1
|
Moerkens R, Mooiweer J, Ramírez-Sánchez AD, Oelen R, Franke L, Wijmenga C, Barrett RJ, Jonkers IH, Withoff S. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Cell Rep 2024; 43:114247. [PMID: 38907996 DOI: 10.1016/j.celrep.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/24/2024] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.
Collapse
Affiliation(s)
- Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Aarón D Ramírez-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Roy Oelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
2
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Stüve P, Nerb B, Harrer S, Wuttke M, Feuerer M, Junger H, Eggenhofer E, Lungu B, Laslau S, Ritter U. Analysis of organoid and immune cell co-cultures by machine learning-empowered image cytometry. Front Med (Lausanne) 2024; 10:1274482. [PMID: 38298516 PMCID: PMC10827864 DOI: 10.3389/fmed.2023.1274482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 02/02/2024] Open
Abstract
Organoids are three-dimensional (3D) structures that can be derived from stem cells or adult tissue progenitor cells and exhibit an extraordinary ability to autonomously organize and resemble the cellular composition and architectural integrity of specific tissue segments. This feature makes them a useful tool for analyzing therapeutical relevant aspects, including organ development, wound healing, immune disorders and drug discovery. Most organoid models do not contain cells that mimic the neighboring tissue’s microenvironment, which could potentially hinder deeper mechanistic studies. However, to use organoid models in mechanistic studies, which would enable us to better understand pathophysiological processes, it is necessary to emulate the in situ microenvironment. This can be accomplished by incorporating selected cells of interest from neighboring tissues into the organoid culture. Nevertheless, the detection and quantification of organoids in such co-cultures remains a major technical challenge. These imaging analysis approaches would require an accurate separation of organoids from the other cell types in the co-culture. To efficiently detect and analyze 3D organoids in co-cultures, we developed a high-throughput imaging analysis platform. This method integrates automated imaging techniques and advanced image processing tools such as grayscale conversion, contrast enhancement, membrane detection and structure separation. Based on machine learning algorithms, we were able to identify and classify 3D organoids within dense co-cultures of immune cells. This procedure allows a high-throughput analysis of organoid-associated parameters such as quantity, size, and shape. Therefore, the technology has significant potential to advance contextualized research using organoid co-cultures and their potential applications in translational medicine.
Collapse
Affiliation(s)
- Philipp Stüve
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Benedikt Nerb
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| | - Selina Harrer
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Marina Wuttke
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| | - Henrik Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Uwe Ritter
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Liu W, Wang Q, Bai Y, Xiao H, Li Z, Wang Y, Wang Q, Yang J, Sun H. Potential Application of Intestinal Organoids in Intestinal Diseases. Stem Cell Rev Rep 2024; 20:124-137. [PMID: 37938407 DOI: 10.1007/s12015-023-10651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
To accurately reveal the scenario and mecahnism of gastrointestinal diseases, the establishment of in vitro models of intestinal diseases and drug screening platforms have become the focus of attention. Over the past few decades, animal models and immortalized cell lines have provided valuable but limited insights into gastrointestinal research. In recent years, the development of intestinal organoid culture system has revolutionized in vitro studies of intestinal diseases. Intestinal organoids are derived from self-renewal and self-organization intestinal stem cells (ISCs), which can replicate the genetic characteristics, functions, and structures of the original tissues. Consequently, they provide new stragety for studying various intestinal diseases in vitro. In the review, we will discuss the culture techniques of intestinal organoids and describe the use of intestinal organoids as research tools for intestinal diseases. The role of intestinal epithelial cells (IECs) played in the pathogenesis of inflammatory bowel diseases (IBD) and the treatment of intestinal epithelial dysfunction will be highlighted. Besides, we review the current knowledge on using intestinal organoids as models to study the pathogenesis of IBD caused by epithelial dysfunction and to develop new therapeutic approaches. Finally, we shed light on the current challenges of using intestinal organoids as in vitro models.
Collapse
Affiliation(s)
- Wenxiu Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China
| | - Qian Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhunduo Li
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qi Wang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China.
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
6
|
Hopton RE, Jahahn NJ, Zemper AE. Lrig1 drives cryptogenesis and restrains proliferation during colon development. Am J Physiol Gastrointest Liver Physiol 2023; 325:G570-G581. [PMID: 37873577 PMCID: PMC11192189 DOI: 10.1152/ajpgi.00094.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Growth and specification of the mouse intestine occurs in utero and concludes after birth. Although numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1-expressing cells are present at birth and behave as stem cells to establish clonal crypts within 3 wk of life. In addition, we use an inducible knockout mouse to eliminate Lrig1 and show Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates morphological changes during crypt development and the importance of Lrig1 in the developing colon.NEW & NOTEWORTHY Our studies define the importance of studying Lrig1 in colon development. We address a critical gap in the intestinal development literature and provide new information about the molecular cues that guide colon development. Using a novel, inducible knockout of Lrig1, we show Lrig1 is required for appropriate colon epithelial growth and illustrate the importance of Lrig1-expressing cells in the establishment of colonic crypts.
Collapse
Affiliation(s)
- Rachel E Hopton
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States
- Department of Biology, University of Oregon, Eugene, Oregon, United States
| | - Nicholas J Jahahn
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States
- Department of Biology, University of Oregon, Eugene, Oregon, United States
| | - Anne E Zemper
- Department of Biology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
7
|
Iguchi R, Nakayama S, Sasakura Y, Sekiguchi T, Ogasawara M. Repetitive and zonal expression profiles of absorption-related genes in the gastrointestinal tract of ascidian Ciona intestinalis type A. Cell Tissue Res 2023; 394:343-360. [PMID: 37670165 DOI: 10.1007/s00441-023-03828-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Intestinal absorption is essential for heterotrophic bilaterians with a tubular gut. Although the fundamental features of the digestive system were shared among chordates with evolution, the gut morphologies of vertebrates diverged and adapted to different food habitats. The ascidian Ciona intestinalis type A, a genome-wide research model of basal chordates, is used to examine the functional morphology of the intestines because of its transparent juvenile body. In the present study, the characteristic gene expression patterns (GEP) of Ciona absorptive proteins, e.g., brush border membrane enzymes for terminal digestion (lactase, maltase, APA, and APN) and transporters (SGLT1, GLUT5, PEPT1, and B0AT1), were investigated in juveniles and young adults, with a special reference to the absorption of other nutrients by pinocytosis- and phagocytosis-related proteins (megalin, cubilin, amnionless, Dab2, Rab7, LAMP, cathepsins, and MRC1). Whole-mount in situ hybridization revealed that these GEP showed multi-regional and repetitive features along the Ciona gastrointestinal tract, mainly in the stomach and several regions of the intestines. In young adults, many absorption-related genes, including pinocytosis-/phagocytosis-related genes, were also expressed between the stomach and mid-intestine. In the gastrointestinal epithelium, absorption-related genes showed zonal GEP along the epithelial structure. Comparisons of GEP, including other intestinal functions, such as nutrient digestion and intestinal protection, indicated the repetitive assignment of a well-coordinated set of intestinal GEP in the Ciona gastrointestinal tract.
Collapse
Affiliation(s)
- Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Satoshi Nakayama
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Toshio Sekiguchi
- The Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-Gun, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan.
| |
Collapse
|
8
|
Hung YH, Capeling M, Villanueva JW, Kanke M, Shanahan MT, Huang S, Cubitt R, Rinaldi VD, Schimenti JC, Spence JR, Sethupathy P. Integrative genome-scale analyses reveal post-transcriptional signatures of early human small intestinal development in a directed differentiation organoid model. BMC Genomics 2023; 24:641. [PMID: 37884859 PMCID: PMC10601309 DOI: 10.1186/s12864-023-09743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Meghan Capeling
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael T Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Cubitt
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vera D Rinaldi
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
10
|
Kolev HM, Kaestner KH. Mammalian Intestinal Development and Differentiation-The State of the Art. Cell Mol Gastroenterol Hepatol 2023; 16:809-821. [PMID: 37507088 PMCID: PMC10520362 DOI: 10.1016/j.jcmgh.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The development of the mammalian intestine, from its earliest origins as a morphologically uniform sheet of endoderm cells during gastrulation into the complex organ system that is essential for the life of the organism, is a truly fascinating process. During midgestation development, reciprocal interactions between endoderm-derived epithelium and mesoderm-derived mesenchyme enable villification, or the conversion of a radially symmetric pseudostratified epithelium into the functional subdivision of crypts and villi. Once a mature crypt-villus axis is established, proliferation and differentiation of new epithelial cells continue throughout life. Spatially localized signals including the wingless and Int-1, fibroblast growth factor, and Hippo systems, among others, ensure that new cells are being born continuously in the crypt. As cells exit the crypt compartment, a gradient of bone morphogenetic protein signaling limits proliferation to allow for the specification of multiple mature cell types. The first major differentiation decision is dependent on Notch signaling, which specifies epithelial cells into absorptive and secretory lineages. The secretory lineage is subdivided further into Paneth, goblet, tuft, and enteroendocrine cells via a complex network of transcription factors. Although some of the signaling molecules are produced by epithelial cells, critical components are derived from specialized crypt-adjacent mesenchymal cells termed telocytes, which are marked by Forkhead box l1, GLI Family Zinc Finger 1, and platelet-derived growth factor receptor α. The crucial nature of these processes is evidenced by the multitude of intestinal disorders such as colorectal cancer, short-bowel syndrome, and inflammatory bowel disease, which all reflect perturbations of the development and/or differentiation of the intestine.
Collapse
Affiliation(s)
- Hannah M Kolev
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
12
|
Creff J, Nowosad A, Prel A, Pizzoccaro A, Aguirrebengoa M, Duquesnes N, Callot C, Jungas T, Dozier C, Besson A. p57 Kip2 acts as a transcriptional corepressor to regulate intestinal stem cell fate and proliferation. Cell Rep 2023; 42:112659. [PMID: 37327110 DOI: 10.1016/j.celrep.2023.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.
Collapse
Affiliation(s)
- Justine Creff
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Prel
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Pizzoccaro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Nicolas Duquesnes
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Caroline Callot
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
13
|
Huang X, Gu W, Zhang J, Lan Y, Colarusso JL, Li S, Pertl C, Lu J, Kim H, Zhu J, Breault DT, Sévigny J, Zhou Q. Stomach-derived human insulin-secreting organoids restore glucose homeostasis. Nat Cell Biol 2023; 25:778-786. [PMID: 37106062 DOI: 10.1038/s41556-023-01130-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Gut stem cells are accessible by biopsy and propagate robustly in culture, offering an invaluable resource for autologous cell therapies. Insulin-producing cells can be induced in mouse gut, but it has not been possible to generate abundant and durable insulin-secreting cells from human gut tissues to evaluate their potential as a cell therapy for diabetes. Here we describe a protocol to differentiate cultured human gastric stem cells into pancreatic islet-like organoids containing gastric insulin-secreting (GINS) cells that resemble β-cells in molecular hallmarks and function. Sequential activation of the inducing factors NGN3 and PDX1-MAFA led human gastric stem cells onto a distinctive differentiation path, including a SOX4High endocrine and GalaninHigh GINS precursor, before adopting β-cell identity, at efficiencies close to 70%. GINS organoids acquired glucose-stimulated insulin secretion in 10 days and restored glucose homeostasis for over 100 days in diabetic mice after transplantation, providing proof of concept for a promising approach to treat diabetes.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wei Gu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ying Lan
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan L Colarusso
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sanlan Li
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Pertl
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaqi Lu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hyunkee Kim
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zhu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Qiao Zhou
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Szlachcic WJ, Letai KC, Scavuzzo MA, Borowiak M. Deep into the niche: Deciphering local endoderm-microenvironment interactions in development, homeostasis, and disease of pancreas and intestine. Bioessays 2023; 45:e2200186. [PMID: 36871153 DOI: 10.1002/bies.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023]
Abstract
Unraveling molecular and functional heterogeneity of niche cells within the developing endoderm could resolve mechanisms of tissue formation and maturation. Here, we discuss current unknowns in molecular mechanisms underlying key developmental events in pancreatic islet and intestinal epithelial formation. Recent breakthroughs in single-cell and spatial transcriptomics, paralleled with functional studies in vitro, reveal that specialized mesenchymal subtypes drive the formation and maturation of pancreatic endocrine cells and islets via local interactions with epithelium, neurons, and microvessels. Analogous to this, distinct intestinal niche cells regulate both epithelial development and homeostasis throughout life. We propose how this knowledge can be used to progress research in the human context using pluripotent stem cell-derived multilineage organoids. Overall, understanding the interactions between the multitude of microenvironmental cells and how they drive tissue development and function could help us make more therapeutically relevant in vitro models.
Collapse
Affiliation(s)
- Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Katherine C Letai
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Marissa A Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
15
|
Wnt signaling in stem cells during development and cell lineage specification. Curr Top Dev Biol 2023; 153:121-143. [PMID: 36967192 DOI: 10.1016/bs.ctdb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
During embryo development, cell proliferation, cell fate specification and tissue patterning are coordinated and tightly regulated by a handful of evolutionarily conserved signaling pathways activated by secreted growth factor families including fibroblast growth factor (FGF), Nodal/bone morphogenetic protein (BMP), Hedgehog and Wnt. The spatial and temporal activation of these signaling pathways elicit context-specific cellular responses that ultimately shape the different tissues of the embryo. Extensive efforts have been dedicated to identifying the molecular mechanisms underlying these signaling pathways during embryo development, adult tissue homeostasis and regeneration. In this review, we first describe the role of the Wnt/β-catenin signaling pathway during early embryo development, axis specification and cell differentiation as a prelude to highlight how this knowledge is being leveraged to manipulate Wnt/β-catenin signaling activity with small molecules and biologics for the directed differentiation of pluripotent stem cells into various cell lineages that are physiologically relevant for stem cell therapy and regenerative medicine.
Collapse
|
16
|
Rosselot AE, Park M, Kim M, Matsu‐Ura T, Wu G, Flores DE, Subramanian KR, Lee S, Sundaram N, Broda TR, McCauley HA, Hawkins JA, Chetal K, Salomonis N, Shroyer NF, Helmrath MA, Wells JM, Hogenesch JB, Moore SR, Hong CI. Ontogeny and function of the circadian clock in intestinal organoids. EMBO J 2022; 41:e106973. [PMID: 34704277 PMCID: PMC8762567 DOI: 10.15252/embj.2020106973] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.
Collapse
Affiliation(s)
- Andrew E Rosselot
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Miri Park
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Mari Kim
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Toru Matsu‐Ura
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Gang Wu
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Danilo E Flores
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | | | - Suengwon Lee
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Nambirajan Sundaram
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Taylor R Broda
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Heather A McCauley
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Jennifer A Hawkins
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Kashish Chetal
- Division of Biomedical InformaticsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Nathan Salomonis
- Division of Biomedical InformaticsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Noah F Shroyer
- Gastroenterology and HepatologyBaylor College of MedicineHoustonTXUSA
| | - Michael A Helmrath
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - James M Wells
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Division of EndocrinologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - John B Hogenesch
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for ChronobiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Sean R Moore
- Division of Pediatric Gastroenterology, Hepatology, and NutritionDepartment of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Christian I Hong
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for ChronobiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| |
Collapse
|
17
|
Nie J, Liao W, Zhang Z, Zhang M, Wen Y, Capanoglu E, Sarker MMR, Zhu R, Zhao C. A 3D co-culture intestinal organoid system for exploring glucose metabolism. Curr Res Food Sci 2022; 6:100402. [DOI: 10.1016/j.crfs.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
|
18
|
Hao M, Cao Z, Wang Z, Xin J, Kong B, Xu J, Zhang L, Chen P. Patient-Derived Organoid Model in the Prediction of Chemotherapeutic Drug Response in Colorectal Cancer. ACS Biomater Sci Eng 2022; 8:3515-3525. [PMID: 35696669 DOI: 10.1021/acsbiomaterials.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an emerging technology in precision medicine, the patient-derived organoid (PDO) technology has been indicated to provide novel modalities to judge the sensitivity of individual tumors to cancer drugs. In this work, an in vitro model of colorectal cancer (CRC) was established using the PDO culture, and it is demonstrated that the PDO samples preserved, to a great extent, the histologic features and marker expression of the original tumor tissues. Subsequently, cancer drugs 5-FU, oxaliplatin, and irinotecan were selected and screened on five CRC PDO samples, while the patient-derived organoid xenograft (PDOX) model was applied for comparison. The receiver operating characteristic (ROC) curve was drawn according to the IC50 data from the PDO model and the relative tumor proliferation rate (T/C%) from PDOX. Interestingly, the area under the ROC curve was 0.84 (95% CI, 0.64-1.04, P value = 0.028), which suggested that the IC50 of cancer drugs from the PDO model was strongly correlated with PDOX responses. In addition, the optimal sensitivity cutoff value for drug screening in CRC PDOs was identified at 10.35 μM, which could act as a reference value for efficacy evaluation of 5-FU, oxaliplatin, and irinotecan in the colorectal cancer drug screening. Since there are no unified criteria to judge the sensitivity of drugs in vitro, our work provides a method for establishing in vitro evaluation criteria via PDO and PDOX model using the patient tissues received from local hospitals, exhibiting potential in clinical cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Minglu Hao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhipeng Cao
- NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao 266100, China
| | - Zhiwei Wang
- The Affiliated Qingdao Central Hospital, Qingdao University, Qingdao 266000, China.,Qingdao Central Hospital, Qingdao 266042, China
| | - Jianjun Xin
- The Affiliated Qingdao Central Hospital, Qingdao University, Qingdao 266000, China.,Qingdao Central Hospital, Qingdao 266042, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China
| | - Jing Xu
- The Affiliated Qingdao Central Hospital, Qingdao University, Qingdao 266000, China.,Qingdao Central Hospital, Qingdao 266042, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.,Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
19
|
Taelman J, Diaz M, Guiu J. Human Intestinal Organoids: Promise and Challenge. Front Cell Dev Biol 2022; 10:854740. [PMID: 35359445 PMCID: PMC8962662 DOI: 10.3389/fcell.2022.854740] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
The study of human intestinal biology in healthy and diseased conditions has always been challenging. Primary obstacles have included limited tissue accessibility, inadequate in vitro maintenance and ethical constrains. The development of three-dimensional organoid cultures has transformed this entirely. Intestinal organoids are self-organized three-dimensional structures that partially recapitulate the identity, cell heterogeneity and cell behaviour of the original tissue in vitro. This includes the capacity of stem cells to self-renew, as well as to differentiate towards major intestinal lineages. Therefore, over the past decade, the use of human organoid cultures has been instrumental to model human intestinal development, homeostasis, disease, and regeneration. Intestinal organoids can be derived from pluripotent stem cells (PSC) or from adult somatic intestinal stem cells (ISC). Both types of organoid sources harbour their respective strengths and weaknesses. In this mini review, we describe the applications of human intestinal organoids, discussing the differences, advantages, and disadvantages of PSC-derived and ISC-derived organoids.
Collapse
Affiliation(s)
- Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
- *Correspondence: Jordi Guiu,
| |
Collapse
|
20
|
Gu W, Wang H, Huang X, Kraiczy J, Singh PNP, Ng C, Dagdeviren S, Houghton S, Pellon-Cardenas O, Lan Y, Nie Y, Zhang J, Banerjee KK, Onufer EJ, Warner BW, Spence J, Scherl E, Rafii S, Lee RT, Verzi MP, Redmond D, Longman R, Helin K, Shivdasani RA, Zhou Q. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell 2022; 29:101-115.e10. [PMID: 34582804 PMCID: PMC8741647 DOI: 10.1016/j.stem.2021.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5+ adult colonic stem cell and epithelial identity in mice and humans. Satb2 loss in adult mice leads to stable conversion of colonic stem cells into small intestine ileal-like stem cells and replacement of the colonic mucosa with one that resembles the ileum. Conversely, SATB2 confers colonic properties on the mouse ileum. Human colonic organoids also adopt ileal characteristics upon SATB2 loss. SATB2 regulates colonic identity in part by modulating enhancer binding of the intestinal transcription factors CDX2 and HNF4A. Our study uncovers a conserved core regulator of colonic stem cells able to mediate cross-tissue plasticity in mature intestines.
Collapse
Affiliation(s)
- Wei Gu
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Hua Wang
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA
| | - Xiaofeng Huang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Judith Kraiczy
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Pratik N. P. Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Charles Ng
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Sean Houghton
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ying Lan
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Yaohui Nie
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kushal K Banerjee
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jason Spence
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Ellen Scherl
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - David Redmond
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Randy Longman
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200 Denmark,The Novo Nordisk Foundation for Stem Cell Biology (Danstem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA,Lead Contact ()
| |
Collapse
|
21
|
Yang Y, Paivinen P, Xie C, Krup AL, Makela TP, Mostov KE, Reiter JF. Ciliary Hedgehog signaling patterns the digestive system to generate mechanical forces driving elongation. Nat Commun 2021; 12:7186. [PMID: 34893605 PMCID: PMC8664829 DOI: 10.1038/s41467-021-27319-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
How tubular organs elongate is poorly understood. We found that attenuated ciliary Hedgehog signaling in the gut wall impaired patterning of the circumferential smooth muscle and inhibited proliferation and elongation of developing intestine and esophagus. Similarly, ablation of gut-wall smooth muscle cells reduced lengthening. Disruption of ciliary Hedgehog signaling or removal of smooth muscle reduced residual stress within the gut wall and decreased activity of the mechanotransductive effector YAP. Removing YAP in the mesenchyme also reduced proliferation and elongation, but without affecting smooth muscle formation, suggesting that YAP interprets the smooth muscle-generated force to promote longitudinal growth. Additionally, we developed an intestinal culture system that recapitulates the requirements for cilia and mechanical forces in elongation. Pharmacologically activating YAP in this system restored elongation of cilia-deficient intestines. Thus, our results reveal that ciliary Hedgehog signaling patterns the circumferential smooth muscle to generate radial mechanical forces that activate YAP and elongate the gut.
Collapse
Affiliation(s)
- Ying Yang
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Pekka Paivinen
- iCAN Digital Precision Cancer Medicine Flagship, Research Programs Unit, Faculty of Medicine and HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Chang Xie
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Alexis Leigh Krup
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Tomi P Makela
- iCAN Digital Precision Cancer Medicine Flagship, Research Programs Unit, Faculty of Medicine and HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Keith E Mostov
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
22
|
Franco YL, Da Silva L, Cristofoletti R. Navigating Through Cell-Based In vitro Models Available for Prediction of Intestinal Permeability and Metabolism: Are We Ready for 3D? AAPS J 2021; 24:2. [PMID: 34811603 PMCID: PMC8925318 DOI: 10.1208/s12248-021-00665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/23/2021] [Indexed: 01/07/2023] Open
Abstract
Traditionally, in vitro studies to quantify the
intestinal permeability of drugs have relied on two-dimensional cell culture models using human colorectal carcinoma cell lines, namely Caco-2, HT 29 and T84 cells. Although these models have been commonly used for high-throughput screening of xenobiotics in preclinical studies, they do not fully recapitulate the morphology and functionality of enterocytes found in the human intestine in vivo. Efforts to improve the physiological and functional relevance of in vitro intestinal models have led to the development of enteroids/intestinal organoids and microphysiological systems. These models leverage advances in three-dimensional cell culture techniques and stem cell technology (in addition to microfluidics for microphysiological systems), to mimic the architecture and microenvironment of the in vivo intestine more accurately. In this commentary, we will discuss the advantages and limitations of these established and emerging intestinal models, as well as their current and potential future applications for the pre-clinical assessment of oral therapies.
Collapse
Affiliation(s)
- Yesenia L Franco
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Lais Da Silva
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA.
| |
Collapse
|
23
|
Matsumoto Y, Koga H, Takahashi M, Suda K, Ochi T, Seo S, Miyano G, Miyake Y, Nakajima H, Yoshida S, Mikami T, Okazaki T, Hattori N, Yamataka A, Nakamura T. Defined serum-free culture of human infant small intestinal organoids with predetermined doses of Wnt3a and R-spondin1 from surgical specimens. Pediatr Surg Int 2021; 37:1543-1554. [PMID: 34216241 DOI: 10.1007/s00383-021-04957-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Refinement of organoid technology is important for studying physiology and disease of the intestine. We aimed to optimize defined serum-free conditions for human infant small intestinal (SI) organoid culture with predetermined doses of Wnt3a and Rspo1 from surgical specimens. We further assessed whether intestinal specimens could be stored before use as a source of organoids. METHODS Different doses of Wnt3a and Rspo1 in a serum-free medium were tested to establish a condition in which surgically resected SI cells grew as organoids over multiple passages. The expression of marker genes for stem and differentiated cells was assessed by quantitative polymerase chain reaction. We also investigated the organoid-forming efficiency of cells in degenerating intestines stored at 4 °C for various intervals post-resection. RESULTS We determined the doses of Wnt3a and Rspo1 required for the continuous growth of infant SI organoids with multi-differentiation potential. We revealed that, despite the time-dependent loss of stem cells, tissues stored for up to 2 days preserved cells capable of generating amplifiable organoids. CONCLUSION SI cells can be grown as organoids under defined conditions. This could provide a reproducible and customizable method of using surgical specimens for the study of intestinal maturation and their relevance to pediatric diseases.
Collapse
Affiliation(s)
- Yuka Matsumoto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mirei Takahashi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takanori Ochi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shogo Seo
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Go Miyano
- Department of Pediatric Surgery, Juntendo Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Yuichiro Miyake
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hideaki Nakajima
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shiho Yoshida
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takafumi Mikami
- Department of Pediatric Surgery, Juntendo Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Tadaharu Okazaki
- Department of Pediatric Surgery, Juntendo Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tetsuya Nakamura
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
24
|
Saleh J, Mercier B, Xi W. Bioengineering methods for organoid systems. Biol Cell 2021; 113:475-491. [PMID: 34580889 DOI: 10.1111/boc.202000119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Organoids have been widely used in fundamental, biomimetic, and therapeutic studies. These multicellular systems form via cell-autonomous self-organization where a cohort of stem cells undergoes in vivo-like proliferation, differentiation, and morphogenesis. They also recapitulate a series of physiological cell organization, complexity and functions that are untouchable by conventional bio-model systems using immortal cell lines. However, the development of organoids is often not easily controlled and their shape and size are yet fully physiological. Recent research has demonstrated that multiple bioengineering tools could be harnessed to control important internal and external cues that dictate stem cell behavior and stem-cell based organoid development. In this review, we introduce the current development of organoid systems and their potentials, as well as their limitations that impede their further utility in research and clinical fields. In comparison to conventional autonomous organoid system, we then review bioengineering approaches that offer improved control over organoid growth and development. We focus on the genetic editing tools that allow the program of build-in responses and phenotypes for organoid systems with enhanced physiological relevance. We also highlight the advances in bioengineering methods to modify cellular external milieus to generate desirable cell composition, 3D micro-architectures, and complex microfluidic systems. We conclude that the emerging biomimetic methods that employ multidisciplinary approaches could prevail in the future development of organoid systems.
Collapse
Affiliation(s)
- Jad Saleh
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Barbara Mercier
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Wang Xi
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
25
|
Zietek T, Boomgaarden WAD, Rath E. Drug Screening, Oral Bioavailability and Regulatory Aspects: A Need for Human Organoids. Pharmaceutics 2021; 13:1280. [PMID: 34452240 PMCID: PMC8399541 DOI: 10.3390/pharmaceutics13081280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelium critically contributes to oral bioavailability of drugs by constituting an important site for drug absorption and metabolism. In particular, intestinal epithelial cells (IEC) actively serve as gatekeepers of drug and nutrient availability. IECs' transport processes and metabolism are interrelated to the whole-body metabolic state and represent potential points of origin as well as therapeutic targets for a variety of diseases. Human intestinal organoids represent a superior model of the intestinal epithelium, overcoming limitations of currently used in vitro models. Caco-2 cells or rodent explant models face drawbacks such as their cancer and non-human origin, respectively, but are commonly used to study intestinal nutrient absorption, enterocyte metabolism and oral drug bioavailability, despite poorly correlative data. In contrast, intestinal organoids allow investigating distinct aspects of bioavailability including spatial resolution of transport, inter-individual differences and high-throughput screenings. As several countries have already developed strategic roadmaps to phase out animal experiments for regulatory purposes, intestinal organoid culture and organ-on-a-chip technology in combination with in silico approaches are roads to go in the preclinical and regulatory setup and will aid implementing the 3Rs (reduction, refinement and replacement) principle in basic science.
Collapse
Affiliation(s)
- Tamara Zietek
- Doctors against Animal Experiments, 51143 Köln, Germany
| | | | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
26
|
Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials 2021; 276:121020. [PMID: 34280822 DOI: 10.1016/j.biomaterials.2021.121020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Organoids are a new class of biological model systems that have garnered significant interest in the life sciences. When provided with the proper 3D matrix and biochemical factors, stem cells can self-organize and form tissue-specific organoids. Thus far, there has been a substantial effort to identify soluble niche components essential for organoid culture; however, the role of the solid extracellular matrix (ECM) as an essential element of the niche is still largely lacking. In this review, we discuss the importance of the ECM in intestinal, hepatic, and pancreatic organoid culture and how biomaterial-based approaches can be used to probe different ECM properties required for more physiologically and translationally relevant organoid models.
Collapse
Affiliation(s)
- S Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland
| | - N Gjorevski
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - M P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
27
|
Yang Q, Xue SL, Chan CJ, Rempfler M, Vischi D, Maurer-Gutierrez F, Hiiragi T, Hannezo E, Liberali P. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat Cell Biol 2021; 23:733-744. [PMID: 34155381 PMCID: PMC7611267 DOI: 10.1038/s41556-021-00700-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Intestinal organoids derived from single cells undergo complex crypt-villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis.
Collapse
Affiliation(s)
- Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Shi-Lei Xue
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Markus Rempfler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Dario Vischi
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | | | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
28
|
Yu Q, Kilik U, Holloway EM, Tsai YH, Harmel C, Wu A, Wu JH, Czerwinski M, Childs CJ, He Z, Capeling MM, Huang S, Glass IA, Higgins PDR, Treutlein B, Spence JR, Camp JG. Charting human development using a multi-endodermal organ atlas and organoid models. Cell 2021; 184:3281-3298.e22. [PMID: 34019796 PMCID: PMC8208823 DOI: 10.1016/j.cell.2021.04.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.
Collapse
Affiliation(s)
- Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Umut Kilik
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christoph Harmel
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter D R Higgins
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
29
|
El Azhar Y, Sonnen KF. Development in a Dish- In Vitro Models of Mammalian Embryonic Development. Front Cell Dev Biol 2021; 9:655993. [PMID: 34113614 PMCID: PMC8185301 DOI: 10.3389/fcell.2021.655993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Despite decades of research, the complex processes of embryonic development are not fully understood. The study of mammalian development poses particular challenges such as low numbers of embryos, difficulties in culturing embryos in vitro, and the time to generate mutant lines. With new approaches we can now address questions that had to remain unanswered in the past. One big contribution to studying the molecular mechanisms of development are two- and three-dimensional in vitro model systems derived from pluripotent stem cells. These models, such as blastoids, gastruloids, and organoids, enable high-throughput screens and straightforward gene editing for functional testing without the need to generate mutant model organisms. Furthermore, their use reduces the number of animals needed for research and allows the study of human development. Here, we outline and discuss recent advances in such in vitro model systems to investigate pre-implantation and post-implantation development.
Collapse
Affiliation(s)
- Yasmine El Azhar
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
30
|
Shariati L, Esmaeili Y, Javanmard SH, Bidram E, Amini A. Organoid Technology: Current Standing and Future Perspectives. STEM CELLS (DAYTON, OHIO) 2021; 39:1625-1649. [PMID: 33786925 DOI: 10.1002/stem.3379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments. Likewise, emerging this technology has improved the chance of translatability of drugs for pre-clinical therapies and mimicking the complexity of organs, while it proposes numerous approaches for human disease modeling, tissue engineering, drug development, diagnosis, and regenerative medicine. In this review, we outline the past/present organoid technology and summarize its faithful applications, then, we discuss the challenges and limitations encountered by 3D organoids. In the end, we offer the human organoids as basic mechanistic infrastructure for "human modelling" systems to prescribe personalized medicines. © AlphaMed Press 2021 SIGNIFICANCE STATEMENT: This concise review concerns about organoids, available methods for in vitro organoid formation and different types of human organoid models. We, then, summarize biological approaches to improve 3D organoids complexity and therapeutic potentials of organoids. Despite the existing incomprehensive review articles in literature that examine partial aspects of the organoid technology, the present review article comprehensively and critically presents this technology from different aspects. It effectively provides a systematic overview on the past and current applications of organoids and discusses the future perspectives and suggestions to improve this technology and its applications.
Collapse
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, Mishref, Safat, Kuwait.,Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
31
|
Kar SK, Wells JM, Ellen ED, Te Pas MFW, Madsen O, Groenen MAM, Woelders H. Organoids: a promising new in vitro platform in livestock and veterinary research. Vet Res 2021; 52:43. [PMID: 33691792 PMCID: PMC7943711 DOI: 10.1186/s13567-021-00904-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an overview of studies on organoids in livestock and companion animal species, with focus on the methods developed for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and animal biotechnology, in which organoids may have great potential as an in vitro research tool.
Collapse
Affiliation(s)
- Soumya K Kar
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Esther D Ellen
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marinus F W Te Pas
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
32
|
Zahmatkesh E, Khoshdel-Rad N, Mirzaei H, Shpichka A, Timashev P, Mahmoudi T, Vosough M. Evolution of organoid technology: Lessons learnt in Co-Culture systems from developmental biology. Dev Biol 2021; 475:37-53. [PMID: 33684433 DOI: 10.1016/j.ydbio.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
In recent years, the development of 3D organoids has opened new avenues of investigation into development, physiology, and regenerative medicine. Organoid formation and the process of organogenesis share common developmental pathways; thus, our knowledge of developmental biology can help model the complexity of different organs to refine organoids into a more sophisticated platform. The developmental process is strongly dependent on complex networks and communication of cell-cell and cell-matrix interactions among different cell populations and their microenvironment, during embryogenesis. These interactions affect cell behaviors such as proliferation, survival, migration, and differentiation. Co-culture systems within the organoid technology were recently developed and provided the highly physiologically relevant systems. Supportive cells including various types of endothelial and stromal cells provide the proper microenvironment, facilitate organoid assembly, and improve vascularization and maturation of organoids. This review discusses the role of the co-culture systems in organoid generation, with a focus on how knowledge of developmental biology has directed and continues to shape the development of more evolved 3D co-culture system-derived organoids.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia; Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Department of Polymers and Composites, N.N.Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
33
|
Holloway EM, Czerwinski M, Tsai YH, Wu JH, Wu A, Childs CJ, Walton KD, Sweet CW, Yu Q, Glass I, Treutlein B, Camp JG, Spence JR. Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. Cell Stem Cell 2021; 28:568-580.e4. [PMID: 33278341 PMCID: PMC7935765 DOI: 10.1016/j.stem.2020.11.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The human intestinal stem cell niche supports self-renewal and epithelial function, but little is known about its development. We used single-cell mRNA sequencing with in situ validation approaches to interrogate human intestinal development from 7-21 weeks post conception, assigning molecular identities and spatial locations to cells and factors that comprise the niche. Smooth muscle cells of the muscularis mucosa, in close proximity to proliferative crypts, are a source of WNT and RSPONDIN ligands, whereas EGF is expressed far from crypts in the villus epithelium. Instead, an PDGFRAHI/F3HI/DLL1HI mesenchymal population lines the crypt-villus axis and is the source of the epidermal growth factor (EGF) family member NEUREGULIN1 (NRG1). In developing intestine enteroid cultures, NRG1, but not EGF, permitted increased cellular diversity via differentiation of secretory lineages. This work highlights the complexities of intestinal EGF/ERBB signaling and delineates key niche cells and signals of the developing intestine.
Collapse
Affiliation(s)
- Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caden W Sweet
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
High-Definition DIC Imaging Uncovers Transient Stages of Pathogen Infection Cycles on the Surface of Human Adult Stem Cell-Derived Intestinal Epithelium. mBio 2021; 13:e0002222. [PMID: 35100876 PMCID: PMC8805028 DOI: 10.1128/mbio.00022-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions between individual pathogenic microbes and host tissues involve fast and dynamic processes that ultimately impact the outcome of infection. Using live-cell microscopy, these dynamics can be visualized to study, e.g., microbe motility, binding and invasion of host cells, and intrahost-cell survival. Such methodology typically employs confocal imaging of fluorescent tags in tumor-derived cell line infections on glass. This allows high-definition imaging but poorly reflects the host tissue's physiological architecture and may result in artifacts. We developed a method for live-cell imaging of microbial infection dynamics on human adult stem cell-derived intestinal epithelial cell (IEC) layers. These IEC layers are grown in apical imaging chambers, optimized for physiological cell arrangement and fast, but gentle, differential interference contrast (DIC) imaging. This allows subsecond visualization of both microbial and epithelial surface ultrastructure at high resolution without using fluorescent reporters. We employed this technology to probe the behavior of two model pathogens, Salmonella enterica serovar Typhimurium and Giardia intestinalis, at the intestinal epithelial surface. Our results reveal pathogen-specific swimming patterns on the epithelium and show that Salmonella lingers on the IEC surface for prolonged periods before host cell invasion, while Giardia uses circular swimming with intermittent attachments to scout for stable adhesion sites. The method even permits tracking of individual Giardia flagella, demonstrating that active flagellar beating and attachment to the IEC surface are not mutually exclusive. This work describes a generalizable and relatively inexpensive approach to resolving dynamic pathogen-IEC layer interactions, applicable even to genetically nontractable microorganisms. IMPORTANCE Knowledge of dynamic niche-specific interactions between single microbes and host cells is essential to understand infectious disease progression. However, advances in this field have been hampered by the inherent conflict between the technical requirements for high-resolution live-cell imaging on the one hand and conditions that best mimic physiological infection niche parameters on the other. Toward bridging this divide, we present a methodology for differential interference contrast (DIC) imaging of pathogen interactions at the apical surface of enteroid-derived intestinal epithelia, providing both high spatial and temporal resolution. This alleviates the need for fluorescent reporters in live-cell imaging and provides dynamic information about microbe interactions with a nontransformed, confluent, polarized, and microvilliated human gut epithelium. Using this methodology, we uncover previously unrecognized stages of Salmonella and Giardia infection cycles at the epithelial surface.
Collapse
|
35
|
Steiner CA, Rodansky ES, Johnson LA, Berinstein JA, Cushing KC, Huang S, Spence JR, Higgins PDR. AXL Is a Potential Target for the Treatment of Intestinal Fibrosis. Inflamm Bowel Dis 2021; 27:303-316. [PMID: 32676663 PMCID: PMC7885333 DOI: 10.1093/ibd/izaa169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fibrosis is the final common pathway to intestinal failure in Crohn's disease, but no medical therapies exist to treat intestinal fibrosis. Activated myofibroblasts are key effector cells of fibrosis in multiple organ systems, including the intestine. AXL is a receptor tyrosine kinase that has been implicated in fibrogenic pathways involving myofibroblast activation. We aimed to investigate the AXL pathway as a potential target for the treatment of intestinal fibrosis. METHODS To establish proof of concept, we first analyzed AXL gene expression in 2 in vivo models of intestinal fibrosis and 3 in vitro models of intestinal fibrosis. We then tested whether pharmacological inhibition of AXL signaling could reduce fibrogenesis in 3 in vitro models of intestinal fibrosis. In vitro testing included 2 distinct cell culture models of intestinal fibrosis (matrix stiffness and TGF-β1 treatment) and a human intestinal organoid model using TGF-β1 cytokine stimulation. RESULTS Our findings suggest that the AXL pathway is induced in models of intestinal fibrosis. We demonstrate that inhibition of AXL signaling with the small molecule inhibitor BGB324 abrogates both matrix-stiffness and transforming growth factor beta (TGF-β1)-induced fibrogenesis in human colonic myofibroblasts. AXL inhibition with BGB324 sensitizes myofibroblasts to apoptosis. Finally, AXL inhibition with BGB324 blocks TGF-β1-induced fibrogenic gene and protein expression in human intestinal organoids. CONCLUSIONS The AXL pathway is active in multiple models of intestinal fibrosis. In vitro experiments suggest that inhibiting AXL signaling could represent a novel approach to antifibrotic therapy for intestinal fibrosis such as in Crohn's disease.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva S Rodansky
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A Johnson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A Berinstein
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly C Cushing
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter D R Higgins
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Hung YH, Huang S, Dame MK, Yu Q, Yu QC, Zeng YA, Camp JG, Spence JR, Sethupathy P. Chromatin regulatory dynamics of early human small intestinal development using a directed differentiation model. Nucleic Acids Res 2021; 49:726-744. [PMID: 33406262 PMCID: PMC7826262 DOI: 10.1093/nar/gkaa1204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The establishment of the small intestinal (SI) lineage during human embryogenesis ensures functional integrity of the intestine after birth. The chromatin dynamics that drive SI lineage formation and regional patterning in humans are essentially unknown. To fill this knowledge void, we apply a cutting-edge genomic technology to a state-of-the-art human model of early SI development. Specifically, we leverage chromatin run-on sequencing (ChRO-seq) to define the landscape of active promoters, enhancers and gene bodies across distinct stages of directed differentiation of human pluripotent stem cells into SI spheroids with regional specification. Through comprehensive ChRO-seq analysis we identify candidate stage-specific chromatin activity states, novel markers and enhancer hotspots during the directed differentiation. Moreover, we propose a detailed transcriptional network associated with SI lineage formation or regional patterning. Our ChRO-seq analyses uncover a previously undescribed pattern of enhancer activity and transcription at HOX gene loci underlying SI regional patterning. We also validated this unique HOX dynamics by the analysis of single cell RNA-seq data from human fetal SI. Overall, the results lead to a new proposed working model for the regulatory underpinnings of human SI development, thereby adding a novel dimension to the literature that has relied almost exclusively on non-human models.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael K Dame
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basal, Basel 4056, Switzerland
| | - Qing C Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi A Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basal, Basel 4056, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4001, Switzerland
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. NATURE MATERIALS 2021; 20:22-29. [PMID: 32958879 DOI: 10.1038/s41563-020-00803-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 08/17/2020] [Indexed: 05/23/2023]
Abstract
Bioprinting promises enormous control over the spatial deposition of cells in three dimensions1-7, but current approaches have had limited success at reproducing the intricate micro-architecture, cell-type diversity and function of native tissues formed through cellular self-organization. We introduce a three-dimensional bioprinting concept that uses organoid-forming stem cells as building blocks that can be deposited directly into extracellular matrices conducive to spontaneous self-organization. By controlling the geometry and cellular density, we generated centimetre-scale tissues that comprise self-organized features such as lumens, branched vasculature and tubular intestinal epithelia with in vivo-like crypts and villus domains. Supporting cells were deposited to modulate morphogenesis in space and time, and different epithelial cells were printed sequentially to mimic the organ boundaries present in the gastrointestinal tract. We thus show how biofabrication and organoid technology can be merged to control tissue self-organization from millimetre to centimetre scales, opening new avenues for drug discovery, diagnostics and regenerative medicine.
Collapse
Affiliation(s)
- Jonathan A Brassard
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mike Nikolaev
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Moritz Hofer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland.
| |
Collapse
|
38
|
Kuhre RE, Deacon CF, Holst JJ, Petersen N. What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell? Front Endocrinol (Lausanne) 2021; 12:694284. [PMID: 34168620 PMCID: PMC8218725 DOI: 10.3389/fendo.2021.694284] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ;
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
39
|
Weindl G. Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handb Exp Pharmacol 2020; 265:219-233. [PMID: 33349897 DOI: 10.1007/164_2020_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The intestinal epithelial barrier, together with the microbiome and local immune system, is a critical component that maintains intestinal homeostasis. Dysfunction may lead to chronic inflammation, as observed in inflammatory bowel diseases. Animal models have historically been used in preclinical research to identify and validate new drug targets in intestinal inflammatory diseases. Yet, limitations about their biological relevance to humans and advances in tissue engineering have forced the development of more complex three-dimensional reconstructed intestinal epithelium. By introducing immune and commensal microbial cells, these models more accurately mimic the gut's physiology and the pathophysiological changes occurring in vivo in the inflamed intestine. Specific advantages and limitations of two-dimensional (2D) and three-dimensional (3D) intestinal models such as coculture systems, organoids, and microfluidic devices to study inflammatory and immune-related responses are highlighted. While current cell culture models lack the cellular and molecular complexity observed in vivo, the emphasis is put on how these models can be used to improve preclinical drug development for inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Günther Weindl
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
40
|
Seeger B. Farm Animal-derived Models of the Intestinal Epithelium: Recent Advances and Future Applications of Intestinal Organoids. Altern Lab Anim 2020; 48:215-233. [PMID: 33337913 DOI: 10.1177/0261192920974026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Farm animals play an important role in translational research as large animal models of the gastrointestinal (GI) tract. The mechanistic investigation of zoonotic diseases of the GI tract, in which animals can act as asymptomatic carriers, could provide important information for therapeutic approaches. In veterinary medicine, farm animals are no less relevant, as they can serve as models for the development of diagnostic and therapeutic approaches of GI diseases in the target species. However, farm animal-derived cell lines of the intestinal epithelium are rarely available from standardised cell banks and, in addition, are not usually specific for certain sections of the intestine. Immortalised porcine or bovine enterocytic cell lines are more widely available, compared to goat or sheep-derived cell lines; no continuous cell lines are available from the chicken. Other epithelial cell types with intestinal section-specific distribution and function, such as goblet cells, enteroendocrine cells, Paneth cells and intestinal stem cells, are not represented in those cell line-based models. Therefore, intestinal organoid models of farm animal species, which are already widely used for mice and humans, are gaining importance. Crypt-derived or pluripotent stem cell-derived intestinal organoid models offer the possibility to investigate the mechanisms of inter-cell or host-pathogen interactions and to answer species-specific questions. This review is intended to give an overview of cell culture models of the intestinal epithelium of farm animals, discussing species-specific differences, culture techniques and some possible applications for intestinal organoid models. It also highlights the need for species-specific pluripotent stem cell-derived or crypt-derived intestinal organoid models for promotion of the Three Rs principles (replacement, reduction and refinement).
Collapse
Affiliation(s)
- Bettina Seeger
- Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, Institute for Food Toxicology, 460510University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
41
|
Boyle MA, Sequeira DJ, McNeill EP, Criss ZK, Shroyer NF, Speer AL. In Vivo Transplantation of Human Intestinal Organoids Enhances Select Tight Junction Gene Expression. J Surg Res 2020; 259:500-508. [PMID: 33168233 DOI: 10.1016/j.jss.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Short bowel syndrome is a potentially fatal condition with inadequate management options. Tissue-engineered small intestine (TESI) is a promising solution, but confirmation of TESI function will be crucial before human application. We sought to define intestinal epithelial barrier function in human intestinal organoid (HIO)-derived TESI. MATERIALS AND METHODS HIOs were generated in vitro from human embryonic stem cells. After 1 mo, HIOs were collected for analysis or transplanted into the kidney capsule of immunocompromised mice. Transplanted HIOs (tHIOs) were harvested for analysis at 4 or 8 wk. Reverse transcription quantitative polymerase chain reaction and immunofluorescent staining were performed for tight junction components: claudin 3 (CLDN3), claudin 15 (CLDN15), occludin (OCLN), and zonula occludens-1, or tight junction protein-1 (TJP1/ZO-1). RESULTS Four-week-old tHIOs demonstrated significantly (P < 0.05) higher levels of CLDN15 (6x), OCLN (4x), and TJP1/ZO-1 (3x) normalized to GAPDH than in vitro HIOs. Eight-week-old tHIOs demonstrated significantly (P < 0.05) higher expression levels of CLDN3 (26x), CLDN15 (29x), OCLN (4x), and TJP1/ZO-1 (5x) than in vitro HIOs. There was no significant difference in expression of these tight junction components between 4- and 8-week-old tHIOs. Immunofluorescent staining revealed the presence of claudin 3, claudin 15, occludin, and zonula occludens-1 in both in vitro HIOs and tHIOs; however, the morphology appeared more mature in tHIOs. CONCLUSIONS In vitro HIOs have lower levels of tight junction mRNA, and tight junction proteins appear morphologically immature. Transplantation facilitates maturation of the HIOs and enhances select tight junction gene expression.
Collapse
Affiliation(s)
- Mariaelena A Boyle
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, Houston, Texas
| | - David J Sequeira
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, Houston, Texas
| | - Eoin P McNeill
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, Houston, Texas
| | - Zachary K Criss
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Allison L Speer
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, Houston, Texas.
| |
Collapse
|
42
|
Holloway EM, Wu JH, Czerwinski M, Sweet CW, Wu A, Tsai YH, Huang S, Stoddard AE, Capeling MM, Glass I, Spence JR. Differentiation of Human Intestinal Organoids with Endogenous Vascular Endothelial Cells. Dev Cell 2020; 54:516-528.e7. [PMID: 32841595 PMCID: PMC7480827 DOI: 10.1016/j.devcel.2020.07.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) lack some cellular populations found in the native organ, including vasculature. Using single-cell RNA sequencing (scRNA-seq), we have identified a population of endothelial cells (ECs) present early in HIO differentiation that declines over time in culture. Here, we developed a method to expand and maintain this endogenous population of ECs within HIOs (vHIOs). Given that ECs possess organ-specific gene expression, morphology, and function, we used bulk RNA-seq and scRNA-seq to interrogate the developing human intestine, lung, and kidney in order to identify organ-enriched EC gene signatures. By comparing these gene signatures and validated markers to HIO ECs, we find that HIO ECs grown in vitro share the highest similarity with native intestinal ECs relative to kidney and lung. Together, these data demonstrate that HIOs can co-differentiate a native EC population that is properly patterned with an intestine-specific EC transcriptional signature in vitro.
Collapse
Affiliation(s)
- Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caden W Sweet
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amy E Stoddard
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
43
|
Baulies A, Angelis N, Li VSW. Hallmarks of intestinal stem cells. Development 2020; 147:147/15/dev182675. [PMID: 32747330 DOI: 10.1242/dev.182675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intestinal stem cells (ISCs) are highly proliferative cells that fuel the continuous renewal of the intestinal epithelium. Understanding their regulatory mechanisms during tissue homeostasis is key to delineating their roles in development and regeneration, as well as diseases such as bowel cancer and inflammatory bowel disease. Previous studies of ISCs focused mainly on the position of these cells along the intestinal crypt and their capacity for multipotency. However, evidence increasingly suggests that ISCs also exist in distinct cellular states, which can be an acquired rather than a hardwired intrinsic property. In this Review, we summarise the recent findings into how ISC identity can be defined by proliferation state, signalling crosstalk, epigenetics and metabolism, and propose an update on the hallmarks of ISCs. We further discuss how these properties contribute to intestinal development and the dynamics of injury-induced regeneration.
Collapse
Affiliation(s)
- Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
44
|
Steinway SN, Saleh J, Koo BK, Delacour D, Kim DH. Human Microphysiological Models of Intestinal Tissue and Gut Microbiome. Front Bioeng Biotechnol 2020; 8:725. [PMID: 32850690 PMCID: PMC7411353 DOI: 10.3389/fbioe.2020.00725] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a complex system responsible for nutrient absorption, digestion, secretion, and elimination of waste products that also hosts immune surveillance, the intestinal microbiome, and interfaces with the nervous system. Traditional in vitro systems cannot harness the architectural and functional complexity of the GI tract. Recent advances in organoid engineering, microfluidic organs-on-a-chip technology, and microfabrication allows us to create better in vitro models of human organs/tissues. These micro-physiological systems could integrate the numerous cell types involved in GI development and physiology, including intestinal epithelium, endothelium (vascular), nerve cells, immune cells, and their interplay/cooperativity with the microbiome. In this review, we report recent progress in developing micro-physiological models of the GI systems. We also discuss how these models could be used to study normal intestinal physiology such as nutrient absorption, digestion, and secretion as well as GI infection, inflammation, cancer, and metabolism.
Collapse
Affiliation(s)
- Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jad Saleh
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Deok-Ho Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Abstract
Organoids form through self-organization processes in which initially homogeneous populations of stem cells spontaneously break symmetry and undergo in-vivo-like pattern formation and morphogenesis, though the processes controlling this are poorly characterized. While these in vitro self-organized tissues far exceed the microscopic and functional complexity obtained by current tissue engineering technologies, they are non-physiological in shape and size and have limited function and lifespan. Here, we discuss how engineering efforts for guiding stem-cell-based development at multiple stages can form the basis for the assembly of highly complex and rationally designed self-organizing multicellular systems with increased robustness and physiological relevance.
Collapse
|
46
|
Wechsler ME, Shevchuk M, Peppas NA. Developing a Multidisciplinary Approach for Engineering Stem Cell Organoids. Ann Biomed Eng 2020; 48:1895-1904. [PMID: 31659603 PMCID: PMC7186139 DOI: 10.1007/s10439-019-02391-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023]
Abstract
Recent advances in stem cell biology, synthetic biology, bioengineering, and biotechnology have included significant work leading to the development of stem cell-derived organoids. The growing popularity of organoid research and use of organoids is widely due to the fact that these three-dimensional cellular structures better model human physiology compared to traditional in vitro and in vivo methods by recapitulating many biologically relevant parameters. Organoids show great promise for a wide range of applications, such as for use in disease modeling, drug discovery, and regenerative medicine. However, many challenges associated with reproducibility and scale up still remain. Identification of the conditions which generate a robust environment that predictably promotes cellular self-assembly and organization leading to organoid formation is critical and requires a multidisciplinary approach. To accomplish this we need to identify a cellular source, engineer a matrix to stimulate cell-cell and cell-matrix interactions, and provide the biochemical and biophysical cues which mimic that of the in vivo environment. Discussion of the components needed for organoid development and formation is reviewed herein, as well as specific organoid examples and the promise of this research for the future.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Mariya Shevchuk
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
47
|
Abstract
Diabetes is one of the most challenging health concerns facing society. Available drugs treat the symptoms but there is no cure. This presents an urgent need to better understand human diabetes in order to develop improved treatments or target remission. New disease models need to be developed that more accurately describe the pathology of diabetes. Organoid technology provides an opportunity to fill this knowledge gap. Organoids are 3D structures, established from pluripotent stem cells or adult stem/progenitor cells, that recapitulate key aspects of the in vivo tissues they mimic. In this review we briefly introduce organoids and their benefits; we focus on organoids generated from tissues important for glucose homeostasis and tissues associated with diabetic complications. We hope this review serves as a touchstone to demonstrate how organoid technology extends the research toolbox and can deliver a step change of discovery in the field of diabetes.
Collapse
Affiliation(s)
- Anastasia Tsakmaki
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Patricia Fonseca Pedro
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Gavin A Bewick
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
48
|
Garriock RJ, Chalamalasetty RB, Zhu J, Kennedy MW, Kumar A, Mackem S, Yamaguchi TP. A dorsal-ventral gradient of Wnt3a/β-catenin signals controls mouse hindgut extension and colon formation. Development 2020; 147:dev.185108. [PMID: 32156757 DOI: 10.1242/dev.185108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Despite the importance of Wnt signaling for adult intestinal stem cell homeostasis and colorectal cancer, relatively little is known about its role in colon formation during embryogenesis. The development of the colon starts with the formation and extension of the hindgut. We show that Wnt3a is expressed in the caudal embryo in a dorsal-ventral (DV) gradient across all three germ layers, including the hindgut. Using genetic and lineage-tracing approaches, we describe novel dorsal and ventral hindgut domains, and show that ventrolateral hindgut cells populate the majority of the colonic epithelium. A Wnt3a-β-catenin-Sp5/8 pathway, which is active in the dorsal hindgut endoderm, is required for hindgut extension and colon formation. Interestingly, the absence of Wnt activity in the ventral hindgut is crucial for proper hindgut morphogenesis, as ectopic stabilization of β-catenin in the ventral hindgut via gain- or loss-of-function mutations in Ctnnb1 or Apc, respectively, leads to severe colonic hyperplasia. Thus, the DV Wnt gradient is required to coordinate growth between dorsal and ventral hindgut domains to regulate the extension of the hindgut that leads to colon formation.
Collapse
Affiliation(s)
- Robert J Garriock
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Ravindra B Chalamalasetty
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - JianJian Zhu
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Mark W Kennedy
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Amit Kumar
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Susan Mackem
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
49
|
Yoshida S, Miwa H, Kawachi T, Kume S, Takahashi K. Generation of intestinal organoids derived from human pluripotent stem cells for drug testing. Sci Rep 2020; 10:5989. [PMID: 32249832 PMCID: PMC7136241 DOI: 10.1038/s41598-020-63151-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Drug absorption via the intestinal tissue is modulated by membrane permeability and metabolism in intestinal epithelial cells (IECs). In drug discovery research, using human IECs to evaluate membrane permeability and metabolic stability can offer very useful information when exploring for drug candidate compounds that have good bioavailability and when trying to predict the fraction absorbed and intestinal availability in humans. Here, we evaluated the pharmacokinetic functions of human IECs differentiated from human induced pluripotent stem cells (hiPSCs) in 3D cultures. As human IECs differentiated in 3D cultures form intestinal organoids and spheroids (herein termed organoids), their morphology makes it difficult to evaluate their pharmacokinetic functions. Therefore, we dissociated intestinal organoids into single cells and attempted to purify human IECs. We found that hiPSC-derived IECs (hiPSC-IECs) expressed the epithelial cell adhesion molecule (EpCAM) and could be highly purified by sorting EpCAM+ cells. The hiPSC-IEC monolayer showed a high TEER value (approximately 350 Ω × cm2). In addition, hiPSC-IECs oxidatively metabolized terfenadine (CYP3A and CYP2J2 substrate) and midazolam (CYP3A substrate). These results indicated that hiPSC-IECs form tight-junction and have cytochrome P450 enzymatic activities. In conclusion, we developed a novel application of hiPSC-derived intestinal organoids for drug testing.
Collapse
Affiliation(s)
- Shinpei Yoshida
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, SHIONOGI & CO., LTD., 3-1-1, Toyonaka, 561-0825, Osaka, Japan. .,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Kanagawa, Japan.
| | - Hiroto Miwa
- Drug Discovery Technologies, Drug Discovery & Disease Research Laboratory, SHIONOGI & CO., LTD., 3-1-1, Toyonaka, 561-0825, Osaka, Japan
| | - Tomoyuki Kawachi
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, SHIONOGI & CO., LTD., 3-1-1, Toyonaka, 561-0825, Osaka, Japan
| | - Shoen Kume
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Kanagawa, Japan
| | - Koji Takahashi
- Drug Discovery Technologies, Drug Discovery & Disease Research Laboratory, SHIONOGI & CO., LTD., 3-1-1, Toyonaka, 561-0825, Osaka, Japan
| |
Collapse
|
50
|
DeLaForest A, Quryshi AF, Frolkis TS, Franklin OD, Battle MA. GATA4 Is Required for Budding Morphogenesis of Posterior Foregut Endoderm in a Model of Human Stomach Development. Front Med (Lausanne) 2020; 7:44. [PMID: 32140468 PMCID: PMC7042400 DOI: 10.3389/fmed.2020.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional gastrointestinal organoid culture systems provide innovative and tractable models to investigate fundamental developmental biology questions using human cells. The goal of this study was to explore the role of the zinc-finger containing transcription factor GATA4 in gastric development using an organoid-based model of human stomach development. Given GATA4′s vital role in the developing mouse gastrointestinal tract, we hypothesized that GATA4 plays an essential role in human stomach development. We generated a human induced pluripotent stem cell (hiPSC) line stably expressing an shRNA targeted against GATA4 (G4KD-hiPSCs) and used an established protocol for the directed differentiation of hiPSCs into stomach organoids. This in vitro model system, informed by studies in multiple non-human model systems, recapitulates the fundamental processes of stomach development, including foregut endoderm patterning, specification, and subsequent tissue morphogenesis and growth, to produce three-dimensional fundic or antral organoids containing functional gastric epithelial cell types. We confirmed that GATA4 depletion did not disrupt hiPSC differentiation to definitive endoderm (DE). However, when G4KD-hiPSC-derived DE cells were directed to differentiate toward budding SOX2+, HNF1B+ posterior foregut spheroids, we observed a striking decrease in the emergence of cell aggregates, with little to no spheroid formation and budding by GATA4-depleted hiPSCs. In contrast, control hiPSC-derived DE cells, expressing GATA4, formed aggregates and budded into spheroids as expected. These data support an essential role for GATA4 during the earliest stages of human stomach development.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Afiya F Quryshi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Talia S Frolkis
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|