our results may shed light on the discrete errors responsible for NKX2-5-dependent human CHDs of the cardiac outflow and inflow tracts.
Collapse
Affiliation(s)
- Sophie Colombo
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Vanessa George
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andreas A Werdich
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Sunil Kapur
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Calum A MacRae
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
49
|
Massarsky A, Prasad G, Di Giulio RT. Total particulate matter from cigarette smoke disrupts vascular development in zebrafish brain (Danio rerio). Toxicol Appl Pharmacol 2018; 339:85-96. [DOI: 10.1016/j.taap.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/09/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022]
|
50
|
Yue Y, Jiang M, He L, Zhang Z, Zhang Q, Gu C, Liu M, Li N, Zhao Q. The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells. J Biol Chem 2017; 293:638-650. [PMID: 29162723 DOI: 10.1074/jbc.ra117.000414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/17/2017] [Indexed: 01/19/2023] Open
Abstract
Cardiogenesis is a tightly controlled biological process required for formation of a functional heart. The transcription factor Foxc1 not only plays a crucial role in outflow tract development in mice, but is also involved in cardiac structure formation and normal function in humans. However, the molecular mechanisms by which Foxc1 controls cardiac development remain poorly understood. Previously, we reported that zebrafish embryos deficient in foxc1a, an ortholog of mammalian Foxc1, display pericardial edemas and die 9-10 days postfertilization. To further investigate Foxc1a's role in zebrafish cardiogenesis and identify its downstream target genes during early heart development, we comprehensively analyzed the cardiovascular phenotype of foxc1a-null zebrafish embryos. Our results confirmed that foxc1a-null mutants exhibit disrupted cardiac morphology, structure, and function. Performing transcriptome analysis on the foxc1a mutants, we found that the expression of the cardiac progenitor marker gene nkx2.5 was significantly decreased, but the expression of germ layer-patterning genes was unaffected. Dual-fluorescence in situ hybridization assays revealed that foxc1a and nkx2.5 are co-expressed in the anterior lateral plate mesoderm at the somite stage. Chromatin immunoprecipitation and promoter truncation assays disclosed that Foxc1a regulates nkx2.5 expression via direct binding to two noncanonical binding sites in the proximal nkx2.5 promoter. Moreover, functional rescue experiments revealed that developmental stage-specific nkx2.5 overexpression partially rescues the cardiac defects of the foxc1a-null embryos. Taken together, our results indicate that during zebrafish cardiogenesis, Foxc1a is active directly upstream of nkx2.5.
Collapse
Affiliation(s)
- Yunyun Yue
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Mingyang Jiang
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Luqingqing He
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Zhaojunjie Zhang
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Qinxin Zhang
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Chun Gu
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Meijing Liu
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Nan Li
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Qingshun Zhao
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| |
Collapse
|